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Abstract: Let S = 〈a1, . . . , ap〉 be a numerical semigroup, let s ∈ S and let Z(s) be its set of factorizations.
The set of lengths is denoted by L(s) = {L(x1, . . . , xp) | (x1, . . . , xp) ∈ Z(s)}, where L(x1, . . . , xp) =

x1 + · · ·+ xp. The following sets can then be defined: W(n) = {s ∈ S | ∃x ∈ Z(s) such that L(x) = n},
ν(n) =

⋃
s∈W(n) L(s) = {l1 < l2 < · · · < lr} and ∆ν(n) = {l2 − l1, . . . , lr − lr−1}. In this paper, we prove

that the function ∆ν : N→ P(N) is almost periodic with period lcm(a1, ap).
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1. Introduction

A numerical semigroup (or numerical monoid) is a finitely generated subsemigroup of the set of
nonnegative integers N, such that the group generated by it is the set of all integers Z. Every numerical
semigroup is finitely generated and their elements might be expressed in different ways as a linear
combination with non-negative integer coefficients of its generators. Each such expression is usually
known as a factorization of the element.

For many rings and semigroups, their elements can be written as finite products (or sums) of other
elements, but in general such factorizations are not unique, which is not the case for the ring of integer
numbers. Non-unique factorization theory describes and classifies these properties using invariants of
the algebraic structure in question (see [1] for further background). From among the relevant parameters,
we can highlight the ω-primality, the tame degree, the ∆-set and the elasticity. What these try to measure,
in one way or another, is how far a semigroup or a ring is from having unique factorization, and if
factorization is not unique, they explain its behaviour. For example, if the ∆-set of an element is the empty
set, this means that all its factorizations have the same length. Computation of these parameters is not
trivial, however, because, in general, although their definitions might not be complicated, to establish
appropriate and effective algorithms and relevant examples, it is necessary to have knowledge of a variety
of properties (bounds, periodicity, etc.).

In recent years, two structures for which these parameters have been well studied are numerical
and affine semigroups. We highlight, for example, the library “NumericalSgps” made in GAP [2], where
functions are implemented to compute some of these parameters. Along the same line, we mention the
work in [3–5] and many of the references cited therein.
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In this paper, we start from the definition of the ∆-set of the elements of a numerical semigroup and
we define ∆ of the union of sets of elements. This parameter has been discussed widely in the literature.
Generalized sets of lengths were studied in Dedekind domains by Chapman and Smith [6], who had
earlier determined their asymptotic behaviour [7]. Amos et al. [8] obtained some properties of the set νn

for numerical semigroups generated by an arithmetic progression. Baginski et al. [9] computed the set
∆ν(M) for several monoids and also studied the asymptotic behaviour of ∆νn. This invariant was also
analysed by Chapman et al. [10]. More recently, Geroldinger [11] surveyed some parameters and proved
some results on the structure of νn, using the fact that d = min(∆(S)) = gcd{ai+1 − ai | i = 1, . . . , p− 1}.
These sets are almost arithmetic progressions and therefore ∆ν(S) ⊂ {d, 2d, 3d, . . . }.

The main goal of this work is to give properties of the set of lengths of a numerical semigroup and to
obtain algorithms that allow computation of the function ∆ν. We prove that for its computation, we do not
need to calculate the ∆-set of all the elements involved and thus we improve its computation in a remarkable
way. We also show that this function is almost periodic and we use this period and its bound for obtaining
the function ∆ν for any numerical semigroup. We provide some examples that illustrate these algorithms.
The software developed and all the associated examples can be downloaded from [12].

In Section 2, we give some basic definitions and introduce the notation that we use through this
paper. Section 3 is devoted to explaining the behaviour of the function ∆ν, and an improved algorithm
for computing it is also given there. Finally, in Section 4, we study the periodicity of ∆ν and provide
some examples.

2. Definitions and Notation

Denote by N the set of non-negative integers. In this work, S denotes a primitive numerical monoid
(or numerical semigroup). Since every numerical monoid is finitely generated, there exist a1, . . . , ap ∈ N
such that S = 〈a1 < · · · < ap〉 = {∑p

i=1 λiai | λ1, . . . , λp ∈ N}. If M is the subgroup of Zp defined by the
equation a1x1 + · · ·+ apxp = 0 and ∼M is the equivalence relation on Np defined by z ∼M z′ if z− z′ ∈ M,
then the semigroup S is isomorphic to the quotient Np/ ∼M.

Let s be an element of S. If (x1, . . . , xp) ∈ Np satisfies ∑
p
i=1 xiai = s, then we say that (x1, . . . , xp) is a

factorization of s. We denote by Z(s) the set {(x1, . . . , xp) ∈ Np | ∑
p
i=1 xiai = s} and we call it the set of

factorizations of s.
Define the linear function L : Qp → Q as L(x1, . . . , xp) = x1 + · · ·+ xp. The length of a factorization x

of s ∈ S is the number L(x).
The following definition is found in [4,13].

Definition 1. Given s ∈ S and S = 〈a1, . . . , ap〉, the set L(s) = {L(x1, . . . , xp) | (x1, . . . , xp) ∈ Z(s)} is called
the set of lengths of s in S. Since S is a numerical monoid, it is not hard to prove that this set of lengths is bounded,
and so there exist some positive integers l1 < · · · < lk such that L(s) = {l1, . . . , lk}. The set

∆(s) = {li − li−1 : 2 ≤ i ≤ k}

is called the ∆-set of s.

The set
∆(S) =

⋃
s∈S

∆(s)

is called the ∆-set of S.
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In [4], it was proved that for every numerical semigroup S, the function ∆ : S → P(N) is almost
periodic. The following definition is found in [8,9,11,14].

Definition 2. Let S = 〈a1, . . . , ap〉 and n ∈ N.

• Define W(n) = {s ∈ S | ∃x ∈ Z(s) such that L(x) = n}.
• Define ν(n) =

⋃
s∈W(n) L(s).

If ν(n) = {l1 < l2 < l3 < · · · < lr}, then

∆ν(n) = {l2 − l1, l3 − l2, . . . , lr − lr−1}

and
∆ν(S) =

⋃
n∈N

∆ν(n).

Clearly, for every n ∈ N, the set ∆ν(n) is a subset of N. Thus, for a S numerical semigroup, we define
∆ν as follows:

∆ν : N→ P(N),
n→ ∆ν(n).

The main aim of this work is to prove that this function is almost periodic and that its period is a
divisor of lcm(a1, ap).

An unrefined method for computing ∆ν(n) is presented in Algorithm 1.

Algorithm 1 Sketch of the algorithm to compute ∆ν(n).
INPUT: S = 〈a1, . . . , ap〉 a numerical semigroup and n ∈ N.

OUTPUT: ∆ν(n).

1: A :=
{
(x1, . . . , xp)

∣∣ ∑
p
i=1 xiai = n

}
.

2: W(n) :=
{

∑
p
i=1 xiai

∣∣ (x1, . . . , xp) ∈ A
}

.
3: L =

⋃
s∈W(n) L(s).

4: return ∆L.

The tuples (n, 0, 0, . . . , 0), (n− 1, 1, 0, . . . , 0), . . . , (0, n, 0, . . . , 0) are factorizations of different elements.
So, limn→+∞ #W(n) = ∞.

Example 1. Let S = 〈5, 9, 11〉 and n = 100. The cardinality of W(100) is 300 and for the computation of ∆ν(100)
using Algorithm 1, it is necessary to know the factorizations of all of the elements of W(100). In the following section,
we prove that for any n ∈ N, it is only necessary to calculate the factorizations of 220 elements for computing ∆ν(n).

This number increases with n. For instance, if n = 200, the cardinality of W(200) is 600, but with Algorithm 2
it is again only necessary to compute the factorizations of 220 of the elements of W(200).
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Algorithm 2 Sketch of the algorithm to compute ∆ν(n).
INPUT: S = 〈a1, . . . , ap〉 a numerical semigroup and n ∈ N.

OUTPUT: ∆ν(n).

1: d := gcd(a2 − a1, . . . , ap − ap−1).
2: Compute NS as in §3 [4].
3: C1 := (ap − ap−1)NSap−1, C2 := (a1 − a2)NSa2,
4: C3 :=

(
− ap

a1
+

ap
a2
− ap

ap−1
+ 1
)

NS, C4 :=
(

a1
ap−1
− a1

ap
− a1

a2
+ 1
)

NS.
5: λ1 := max(C1, C4), λ2 := −min(C2, C3).
6: Compute N0 as in Proposition 1.
7: if n ≤ N0 then
8: Compute ∆ν(n) using Algorithm 1.
9: return ∆ν(n).

10: x1 := na1 + dλ1e.
11: x2 := nap − bλ2c.
12: W3 := W(n) ∩ [na1, x1].
13: B3(n) :=

{
x ∈ ⋃s∈W3

L(s)
∣∣ x ≤ x1

ap

}
.

14: W1 := W(n) ∩ [x2, nap].
15: B1(n) :=

{
x ∈ ⋃s∈W1

L(s)
∣∣ x ≥ x2

a1

}
.

16: Compute ∆B3(n).
17: Compute ∆B1(n).
18: return ∆B3(n) ∪ {d} ∪ ∆B1(n).

3. Computation of ∆ν(n)

In [4], it is proved that there exist δ ∈ N and a bound NS ∈ N such that δ|lcm(a1, ap) and, for every
s ∈ S with s ≥ NS, we have ∆(s + δ) = ∆(s).

It is straightforward to prove that minW(n) = na1 and maxW(n) = nap. We use the notation of [4],
and the definitions of the elements NS, ~w and ~w′ can also be found there. We recall that, explicitly,

d = gcd{ai+1 − ai | i = 1, . . . , p− 1},

Si = −
a2
(
a1d gcd

(
ai − a1, a1 − ap, ap − ai

)
+ (p− 2) (a1 − ai)

(
a1 − ap

))
(a1 − a2) gcd

(
ai − a1, a1 − ap, ap − ai

) ,

S′i =
ap−1

(
(p− 2)

(
a1 − ap

) (
ap − ai

)
− dap gcd

(
ai − a1, a1 − ap, ap − ai

))(
ap−1 − ap

)
gcd

(
ai − a1, a1 − ap, ap − ai

) ,

NS = dmax({Si | i = 2, . . . , p− 1} ∪ {S′i | i = 2, . . . , p− 1})e,

~w =
NS(a2 − ap)

a2(a1 − ap)
e1 +

NS(a1 − a2)

a2(a1 − ap)
ep −

NS
a1

e1,

~w′ =
NS(ap−1 − ap)

ap−1(a1 − ap)
e1 +

NS(a1 − ap−1)

ap−1(a1 − ap)
ep −

NS
ap

ep.

Lemma 1. Let S be a numerical semigroup and let NS be the bound of [4]. Then, there exists N′S ∈ N such that for
every n ≥ N′S, we have minW(n) ≥ NS.

Proof. The minimum of W(n) is equal to na1. It is enough to take N′S ≥ NS/a1.
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Definition 3 (Definition 15 [4]). Let S = 〈a1, . . . , ap〉 be a numerical monoid. For every s ∈ N such that s ≥ NS,
define

• Z1(s) the set of elements x = (x1, . . . , xp) ∈ Z(s) satisfying s/a1 + L(−→w ) < L(x) ≤ s/a1;
• Z2(s) the set of elements x = (x1, . . . , xp) ∈ Z(s) satisfying s/ap + L(−→w ′)− d ≤ L(x) ≤ s/a1 + L(−→w )+ d;
• Z3(s) the set of elements x = (x1, . . . , xp) ∈ Z(s) satisfying s/ap ≤ L(x) < s/ap + L(−→w ′).

Note that

L(~w) =
(a1 − a2)NS

a1a2
, L(~w′) =

(ap − ap−1)NS

apap−1
.

Let Ci be the following values:

C1 =
(ap − ap−1)NS

ap−1
, C2 =

(a1 − a2)NS
a2

,

C3 =

(
−

ap

a1
+

ap

a2
−

ap

ap−1
+ 1

)
NS, C4 =

(
a1

ap−1
− a1

ap
− a1

a2
+ 1

)
NS.

Define λ1 = max(C1, C4) and λ2 = −min(C2, C3).

Proposition 1. For every n ≥ N0 = max
(

NS
a1

,
ap − a1 + λ1 + λ2

ap − a1

)
, we have

∆ν(n) = ∆

 ⋃
x∈[na1,na1+λ1]∪[nap−λ2,nap ]

Z(x)

 .

Proof. Let n ≥ N0. Then, by Lemma 1, we obtain that x ≥ NS for all x ∈ W(n).
Using the properties of the sets Zi (Definition 3), for every x ∈ W(n) with x ≥ N0, there exists c1 ∈

Z1(x) such that L(c1) = min{L(x) | x ∈ Z1(x)} and b1 ∈ Z1(x) such that L(b1) = max{L(x) | x ∈ Z1(x)}.
We have that L(b1) ≤ x/a1 and that x/a1 + L(~w) ≤ L(c1). Analogously, there exists c2 ∈ Z3(x) such
that L(c2) = min{L(x) | x ∈ Z3(x)} and b2 ∈ Z3(x) such that L(b2) = max{L(x) | x ∈ Z3(x)}. Thus,
x/ap ≤ L(c2) and L(b2) ≤ x/ap + L(~w′).

The following system of inequalities is obtained:

x
ap

>
na1

ap
+ L(~w′), (1)

x
a1

<
nap

a1
+ L(~w), (2)

x
ap

+ L(~w′) < n + L(~w), (3)

x
a1

+ L(~w) > n + L(~w′). (4)

These inequalities can be summarized as follows:

na1 + λ1 < x < nap − λ2. (5)
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If (1) and (3) are satisfied, then we get L(Z1(x)) ⊂ L(Z2(na1)). With (2) and (4), we obtain L(Z3(x)) ⊂
L(Z2(nap)). From (3) and (4), we get L(Z1(na1)) ⊂ L(Z2(x)) and L(Z3(nap)) ⊂ L(Z2(x)). Finally, L(Z1(x)∪
Z3(x)) ⊂ L(Z2(na1) ∪ Z2(nap)) and L(Z1(na1) ∪ Z3(nap) ⊂ L(Z2(x)). Therefore, if there exists a solution
of (5), we obtain that ∆(∪{Z(x)|x ∈ (na1 + λ1, nap − λ2)}) = {d}.

To finish the proof, we now prove the existence of solutions of (5). Note that there exists n such that
nap − λ2 > na1 + λ1 and (nap − λ2)− (na1 + λ1) > ap − a1. Thus, there exists k ∈ N with k ≤ n such
that na1 + λ1 < na1 + k(ap − a1) < nap − λ2 and the element na1 + k(ap − a1) belongs to W(n). This is
fulfilled if (nap − λ2)− (na1 + λ1) > ap − a1, which is satisfied if and only if

n >
ap − a1 + λ1 + λ2

ap − a1
.

Thus, we assert that there exists x ∈ W(n) satisfying (5).

With the notation of Proposition 1, we give the following definitions.

Definition 4. Let n ≥ N0. Consider three zones in ν(n): B3(n), B2(n) and B1(n), given by

B3(n) =
{

x ∈ ν(n)
∣∣∣∣ x <

na1 + λ1

ap

}
,

B1(n) =
{

x ∈ ν(n)
∣∣∣∣ x >

nap − λ2

a1

}
,

B2(n) = ν(n) \ (B1 ∪ B3).

Remark 1. From the construction given in Proposition 1, we have that ∆ν(n) = ∆B1(n)∪ ∆B2(n)∪ ∆B3(n) and
∆B2(n) = {d}.

Example 2. Let S be the numerical semigroup generated by 〈4, 9, 10, 15〉. In this case, N0 = 73, which means that
if we compute ∆ν(n) with n greater than 73, for example n = 130, we can save a lot of computation. In this case,
W(130) ⊂ [520, 1950], λ1 = 203, λ2 = 759, x1 = 723 and x2 = 1191. Therefore, by using Algorithm 2, we have
468 values that we can skip.

The attractive aspect of this algorithm is that even if we increase the value of n, we only have to compute the
same number of elements. For instance for n = 150, W(150) ⊂ [600, 2250], but since λ1 and λ2 do not depend on
n, we save 688 evaluations.

4. Periodicity of ∆ν : N → P(N)

The main result of this work is presented in this section. This result allows us to give some examples
where we compute the function ∆ν for some numerical semigroups.

Proposition 2. Let n ≥ N0. Then, ∆B1(n) = ∆B1(n + µa1), ∆B3(n) = ∆B3(n + µap) and ∆B2(n) = ∆B2(n +

µai) for all i ∈ {1, . . . , p} and for all µ ∈ N.

Proof. Trivially, ∆B2(n) = ∆B2(n + µai) = {d} for every n ≥ N0.
Let x ∈ ∆B3(n). Then, there exist s1, s2 ∈ [na1, na1 + λ1] ∩W(n), z1 ∈ Z(s1) and z2 ∈ Z(s2) with

L(z1), L(z2) < (na1 + λ1)/ap satisfying L(z1) − L(z2) = x, and there is no z ∈ ν(n) such that L(z2) <

L(z) < L(z1). Let s̃1 = s1 + µap and s̃2 = s2 + µap. We have that z1 + µep ∈ Z(s̃1) and z2 + µep ∈ Z(s̃2)

satisfying L(z̃1)− L(z̃2) = x. Furthermore, s̃1, s̃2 belong to [na1 + µap, na1 + λ1 + µap] ∩W(n + µap).
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If there is an element s̃ ∈ W(n + µap) with z̃ ∈ Z(s̃) such that L(z̃2) < L(z̃) < L(z̃1), then, when
we consider the element s̃− µap, we obtain that this element has a factorization z that satisfies L(z2) <

L(z) < L(z1), which is a contradiction. Thus, we have proved that ∆B3(n) ⊂ ∆B3(n + µap). In the same
way, the other inclusion can be proved, and so ∆B3(n) = ∆B3(n + µap).

The proof that ∆B1(n) = ∆B1(n + µa1) is analogous.

Theorem 1. Let S be a numerical semigroup. The function ∆ν : N → P(N) is almost periodic with period
δ = lcm(a1, ap). A bound from which this function is periodic is N0.

Proof. From Proposition 2, ∆B2(n) = {d}. On the other hand, B1 and B3 are periodic with periods ap

and a1, respectively, so ∆B1 and ∆B3 have the same period. We now use the fact that ∆ν(n) = ∆B1(n) ∪
∆B2(n) ∪ ∆B3(n) to obtain that ∆ν has period lcm(a1, ap).

Finally, we illustrate the results of this work with some examples. In these examples, we show how
we can compute ∆ν(n) for several semigroups for all values of n. To do this, we use a supercomputer [15]
to check the tree of numerical semigroups, in a parallel way, ordering these semigroups by their genus and
examining them. We discard those semigroups of the form 〈m, m + k, . . . , m + qk〉 with k, q ∈ N, since they
have already been studied in [8].

Example 3. Here we have a collection of numerical semigroups with non-constant ∆ν.

• It is quite easy to find semigroups whose ∆ν have constant periodic parts. For example, if S is the semigroup
〈3, 10, 11〉, we have that N0 = 82 and δ = 33. Therefore, we only have to compute the first 115 values of
∆ν to find all its values. After performing these computations, we have the following results: ∆ν(1) = ∅,
∆ν(2) = ∆ν(3) = ∆ν(4) = ∆ν(7) = {1, 2} and ∆ν(n) = {1} for n ∈ {5, 6} ∪ [8, 33]. So, the real
periodicity of this function is 1, and because of this, if n ≥ 34, then ∆ν(n) = {1}. Further semigroups having
∆ν with this behaviour are 〈10, 13, 15〉, 〈4, 7, 9〉 and 〈6, 8, 9, 11〉.

• A more interesting semigroup is the following one. If S = 〈3, 10, 14〉, then we only need to compute 102 values
of ∆ν, since N0 = 60 and δ = 42. The results are

∅, {1, 4}, {1, 3, 4}, {1, 3}, {1, 3}, {1, 4}, {1, 2}, {1, 3}, {1, 4}, {1, 2}, . . . .

If n ∈ [5, 59], then we have ∆ν(n) = {1, 4} if n ≡ 0 mod 3, ∆ν(n) = {1, 2} if n ≡ 1 mod 3 and
∆ν(n) = {1, 3} if n ≡ 2 mod 3. If n ≥ 60, then ∆ν(n) = {1, 2} if n ≡ 0 mod 3, ∆ν(n) = {1, 3} if
n ≡ 1 mod 3 and ∆ν(n) = {1, 4} if n ≡ 2 mod 3. The other values are ∆ν(1) = ∅, ∆ν(2) = {1, 4},
∆ν(3) = {1, 3, 4} and ∆ν(4) = {1, 3}. Hence, the real period is just 3. Other examples with non-constant
periodic part are 〈5, 12, 16〉, 〈6, 13, 17〉, 〈10, 17, 21〉, 〈17, 24, 28〉 and 〈4, 9, 10, 15〉.

Thanks to our software (available in [12]), it is not difficult to obtain semigroups with non-constant
∆ν and even with non-constant periodic part. This software has been developed in C++ to achieve the
maximum speed. However, we have provided a user-friendly interface for Python3 and IPython3 [16]
notebooks using SWIG [17]. Therefore, the user can load our library in a Jupyter notebook and use its
Python functions, which actually call our pre-compiled functions in C++, thereby mixing the efficiency of
C++ with the user-friendliness of Python.
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