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Abstract: In this study, the production of a hydrolysate rich in fermentable sugars, which could be
used as a generic microbial culture medium, was carried out by using exhausted sugar beet pulp
pellets (ESBPPs) as raw material. For this purpose, the hydrolysis was performed through the direct
addition of the fermented ESBPPs obtained by fungal solid-state fermentation (SSF) as an enzyme
source. By directly using this fermented solid, the stages for enzyme extraction and purification were
avoided. The effects of temperature, fermented to fresh solid ratio, supplementation of fermented
ESBPP with commercial cellulase, and the use of high-solid fed-batch enzymatic hydrolysis were
studied to obtain the maximum reducing sugar (RS) concentration and productivity. The highest RS
concentration and productivity, 127.3 g-L 7! and 24.3 g-L"!-h~! respectively, were obtained at 50 °C
and with an initial supplementation of 2.17 U of Celluclast® per gram of dried solid in fed-batch
mode. This process was carried out with a liquid to solid ratio of 4.3 mL-g~! solid, by adding 15 g
of fermented solid and 13.75 g of fresh solid at the beginning of the hydrolysis, and then the same
amount of fresh solid 3 times every 2.5 h. By this procedure, ESBPP can be used to produce a generic
microbial feedstock, which contains a high concentration of monosaccharides.

Keywords: enzymatic hydrolysis; solid-state fermentation; sugar beet; sugars hydrolysate; generic
microbial feedstock

1. Introduction

The production of high-value-added products, such as organic acids, vitamins, enzymes,
bulk chemicals, biofuels, etc. through biotechnological processes using agro-industrial lignocellulosic
residues (wheat straw, sugarcane bagasse, sweet sorghum bagasse, etc.) as raw material has become
more interesting over the years [1]. They do not compete with food supply, they are generated in big
volumes, and they are a sustainable and abundant renewable resource [2,3].

For the conversion of lignocellulose to fermentable sugars, a hydrolysis step is required. This step
can be carried out chemically or enzymatically, although the latter shows the added advantage of not
generating toxic compounds and being more environmentally friendly [4], while chemical hydrolysis
needs several steps to completely remove the chemical from the final products. Moreover, the enzymatic
process does not produce unfavorable by-products, the downstream processing is simpler, and corrosion
of equipment is avoided [5]. However, the commercial and industrial application of enzymes is limited
given their expensive production process and poor stability [6].

Enzyme costs contribute significantly to the economic viability of transforming lignocellulose into
bioproducts of interest for the energy industry and the chemical, food, and materials sector. As a result,
biomass hydrolysis continues to be a bottleneck of the overall process. Therefore, different strategies,
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such as the seeking of new sources of enzymes or different hydrolysis technologies have been
investigated to make the process more cost effective [7].

One of the most interesting ways for the conversion of cellulose and hemicellulose into reducing
sugars for the production of different products is the use of cellulolytic enzyme cocktails of fungal
origin [8]. This fact is the consequence of the capability of some fungi to produce hydrolytic
enzymes [9]. Therefore, there is a great interest in identifying fungi that secrete these enzymes
efficiently by using cheap carbon sources. In this regard, solid-state fermentation (SSF) is an interesting
option, because heterogeneous solids, such as agro-food industry wastes and agricultural residues,
which are low-value and abundant raw materials, can be used as a solid, support, carbon source
and as inducers for fungal growth and enzyme production [10]. Several agri-food residues, such as
soybean meal, sunflower, or wheat waste, have been converted into hydrolysates by using crude
enzymes produced by the solid-state fermentation of these solid wastes. Other authors have even
employed mixtures of residues, such as sugarcane bagasse and soybean hull or food and bakery waste.
Afterward, fermented solids were used as a source of enzymes to obtain fermentation feedstocks [11-15].

Taking into account the above considerations, the main goal of this study is the production of a
hydrolysate rich in fermentable sugars, which could be used as a generic microbial culture medium,
using exhausted sugar beet pulp pellets (ESBPPs) as raw material. For this purpose, the hydrolysis
was performed through the direct addition of the fermented biomass obtained by SSF as an enzyme
source. In this way, the cost of the process could be reduced as enzyme extraction and purification are
not required. Figure 1 illustrates the differences between the conventional enzymatic hydrolysis, in
which enzymes produced through solid-state fermentation are extracted and lyophilized before their
use (Figure 1A) and the one employed in this study (Figure 1B).

ESBPPs are the solid obtained after industrial sugar extraction by diffusion from sugar beets and
they are normally dehydrated, granulated, and sold for animal feeding. In this work, firstly, ESBPPs were
used as a substrate to produce hydrolytic enzymes using Aspergillus awamori solid-state fermentation.
This fermented solid, containing the hydrolytic enzyme cocktail secreted by the fungus during its
growth, was used for the hydrolysis of fresh ESBPPs. Finally, monosaccharide concentration and
carbon to nitrogen (C/N) ratio in hydrolysates were measured to evaluate their potential as a microbial
culture medium.
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Figure 1. Schemes of the enzymatic hydrolysis of exhausted sugar beet pulp pellets (ESBPPs) by crude
enzyme extracts obtained by solid-state fermentation (SSF) (A) and by the addition of fermented solid (B).

2. Materials and Methods

2.1. Raw Material

Fresh ESBPPs were obtained from AB Azucarera Iberia (AB Sugar—ABF Group, Jerez de la Frontera,
Andalucia, Spain). Samples were collected and stored at 4 °C until use. Detergent fiber analysis of the
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solid showed that they are mainly composed of pectin (41.13%), cellulose (25.18%), and hemicellulose
(16.60%), with the total carbohydrate polymer content being around 83% of the weight [16].

For solid-state fermentation (SSF), fresh ESBPPs were soaked in distilled water (25% w/w) to break
up the pellets and dried in an oven at 40 °C for 24 h. For enzymatic hydrolysis experiments, they were
directly used in pellet form. Solids were sterilized in an autoclave (120 °C for 20 min) before SSF or
enzymatic hydrolysis.

2.2. Enzyme Production by Solid-State Fermentation on Fresh ESBPPs

Aspergillus awamori 2B.361 U2/1, a sequential mutant of Aspergillus niger NRRL 3312, was selected
to produce hydrolytic enzymes by solid-state fermentation. Spores were stored in glycerol (50% v/v)
at —25 °C. Spores solution was spread on Petri dishes containing a synthetic medium composed by
(g'L71): 1 peptone, 0.5 yeast extract, 15 agar, 6 xylan, 5 avicel, and 1 pectin. Petri dishes were incubated
at 30 °C for 5 days. After the incubation period, spores were suspended in 0.9% v/v of sodium chloride
(NaCl) solution by gentle shaking. The concentration of the spore suspension was calculated using an
improved Neubauer counting chamber.

SSF was performed by adding to each disposable Petri dish: 5 g of dried ESBPPs, the volume of
spore suspension required to obtain a final inoculum concentration of 1 x 107 spores-g~" of dried solid,
and the appropriate amount of a nutrient solution to adjust the initial moisture content to 70% w/w.
The nutrient solution composition was as follows (g-L_l): 2.4 urea, 9.8 (NH4),SOy, 5.0 KH,POy,
0.001 FeSO4-7H,0, 0.0008 ZnSO4-7H,0, 0.004 MgSO4-7H,0, and 0.001 CuSO4-5H,0 at pH 5.0. pH
was not controlled, and Petri dishes were incubated under static conditions at 30 °C for 8 days [16].
For hydrolysis experiments, the whole content of the Petri dishes after eight days of fermentation
(fermented ESBPPs) was used as a source of hydrolytic enzymes.

2.3. Enzyme Extraction and Activity Assays

The enzymes produced were extracted to determine the enzyme activity. The fermented solid
in each Petri dish (5 g) was suspended in 50 mL of 0.1% v/v Tween 80 and incubated for 30 min in
a rotary shaker at 4 °C and 150 rpm. Afterward, the resulting solid suspensions were centrifuged
at 10,000 rpm and 4 °C for 10 min. The supernatant liquor, the enzymatic extract, was lyophilized
and stored until use. Cellulase (FPase, EC 3.2.1.91), xylanase (EC 3.2.1.8), and exo-polygalacturonase
(exo-PG, EC 3.2.1.67) activities were measured in the lyophilized enzyme extracts.

An FPase assay was carried out by incubating 0.5 mL of suitable diluted enzyme extract with 1
mL of citrate buffer (0.05 M, pH = 4.8), containing a Whatman No.1 filter paper strip (1 X 6 cm, 50 mg),
at 50 °C for 60 min. For xylanase, a reaction mixture containing 0.1 mL of diluted enzymatic extract and
0.9 mL of xylan suspension (0.5% w/v Birchwood xylan in 0.1 M acetate buffer, pH 5.0) was incubated at
50 °C for 10 min. For exo-PG activity, a reaction mixture containing 0.2 mL of diluted enzymatic extract
and 0.8 mL of pectin suspension (0.5% w/v in 0.1 M acetate buffer, pH 5) was incubated at 45 °C for
10 min. Reducing sugars (RS) produced after all these reactions were measured by the dinitrosalicylic
acid method (DNS) adapted for microplates [17,18].

A unit of enzyme activity (U) was defined as the amount of enzyme that produces 1 pmol of
reducing sugars per minute under the specified conditions of pH and temperature.

All the assays were made in triplicate.

2.4. Enzymatic Hydrolysis of Fresh ESBPPs by Adding Fermented Solid

The enzymatic hydrolysis of fresh ESBPPs was carried out in batch mode in Erlenmeyer flasks
(500 mL). Fresh ESBPPs were mixed in different ratios, depending on the experiment, with fermented
ESBPPs as a source of hydrolytic enzymes. Both solids were blended into 300 mL of citrate-phosphate
buffer (pH 5, 0.05 M). The solid suspensions were continuously mixed by incubating the flasks in
an orbital shaker at 200 rpm for 5 days. Samples were withdrawn periodically for RS concentration
analysis at different hydrolysis times.
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Various studies were performed to enhance the hydrolysis yield. The proportions of fermented
and fresh ESBPPs added in each experiment are expressed as a fermented to fresh solid ratio (FFR).
This ratio is expressed as grams of initial fermented solid used in SSF per grams of fresh solid added to
the hydrolysis (grams of fermented solid:grams of fresh solid).

Firstly, the effect of temperature was assayed at 50 and 55 °C with FFRs of 5:30, 15:15, and 30:0.
Secondly, the effect of the fermented to fresh solid ratio was study at 50 °C and at the following FFRs:
5:30, 10:30, 15:30, 15:35, 15:40; 15:45, 15:50, and 15:55. Thirdly, the effect of supplementing the enzymatic
hydrolysis with commercial cellulase (Celluclast®) (Merck, Darmstadt, Germany) was analyzed in the
best condition obtained previously by adding 1.44, 2.17, or 2.89 units of cellulase per gram of dried
fresh ESBPPs (U-g™1).

High-Solid Hydrolysis in Fed-Batch Mode

High-solid hydrolysis was performed in fed-batch mode to improve the efficiency of the process
following the strategies described in Table 1. For strategies I to VI, different amounts of fresh ESBPPs
were added to 15 g of fermented ESBPPs at different time intervals. For strategy VII, 5 g of fermented
ESBPPs were added in fed-batch mode, at 0, 24, and 48 h, to 55 g of fresh ESBPPs. Celluclast® (2.17U0- g_l)
and 300 mL of citrate-phosphate buffer were added to all the Erlenmeyer flasks, and they were incubated
in a rotary shaker at 200 rpm and 50 °C.

Table 1. Addition strategies used in enzymatic hydrolysis with fermented exhausted sugar beet pulp

pellets (ESBPPs).
Addition Strategy
Strategy Code Total FER Fresh ESBPPs Fermented ESBPPs
I 15:55 55¢g t=0h 15g t=0h
I 15:55 30g;25¢g t=0;24h 15¢g t=0h
I 15:55 13.75 g (x4) t=0;25;5"75h 15¢g t=0h
v 15:90 Ng t=0h 15g t=0h
\Y% 15:90 225 g (x4) t=0;3,6;,9h 15¢g t=0h
VI 15:90 11.25 g (x8) t=0;3;6;9;24;27;30; 33 h 15¢g t=0h
VII 15:55 55¢g t=0h 5g(x3) t=0;24;48h

FFR: fermented to fresh solid ratio.

2.5. Enzymatic Hydrolysis by SSF Enzymatic Extract

The enzymatic hydrolysis strategy proposed in Section 2.4 was compared to a more conventional
methodology, in which the lyophilized enzymatic extract obtained from fungal-fermented ESBPPs
was added to fresh ESBPPs. This extract was obtained from the extraction of 15 g of fermented solid
(3 Petri dishes).

For this purpose, 55 g of fresh ESBPPs were autoclaved at 120 °C for 20 min in 500 mL Erlenmeyer
flasks containing 290 mL of citrate-phosphate buffer 0.05 M at pH 5.0. After that, the lyophilized
enzyme extract obtained as described in Section 2.3 was dissolved in 10 mL of citrate-phosphate buffer
0.05 M at pH 5.0 and added to the Erlenmeyer flask. The suspensions were incubated at 50 °C and
200 rpm for 5 days. All the hydrolysis experiments were analyzed in triplicate.

2.6. Sample Analyses

RS were measured by the dinitrosalicylic acid method (DNS) adapted to microplate [17,18]. Glucose and
arabinose plus galactose concentrations were measured by using enzymatic assay kits from Biosystems
(D-Glucose/D-Fructose) (Barcelona, Catalufia, Spain) and Megazyme (L-Arabinose/D-Galactose assay kit)
(Bré, County Wicklow, Ireland), respectively.
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Dissolved organic carbon and dissolved nitrogen analyses were carried out in an Analytik-Jena®
(Jena, Germany) multi N/C 3100 carbon analyzer with a chemiluminescence detector (CLD) according
to the combustion-infrared method (5310B) of the Standard Methods [19].

2.7. Parameter Estimation

The enzymatic hydrolysis of lignocellulosic materials into fermentable sugars is carried
out by a complex mechanism that involves diverse phenomena such as adsorption, desorption,
enzyme deactivation, etc. In this work, the kinetic model proposed by Caro et al. [20] was used
to calculate the general kinetic parameters of the enzyme hydrolysis process: the initial reducing
sugar concentration (G); theoretical maximum RS concentration, which is the final reducing sugar
concentration to be theoretically reached at the end of the process (Gg¢); and the global hydrolysis rate
(kp). All of them have been calculated for each experiment included here by nonlinear regression,
using the damped least squares analysis [21], fitting the experimental data to the equations of the
model. The model considers the heterogeneous nature of the process, in which a solid in the form
of small particles is decomposed to monosaccharides by the action of three types of enzymes in
solution. Because of the extension of the model, we have unified here the three kinetic parameters of
the three types of enzymes into only one, resembling a first-order kinetic. Thus, the value of the global
rate constant (ky,) has been obtained as the sum of the three kinetic constants gathered in the model
proposed by Caro et al., which corresponds to the activity of the three types of enzymes included in
that model. In summary, after obtaining the three mentioned kinetic parameters (G, G¢, ky,), we have
considered for discussion that the process follows the next simple equation:

G_GO
Gi—-Go

1—ehat )

where G is the concentration of reducing sugars at each instant of time (t) of each experiment.

In order to compare several conditions, a characteristic productivity (P) of the system has been
defined as follow: (Gf — Go)-ky. This parameter combines the maximum amount of sugar produced
(Gt — Gp) and the rate of production (ky). The regression coefficient (r?) of the experimental data to
the kinetic model of Caro et al. [20] is also shown.

Yield was calculated by dividing the grams of RS experimentally produced by the theoretical ones.

2.8. Statistical Analysis

All experiments and assays were performed in triplicate. Statgraphics 18 was used for data
analysis. Data were analyzed using one-way analysis of variance (one-way ANOVA), and Fisher’s
least significant differences (LSD, p < 0.05) was used to determine significant differences among
tested conditions.

3. Results and Discussion

3.1. Enzymatic Hydrolysis of Fresh ESBPPs by Adding Fermented Solid

The fermented solid obtained after SSF showed a different fiber composition than that of the fresh
solid. These results were previously published by Marzo et al. [16]. Briefly, the content of cellulose
increased 38% after SSF, whilst hemicellulose and pectin content decreased 33% and 22%, respectively.
Furthermore, this fermented solid contained a variety of hydrolytic enzymes secreted by A. awamori
during its growth. The main enzymatic activities measured in the lyophilized extract obtained from
the fermented ESBPPs were as follows: 24.6 + 0.6 U xylanase-g‘1 of dried fresh ESBPPs, 9.3 + 1.1 U
exo-PG-g~! of dried fresh ESBPPs, and 1.9 + 0.2 U FP-ase-g~! of dried fresh ESBPPs. B-glucosidase
activity was also assayed, although the activity value was almost nil. This mixture of enzymes has
been widely used to hydrolyze lignocellulosic biomass with a high content of hemicellulose, such as,
wheat straw, corn stover, or rice straw [22]. Usually, the enzymes produced during the SSF stage are
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extracted and purified to use them in the hydrolysis stage, in consequence, the price of the produced
enzymes is high. To perform a cost-effective process, the fermented solid obtained in SSF was added
directly in the hydrolysis stage.

3.1.1. Effect of Temperature

As stated earlier, fermented solid used for hydrolysis experiments contains the fungus and its
secreted hydrolytic enzymes. Given that the fungus can consume the monomeric sugars produced
in the enzymatic hydrolysis of polysaccharides, its growth must be limited or restricted to avoid
the decrease of sugar concentration in the hydrolysate. In this sense, although the most favorable
temperature for the growth of the genus Aspergillus is around 30 °C and fungal growth generally
decreases at temperatures higher than 30 °C, it has been found that some fungus species can grow
at temperatures as high as 50 °C [23,24], which is the optimum temperature for cellulase activity.
Therefore, given that fungal growth must be restricted and enzymatic hydrolysis must be favored, 50
and 55 °C were the temperatures selected for hydrolysis in this study.

Three different fermented to fresh solid ratios (FFRs of 5:30; 15:15, and 30:0) were tested at 50 and
55 °C. The evolution of RS concentration can be observed in Figure 2. When the enzymatic hydrolysis
was performed at 55 °C, the hydrolysis rate and the productivity increased compared to those of
hydrolysis at 50 °C (see Table 2). However, the theoretical maximum RS concentration (G¢) and yield
decreased when the hydrolysis was performed with FFRs of 5:30 and 15:15 at 55 °C. This reduction
was not noticed for an FFR of 30:0 at 55 °C.

These results reflect the combined effect of sugar production, as a consequence of enzyme
hydrolysis, and sugar consumption by the fungus. The amount of fungus is lower in the experiments
with FFRs of 5:30 and 15:15, favoring the sugar production, compared with the experiment with an
FFR of 30:0, given that a higher quantity of fermented solid is added in the last case. Therefore, it was
observed that for FFRs of 5:30 and 15:15, lower RS concentrations were obtained at 55 °C. This behavior
can be justified considering the reduction of enzyme activities produced at 55 °C. According to Botella
et al. [25], xylanase and exo-PG enzymes produced by A. awamori showed an optimum temperature
of between 30 and 50 °C, decreasing their activities at higher temperatures and being practically
deactivated at 70 °C [25,26]. Other authors have published similar results [8,27]. However, for an FFR
of 30:0, the activities of the enzymes are also reduced at 55 °C, but at this temperature, the fungus is
also affected and, therefore, the sugar consumption is diminished in these conditions. In this case,
the RS concentration obtained is near double at 55 °C than that at 50 °C, which means that a higher
temperature hinders the fungus’ growth.

In conclusion, a higher temperature (55 °C) affects fungal growth and, therefore, sugar consumption
is reduced, reaching a higher concentration when the FFR is 30:0. However, under an FFR of 15:15, it is
recommended to work at 50 °C, given that at this temperature the enzymes are more active.

3.1.2. Effect of Fermented to Fresh Solid Ratio

To increase the concentration of RS released in the hydrolysis, different fermented to fresh solid
ratios (FFRs) were studied, as mentioned in Section 2.4 Two types of experiments were tested: in the
first set, different amounts of fermented solid were added to a fixed concentration of fresh solid,
while in the second set a fixed amount of fermented solid was added to different amounts of fresh
solid. Results are shown in Figure 3 and Table 3.

For the first set of experiments, the FFRs assayed were 5:30, 10:30, and 15:30. As seen in Figure 34,
RS concentration increases rapidly along the first 18 h in all the cases, while afterward the hydrolysis
rate is very low. This is a consequence of the two stages (heterogeneous and homogeneous) that
form the kinetics involved in the hydrolysis process [20]. The maximum RS concentration increased
from 28.4 to 36.5 g-L ! and the hydrolysis yield increased from 27.9% to 32.4% as the fermented
solid mass rose from 5 to 10 g. Nevertheless, a similar maximum RS concentration was obtained
when the fermented solid mass was 15 g (36.7 g-L ') while the hydrolysis yield decreased until 29.7%.
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Probably, the addition of more fermented solid does not affect the maximum RS concentration as
the amount of potential hydrolysable polysaccharides in the total solid mix remains almost constant.
However, the global hydrolysis rate (ky) increased as the fermented solid mass did, becoming 0.136,
0.141, and 0.200 h~! for FFRs of 5:30, 10:30, and 15:30, respectively (Table 3). Therefore, although
maximum RS concentration did not increase using 15 g of fermented solid, the hydrolysis rate was
higher due to the increment in enzyme concentration in the total solid mixture. The same effect was
observed by Tsakona et al., who reported that the amount of glucose obtained in flour-rich waste
hydrolysate (a confectionery and wheat milling plants by-product) increased when higher enzyme
activity was added as fermented solid [12].
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Figure 2. Evolution of reducing sugar (RS) concentration through hydrolysis time fresh ESBPPs in
300 mL of citrate-phosphate buffer (pH 5, 0.05 M). Effect of temperature (T) with various fermented to
fresh solid ratios (FFRs): (a) 5:30, (b) 15:15, and (c) 30:0.

Table 2. Effect of temperature (T) with various FFRs (5:30, 15:15, and 30:0). G,: initial reducing
sugar (RS) concentration, G¢: theoretical maximum RS concentration, ky: hydrolysis rate (h™1), and P:
productivity (g-L=1h71).

FFR T(C) Go(gL) GegLll) kyt?! PELlhl) Yield (%)
5:30 50 53 36.8 0.100 3.1 0.991 36.1
530 55 3.1 284 0.136 3.5 0.999 27.9
15:15 50 2.7 17.0 0.125 1.8 0.987 21.8
15:15 55 1.9 154 0.169 2.2 0.967 19.8
300 50 22 8.2 0.051 0.3 0.999 12.7
300 55 15 145 0.072 0.9 0.993 225

For the second set of experiments, the FFRs assayed were 15:30, 15:35, 15:40; 15:45, 15:50, and
15:55. The evolution of RS concentrations is shown in Figure 3B and initial RS concentration, theoretical
maximum RS concentration, productivity, hydrolysis rate, and hydrolysis yield can be found in Table 3.
In these experiments, the amount of fresh solid increases, so the content of potentially hydrolysable
polysaccharides also does, yielding higher RS concentrations. This result suggests that, at the very
least, there is enough enzyme activity in the fermented solid to hydrolyze a quantity of fresh solid
as high as 3.7 times greater. The highest value was obtained for an FFR of 15:55 (66.0 g-L™!) with
a hydrolysis yield and productivity of 33.1% and 8.1 g-L"!-h~!, respectively. Comparing this result
with the one obtained for an FFR of 15:30, an increase of 80% in the maximum RS concentration and
a reduction in the hydrolysis rate from 0.200 to 0.133 h™! were observed. However, a similar yield
was obtained. This behavior is probably related to the decrease in the liquid to solid ratio from 6.7 to
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4.3 mL-g~! solid. No greater amounts of fresh solid were tested because the resulting suspension was
very difficult to agitate.
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Figure 3. Evolution of RS concentration through hydrolysis time of fresh ESBPPs in 300 mL of
citrate-phosphate buffer (pH 5, 0.05 M) at 55 °C with various fermented to fresh solid ratios. FFRs of
(A) 5:30 (star), 10:30 (triangle), and 15:30 (square) and (B) 15:30 (star), 15:35 (triangle), 15:40 (square),
15:45 (circle), 15:50 (diamond), and 15:55 (cross) are shown. Lines indicate theoretical values obtained
from the kinetic model and symbols represent experimental values.

Table 3. Effect of fermented to fresh solid ratio on hydrolysis experiments performed in 300 mL
of citrate-phosphate buffer (pH 5, 0.05 M) at 55 °C with various fermented to fresh solid ratios.
Go: initial RS concentration, Gy: theoretical maximum RS concentration, ky,: hydrolysis rate (h~1), and P:
productivity (gL~1-x h™1).

FFR Gy (gL G¢ (gL kp (h71) P (gL 1-h1) 2 Yield (%)

5:30 3.1 28.4 0.136 3.5 0.999 27.9
10:30 3.3 36.5 0.141 47 0.997 324
15:30 6.1 36.7 0.200 6.1 0.997 29.7
15:35 43 37.3 0.195 6.4 0.999 26.9
15:40 41 40.7 0.179 6.5 0.994 26.5
15:45 53 429 0.170 6.4 0.995 254
15:50 4.7 61.9 0.137 7.8 0.992 33.6
15:55 51 66.0 0.133 8.1 0.987 33.1

3.1.3. Supplementation of Fermented ESBPPs with Commercial Cellulase

Celluclast®, a commercial enzymatic cocktail composed mainly by cellulase, was added as
a supplement to the enzymatic hydrolysis to improve hydrolysis yield. The enzyme activities
of Celluclast® added to the medium were 0.72, 1.44, 2.17, and 2.89 U-g_l of dried fresh ESBPPs.
The reducing sugar concentration obtained is shown in Figure 4, and the theoretical maximum
RS concentration, productivity, and hydrolysis rate are presented in Table 4. As the enzymatic
activity of Celluclast® increased, the concentration of reducing sugars, the hydrolysis yield and the
hydrolysis rate also did. The main reason for this behavior is the low content in cellulase of the
enzyme cocktail produced by SSF of fresh ESBPPs. Although fresh ESBPPs are mainly composed
of pectin (41.13%), they also contain a high percentage of cellulose (25.18%) and hemicellulose
(16.60%) [16]. However, the enzyme cocktail produced by SSF of the fresh ESBPPs is mostly composed
of hemicellulases (xylanases) and pectinases. Given the lack of cellulases in the cocktail, it is not
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possible to completely hydrolyze fresh ESBPPs. As can be seen in Figure 4, when the enzyme cocktail
obtained from SSF is supplemented with cellulases, higher RS concentrations were attained. The same
conclusion can be made focusing on productivity, hydrolysis yield, or hydrolysis rate. These parameters
are higher as cellulase activity increases.

Similar effects were previously observed in two studies carried out by our research group [16,28].
In the first study, ESBPPs were hydrolyzed with Celluclast® or with this cocktail supplemented
with commercial xylanase and pectinase [28]. In the second study, a lyophilized enzymatic extract
obtained from SSF of orange peels, mainly composed of xylanase and pectinase, was supplemented
with Celluclast® and used to hydrolyze orange peels or ESBPPs [16]. In all cases, reducing sugar
concentrations increased as Celluclast® was added for the hydrolysis.

Considering a confidence level of 98%, RS values obtained with a cellulase activity of 2.17 and
2.89 U- g_1 of dried fresh ESBPPs cannot be considered statistically different. Therefore, it is not possible
to increase the maximum concentration of reducing sugars in the hydrolysate, using enzyme doses
higher than 2.17 U-g! of dried fresh ESBPPs.
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Figure 4. Evolution of RS concentration over hydrolysis time of fresh ESBPPs in 300 mL of
citrate-phosphate buffer (pH 5, 0.05 M) at 50 °C with an FFR of 15:55 and with addition of Celluclast®
(0,0.72,1.44,2.17, and 2.89 U~g’1 of dried fresh ESBPPs). Lines indicate theoretical values obtained
from the kinetic model and symbols represent experimental values.

Table 4. Effect of Celluclast® supplementation (0, 0.72, 1.44, 2.17, and 2.89 U-g~! of dried fresh ESBPPs)
on hydrolysis experiments performed at 50 °C with an FFR of 15:55. Go: initial RS concentration,

Gy: theoretical maximum RS concentration, ky,: hydrolysis rate (h71), and P: productivity (g~L_1~h_1)‘

U/g Go(gL1 Ge(gL™M kyp (1)  P(gL1hl) 2 Yield (%)
0 5.1 66.0 0.133 8.1 0987  33.1
0.72 8.2 80.0 0.136 9.8 099  40.1
1.44 10.1 94.7 0.146 12.4 0999 475
2.17 8.2 106.8 0.183 18.1 0995  53.6
2.89 6.6 104.0 0.193 18.8 0997 521

3.1.4. High-Solid Fed-Batch Enzymatic Hydrolysis

From the above-mentioned experiments, a maximum RS concentration of 106.8 g-L.~! was reached
at 50 °C, with an FFR of 15:55, the addition of 2.17 U of Celluclas’c®-g_l of dried fresh ESBPPs and
300 mL of citrate-phosphate buffer (liquid to solid ratio of 4.3 mL-g~!). However, in the literature,
some authors suggest that with a ratio lower than 6.6 mL-g~!, the hydrolysis yield can decrease due to
the high concentration of solids [29-31]. When the concentration of solids is high, the mass transfer is
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hampered and the viscosity increases [32]. The combination of both effects can produce a decrease in
the water availability, possible enzyme inhibition by product, and irreversible binding of the absorbed
enzyme to the substrate [32].

Taking into account these considerations, the total mass of fresh solid (55 g) was divided into several
fractions, which were added at different times during the hydrolysis (see Table 1). Figure 5A shows the
evolution of RS concentrations in the strategies I, II, and III. It can be observed that the highest RS
concentration (127.3 g-L.™!) was obtained with the “strategy I11”, in which the fresh solid is added in four
fractions. Hydrolysis yield, productivity, and hydrolysis rate were 63.8%, 24.3 g-'L™'-h™!, and 0.2 h™},
respectively. Therefore, there was a 22% increase in hydrolysis yield and a 30% increase in productivity
compared to that in strategy I, in which the total fresh ESBPPs were added at the beginning of the
enzymatic hydrolysis (see Table 5). The viscosity of the hydrolysate decreased significantly when the
fresh solid was added in small fractions (“strategy III”), and, as a consequence, agitation and hydrolysis
rate improved. Jung et al. also found that high glucose concentrations and saccharification yields
could be reached in the enzymatic hydrolysis of maleic acid-pretreated rice straw by the optimization
of the fed-batch process, even using high-solid loading [33].

The second set of experiments were performed with a total FFR of 15:90, but the liquid to solid ratio
was reduced to 2.9 mL-g_1 of solid (Figure 5B). Two different fed-batch strategies were tested (V and VI)
and compared to batch mode (IV). Comparing “strategy IV” with “strategy V”, a slight decrease
was observed in G¢, however higher productivity and hydrolysis rates were obtained following the
“strategy V” (see Table 5). If these strategies are compared with "strategy VI", in which fresh ESBPPs
are added in eight fractions, a G value of 168.0 g:'L. ™! was achieved and the hydrolysis yield was
increased until 54.9%, although productivity and hydrolysis rate decreased (Table 5).

A common problem of enzymatic hydrolysis is the deactivation of the enzymes over time. For this
reason, a new strategy (“strategy VII”) was planned, in which the fermented ESBPPs were added every
24 h (FER of 15:55). Figure 5A shows the RS concentration obtained through “strategy VII” compared
with that for “strategy 1”7, in which all fermented solid was added at the beginning of the hydrolysis.
During the first 24 h, “strategy I” produced a higher RS concentration and therefore the hydrolysis
rate was higher than the corresponding one of “strategy VII”. However, Gy for “strategy VII” was
1.22 times higher than for “strategy I”. Therefore, although the total amount of enzyme added in
both experiments was the same, the addition of fermented solid every 24 h improved by 22% both the
maximum RS concentration obtained and the hydrolysis yield (see Table 5).
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Figure 5.

Evolution of RS concentration over hydrolysis time of fresh ESBPPs in 300 mL of

citrate-phosphate buffer (pH 5, 0.05 M) at 50 °C with addition of Celluclast® (2.17 U-g‘1 dried
fresh ESBPPs). (A) Fed-batch hydrolysis with a total FFR of 15:55. (B) Fed-batch hydrolysis with a total
FFR of 15:90. Lines indicate theoretical values obtained from the kinetic model and symbols represent

experimental values.
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Table 5. Fed-batch enzymatic hydrolysis strategies (I, II, III, IV, V, VI, VII) at 50 °C with addition of
Celluclast® (2.17 U-g‘1 of dried fresh ESBPP). G: initial RS concentration, G¢: theoretical maximum
RS concentration, ky: hydrolysis rate (h~!), and P: productivity (g-L~'-h™1).

Strategy Gg (gL™1) Gg(gL™1) kp (h71) P(gL-1.h1) r Yield (%)

I 6.6 104.0 0.193 18.8 0.997 52.1
II 134 107.7 0.087 8.2 0.962 54.0
III 24 127.3 0.195 243 0.998 63.8
v 13.3 147.1 0.113 15.1 0.991 48.1
\Y% 1.3 143.6 0.119 16.9 0.991 47.0
VI 6.8 168.0 0.040 6.4 0.996 54.9

vl 29 126.7 0.112 13.9 0.999 63.5

3.2. Evaluation of the Proposed Methodology for ESBPP Hydrolysis

Two experiments were performed by following the processes showed in Figure 1 (process A and B).
In the A process, lyophilized crude enzymatic extract was obtained from 15 g of fermented ESBPPs
and then it was added to 55 g of fresh ESBPPs in 300 mL of citrate-phosphate buffer (pH 5, 0.05 M)
The mixture was incubated at 55 °C and 200 rpm. For the B process, 15 g of fermented solid was directly
added to 55 g of fresh ESBPPs as a source of hydrolytic enzymes, maintaining the rest of the conditions
as in the A process. Using the A process, G was 37.8 g-L. ™!, whereas for the B process it was 66.0 g-L7!.
Moreover, k;, increased from 0.105 to 0.133 g-L~'-h~! and hydrolysis yield improved from 22.6% to
33.1%. Those differences can be explained considering that the enzyme load in the new proposed
strategy is higher than that in the previous strategy. Enzyme losses and deactivation phenomena that
normally occur in the concentration and purification stages to obtain enzymatic extracts are avoided by
adding fermented solid as a source of enzymes. Moreover, the number of stages required to produce
the hydrolysate decreases considerably by using B process. As a result, energy demand, time employed,
the chemicals used, and, consequently, the cost of the process can be significantly reduced.

The hydrolysate obtained by the B process was characterized to know the possible final products
that might be obtained through successive sugar fermentation. The temporal evolution of several
sugar concentrations in this hydrolysate can be observed in Figure 6. The maximum values measured
were as follows: 16.9 g-L.! of glucose and 18.1 g-L ™! of a mixture of arabinose and galactose, while the
total reducing sugar concentration was 66.0 g-L 7.

—e—RS
--A--Glucose
| - - Arabinose and galactose

B
o
|

w
o
|

Concentration (g/L)

0 24 48 72 96 120 144 168
Time (h)

Figure 6. Evolution of reducing sugars concentration (circle), glucose (triangle), and the mixture
arabinose and galactose (diamond) in enzymatic hydrolysate.
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Most sugars contained in the hydrolysate (glucose and arabinose) are the main sugars consumed by
microorganisms to produce value-added products, such as ethanol, lactic acid, etc. In previous studies
of our research group, ethanol and lactic acid were produced sequentially from ESBPP hydrolysate,
obtained by conventional enzymatic hydrolysis by adding a cocktail of commercial enzymes composed
of Celluclast®, B-glucosidase, xylanase, and pectinase [28].

In addition to the sugar composition, another important factor in biological processes is the carbon
to nitrogen ratio (C/N) [34]. In this case, the C/N measured in ESBPP hydrolysate was 28.80, which is a
value that is in the right range for many microbial cultures. For example, bamboo hydrolysate was used
by Clostridium beijerinckii (ATCC 55025-E604) for ABE (acetone, butanol, and ethanol) production [35].
In this work, the effect of the C/N ratio on butanol production was studied, selecting ratios in the
range from 20.89 to 31.98. Results obtained showed that lower or higher C/N ratios result in lower
butanol and ABE production because the C/N ratio influences the growth of Clostridium, which is
responsible for butanol production, with the optimum C/N ratio being 27.5 [35]. It has also been
shown that C/N ratio plays an important role in the process of microbial lipid accumulation, and it is
generally considered that a C/N ratio higher than 20 is required for the process, with the optimal value
varying greatly depending on the cultured microorganism [36]. Similarly, an adequate C/N ratio is
fundamental in bio-hydrogen production. Thus, it has been found that in the bio-hydrogen production
from raw rice straw using sewage sludge as inoculum, the maximal hydrogen yield was produced at
the C/N ratio of 25, which is a value very close to the one of ESBPP hydrolysate [37].

4. Conclusions

In the production of value-added products from lignocellulosic biomass, the cost of the enzymes
used for the hydrolysis is the bottleneck of the process. To reduce the process cost, enzymes can be
produced by SSF using as substrate a sub-product of the agroindustry as raw material (ESBPPs) and this
fermented solid can be added directly to fresh ESBPPs for its hydrolysis. In this way, enzyme extraction
and purification stages during the enzyme production process are avoided. If enzymatic hydrolysis is
conducted at high-solid loading, following a fed-batch strategy, in which fresh solid is added in four
fractions, the hydrolysis yield increases by 22% compared to that for the batch strategy, in which the
total fresh ESBPPs are added at the beginning of the hydrolysis process. Moreover, analysis of the
hydrolysates obtained suggests that a generic microbial feedstock composed mainly by glucose and
arabinose can be produced in a more cost- and time-effective process, which can be used to obtain
value-added products, such as, biofuels, organic acids, etc.
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