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RESUMO  

De todos os catiões presentes no corpo, o magnésio é o segundo mais importante 

catião e o quarto mais prevalente. Doenças que envolvem o magnésio são classificadas 

em dois grupos: hipomagnesemia (défice de magnésio) e hipermagnesemia. Desta 

forma, a determinação de magnésio despertou grande interesse, porque auxilia no 

contexto clínico e em pesquisas epidemiológicas.  

Portanto, o objetivo deste trabalho foi desenvolver um dispositivo microfluídico  

analítico em papel (µPAD) para quantificar magnésio em amostras salivares.  

Neste caso em concreto, o µPAD baseia-se numa reação colorimétrica entre o 

magnésio e o eriocrómio de cianina, formando uma cor laranja/avermelhada intensa. 

Após a reação, é necessário utilizar um scanner de mesa para obter uma imagem de alta 

resolução da zona de deteção do µPAD para determinar a intensidade de cor laranja/ 

avermelhada de cada unidade de teste, medida através do software Image J.  

Sob condições ótimas, o método para o µPAD proposto foi caracterizado por um 

intervalo de calibração para a concentração de magnésio entre 0.082 – 0.247 mmol/L. 

Os limites de deteção e quantificação foram 0.062 mM e 0.081 mM, respetivamente. O 

gasto dos reagentes, eriocrómio cianina, NH4Cl e NH4OH foram 0.043 mg, 1.62 mg e 

13.0 mg por curva de calibração. O gasto da solução padrão/amostra foi 120 µl por cada 

determinação.  

  

 

Palavras-chave: Saliva, Magnésio, Dispositivo Microfluídico Analítico baseado em 

Papel  (µPAD)  
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ABSTRACT 

 
Of all the cations in the body, magnesium is the second most important 

intracellular cation and the fourth most prevalent. Disorders involving magnesium are 

categorized into two groups: hypomagnesemia (magnesium deficiency) and 

hypermagnesemia. In this way, the determination of magnesium has aroused great 

interest, because it helps in the clinical context and epidemiological research. 

Therefore, the objective of this work was to develop a microfluidic paper-based 

analytical device (µPAD) for the quantification of magnesium in saliva samples.  

In this case, the µPAD is based on the colorimetric reaction between magnesium 

and eriochrome cyanine to form an intense orange/reddish dye. After the reaction, it is 

necessary to use a flatbed scanner to obtain a high-resolution image of the detection 

zone for determination the intensity of the orange/reddish colour within each detection 

zone measured with Image J software. 

Under the optimum conditions, the proposed µPAD method was characterized by a  

linear calibration range for magnesium concentration 0.082 – 0.247 mmol/L. The 

detection and quantification limits were 0.062 mM and 0.081 mM, respectively. The 

reagents, eriochrome cyanine, NH4Cl and NH4OH consumption were 0.043 mg, 1.62 

mg and 13.0 mg per calibration curve and the sample consumption was 120 µl per each 

determination.  

 

 
 
Key Words: Saliva, Magnesium, Microfluidic Paper-based Analytical Device (µPAD)  
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1. INTRODUCTION  

 
1.1.  Saliva  

In most laboratory diagnostic procedures, blood is the most commonly used 

sample type because of its cellular and chemical constituents, and because it reflects the 

real concentration of the various analytes [1]. However, in recent years, there has been 

an increasing need to study alternative blood plasma samples, as this type of sampling is 

done invasively and has associated risk potentials such as infections and bruises. Some 

of these alternatives can be another type of biological fluid, such as sweat, urine and 

saliva [2]. When compared to the other alternatives, saliva is easily accessible, can be 

collected non-invasively and without violating patient privacy [3]. Saliva, due to its 

various constituents (e.g., biological material, proteins and microorganisms), has 

become a type of clinical interest sampling and has been implemented in multiple 

diagnostic tests for monitoring health conditions and certain diseases [4]. 

 

1.1.1. Salivary production, composition and functions  

Saliva belongs to a large group of mucous fluids (e.g. tear fluid, nasal mucus, 

cervical mucus, etc.) and plays a critical role in the physiology of the organism [5]. 

Saliva is the fluid present in the oral cavity and is mainly produced by three salivary 

glands: parotid, submandibular and sublingual (Figure 1.1), and a large number of 

smaller salivary glands [6]. However, the whole saliva also comes from the non-

glandular origin as it is composed of a complex mixture of fluids from other regions, 

such gingival fold fluids, oral mucosal transudate and mucus of the nasal cavity 

(bacteria, fungi, virus, upper airways secretions). Besides, oral fluid may also contain 

food debris, blood-derived compounds, traces of medicines or chemicals [7][8]. 

 

 

 

 

 
 

Figure 1.6 - Salivary glands and respective % of saliva production for unstimulated salivary flow [8]. 
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The salivary liquid is mostly composed of water (about 99%). However, it is 

also comprised of inorganic compounds (e.g. ionic compounds), organic compounds 

(e.g. uric acid, glucose), protein/polypeptide compounds (e.g. amylase, albumin) and 

hormones (e.g. steroids) [9][10]. Saliva contains a variety of electrolytes (Table 1.1), the 

most abundant of which are sodium, potassium, chloride and bicarbonate. Calcium, 

magnesium and phosphate are present in lower concentrations [7][11].  

 
Table 1.6 - Electrolyte and total protein concentrations in whole human oral fluid and plasma [7]. 

 Plasma Whole human resting 
oral fluid 

Whole human stimulated 
oral fluid 

Na+ (mmol/L) 145 5 20-80 

K+ (mmol/L) 4 22 20 

Ca2+ (mmol/L) 2.2 1-4 1-4 

Cl- (mmol/L) 120 15 30-100 

HCO3- (mmol/L) 25 5 15-80 

Phosphate (mmol/L) 1.2 6 4 

Mg2+ (mmol/L) 1.2 0.2 0.2 

SCN- (mmol/L) <0.2 2.5 2 

NH3 (mmol/L) 0.05 6 3 

(NH2)2CO (mmol/L) 2-7 3.3 2-4 

Protein (g/L) 70 3 3 
 
 

Under healthy conditions, adults usually produce about 0.5 to 1.5 L of saliva per 

day, at a rate between 0 mL/min (during sleep) to 5 mL/min (during chewing or in the 

presence of stimuli). Total salivary flow can be classified as normal (1.0 - 4.0 mL/min), 

low (0.7 - 1.0 mL/min) and very low (< 0.7 mL/min) [12]. However, as salivary flow 

shows great biological variation, the composition (qualitatively) and the volume 

produced (quantitatively) are not only influenced by the time of day, but also due to 

various physiological and pathological conditions. Thus, salivary flow (SF) can be 

called stimulated and unstimulated SF [8]. Stimulated salivary flow represents saliva 

produced in the presence of mechanical, taste, olfactory or pharmacological stimuli, 

contributing about 80-90% of total salivary production. In addition to the presence of 

stimuli, saliva volume and composition may be influenced by factors such as hormonal 

changes (e.g. pregnancy), alcoholism and smoking, age, physical exercise, body weight, 

hereditary influences, and mouth hygiene. Unstimulated saliva represents a small 
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continuous salivary flow, called basal secretion, whose role is to moisturize and 

lubricate oral tissues continuously [13]. 

Saliva is one of the most complex and vital body fluids for preserving oral tissue 

health and for a variety of physiological needs. This oral fluid plays a crucial role in 

preliminary digestion as it softens foods and assists in the preparation, chewing, 

digestion and swallowing of the bolus. Also, it protects tissues from mechanical damage 

by cleaning up the debris present in the oral cavity and also protects tissues from 

irritants agents such as bacteria, virus and fungi. Due to its composition, it also plays an 

essential role in maintaining mineralization of tooth enamel. Other important saliva 

functions include its role in speech, taste, ability to buffer acidic foods and antibacterial, 

breath odour control while maintaining the integrity of the oral and gastrointestinal 

mucosa [8][14]. 

 

1.1.2. Historic of salivary analysis and clinical applications   

In recent years, several studies have been developed to assess and monitor health 

status to implement surveillance diagnoses of human health through saliva analysis. 

Surprisingly, however, saliva has been used in clinical diagnostics for over 2000 years. 

For ancient practitioners of traditional Chinese medicine, saliva and blood are “sister 

fluids” from the same origin, and changes in oral fluid are indicative of the wellness of 

the individual (e.g. viscosity, odour, taste, etc.). Theories such as excessive saliva 

secretion are related to heartburn or sweet-tasting saliva related to problems with spleen 

functioning were some of the historical hallmarks of early saliva applications for health 

monitoring [15]. 

The use of this type of sampling has been a bet in several studies and, in most of 

them, aimed to implement in the routine medical practice component. Demand to 

develop tests based on salivary specimens rather than using blood specimens has been 

quite high since specimen collection has no associated risk potential and can be 

achieved very affordably [16]. However, the biggest challenge associated with testing 

has been the discovery and hence, validation of salivary biomarkers for certain diseases 

[17].   

In recent years, there have been several successful oral fluid-based diagnostic 

tests (Table 1.2), such as saliva-based tests for the detection of HIV antibodies, with 

high specificity and sensitivity similar to blood tests. (Roberts KJ) Saliva-based tests to 
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predict premature birth (estradiol analysis), evaluate female reproductive cycles 

(estrogen, testosterone and electrolyte analysis) and assess stress level (cortisol analysis) 

[16]. Saliva has also been widely used in dentistry for oral disease studies to avoid the 

risk of tooth decay by measuring saliva buffer capacity and assessing bacterial content 

[18].   

There have been several study proposals for saliva research, namely, viral and 

bacterial infections (genomes and antibodies detection), cancer, pharmaceutical and 

abuse drugs, hormones, DNA tests (using oral cells), sialo chemistry analysis, etc. [6]. 

Besides, the importance of using saliva is not only useful in clinical practice for 

diagnosing disease but has also been increasingly used in law enforcement agencies to 

develop methods for detecting illegal poisoning [2].  
 

Table 1.7 - Current and potential use of saliva based diagnostics [18]. 

Current existing assays with active development of new 
detection systems 

Potential use in near future 

Pharmacological monitoring 

Therapeutic drugs 

Law enforcement applications  

     Drug intoxication  

     Illicit drugs  

     Forensics 

Smoking exposure cotinine and thiocyanate  

Steroid hormones  

Cortisol, estrogen, testosterone and progesterone  

Infectious diseases  

      Antibody testing: HIV, HCV and HBV 

     Antigen detection: bacterial, viral, fungal DNA/RNA/Protein 

     Microorganism recovery: bacterial, viral, fungal cultures 

Autoimmune diseases 

     Allergic markers  

Cardiovascular diseases  

     Acute myocardial infarction 

     Cardiac risk 

Cancer screening and diagnosis 

     Oral cancer 

     Breast cancer  

     Cancer-specific markers  

Periodontal diseases  

 

1.1.3. Advantages and disadvantages of saliva samples  

In recent years, there is a growing interest in studying other biological fluids, 

with the same constituents as blood plasma, to develop clinical trials. Blood is 

considered the best body fluid for developing systemic processes, as it reflects the 

actual concentration of analytes. However, the methodology used to collect such 

samples is quite invasive and involves some potential risk for the patient, such as 

bruises, discomfort, possible site infections and anaemia. Besides, such samples are also 
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less favoured when research involves children or cases of difficult venous access 

(severe diseases and the elderly) [13]. 

For this, biological fluids such as urine, sweat and saliva have been excellent 

alternatives to replace blood samples, since their collection is non-invasive.  Urine 

allows the accumulated measurement of analytes. However, results are dependent on the 

patient's fluid intake, which may vary substantially. Urine specimen collection has 

contested as it aims to invade patient privacy in case of sampling supervision [7]. 

Unlike urine, saliva can be collected under supervision without any violation of 

privacy. In this case, the collection is simple, stress-free (procedure without needles), 

less discomfort, cheap and simple. Some advantages of using saliva as sampling are 

shown in Figure 1.2. These samples are relevant and useful if children and the elderly 

need to be evaluated or for large-scale screening, offering an economic approach [19]. 

Samples can be taken by patients themselves or by poorly trained people, and can even 

be applied to less-favoured areas or unconventional environments (e.g. developing 

countries) as it does not require very elaborate equipment [15]. 

 
Figure 1.7 - Schematic representation of the advantages of saliva specimen over other bio samples [2]. 

 

However, saliva collection has some disadvantages, such as the fact that, 

compared to blood samples, their volume is limited and salivary biomarkers are still 

mostly unknown. The fact that salivary flow varies, both in volume and composition, in 

the presence of stimulating factors, it should be emphasized that the results depend on 

the cooperation of the individual, that is, depending on the psychological status and 

whether they consumed medicines [16]. Also, there is a need for more sensitive 

quantification methods, which may be related to the fact that the salivary matrix is quite 

complex, making interpretation of the results difficult [19]. 
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1.1.4. Collection and sample storage  

As mentioned above, the stimulated salivary flow is dependent on the presence 

of stimuli, and consequently, their composition may be altered. Thus, unstimulated 

saliva collection generally correlates with clinical conditions more accurately than 

stimulated saliva. An essential requirement for collecting salivary samples is to 

minimize all possible sources of variation in salivary composition. The most traditional 

way to obtain this fluid is to place the patient sitting with the head bent forward and 

allow the saliva to drip from the mouth into a collection container passively. However, 

this procedure is not very comfortable for the patient. Another method for collecting 

saliva is to ask the patient to spit gently into a vial. However, spit samples have been 

shown to contain up to 14 times more bacteria than passive drool [1][20]. 

When the above procedures are not possible, the only alternative is to use 

materials to collect saliva more efficiently. However, by introducing the elements into 

the patient's mouth, it stimulates the production of saliva and consequently may change 

its composition. The collection can be done through specific devices (larger sample 

volume), use of sterile swabs (faster), pipet aspiration under the tongue, chewing a piece 

of standard size paraffin, among others. The purpose of the devices facilitates sample 

collection in young children who have difficulty spitting. When using sterile swabs, the 

patient should remain with the gauze in their mouth for a few minutes until saturated, 

and then taken to the centrifuge to collect the fluid [19]. Before the collection of saliva, 

the patient should be informed in advance of the importance of the collection protocol. 

Information such as: to exclude tooth brushing, samples should preferably be taken 

fasting or at least 2-3 hours without consuming food or medicine. For the same reason, 

patients should be advised to rinse their mouth thoroughly with deionized water before 

collection [2]. 

After the saliva collection, the most effective process is freezing the sample to 

maintain the integrity of its constituents. The choice of different storage procedures 

before analysing the samples depends on the type of analyte to be analysed. Freezing 

samples is generally the most appropriate procedure because it prevents the growth of 

microorganisms and the degradation of analytes. However, if the analysis is done 

immediately after collection (up to 90 minutes), samples can be stored at room 

temperature. If the analysis was done between 3h-6h after collection, the samples 

should be placed in a 4 °C refrigerator. If the analysis is done days or even months after 
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collection, specimens should be stored at -20 ° C or, depending on the analyte, at -80 °C 

[2] [21].  

 

1.1.5. Detection techniques to determine analytes  

Whole oral fluid compounds have been examined with a large number of 

techniques: colorimetric/spectrophotometric, gas chromatography (GC), ion 

chromatography (IC), high performance liquid chromatography (HPLC) and as atomic 

absorption spectroscopy (AAS) [4]. However, all of these methods require robust, 

expensive and bulky equipment, which must be operated by a qualified laboratory 

professional. Thus, the need arose to create new alternative analytical techniques that 

determine the same analytes, with similar detection sensitivity. Thus, the possibility of 

using microfluidic paper-based analytical devices as an alternative tool for the 

determination of analytes present in saliva was explored, due to the simplicity of the 

method, low cost and portability [19]. 

 
 
 
 

1.2. Magnesium 
 

The determination of electrolytes in human fluids is one of the most important 

functions in the clinical laboratory. Electrolytes affect most metabolic processes and are 

therefore part of several studies in the field of clinical research [22].  

 

1.2.1. Overview of the analyte  

Of all the cations in the body, magnesium is the fourth most prevalent and the 

second most abundant intracellularly [23]. Magnesium plays an important physiological 

role in many body functions (Table 1.3). Is essential for the synthesis of nucleic acids 

and proteins, regulatory systems, replication and for specific actions in different organs 

(e.g. neuromuscular and cardiovascular systems). Physiologically, magnesium acts as a 

cofactor for more than 300 enzymes [24].  
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Table 1.8 - Physiological functions of magnesium [25]. 

Enzyme function 
  
Enzyme substrate (ATPmg, GTPmg) 
    Kinases B           Hexokinase 
                               Creatine kinase 
                               Protein kinase 
 
ATPases or GTPases  
                Na+, K+ -ATPase 
                Ca2+, ATPase 
 
 
Cyclases                
                Adenylate cyclase 
                Guamylate cyclase  
 
Direct enzyme activation  
    Phosphofructokinase 
    Creatine kinase  
    5-phosphoribosyl-pyrophosphate synthetase 
    Adenylate cyclase  
    Na+, K+ -ATPase 
 

Membrane function  
    Cell adhesion  
    Transmembrane electrolyte flux  
 
Calcium antagonist  
    Muscle contraction/relaxation  
    Neurotransmitter release 
    Action potential conduction in nodal tissue 
 
Structural function  
    Protein  
    Polyribosomes  
    Nucleic acids 
    Multiple enzyme complexes 
    Mitochondria   

 
 
  

1.2.2. Magnesium metabolism  

The body of a healthy adult contains approximately 21-28 g of magnesium. 

About 60% of the magnesium is present in bones, 20% in skeletal muscle, 19% in other 

soft tissues and less than 1% in the extracellular fluid. Usually, the total serum 

magnesium concentrations range from 0.7 – 1.3 mmol/L. About 20% of serum 

magnesium concentrations is protein bound (e.g. albumin), 65% is free ionized 

magnesium and the rest is associated with complexed formed between magnesium and 

various anions (e.g. phosphate). The reference range for serum ionised magnesium 

concentrations ranges from 0.54 – 0.67 mmol/L [25]. 

Until then, there is not much information about the mechanisms involved in the 

regulation of intracellular magnesium. However, it is known that 0.5 – 5% of total 

cellular magnesium is free ionised magnesium. The remaining percentage is related to 

complexes formed between magnesium and other compounds such as ATP, proteins or 

DNA [25]. 

Magnesium concentrations in other biological fluids may have different 

values/ranges compared to blood samples. In salivary samples, the magnesium 

concentration is 0.2 mmol/L [7] [26]. In urine samples, values of less than 1.0 mmol/L 
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indicate that the patient needs supplementation. Yet, if the magnesium concentration 

was bellow 0.4 mmol/L indicate danger for the patient and may be an indicator of a 

disease [27].  

Magnesium balance in the body, like that of other ions, is assessed by the 

function between ingestion and urinary excretion. In adults, the daily intake of 

magnesium is on average, between 5.6 - 6.8 mg/kg of body weight. However, the 

recommended daily dose is 4.5 mg/kg of body weight [27]. 

To ensure normal magnesium levels in the body, it is necessary to eat certain 

foods with sufficient Mg content. The main dietary sources of magnesium are cereals, 

grains, green vegetables (e.g. spinach), nuts, fruits, vegetables and tubers (e.g. potatoes). 

Water can be an essential source of magnesium. In general, magnesium intake is 

directly related to energy intake, except when most energy is associated with refined 

sugars or alcohol [25]. 

 

1.2.3. Assessment of magnesium status  

Although the importance of magnesium is widely acknowledged, after several 

researches, there is still no simple, accurate and rapid laboratory test in clinical 

medicine, to determine total body magnesium status. To date, the serum magnesium 

concentration is the predominant test used by medicine to assess magnesium status [23].  

However, there are several places where magnesium can be stored and excreted 

so that the analyte can be measured.  Serum magnesium concentration can obtain 

through total magnesium, ultrafiltrate magnesium and ionized magnesium. If the status 

of Mg is to be measured by intracellular magnesium content, it can be obtained from red 

cells, mononuclear blood cells or skeletal muscle. The intracellular concentration of free 

magnesium is evaluate, using fluorescent dyes may be used, provided they form 

complexes with the analyte, or also by nuclear magnetic resonance spectroscopy. There 

are some methodologies, for assessing magnesium status, that are less widely used, 

namely using hair or teeth samples [25].  

 

 
1.2.4. Clinical significance and associated diseases 

Monitoring the free magnesium level of a patient is important in preventing life-

threatening complications that can occur depending on the analyte concentration levels. 



 24 

Disorders involving magnesium are characterised in two groups: hypomagnesemia 

(magnesium deficiency) and hypermagnesemia [25]. 

Hypomagnesemia is not rare. Prevalence pf hypomagnesemia varies from 7% 

and 11% in hospital patients. By relating serum magnesium concentrations to hypo, it is 

possible to state that the body's magnesium concentration is below normal when Mg 

concentrations vary between 0.41 - 0.82 mmol/L. However, the patient is at risk if the 

Mg concentration is 0.41 mmol/L or less. Causes of hypomagnesaemia and magnesium 

deficiency are listed in the Table 1.4. The magnesium loss can occur through vomiting 

or nasogastric suction. However, its occurrence is usually due to magnesium wasting in 

the gastrointestinal tract (diarrheal). An example of the effects of magnesium 

deficiency, causing serious complications in patient care, is a cardiac arrhythmia. These 

deficiencies can be quickly treated with parenteral magnesium or oral administration in 

more mild cases [28]. 

Magnesium deficiency is usually a consequence of certain diseases or drugs. 

Chronic renal failure occurs due to a loss of magnesium [29]. Very low magnesium 

concentrations are commonly associated with endocrine and metabolic disorders, 

specially Diabetes Mellitus. This is correlated with fasting blood glucose, glycated 

haemoglobin, albumin excretion and the duration of diabetes [28]. 
 

Table 1.9 - Causes of hypomagnesaemia (magnesium deficiency) [25]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Redistribution of magnesium 

- Refeeding and insulin therapy 

- Correction of acidosis 

- Massive blood transfusion 

Renal disease 

- Dialysis 

- Inherited disorders 

Gastrointestinal causes  

- Reduce intake 

- Mg free intravenous fluids  

- Dietary deficiency  

- Reduced absorption  

Endocrine causes  

-  Hypercalcaemia 

- Hyperthyroidism  

- Hyperaldosteronism 

Renal loss 

-  Reduced sodium reabsorption  

- Saline infusion  

Diabetes Mellitus 

Alcoholism 

Drugs   
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The hypermagnesemia is rarer than hypomagnesemia. Patients with kidney 

failure are especially susceptible to hypermagnesemia because their ability to clear 

magnesium from their bodies is impaired when administered as stated in the previous 

sentence. When serum magnesium concentrations are higher than 4.1 to 5.0 mmol/L can 

cause vomiting, hypotension and cardiac arrest. Causes of hypermagnesemia and 

magnesium deficiency are listed in the Table 1.5. Clinical symptoms of high 

magnesium deficiency, such as hypocalcemia, neuromuscular hyperactivity, and cardiac 

arrhythmias, should be assessed in conjunction with the results of these tests in making 

a final diagnosis. It is important to analyse the patient's history before stating that the 

result shows abnormal magnesium values as these determinations may be interfered 

with by the presence of certain substances (e.g. thiocyanates in tobacco smokers) [24].  

 
Table 1.10 - Causes of hypermagnesemia [25]. 

 

 

 

 

 

 

 

 

 

 

 

 

According to some studies, high plasma and cellular magnesium concentration 

may associate with the development of malignant tumors. Plasma and saliva magnesium 

concentrations were compared in healthy patients and patients diagnosed with parotid 

gland tumors, in which it was concluded that magnesium concentrations were higher in 

patients diagnosed with tumor [22][30].  
 

 

 

 

Redistribution of magnesium 

- Acute acidosis 

 
Excessive intake 

- Oral 

Antacids, Cathartics, Swallowing salt water 

- Rectal (Purgation) 

- Parenteral 

- Urethral irrigation 

 
Renal loss 

- Reduced sodium reabsorption 

- Saline infusion 

Renal failure 

- Chronic renal failure 

- Acute renal failure 

 

Others 
- Lithium therapy 

- Familial hypocalciuric 

hypercalcaemia 

- Milk alkali syndrome 

- Depression 
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1.3. Microfluidic Paper-based Analytical Devices (µPAD) 

Frequently used methodologies for prevention and diagnosis, capable of 

evaluating and determining compounds in different sample types, generally require high 

analytical technology, specific facilities and qualified professionals. However, 

according to the World Health Organization, diagnostic devices must ensure particular 

characteristics, such as affordable, easy-to-use, fast, equipment non-specific, robust and 

user-friendly [31]. Thus, in recent years, to break new ground in research in areas such 

as chemistry, genetics, molecular biology and other research areas, there has been a 

great interest in the development of microfluidic devices. These devices allow for 

microscale laboratory operations.  Use low-cost miniaturized equipment, small amounts 

of sample volume, which has become quite beneficial if the amount of sample to be 

used is from biological samples [32]. 

The concept of paper-based analytical microfluidic devices (µPAD) was 

invented and described by a research group from Harvard University in 2007 [33]. This 

group presented the filter paper as an alternative to developing microfluidic devices to 

use them in clinical diagnoses. They demonstrate the capability of the simultaneous 

detection of glucose and protein in the urine. The microfluidic device is represented in 

Figure 1.3. The glucose assay is based on the enzymatic oxidation of iodide to iodine 

(presence of glucose – colour change to brown). The protein assay is based on the 

colour change of TBPB reagent (presence of protein – colour change to blue). 

 
 

 

 

 

 

 

Figure 1.8 - Chromatography paper patterned with photoresist. A) The darker lines are cured 

photoresist; the lighter areas are unexposed paper. B) Complete assays after spotting the reagents. C) 

Negative control for glucose (left) and protein (right) by using an a artificial urine solution. D) Positive 

assay for glucose (left) and protein (right) by using a solution that contained glucose and BSA in an 

artificial urine solution. Figure adapted from [31].  

  

A
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) 
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The microfluidic devices consisted of two distinct zones: the hydrophilic zone 

(paper), where the flow movement occurs and the reaction between analytes and 

reagents, and the hydrophobic zone, which delimits the paper for the flow to remain 

only in this zone. The µPADs, when compared to conventional analytical microfluidic 

devices made from silicone, glass or polymers as a substrate, are much more affordable 

as they only use paper as a substrate. They also allow performing bioassays faster and 

cheaper [32], together with small size, lightweight, portable devices with low 

manufacturing costs. The µPADs can be handy tools when measurements need to be 

performed in less industrialized areas or even in developing countries where the 

analytical and medical infrastructure is limited, allowing for low reagent and analyte 

consumption [34].  

Since then, many researchers have used these devices as convenient tools for the 

detection and determination of many organic and inorganic compounds, offering 

analytical skills that can revolutionize the pharmaceutical and drug industry [32]. 

 

1.3.1. Advantages of using filter paper 

The option to use paper in microfluidic devices was based on the fact that the 

paper consists of cellulose fibres that act as capillaries, absorbing the solutions, making 

this transport passive, without the need for active pumping. The absorption rate depends 

on the size of the capillaries, the paper characteristics and the environment (e.g. 

temperature). The cellulose matrix can also act as a sample filter or to perform 

chromatographic separations. As the paper is available with different pore sizes, it is 

possible to separate suspended solids in the samples or to remove individual 

constituents present in the samples (e.g. proteins) [35]. Besides, the paper is an 

abundant and inexpensive raw material available everywhere.  

 Given that paper is a widely used material as a chemical platform, microfluidic 

devices can take advantage of existing techniques. This material also has the advantage 

of being available in a wide range of thicknesses, being easy to use, store and transport. 

Another advantage of using paper is that it is flammable and therefore, devices can be 

disposed of by incineration quite quickly and safely. The paper, as it is usually white, 

allows better visualization of the colorimetric reaction and its surface can be chemically 

modified [31].  
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1.3.2. µPAD fabrication techniques 

 Microfluidic devices are fabricated by moulding channels into glass, silicone, 

polymers or plastics. The µPAD design consists of patterning sheets of paper into 

hydrophilic channels (paper) bounded by hydrophobic barriers, to avoid leaks and keep 

the solution applied to the paper channels.  

The µPADs can be fabricated by using 2D (with one layer of paper) or 3D (more 

than one layer of paper) methods, to transport fluids/samples horizontally or vertically 

through the channels, depending on the complexity of the technique. The development 

of 3D microfluidic devices offers more functionality than 2D devices, as it allows fluid 

to be transported both vertically and laterally from a single inlet to numerous detection 

zones. Besides, µPAD 3D has the advantage that the flow velocity is higher because its 

length in the z-direction is shorter than in the x - y plane. When the device has two or 

more layers, it allows incorporating other characteristics to the method. For example, it 

is possible to combine different types of filter papers into one device. The use of 

different papers may aim to retain certain compounds (e.g. proteins) along the flow or, 

as the layers absorb the sample, may react with specific reagents before reaching the 

µPAD detection zone [4] [36]. 

There are several fabrication techniques available to pattern the channels of 

µPAD (Figure 1.4), for example, photolithography, wax printing (most commonly used 

when manufacturing number of devices >100), inkjet etching and printing, paper cutting 

and shaping, flexographic printing, plasma treatment, laser treatment, wet etching and 

screen-printing [37]. Some of these methods are physical processes (e.g. plotting); while 

some are chemical processes (e.g. plasma treatment) and other are environmentally-

friendly processes (e.g. wax printing). Some methods require use of toxic substances 

during processing (e.g. photolithography).  
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Figure 1.9 - µPAD devices fabricated by (I) stamping method (II) inkjet printing (III) paper cutting (IV) 

wax printing 2D (V) photolithography (VI) screen-printed 3D. Figure adapted from [37]. 

 
1.3.3. Detection methods and quantitative image processing  

Using µPADs, it is possible to get qualitative (visible to the naked eye - higher 

or lower colour intensity) or quantitative (using analysis software) colorimetric 

analyses. The various detection methods used for microfluidic paper-based analytical 

devices are: colorimetric, luminescence, electrochemical and photoelectrochemical 

detection (Figure 1.5) [37]. 

The colorimetric detection is usually the most commonly used method in µPAD.  

Colorimetry includes visual, photometric and reflectometric detection. Quantitative 

colorimetric detection of analytes using µPADs is possible by reflectance detection 

when the intensity of the color that develops in the test zones is a function of the 

concentration of the analyte. Reflectance detection is based on the measurement of the 

light reflected off the surface of the test zone [31]. The respective device detection 

zones are scanned to the computer using a flatbed scanner, camera or mobile phone, 

depending on the image quality and lighting conditions [38]. After obtaining a high-

resolution image of the test zone, the next step is to measure the average colour 

intensity of the respective test zones using analysis software (e.g. Image J or 
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Photoshop). The software selects specific colour tones of the reaction products, and 

converts these values to RGB format. Then, the filter corresponding to the 

complementary colour of the reaction is applied to obtain higher sensitivity and contrast 

of the test zone. [4][38] The two advantages of µPADs are their portability and ease of 

use [33].  

Another detection method is luminescence, which includes fluorescence, 

chemiluminescence and electrogenerated chemiluminescence. These methods are 

generally more sensitive than photometry, however, require specific and more 

expensive equipment (e.g. fluorimeter). Electrochemical detection techniques can be 

used for µPADs as they are often referred to as "paper-based electrochemical devices". 

However, this technique requires a more complex methodology compared to the 

aforementioned methods due to the implementation of the electrodes on paper. Other 

technique is photoelectrochemical detection. In this method, the analytical signal is 

derived from the effect of light-induced photocurrent of an analyte interacting with a 

semiconductor electrode surface [37]. The method may be chosen according to the time 

required to obtain the results and available equipment. 

 

 

 

 

 

 

 

 

Figure 1.10 - Detection methods used in µPADs: (I) Colorimetric (II) Fluorescence (III) Electrochemical 

(IV) Photoelectrochemical. Figure adapted from [37]. 
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1.3.4. µPADs applications platforms 

The main application of microfluidic devices is to provide fast, easy and low-

cost analytical platforms for assays, qualitative, semi-quantitative or quantitative, to be 

implemented in the diagnostic routine at an affordable price and environmentally 

friendly. There is a wide range of practical applications in many fields of research for 

which these devices can be implemented. Some of these areas are: the biochemical, 

immunological and molecular detections [39]. 

Biochemical detection may choose when in the microfluidic device (paper) 

specific reactions occur. Namely, chemical reactions (e.g. acid-alkali reaction), 

precipitation reactions or enzymatic reactions occur. In this type of reaction, the 

compound to be evaluated forms complexes with a specific reagent [40]. Exist some 

examples of biochemical reactions, such as determination of H2O2, Cd or Pb and urine 

acid.  

Immunological detection is a method that uses immunoassay techniques for a 

variety of practical applications, namely, Escherichia  coli O157:H7, Rabbit IgG and 

red blood cells agglutination. This kind of method is mainly used to detect humoral 

antibodies or antigenic substances (e.g. antigen-antibody reaction) [41]. Another 

example for applications of these devices, using immunological detection, is to separate 

blood plasma from whole blood [42]. 

In the case of molecular detection, the device is applied to detect specific nucleic 

acid hybridization sequences. Some examples of these applications are: tuberculosis 

diagnosis, target-ssDNA, ATP and Benzo[a]-pyrene (target DNA) [39]. 

In addition to the detection methods mentioned above, various types of 

procedures have been presented using paper microfluidic devices that provide new 

platforms for disease diagnosis. A colorimetric method for glucose determination, mass 

spectrometry for the determination of acetylcholine hydrolysis and potentiometric 

methods for determination of metal ions are examples of these methods [39]. 
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1.4. Objectives  

The aim of this work was to develop a simple, fast and effective microfluidic 

paper-based analytical device for magnesium determination in saliva, as an alternative 

non-invasive analysis. Small volumes of sample solutions should be introduced into one 

µPAD directly, occurring a colour reaction for colorimetric analysis.  

The paper-based microfluidic device to be produced should have the potential to 

be used as a diagnostic tool to assess patient’s risk for developing magnesium-

associated diseases (e.g. parotid gland tumor).  

For this purpose, several studies were carried out, namely:   

- The reagent for the reaction with magnesium was ; 

- Test the reaction on paper (using µPAD);  

- Optimize the microfluidic device (number of layers, filter papers, reagent 

and sample volumes);  

- Analyse possible interferences in magnesium determination;  
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2. MATERIALS AND METHODS 

 
2.1. Reagents and solutions  

All solutions were prepared with analytical grade chemicals and Milli-Qâ Water 

(Resistivity > 18 MΩ•cm, Millipore, Bedford, MA, USA).   

The reagent solution was obtained daily by dissolving 0.5 g of eriochrome 

cyanine (Sigma) in 1 mL of 8 M nitric acid in a 100 mL standard flask, adding 0.8 g of 

sodium chloride and 0.8 g of ammonium nitrate, and diluting to the mark with 

approximately 100 mL of water to final concentration of 0.01 M [43]. 

The buffer solution with pH 10.2 was prepared by dissolving 0.675 g of 

ammonium chloride (Merck) with 6 mL of concentrated ammonium hydroxide (Merck) 

(d = 0.900) and dilute it with water to 100 mL [44]. 

Artificial saliva solution was prepared by dissolving 2250 mg of potassium 

chloride (Merck), 544 mg of KH2PO4 (Merck) and 4775 mg of C8H18N2O4S (HEPES) 

(Sigma) in a 1 L standard flask of water. From this solution were withdrawn 250 mL for 

diluting 675 mg of BSA (Bovine Serum Albumin) [45]. 

Magnesium stock solution of 2.0 mM was prepared by dissolving 19.5 mg of 

magnesium chloride (Sigma) in 100 mL of water. Subsequently, from this solution, a 

dilution for 0.412 mM of magnesium was prepared. Magnesium working standards in 

the range of 0.082-0.247 mM were weekly prepared from the stock solution with the 

artificial saliva solution.  

 
 
 
2.2. Microfluidic Paper-Based Analytical Device Assembly  

Using a cutter, Whatman 50 and Whatman 1 filter papers were cut into small 95 

mm diameter discs. For the assembly of the µPAD, 50 discs of Whatman 50 and 100 

discs of Whatman 1 filter paper were needed. To ensure the correct alignment with 

effective separation between the hydrophilic and hydrophobic zones, plastic pouches 

was used, in which 24 holes were cut, on one side of the pouch. Each µPAD consists of 

4 rows and 6 columns of 3 layers discs.  

The first layer contains the reagent Whatman 50 filter papers, the second layer 

includes the buffered discs (Whatman 1 filter paper) and finally a third layer consisting 
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of discs without the addition of compounds (Whatman 1). All discs were aligned so that 

all layers were overlapped (Fig. 2.1B) and distributed into the plastic pouch. After that, 

the lamination process takes place (Fellowes L125), creating a hydrophobic zone 

(plastic pouch) and a hydrophilic region (paper discs). 

 

 

2.3. Reaction and data analysis  

To Whatman 50 filter paper discs add 10 µL eriochrome cyanine reagent and 

oven dry at 50 °C for 10 minutes (Fig. 2.1A). Only to fifty Whatman 1 filters paper 

discs add 5 µL of buffer and allow drying at room temperature (T @ 25° Celsius) for 10 

minutes. For the determination of magnesium concentration, 15 µL of a sample or 

standard was deposited into the sample hole of the µPAD and, approximately 5 minutes 

has waited to covered sample holes with masking tape. After the predetermined duration 

of the colour development time, the detection zone was scanned using a flatbed scanner 

(Canon LIDE 120) to obtain the intensity readings (Fig. 2.1C).  

After obtaining a high-resolution image of the µPAD detection zone, Image J 

software was used to measure the colour intensity for the centre of each detection zone 

(hydrophilic regions) (Fig. 2.1D). The red, green and blue (RGB) colour intensity 

profile plots were obtained for a 3 mm in diameter circle in the centre of each detection 

zone. The highest sensitivity was obtained using the blue filter. 

After that, the data was imported into Excel (Microsoft Office Excel, version 

16.16.4) to be organized and for subsequent analysis (Fig. 2.1E). The average of colour 

intensity for each detection zone was subsequently converted to absorbance as proposed 

by Beer-Lambert law: A = 𝐥𝐨𝐠𝟏𝟎 &
𝑰𝟎
𝑰
(. With this formula, the absorbance value 

corresponding to each concentration was obtained by relating the average intensity of 

the blanks (Io) with the average intensity of each standard solution (I). By measuring the 

colour intensity in the detection zone, it is possible to calculate the concentration of the 

analyte by comparing with the absorbance values by establishing a calibration curve. 
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Figure 2.4 - Schematic representation of the determination of magnesium using the developed µPAD; (A) 

Addition of reagent and buffer solution, (B) Discs alignment and µPAD plasticization, (C) Reaction time 

and µPAD scanning, (D) Measurement of colour intensity of detection zone, (E) Calibration curve of Mg 

determination.  
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2.4. Batch study procedure  
For the studies carried out in classical procedure, batch studies, the methodology 

used show in Figure 2.2. 

 
 

 
 

 

 

 

 

 

Figure 2.5 - Scheme of the batch study methodology for the Titan Yellow (A) and PAR (B) reagents. 

 
 
2.5. Mimic procedure for sample collection  

The filtration process methodology can be observed in Figure 2.3.  

 
 
Figure 2.6 - Filtration process of standard Mg solutions. 

A B 
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RESULTS AND DISCUSSION  
 

3.1. Reagents selection – batch study  

First, to develop this device, it was necessary to study the best reagent that 

determines magnesium ions in salivary samples. As µPADs are devices made of filter 

paper discs, the reagent chosen for this reaction had to meet certain conditions, like the 

reaction between the analyte and the reagent had to be direct (no precipitation) and 

colorimetric.   

Thus, there were various reagents capable of determining the analyte under the 

conditions mentioned above: titan yellow, eriochrome black T, calmagite, 4- (2-

Pyridylazo) resorcinol (PAR), 8-hydroxyquinoline, eriochrome cyanine, o-

cresolphthalein, or alizarin S [46]. Of all reagents listed, only those available in the 

laboratory were prepared, namely, titan yellow, eriochrome black T, PAR and 

eriochrome cyanine. The methodology for the preparation of each reagent and some of 

the characteristics are described in Annex I – Table I1.  

Initially, an intermediate standard solution of 0.82 mmol/L Mg2+ was used. 

Subsequently, from this solution, magnesium standards in the range of 0.016 - 0.082 

mmol/L were prepared. This preliminary batch study aimed to analyse the reaction of 

each reagent with the standard solutions, measuring the absorbance values through the 

spectrophotometer, to subsequently, relate these values to the analyte concentrations in 

a calibration curve. 

 

3.1.1. Batch study results of aqueous solutions  

The first reagents to be tested were titan yellow and PAR, both were used for 

metal ion determinations as they form water-soluble complexes between the reagent and 

the analyte, with high molar absorptive (ca. 104). However, Titan Yellow and PAR are 

not specific only for the determination of magnesium ion (Section 2.4. Figure 2.2) 

Then, the calibration curve of each reagent was established, relating the absorbance 

values and the magnesium concentrations (Anexo I - Fig. I1). After observing the graph, 

it concluded that neither reagent could determine magnesium ions, within the stipulated 

concentration range. One possible reason why the reagents did not detect the analyte 

may be related to the fact that Mg2+ concentrations were very low. 
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Then, the eriochrome black T reagent was tested. This reagent is a 

complexometric indicator that is used in the water hardness determination process. In its 

protonated form, eriochrome black T is blue. It turns red/pink when it forms a complex 

with magnesium or other metals ions [44]. 

For this study, a 1 M solution of eriochrome Black T and the same procedure as 

for previous reagents was used, replacing only the reagent and decreasing the volume of 

standard solutions to approximately 0.5 mL, using a Pasteur pipette (14 drops). Then, 

the absorbance values calculated and the calibration curve established. However, after 

observing the results, it was concluded that the curve did not show the expected 

linearity and sensitivity. This may have been related to the fact that the reagent is very 

high in concentration (very saturated in colour) and so high blank values were observed. 

As the 1 M solution of eriochrome black T was very concentrated, it was 

decided to dilute it to 0.1 M. Batch studies was performed again using the same 

methodology and the reagent volume was studied in the range of 0.2 – 1.0 mL (Annex I 

- Table I2). Analysing the results, it was possible to conclude that with the increase of 

the reagent volume, both the sensitivity and the correlation coefficient decreased. Thus, 

the smaller the volume of eriochrome black T, the better the parameters for the reaction 

calibration curve. Then, as it was chosen to use 0.2 mL of reagent, it was necessary to 

study the volumes of the standard solutions again (Annex I - Table I3). The calibration 

curve for two different volumes (2 and 3 mL) was established. After observing the 

results, it was decided to use 2 mL of standard solution because the sensitivity and the 

correlation coefficient are slightly higher.  

 

Finally, the eriochrome cyanine reagent was tested — this reagent has been 

used as a chromogenic reagent for a determination of many metal ions. The 

methodology used to analyse the reaction between this reagent and magnesium was 

similar to the methods of previous reagents. 

First, different volumes of eriochrome cyanine (0.5 and 1.0 mL) were compared 

in batch, in which for each test tubes 2 mL of standard solution and 1 mL of buffer 

solution were added. After establishing the calibration curve for both reactions (Annex I 

– Table I4), it concluded that the best volume would be 0.5 mL since because the 

sensitivity and the correlation coefficient was higher. Then, batch tests again performed, 

but to study different volumes of standard solution (1, 2 or 3 mL), keeping the 0.5 mL 
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of reagent and 1.0 mL of buffer solution (Annex I - Table I4). According to the results, 

1 mL of standard solution was chosen to obtain a calibration curve with high sensitivity 

and linearity. As a smaller sample/standard volume was chosen, it was considered 

necessary to re-evaluate the reagent volume and to verify if there were significant 

changes in the evaluated parameters. The reagent volume was studied in the range of 

0.2 – 1.0 mL. The absorbance values were measured, and the calibration curves 

established (Annex I - Fig. I2) relating the absorbance to the magnesium concentrations 

for the different reagent volumes. Comparing the calibration curves, it concluded that 

the ideal volume was 0.2 mL of eriochrome cyanine because of the smaller the reagent 

volume, the higher the sensitivity and, simultaneously, the correlation coefficient. 

 

After research on articles related to saliva morphology, the expected magnesium 

concentration in salivary samples known: [Mg2+] = 0.2 mmol/L. Thus, new standard 

solutions were prepared in the concentration ranges from 0.041 to 0.33 mmol/L. Batch 

tests were again performed with the new standard solutions, but only with the 

eriochrome black T and eriochrome cyanine reagents. By changing the Mg 

concentration range, different reagent and standard volumes were retested to optimize 

the reaction. 

In the case of reaction with eriochrome black T, 1 mL of buffer solution, 2.0 mL 

of 0.1 M reagent, and two different volumes of standard solution, 2 and 3 mL, were 

added to the test tubes. Subsequently, the absorbance values were measured, and the 

calibration curves established, as can be seen in (Annex I - Table I5). As concluded 

earlier, the smaller the volume of the standard solution, the higher the sensitivity and 

linearity of the curve. Thus, it was decided to use 2 mL of the standard solution.  

To study the reaction with the eriochrome cyanine, 1 mL standard solution, 1 

mL buffer solution, and different reagent volumes (0.20 – 0.75 mL) were added to the 

test tubes. Then absorbance values were measured, and calibration curves were 

established for each volume (Annex I - Fig. I3). Each sensitivity and correlation 

coefficient of each curve were analysed and compared, and the 0.25 mL reagent volume 

was chosen. The 0.20 mL reagent volume option was excluded because the respective 

calibration curve had a lower correlation coefficient compared to the selected volume 

calibration curve.  
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3.1.2. Matrix influence assessment   

Standard solutions were prepared in synthetic saliva matrix, with the same 

concentration range of  Mg2+ (0.016 to 0.263 mmol/L). These standards were prepared 

by diluting the 2.0 mM stock solution of magnesium. Initially, as a preliminary study, it 

was decided to develop two different types of standard solutions: standards made in 

synthetic saliva with BSA protein and standards without BSA protein. For these batch 

tests, only the reactions between the eriochrome cyanine and eriochrome black T 

reagents with the magnesium analyte were evaluated. The methodology used was the 

same in which 1 mL of standard solution, 1 mL of buffer solution and 0.25 mL of 

reagent added to the different test tubes for the eriochrome cyanine. In the case of the 

reaction with the eriochrome black T, 2 mL of standard solution, 1 mL of buffer 

solution and 0.20 mL of reagent added. The absorbance values were calculated, and the 

various calibration curves established, as shown in Table 3.1.  

 
Table 3.3 - Correlation of absorbance with Mg concentration  for different reagents. 

Reagent BSA protein  Regression equation 
Correlation 

coefficient (R2) 

Eriochrome cyanine 
Yes A = 0.399 [Mg2+] – 0.008 0.989 

No A = 0.531 [Mg2+] + 0.096 0.931 

Eriochrome black T 
Yes A = 0.183 [Mg2+] + 0.004 0.987 

No A = 0.115 [Mg2+] + 0.047 0.387 

 

 After observing the results, it was concluded that both reagents could determine 

magnesium ions in the standard solutions made with synthetic saliva, except the 

reaction between eriochrome black T with those without BSA protein. However, 

eriochrome cyanine was the reagent that displayed a higher sensitivity and correlation 

coefficient. Thus, the eriochrome cyanine reagent was chosen as the reagent for the 

determination of magnesium.  

 In addition to the reagent study, different pH values were also batch tested for 

the buffer solution, namely 10, 11 and 12. The results can be analysed in Annex I – Fig. 

I4, which concluded that the best option was to use the pH 10 buffer, as the sensitivity 

was similar among all, thus avoiding the presence of higher amounts of hydroxide in the 

standard solutions.   
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3.2. Microfluidic Paper-based Analytical Devices - Design  

 In this work, for all tests performed, a univariate statistical analysis was used, 

that is, several variables, chemical and physical, were studied separately. With this type 

of analysis, some tests may need to be retest due to changes in certain interconnected 

variables.   

 

3.2.1. Preliminary studies  

Initially, we decided to perform some preliminary studies in which µPAD 

developed for eriochrome black T and eriochrome cyanine reagents, to evaluate the 

reactions previously studied on paper. In these assays, the option of using eriochrome 

black T was discarded as no staining could be observed in the detection zone. As 

mentioned earlier, the use of these devices implies that there is a colorimetric reaction to 

measure the colour intensity values of each disc subsequently. Thus, the subsequent 

studies were performed using only the eriochrome cyanine as the reaction reagent. So 

far, to calculate the absorbance values of the standard solutions, a spectrophotometer 

has been used.  

However, in the µPAD, quantitative colorimetric detection was possible by 

calculating the absorbance based on the intensity of the colour developed in the test 

zone. To measure colour intensity, Image J software was used and the RGB model was 

applied to obtain the highest sensitivity. The same calibration curve was compared 

using two different colour filters (Fig. 3.1A). According to the colours theory, the 

combination of two colours that are on opposite sides of the colour wheel (Fig. 3.1B) 

allows for higher contrast and brightness. Although the eriochrome cyanine colour is 

orange, when it reacts with the magnesium ions, the colour of the reaction turns red to 

orange. After analysis of the results, we chose to use the blue filter because the 

respective calibration curve obtained higher sensitivity. 

 

 
 

 

 

 

Figure 3.1 - Colour wheel (A) and filter colour study (B) to Mg determination.  

A B 
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The next studies were performed with standard solutions prepared in water, with 

the same concentration range of Mg2+.  

The first step was to develop µPAD with only one layer of Whatman 42 filter 

paper discs. The device having only one layer implied that both buffer and reagent were 

added to the same disc. Previous batch studies only proved that it was possible to obtain 

a calibration curve that relates the absorbance values to the Mg2+ concentrations by 

separately adding the reaction integrating solutions. As the objective was to test the 

µPAD with only one layer, new batch studies were performed in which a pre-made 

solution with the reagent and buffer mixed was used. Comparing the calibration curves 

of each case (Table 3.2), it concluded that both alternatives could determine Mg2+ with 

high sensitivity.  

Then, the previous reaction was tested on paper. To this end, 10 µL of the "mix" 

solution was added to each disc and allowed to dry in the oven at 50° C for 10 minutes. 

Subsequently, the discs were lined up in the plastic pouches and, after the device was 

ready for use, 8 µL of the several standard solutions were added. However, after drying 

of the sample, no gradual colour difference was observed as the Mg2+ concentration 

increased.  In this case, most discs showed colours that didn't match the reagent used 

(Figure 3.2). This could be related to possible contamination, since the paper disc was in 

direct contact with air, or simply because the reaction occurred only in one layer.  

 

 
Figure 3.2 - Scan the µPAD detection zone with one layer, from standard solutions with the highest Mg 

concentration (P4, P5 and P6). 
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So, the construction of µPAD was studied with two layers of Whatman 42 filter 

paper. In this study, it was decided to construct the device in two different ways: one 

µPAD with the reagent and buffer solution in the first layer and the second layer empty, 

and another µPAD with the reagent in the first layer and the buffer solution in the 

second layer. Mounting conditions and volumes added were the same for both devices. 

According to the results obtained (Table 3.2), it was decided to choose the assembly 

that uses the reagent and the buffer solution in different layers, because the sensitivity 

and the correlation coefficient were higher. 

 
Table 3.4 - Features of calibration curves in batch and µPAD tests. 

Method Conditions Regression equation 
Correlation 

coefficient 

Batch 
All solutions added separately A = 0.648 [Mg2+] + 0.023 0.998 

“Mixing” solution + sample A = 0.413 [Mg2+] + 0.019 0.989 

µPAD 
All solutions in different layers A = 0.101 [Mg2+] + 0.011 0.996 

All solutions in the same layer A = 0.054 [Mg2+] + 0.003 0.948 

 

 

3.2.2. Buffer layer study  

Maintaining the µPAD construction conditions with two layers of Whatman 42 

filter paper, in which the reagent is in the first layer and the buffer solution in the 

second layer, it was decided to study different volumes for the buffer solution. For this, 

5 µL of reagent added to all discs of the first layer and 5 - 15 µL of buffer solution were 

studied. With all µPAD ready for use, 10 µL of standard/sample added to the holes in 

the plastic bags. Calibration curves (absorbance vs Mg concentration) established for 

each volume at different scanning times and then the sensitivity of the respective 

volumes tested were compared (Figure 3.3). Of all volumes, 5 µL of buffer solution 

chosen, because it produced the highest sensitivity.  
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Figure 3.3 - Comparison of the calibration curve slope, sensitivity, using different volumes of buffer 

solution; Error bars represent 10% deviation. 

To increase the rate of reaction flow, it was decided to try Whatman 1 (Particle 

Retention = 11 µm) on the second layer, since the pore sizes of this paper type were 

relatively larger than Whatman 42 (Particle Retention = 2.5 µm). Later, after adding 10 

µl of standard solutions, it was found that the sample drying time was shorter when 

filter paper Whatman 1 was used in the second layer (Drying time Whatman 42 = 5 minutes; 

Drying time Whatman 1 = 2 minutes). Comparing the method sensitivities for both cases 

(Fig. 3.4), it was possible to conclude that Whatman 1 filter paper would be the best 

option, because the sensitivity did not vary significantly over time, the opposite of 

Whatman 42 paper decreases. Besides, it was an advantage that sensitivity did not vary 

significantly over time as it gives the technician a longer time to scan µPAD after 

adding the sample. 
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Figure 3.4 - Comparison of the calibration curve slope, sensitivity, for Whatman 42 and Whatman 1 filter 

paper; Error bars represent 10% deviation. 

 
3.2.3. Reagent layer study  

After choosing the volume and paper for the buffer layer, it was necessary to 

optimize the reagent layer (detection zone). The reagent volume was studied in the 

range of 5-15 µL, keeping 5 µL of buffer solution and 10 µL of standard or sample 

solution. According to the results obtained (Figure 3.5), by adding 10 µL of reagent, the 

reaction sensitivity is much higher. The 15 µL of reagent was excluded because it took 

about 30 minutes to dry.   

 
Figure 3.5 - Comparison of the calibration curve slope, sensitivity with different reagent volumes; Error 

bars represent 10% deviation. 
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Subsequently, different filter papers for the reagent layer were studied. Since 

this layer was the device's respective detection zone, it was essential to evaluate the type 

of paper that best suits you. For this, three types of paper with very similar 

characteristics assessed, namely, Whatman 42, Whatman 50 and Whatman 1. The 

characteristics of different filter papers can be observed in Annex II – Table II6.  To 

develop µPAD, 5 µL of buffer solution added to the second layer discs and, at the end, 

15 µL of standard solution/sample added to the holes in the plastic pouches. On all 

devices, the sample drops took approximately 15 minutes to dry completely, performing 

the first scan 20 minutes after addition. According to the results obtained (Fig. 3.6), the 

Whatman 50 paper was chosen because it presented a very high sensitivity. Comparing 

Whatman 50 filter paper with the others, it had approximately twice the sensitivity 

value.  

 
Figure 3.6 - Comparison of the calibration curve slope, sensitivity, for Whatman 42, Whatman 50 and 

Whatman 5  filter papers in the reagent layer; Error bars represent 10% deviation. 

 
 

3.2.4. Sample/standard solution study   

All studies associated with the optimization of the standard solution or sample in 

µPAD used the standards prepared with synthetic saliva matrix with BSA protein. All 

standards had the same concentration range of Mg2+.   
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The first sample study was performed when the µPAD consisted of two layers of 

Whatman 50 (reagent layer) and Whatman 1 (buffer layer) filter papers. In this study, 

10 - 20 µL of the standard solution tested. After the addition of the sample, it concluded 

that the larger the volume added, the longer the drying time (T 10µL @ 5 min; T 15µL @ 15 

min; T 20µL @ 40 min). Since one of the objectives of this work was to develop a device 

that would benefit from rapid data analysis, the option of using 20 µL immediately 

excluded because of the long drying time of the sample. Thus, the first scans were 

performed at different times, namely 10 and 20 minutes after the addition of the sample. 

Through the analysis of the results (Fig. 3.7), it was decided to use 15 µL of 

sample/standard solution, because it is what obtains the highest sensitivity under the 

same conditions. 

 

 
 

 

 

 

 

 
 
 
 

Figure 3.7 - Comparison of the calibration curve slope, sensitivity,  for different standard volumes; Error 

bars represent 10% deviation. 

 
 To reduce potential µPAD contamination and protect the operator from direct 

contact with biological samples, adhesive tape was used to cover all holes in the plastic 

pouch after the sample/standards absorption. In order to ensure that this would not 

affect the detection µPADs with and without adhesive tape were compared (Fig. 3.8). 

According to the results obtained, we chose to implement in the design of µPAD the use 

of adhesive tape, since there were no significant variations in the parameters previously 

evaluated.   

Reaction time (min) Reaction time (min) 
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Figure 3.8 - Comparison of the calibration curve slope, sensitivity, for adhesive tape study; Error bars 

represent 10% deviation. 

 

 

The influence of the most operational parameters studied to develop an efficient  

µPAD and the respective optimal choices were summarised in  Table 3.3. 

 
Table 3.3 - Summary of the optimised µPAD parameters. 
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3.2.5. Reaction time  

Reaction time is the time interval from sample placement to µPAD detection 

zone reading. The sample drying time was approximately 15 minutes using 15 µL of 

sample/standard, which implies that the first scan of the detection zone can only 

perform 20 minutes after the addition of the sample. Therefore, to reduce reaction time, 

it was considered to study a three-layer µPAD design by introducing a third layer with 

Whatman 1 filter papers. In addition to maintaining the same model, the volumes of 

reagent used, buffer as well as sample were also equal. 

Calibration curves (0.041 – 0.245 mM of Mg standards) were performed for the 

two possible µPAD assemblies: two and three layers (Fig. 3.9).  

The first difference between both devices was noticeable at the time the sample 

added as the drying time reduced from 15 minutes to approximately 2 minutes. The 

main advantage of obtaining a reduced drying time was that it was possible to perform 

the first scan just 5 minutes after the addition of the sample. Comparing the two models, 

it observed that there was no significant variation in the sensitivity of both reactions to 

determine magnesium. By introducing a third layer to the µPAD, the buffer solution 

layer was no longer in direct contact with air. Looking ahead, when developing a three-

layer µPAD, it may also serve as a filter to retain specific proteins that are larger than 

the pore size of Whatman 1 paper, or other types of compounds present in salivary 

samples.    

 
Figure 3.9 - Comparison of the sensitivity of two and three layers µPAD magnesium determination; 

Error bars represent 5% deviation. 
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Thus, we chose to implement the design with three layers, since the advantages 

mentioned above do not interfere with the optimized parameters and do not alter the 

development objective of this device.  

Another alternative, to try to shorten the reaction time, was to use a hair dryer 

directly into the holes of the device. Thus, the hair dryer was used, at minimum 

temperature and reduced air velocity, for approximately 10 minutes. However, while 

analysing the results, a high dispersion in the colour intensity between discs within the 

same Mg2+ standard was observed (Annex III – Fig. III7). This can be explained due to 

the fact that the drying process was not evenly.  
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3.3. Microfluidic Paper-based Analytical Device – Features  

The main features of the developed device were summarized in Table 3.4.  

Table 3.4 - Features of the developed methodology; 

Dynamic 
range 

(mmol/L) 

Typical calibration 
curve a 

A = slope ± SD [Mg2+] + 
Interception ±  SD 

 
LOD 

(mmol/L) 
 

LOQ 
(mmol/L) 

RSD 
% 

Reagents 
consumption b 

(mg) 

Sample 
consumption/ 
determination 

(µL) 

0.082 – 0.247 A = 0.206 ± 0.005 
[Mg2+] + 0.011 ± 0.001 0.062 0.081 1.18 

ERCR = 0.043 
NH4Cl = 1.62 
NH4OH = 13.0   

120 

a n=5 
b per calibration curve 
 

Under the optimum conditions, the proposed µPAD method was characterized 

by linear calibration ranges for magnesium concentrations 0.082 – 0.247 mmol/L. The 

calibration presented was the result of five calibration curves performed on the same 

day, all under the same design conditions. After calculating the limits, the standard of 

0.041 mM was excluded. 

The limit of detection (LOD) and the limit of quantification (LOQ), were 

calculated according to IUPAC [47][48][49], expressed as LOD = 3´ Standard 

deviation of the calibration line/ Slope of the calibration line; LOQ = 10 ´ Standard 

deviation of the calibration line/ Slope of the calibration line. 

The precision was assessed by calculating the repeatability based upon the 

relative standard deviation (RSD) of slope of the calibration line (n = 5). The reagents 

consumption values were also calculated per calibration curve (each calibration curve 

corresponds to two µPADs). 

 The sample consumption value is the volume required for each determination, 

i.e. the sample volume to fill eights detections units.   
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3.4. Interferences assessment 

 Besides optimizing the device developed and the reaction that occurs in it, it was 

also important to evaluate certain factors that may interfere with the determination of 

magnesium in salivary samples. One of the interfering elements for this reaction was the 

presence of calcium since saliva has more calcium than magnesium, and both analytes 

are alkali metals with similar physical and chemical properties. Saliva is also composed 

of various ions and proteins, which may also be interfere in the magnesium 

determination. 

Standard solutions of magnesium, calcium and both cations, with the same 

concentration range (0.082 - 0.245 mM) were prepared in synthetic saliva matrix with 

BSA protein. All standard solutions with calcium were made from dilution of an 

intermediate CaCl2 (Sigma) solution with [Ca2+] = 0.5 mM. 

 
 
3.4.1. Potential calcium interference 

For the possible interference of calcium in the determination of magnesium in 

saliva, several studies performed, namely in batch and in µPAD.  

In batch tests, calibration curves were compared (Fig. 3.10) and no differences 

were observed between the calibration curve of magnesium standard and the one with 

mixed standards.  

 

Figure 3.10 - Calibration curves of the three standard solutions in batch; Error bars represent 10% 

deviation. 

Magnesium standards 
A = 0.815 [Mg2+] + 0.009 
R2 =  0.995 

Mg + Ca standards 
A = 0.828 [Mg +Ca] + 0.022 
R2 =  0.996 
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This feature, together with the no calibration curve obtained with calcium 

standards, can be an indicator that there is no significant interference from calcium. The 

presence of calcium only appears to interfere when the concentration of is less than or 

equal to 0.041 mM (no overlapping of 10% deviation intervals). However, this standard 

was excluded from calibration curve after calculation of the LOD.   

However, as the expected Ca2+ concentration in salivary samples ranges from 1-

4 mmol/L, it was necessary to prepare a new intermediate solution with [Ca2+] = 5 mM. 

Then, new standard solutions with a concentration range of 1- 4 mmol/L were prepared.  

The first study in µPAD was performed to analyse the kinetics of calcium 

reaction with the eriochrome cyanine reagent over time. Thus, several reaction times 

were compared within 20 - 120 minutes. The slope, sensitivity, of the respective 

reactions times were compared and presented in Fig. 3.11.  

 

 
 
Figure 3.11 - Kinetics study of calcium reaction with eriochrome cyanine reagent. Error bars represent a 

10% deviation. 

 According to the results obtained, it could not be inferred that sensitivity to the 

calcium reaction varied significantly. This decision was based on the overlapping of the 

10% deviation intervals, regardless of the reaction time.    

The second study in µPAD, was to compare the calibration curve of the Mg 

standard solutions with the calibration curve of the Mg standards in the presence of 1 

mM Ca2+ and the calibration curve of the Mg standards in the presence of 4 mM Ca2+ 

(Fig. 3.12). 
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Figure 3.12 - Study of the presence of 1 and 4 mM calcium in the magnesium determination; Error bars 

represent a 10% deviation. 

 Analysing the results, it inferred that the presence of 1 mM calcium (best case) 

did not significantly interfere in the determination of magnesium (overlapping of 10% 

deviation intervals). However, the presence of 4 mM calcium (worst case) interfered 

with the determination of magnesium, (no overlapping of 10% deviation intervals). 

The last µPAD study related with the potential calcium interference was to 

analyse the minimum calcium concentration that may be present in salivary samples, 

without interfering with magnesium detection. For this, the lowest concentration Mg 

standard (P1 = 0.041 mM) and the highest concentration Mg standard (P4 = 0.245 mM) 

were compared in the presence and absence of calcium, over a concentration range 0.5 - 

4.0 mM. In this study, µPADs were scanned for several reaction times, 5 - 65 minutes 

(Fig. 3.13).   

According to the results obtained, with the reaction time of 5 minutes, only the 

presence of 4 mM Ca2+ interferes with the determination of magnesium (no overlapping 

of 10% deviation intervals).  It can also be concluded that as reaction time increases, 

lower calcium concentrations already interfere with magnesium determination (e.g. with 

reaction time equal to 25 min, 2 mmol/L de Ca2+ already interferes in Mg 

determination; Reaction time equal 35 min, 1 mmol/L de Ca2+ already interferes in Mg 

determination).  
  

Mg standards 
A = 0.106 [Mg2+] + 0.007 
R2 =  0.998 

Mg standards + 1mM Ca2+ 
A = 0.105 [Mg2+] + 0.008 
R2 =  0.994 

Mg standards + 4mM Ca2+ 
A = 0.145 [Mg2+] + 0.015 
R2 =  0.992 
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Figure 3.13 - Study of calcium interference (0.5 – 4.0 mM) in the lowest concentration Mg standard (P1) 

and the highest concentration Mg standard (P4); Blue bars represent Mg standards and green bars 

represent Mg standards in the presence of Ca; Error bars represent a 10% deviation.  

 

This study also served to complement the decision to choose 5 minutes for the 

reaction time, because only 4 mM de Ca2+ (worst case) interferes with the Mg 

determination.  

  

3.4.2. Proteins interference assessment 

 All magnesium standards, for the previous studies, had been prepared from a 

stock solution of MgCl2 with 0.41 mM (prepared in water), which corresponded to a 

dilution of the matrix (synthetic saliva) of about ½. The matrix being diluted to ½, 

implies that all of its compounds also diluted equally. However, in salivary samples, the 

matrix is not diluted. So, to mimic better the saliva samples and without causing 

dilution of the matrix (synthetic saliva), new magnesium standards was prepared from a 

stock solution of MgCl2 with 2.06 mM.   

Reaction time: 5 min Reaction time: 25 min 

Reaction time: 35 min Reaction time: 65 min 
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 Simultaneously, an alternative was studied to try to retain certain proteins 

present in the synthetic saliva matrix. This study consisted of a filtration process using 

sterile gauze, describe in section 2.5 (Figure 2.3).   

Using µPADs, Mg standards prepared in diluted matrix, Mg standards prepared 

in no diluted matrix and filtered Mg standards prepared in non diluted matrix, were 

tested. The slopes of each calibration curve (sensitivity) for the different standards at 

three reaction times (5, 15 and 30 minutes) were compared (Fig. 3.14).   

 
 

Figure 3.14 - Study of proteins interferences in the determination of magnesium in salivary samples; 

Error bars represent a 10% deviation. 

According to the results obtained, the Mg standards prepared in diluted synthetic 

saliva matrix are the ones with the highest sensitivity. Mg standards prepared in 

undiluted matrix are those with lower sensitivity (decreased to about half). However, if 

the Mg standards are filtered with sterile gauze, sensitivity increases compared to 

unfiltered standards. 

It can be concluded that the sensitivity in the detection of magnesium is similar 

in the standards prepared in diluted matrix and in the filtered standards (overlapping of 

10% deviation intervals). However, this only happens for the reaction time of 5 minutes. 

With increasing reaction time there is no overlapping of 10% deviation intervals.  

This study complemented the decision to choose scan the µPAD detection zone 

at 5 minutes.  
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4. CONCLUSIONS AND FUTURE WORK 

 
The microfluidic paper-based analytical device for the magnesium determination in 

saliva was developed. The µPAD combined with the colorimetric reaction of the analyte 

and the Image J software can provide an inexpensive and easy-to-use tool for the 

quantitative detection of unknown sample concentration. Therefore, it is expected to be 

of particular interest to developing countries or in less-industrialized areas, where 

analytical infrastructure is limited. It should also be pointed out that the proposed 

method is also environmentally friendly due to the use of very small amounts of 

reagent. 

By using this device, we were able to reduce not only the volumes of the reagents, 

but also the sample quantities. Thus, the use of µPAD becomes very beneficial if the 

sample volumes are limited. It is important to emphasize that less than 120 µL of saliva 

is required for magnesium determination. 

After optimizing the various µPAD parameters, the stipulated reaction time was 5 

minutes, which means that we were able to get the results of the Mg determinations 

quite fast. The detection and quantification limits were 0.062 mM and 0.081 mM, 

respectively. Based on the results obtained, it can conclude that the proposed paper-

based method is characterized by high sensitivity, a high degree of portability and low-

cost analysis. 

Furthermore, it was concluded that the longer the reaction time, the higher the 

possibility of calcium interfering with magnesium determination. The detection zones of 

µPAD should be scanned 5 minutes after sample addition to reducing the potential 

interference. In order to avoid other possible interference (e.g. proteins present in 

saliva), it is concluded that it would be advantageous to filter the samples on sterile 

gauze, with the purpose of retaining larger compounds present in saliva. With the 

filtration process, smaller compounds (e.g. magnesium ions) move better along the 

flow.  

All these features of the paper-based method suggest that it is a potential tool for 

routine assessment of patient’s risk of oral cancer development (parotid gland tumour), 

Diabetes Mellitus or chronic renal failure. 
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However, the developed µPAD method was not fully validated, as it was not applied 

to saliva samples and the results compared to a reference procedure. This would be the 

logical continuation of this work. Additionally, there are some parameters that could be 

improved or even further studies to make this device more effective accurate in 

determining magnesium. To avoid potential calcium interference, one more component 

could be added to the µPAD design, with the aim of calcium complexing before 

reaching the detection zone and influencing Mg determination.  

It would be important test new and innovative materials to maximize system 

efficiency according to the results achieved in this thesis.  

 

  
 

 

 

  



 59 

REFERENCES 

 

[1] T. J. Lasisi and A. A. Fasanmade, “Salivary flow and composition in diabetic and 

non-diabetic subjects,” Niger. J. Physiol. Sci., vol. 27, no. 1, pp. 79–82, 2012. 

[2] H. Elmongy and M. Abdel-Rehim, “Saliva as an alternative specimen to plasma 

for drug bioanalysis: A review,” Trends Anal. Chem., vol. 83, pp. 70–79, 2006. 

[3] L. Caporossi, A. Santoro, and B. Papaleo, “Saliva as an analytical matrix: state of 

the art and application for biomonitoring,” Biomarkers, vol. 15, pp. 475–487, 

2010. 

[4] A. N. Ramdzan, M. I. G. S. Almeida, M. J. McCullough, and S. D. Kolev, 

“Development of a microfluidic paper-based analytical device for the 

determination of salivary aldehydes,” Anal. Chim. Acta, vol. 919, pp. 47–54, 

2016. 

[5] M. Esteban and A. Castaño, “Non-invasive matrices in human biomonitoring: A 

review,” Environ. Int., vol. 35, no. 2, pp. 438–449, 2009. 

[6] S. Chiappin, G. Antonelli, R. Gatti, and E. F. De Palo, “Saliva specimen: A new 

laboratory tool for diagnostic and basic investigation,” Clin. Chim. Acta, vol. 

383, no. 1–2, pp. 30–40, 2007. 

[7] J. K. M. Aps and L. C. Martens, “Review: The physiology of saliva and transfer 

of drugs into saliva,” Forensic Sci. Int., vol. 150, no. 2–3, pp. 119–131, 2005. 

[8] E. A. Almeida, P.D.V, “Saliva Composition and Functions :,” J. comtemporary 

Dent. Pract. Vol. 9, vol. 9, no. 3, pp. 72–80, 2008. 

[9] A. B. Actis, N. R. Perovic, D. Defagó, C. Beccacece, and A. R. Eynard, “Fatty 

acid profile of human saliva: A possible indicator of dietary fat intake,” Arch. 

Oral Biol., vol. 50, no. 1, pp. 1–6, 2005. 

[10] W. Edgar, “Saliva: its secretion, composition and functions,” Br Dent, no. 172, 

pp. 305–312, 1992. 

[11] L. C. P. M. Schenkels, E. C. I. Veerman, and A. V. N. Amerongen, “Biochemical 

composition of human saliva in relation to other mucosal fluids,” Crit. Rev. Oral 

Biol. Med., vol. 6, no. 2, pp. 161–175, 1995. 

[12] A. J. Ligtenberg, E. Walgreen-Waterings, E. C. Veerman, J. J. Soet, J. Graaff, 

and A. V Amerongen, “Influence of saliva on aggregation and adherence of 

Streptococcus gordonii HG 222,” Infect. Immun. 60.9, 1992. 



 60 

[13] S. Williamson, C. Munro, R. Pickler, M. J. Grap, and R. K. Elswick, 

“Comparison of Biomarkers in Blood and Saliva in Healthy Adults,” Nurs. Res. 

Pract., vol. 2012, pp. 1–4, 2012. 

[14] R. Nagler, “Salivary glands and the aging process: mechanistic aspects, health-

status and medicinal-efficacy monitoring,” Biogerontology, vol. 5, pp. 223–33, 

2004. 

[15] L. Zhang, H. Xiao, and D. T. Wong, “Salivary biomarkers for clinical 

applications,” Mol. Diagnosis Ther., vol. 13, no. 4, pp. 245–259, 2009. 

[16] Y. Chih-Ko, C. Nicolaos J, F. Pierre N, and M. Craig S., “Current Development 

of Saliva/Oral fluid-based Diagnostics,” Tex Dent J., vol. 127, no. 7, pp. 651–

661, 2010. 

[17] M. ID, “The diagnostic uses of saliva,” J Oral Pathol Med, vol. 19, no. 3, pp. 

119–125, 1990. 

[18] V. N. A. AV, B. JG, and E. Veerman, “Salivary proteins: protective and 

diagnostic value in cariology,” Caries Res, vol. 38, pp. 247–253, 2004. 

[19] A. Machado, R. Maneiras, A. A. Bordalo, and R. B. R. Mesquita, “Monitoring 

glucose, calcium, and magnesium levels in saliva as a non-invasive analysis by 

sequential injection multi-parametric determination,” Talanta, vol. 186, pp. 192–

199, Aug. 2018. 

[20] L. A. S. Nunes, R. Brenzikofer, and D. V. Macedo, “Reference intervals for 

saliva analytes collected by a standardized method in a physically active 

population,” Clin. Biochem., vol. 44, no. 17–18, pp. 1440–1444, 2011. 

[21] M. A.D. et al., “Effects of diabetes mellitus on salivary secretion and its 

composition in the human,” Mol. Cell. Biochem., vol. 261, no. 1, pp. 137–142, 

2004. 

[22] L. Aljerf and A. Mashlah, “Characterization and validation of candidate reference 

methods for the determination of calcium and magnesium in biological fluids,” 

Microchem. J., vol. 132, pp. 411–421, 2017. 

[23] A. S. A. B. D. S, M. Sc, and D. Ph, “The Relationship Between Calcium , 

Magnesium And Inorganic Phosphate of Human Mixed Saliva And Dental 

Caries,” no. 2, pp. 157–161, 2007. 

[24] L. A. L. Bazydlo, M. Needham, and N. S. Harris, “Calcium, Magnesium, and 

Phosphate,” Lab. Med., vol. 45, no. 1, pp. e44–e50, 2014. 

[25] R. Swaminathan, “Magnesium Metabolism and its Disorders,” Clin. Biochem. 



 61 

Rev., vol. 24, no. May, pp. 47–66, 2003. 

[26] I. Springer-verlag, H. J. Gilfrich, J. Engel, and W. Prellwitz, “Klinische schrift 

Magnesium Concentration in Saliva - an Indicator of Digitalis Toxicity *,” pp. 

617–621, 1981. 

[27] M. G. Bianchetti and A. Bettinelli, Differential Diagnosis and Management of 

Fluid, Electrolyte, and Acid-Base Disorders, First Edition. Elsevier Inc., 2008. 

[28] S. Ramadass, S. Basu, and A. R. Srinivasan, “SERUM magnesium levels as an 

indicator of status of Diabetes Mellitus type 2,” Diabetes Metab. Syndr. Clin. 

Res. Rev., vol. 9, no. 1, pp. 42–45, 2015. 

[29] S. Van Laecke, E. V. Nagler, F. Verbeke, W. Van Biesen, and R. Vanholder, 

“Hypomagnesemia and the risk of death and GFR decline in chronic kidney 

disease,” Am. J. Med., vol. 126, no. 9, pp. 825–831, 2013. 

[30] I. Grǎdinaru, C. M. Ghiciuc, E. Popescu, C. Nechifor, I. Mândreci, and M. 

Nechifor, “Blood plasma and saliva levels of magnesium and other bivalent 

cations in patients with parotid gland tumors,” Magnes. Res., vol. 20, no. 4, pp. 

254–258, 2007. 

[31] A. W. Martinez, S. T. Phillips, M. J. Butte, and G. M. Whitesides, “Patterned 

paper as a platform for inexpensive, low-volume, portable bioassays,” Angew. 

Chemie - Int. Ed., vol. 46, no. 8, pp. 1318–1320, 2007. 

[32] X. Li, J. Tian, and W. Shen, “Quantitative biomarker assay with microfluidic 

paper-based analytical devices,” Anal. Bioanal. Chem., vol. 396, no. 1, pp. 495–

501, 2010. 

[33] A. W. Martinez, S. T. Phillips, and G. M. Whitesides, “Diagnostics for the 

Developing World Microfluidic.pdf,” Anal. Chem., vol. 82, no. 1, pp. 3–10, 

2010. 

[34] P. Lisowski and P. K. Zarzycki, “Microfluidic paper-based analytical devices 

(µPADs) and micro total analysis systems (µTAS): Development, applications 

and future trends,” Chromatographia, vol. 76, no. 19–20, pp. 1201–1214, 2013. 

[35] M. M. Mentele, J. Cunningham, K. Koehler, J. Volckens, and C. S. Henry, 

“Microfluidic paper-based analytical device for particulate metals,” Anal. Chem., 

vol. 84, no. 10, pp. 4474–4480, 2012. 

[36] X. Yang, O. Forouzan, T. P. Brown, and S. S. Shevkoplyas, “Integrated 

separation of blood plasma from whole blood for microfluidic paper-based 

analytical devices,” Lab Chip, vol. 12, no. 2, pp. 274–280, 2012. 



 62 

[37] M. I. G. S. Almeida, B. M. Jayawardane, S. D. Kolev, and I. D. McKelvie, 

“Developments of microfluidic paper-based analytical devices (µPADs) for water 

analysis: A review,” Talanta, vol. 177, no. August 2017, pp. 176–190, 2018. 

[38] B. M. Jayawardane, S. Wei, I. D. McKelvie, and S. D. Kolev, “Microfluidic 

paper-based analytical device for the determination of nitrite and nitrate,” Anal. 

Chem., vol. 86, no. 15, pp. 7274–7279, 2014. 

[39] Y. Xia, J. Si, and Z. Li, “Fabrication techniques for microfluidic paper-based 

analytical devices and their applications for biological testing: A review,” 

Biosens. Bioelectron., vol. 77, pp. 774–789, 2016. 

[40] K. M. Schilling, A. L. Lepore, J. A. Kurian, and A. W. Martinez, “Fully enclosed 

microfluidic paper-based analytical devices,” Anal. Chem., vol. 84, no. 3, pp. 

1579–1585, 2012. 

[41] L.-M. Fu and Y.-N. Wang, “Detection methods and applications of microfluidic 

paper-based analytical devices,” TrAC Trends Anal. Chem., vol. 107, pp. 196–

211, 2018. 

[42] T. Songjaroen, W. Dungchai, O. Chailapakul, C. S. Henry, and W. 

Laiwattanapaisal, “Blood separation on microfluidic paper-based analytical 

devices,” Lab Chip, vol. 12, no. 18, pp. 3392–3398, 2012. 

[43] N. G. Elenkova and E. S. Popova, “Spectrophotometric determination of 

magnesium with eriochrome cyanine R in analysis of silicates,” Talanta, vol. 23, 

no. 6, pp. 467–469, 1976. 

[44] A. E. Harvey, J. M. Komarmy, and G. M. Wyatt, “Colorimetric Determination of 

Magnesium with Eriochrome Black T,” Anal. Chem., vol. 25, no. 3, pp. 498–500, 

1953. 

[45] G. R. Batista, C. R. G. Torres, B. Sener, T. Attin, and A. Wiegand, “Artificial 

saliva formulations versus human saliva pretreatment in dental erosion 

experiments,” Caries Res., vol. 50, no. 1, pp. 78–86, 2016. 

[46] Z. Marczenko and M. Balcerzak, Separation, Preconcentration and 

Spectrophotometry in Inorganic Analysis. 2000. 

[47] “International Union of Pure and Applied Chemistry,” Anal. Chem., vol. 55, no. 

712A, 1976. 

[48] “International Union of Pure and Applied Chemistry,” Anal. Chem., vol. 67, pp. 

1699–1723, 1995. 

[49] C. A. Holstein, M. Griffin, J. Hong, and P. D. Sampson, “Statistical Method for 



 63 

Determining and Comparing Limits of Detection of Bioassays,” Anal. Chem., 

vol. 87, no. 19, pp. 9795–9801, 2015. 

[50] E. E. Ludwig and C. R. Johnson, “Spectrophotometric Determination of 

Magnesium by Titan Yellow,” Ind. Eng. Chem. - Anal. Ed., vol. 14, no. 11, pp. 

895–897, 1942. 

[51] E. Gómez, J. M. Estela, and V. Cerdà, “Simultaneous spectrophotometric 

determination of calcium and magnesium in water,” Anal. Chim. Acta, vol. 249, 

no. 2, pp. 513–518, 1991. 

[52] O. Hernández, F. Jiménez, A. I. Jiménez, J. J. Arias, and J. Havel, 

“Multicomponent flow injection based analysis with diode array detection and 

partial least squares multivariate calibration evaluation. Rapid determination of 

Ca( II) and Mg( II) in waters and dialysis liquids,” Anal. Chim. Acta, vol. 320, 

no. 2–3, pp. 177–183, 1996. 

[53] N. G. Elenkova and E. Popova, “Spectrophotometric investigation of the reaction 

of eriochrome cyanin RC and magnesium and aluminium,” Talanta, vol. 22, no. 

10–11, pp. 925–929, 1975. 

 

 

 

 

 

  



 64 

  



 65 

ANNEX  

Annex I –  Reagent choice in batch study  
 

Table I1: Methodology of preparation of all reagents.  

Reagent Concentration 
Molar 

Absorptivity 
Experimental References 

Eriochrome 

Black T 
0.1 M 1.8 x 104 

(λ = 520 nm) 

Reagent solution: dissolve 
0.005 g of Eriochrome Black T 

in 50 mL of ethanol 
 

Buffer solution: dissolve 0.675 
g of ammonium chloride with 6 
mL of concentrated ammonium 
hydroxide in a 100 mL of water 

[44] 

Titan 
Yellow 0.01 M 3.4 x 104                               

(λ = 545 nm) 

Reagent solution: dissolve 0.01 
g in 100 mL of water 

 
Buffer solution: Boric acid 

(available in the lab)  

[50] 

PAR 0.1 mM 3.45 x 104                              
(λ = 545 nm) 

Reagent solution: dissolve 
0.0766 g of the monosodium salt 

in 100 mL of water. § 
 

Buffer solution: Boric Acid 
(available in the lab) 

 
 
 

[51] [52] 
 
 
 

Eriochrome 
Cyanine 0.1 M 5.9 x 104 

(λ = 610 nm) 

Reagent solution and Buffer 
solution: Chapter 2 - Materials 

and Methods 

 
 

[43] [53] 
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Figure I1: Calibration curves of Titan Yellow and PAR reagent for magnesium detection. 

 

Table I2: Features of calibration curves for different reagent volumes (Eriochrome Black T) 

 

Table I3: Features of calibration curves for different standards volumes using Eriochrome 

Black T as reagent.     

  

PAR
A = - 0.7388 [Mg2+] + 0.0966

R² = 0.8223

Titan Yellow
A = - 0.2772 [Mg2+] + 0.0344

R² = 0.8312

0.000
0.010
0.020
0.030
0.040
0.050
0.060
0.070
0.080
0.090

0 0.02 0.04 0.06 0.08 0.1

Ab
so

rb
an

ce

[Mg2+] (mM)
PAR Titan Yellow

Eriochrome black T 

volume (drops) 
Regression equation 

Correlation 

coefficient 
Standard deviation 

5 A = 0.3131 [Mg2+] - 0.0041 0.8808 0.0272 

9 A = 0.2358 [Mg2+] + 0.0012 0.8386 0.0263 

14 A = 0.2173 [Mg2+] + 0.0107 0.7517 0.0232 

19 A = 0.1085 [Mg2+] + 0.0308 0.0675 0.0201 

24 A = 0.0497 [Mg2+] + 0.0315 0.0233 0.0200 

Magnesium 

concentrations  

Volume of standard 

solutions (mL) 

Regression equation  Correlation 

coefficient 

0.016 - 0.082 mmol/L 
2 A = 0.3282 [Mg2+] + 0.0254 0.9978 

3 A = 0.3131 [Mg2+] – 0.0041 0.8808 
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Table I4: Features of calibration curves for different reagent and standards volumes using 

Eriochrome Cyanine as reagent.    

 
 
 
 

 
Figure I2: Calibration curves of different volumes of reagent (Eriochrome Cyanine) for 

magnesium determination.  
 

Table I5: Features of calibration curves for different standards volumes using Eriochrome 

Cyanine as reagent.   

Magnesium 

concentrations 

Volume of standard 

solutions (mL) 
Regression equation 

Correlation 

coefficient 

0.08 - 0.33 mmol/L 
2 A = 0.1086 [Mg2+] + 0.0195 0.9956 

3 A = 0.0827 [Mg2+] – 0.0016 0.9597 

 
 

0.2 ml of reagent
A = 3.8657 [Mg2+] + 0.1088

R² = 0.9825

0.5 ml of reagent
A = 0.3607 [Mg2+] + 0.0155

R² = 0.9565

1.0 ml of reagent
A = 0.2293 [Mg2+] - 0.0002

R² = 0.8946

0.000
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0.200
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Figure I3: Calibration curves of different volumes of reagent (Eriochrome Cyanine) for 

magnesium determination.  

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure I4:: Batch study of different pH of the buffer solution.   

 

 

  

5 drops of reagent
A = 1.1236 [Mg2+] + 0.1414

R² = 0.9541

0.25 ml of reagent
A = 0.6483 [Mg2+] + 0.0231

R² = 0.998

0.50 ml of reagent
A = 0.3776 [Mg2+] - 0.0238

R² = 0.9966

0.75 ml of reagent
A = 0.2171 [Mg2+] - 0.0042

R² = 0.992

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.000 0.100 0.200 0.300 0.400

Ab
so

rb
an

ce

[Mg2+] (mM)
5 drops of reagent 0.25 ml of reagent
0.5 ml of reagent 0.75 ml of reagent

pH 10 
A = 1.284 [Mg2+] + 0.020 
R2 =  0.998 

pH 11 
A = 1.287 [Mg2+] + 0.065 
R2 =  0.997 

pH 12 
A = 0.1281 [Mg2+] + 0.157 
R2 =  0.995 
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Annex II –  Reagent layer study 
 
 
Table II6 – The different groups of filter paper types and their degrees of purity, hardness and 

chemical resistance. The red box corresponds to the filter papers used for the reagent layer 

study. 
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Annex III – Reaction time study  
 

Table III7 – Analysis of absorbance values for the reaction time study. (A) Using the hair dryer 

to dry the samples on 2 layers µPAD. (B) 3 layers µPAD.   

 

 

 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A 
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