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ABSTRACT
Clam farmers worldwide face several challenges, including irregular seed supply and
high mortalities due to pathogenic organisms such as Perkinsus olseni. In Europe,
there is a high unmet consumer demand for native clam species such as Ruditapes
decussatus. The high market value of R. decussatus makes the culture of this species
potentially more attractive than that culture of the alien species Ruditapes
philippinarum. Thus, there is a market opportunity in breeding and producing
R. decussatus at an industrial scale. A selective breeding program to improve
R. decussatus performance will be carried out in Portugal; and the first critical step to
develop such a breeding program is the establishment of a founder population.
In this study, intra- and interpopulation genetic diversity was assessed using
13 microsatellite markers in eight natural beds located in Portugal, Spain and Italy.
Also, allele and genotypic frequencies of each microsatellite locus were assessed
discriminating between clams infected and non-infected by P. olseni. All locations
showed similar values for several genetic diversity parameters. Analyses of
population differentiation (FST, Bayesian clustering and AMOVAs) revealed five
genetically differentiated regions: Rías Altas and Rías Baixas (NW Spain),
North/Central Coast of Portugal, Gulf of Cadiz and Adriatic Sea. Significant
differences in the allelic and genotypic frequency distribution between infected clams
and non-infected ones at four microsatellite loci are reported suggesting that
resistance to the disease could have a genetic basis. Moreover, a positive or negative
relationship between the frequency of certain alleles and the parasite infection was
inferred. Further studies should confirm the potential use of those alleles as genetic
markers for P. olseni infection. Integrating results of genetic diversity within and
between populations and Perkinsus infection levels, a founder population for a
R. decussatus breeding program is proposed, composed by individuals from
Barallobre (Rías Altas), Pontevedra or Cangas (Rías Baixas), Óbidos (North/Central
Coast of Portugal), Algarve (Gulf of Cadiz) and Venice (Adriatic Sea).
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INTRODUCTION
Shellfish, including clams, are gastronomically much appreciated and sought worldwide,
representing a very significant commercial value. In 2017, the global shellfish market
(mussels, clams, oysters and scallops) represented V30.1 billion, of which the clam market
corresponded to V9.77 billion (FAO, 2018). According to Top10 ranking of world
production value, in 2017 the most produced species of clams in aquaculture were
Ruditapes philippinarum representing 93.2%, followed by Meretrix lusoria with 3.4%,
Mercenaria mercenaria with 1.5% and Ruditapes decussatus with 1.2%. Among these four
species, the ones with the lowest and highest price per kg are R. philippinarum (V0.84/kg)
and to R. decussatus (V9.82/kg), respectively. The grooved carpet shell, R. decussatus,
spreads from southern and western England to the Iberian Peninsula, into the
Mediterranean and along the Atlantic coast of Morocco and Senegal (Tebble, 1966).
However, only six countries produce R. decussatus, with Italy leading followed by Portugal,
Tunisia and Spain (FAO, 2013).

Worldwide, the main problems that clam production faces are the lack of constant seed
supply and the drastic annual fluctuations of seed recruitment in wild beds (Da Costa et al.,
2020). Moreover, clam production has been greatly affected by anthropogenic actions
such as overexploitation (Castilla & Defeo, 2001), habitat loss (FAO, 2009), environmental
pollution (Hong et al., 2016), alien species introduction (Moura et al., 2018) and climate
change (for instance, ocean warming (Velez et al., 2017), salinity drops (FAO, 2009)
and ocean acidification (Timmins-Schiffman et al., 2013; Velez et al., 2016)). Another
major problem is the lack of strains resistant to infections by pathogenic organisms such as
bacteria, viruses or protists (Carella et al., 2015), leading to extremely high mortality rates
that can reach 80–90% (Gosling, 2008). The high prevalence of new diseases such as
perkinsosis, caused by the protozoan parasite Perkinsus olseni, associated with adverse
environmental conditions, is causing a severe impact in certain clam species (R. decussatus,
R. philippinarum and Venerupis corrugata) and has been associated with high mortality
rates in different molluskan species worldwide, resulting in severe economic losses
(Casas & Villalba, 2012;Matias, 2013; Pretto et al., 2014; Ruano, Batista & Arcangeli, 2015;
Waki et al., 2018).

In Europe, the first appearance of Perkinsus was in south Portugal in 1989 after high
mortalities of R. decussatus were reported (Azevedo, 1989). The parasite, first named
Perkinsus atlanticus, probably arrived in Europe after the introduction of the Manila clam
R. philippinarum from Asia (Vilas et al., 2011). Considering the present challenges that
R. decussatus production is facing, it is crucial to develop solutions that currently are not
available in the aquaculture industry. To address farmers’ challenges, improved bivalve
varieties that resist biotic and abiotic stress conditions need to be developed, as has been
done for decades in agriculture and in fish production through selective breeding. This
approach can produce new combinations of genes that can provide selected stocks with
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new genotypes and traits of interest (e.g., higher survival rate, higher growth rate, among
others). Bivalves are good candidates for selective breeding programs for several reasons,
including: their high economic value, the fact that many species are domesticated and
have standard culture protocols, high levels of genetic variability, and high fecundity.
Disease resistance and growth rates are the most important traits for aquaculture
production (Fang & Lin, 2016; Guo, 2009; Xie et al., 2018) and there are several breeding
programs in progress, in countries such as the USA, Australia, New Zealand, France
and China, mainly involving oysters (Crassostrea gigas, C. virginica and Saccostrea
glomerata) (Azéma et al., 2015; Gutierrez et al., 2018; Nell & Hand, 2003; Proestou et al.,
2016), mussels (Perna canaliculus) (Powell, Ragg & Dunphy, 2017) and in some cases
certain species of clams (R. philippinarum and Sinonovacula constricta) (Huo et al., 2017;
Niu et al., 2012).

One key aspect affecting the success of selective breeding programs is the establishment
of the founder population. A founder population must harbor a broad genetic diversity to
avoid rapid inbreeding and to maximize the likelihood of long-term genetic response
(Gjedrem & Baranski, 2009). In the present case, the presence of Perkinsus parasites in the
locations of broodstock sampling should also be considered, as Perkinsus resistance it is
one of the main traits to be addressed. For a selective breeding program, the choice of
broodstock origins subjected to long exposure to the parasite is crucial for the creation of
the founding population, because such wild clam stocks may already show reduced disease
susceptibility due to natural selection. From a practical point of view, the availability
of a regular supply of clams all year round is also desirable in order to avoid costs
associated with sampling and transportation. In the present study, natural beds from
Spain, Italy and Portugal, a country underrepresented in previous genetic studies (Arias-
Pérez et al., 2016; Cordero, Peña & Saavedra, 2014), were sampled to assess both intra- and
interpopulation genetic diversity using microsatellite markers. The effect of Perkinsus
infection in frequencies of microsatellite alleles was also addressed. This is the first study
where genetic characterization and P. olseni infection of R. decussatus natural beds are
combined, and where the data obtained is used as a criterion to select the origin of a
founder population for a breeding program to be carried out in Portugal.

MATERIALS AND METHODS
Sample collection and biometric analysis
A sample of 399 adult specimens of R. decussatus was collected from seven different
locations distributed along the Atlantic coast of the Iberian Peninsula and one from the
Adriatic Sea (Table 1). Samples from the Atlantic coast are distributed in four coastal
regions: Rías Altas (El Tesón, Ría de Ribadeo (RB) and Barallobre (BA)), Rías Baixas
(Campelo, Ría de Pontevedra (PO) and Cangas, Ría de Vigo (CA)), North coast of Portugal
(Ria de Aveiro (AV) and Lagoa de Óbidos (OB)) and Gulf of Cadiz (Ria Formosa, Algarve
(AL)). Sample from Adriatic Sea was collected from Venice Lagoon (VE) (Fig. 1).
Samples from RB, BA, PO, CA, AV, OB, AL and VE were provided by a third party
(authorized depuration centers or authorized growers that guarantee the quality and legal
provenance of the samples), namely “Confradia de Ribadeo”, “Confradia de Barallobre”,
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“Confradia de Pescadores San Andres de Lourizán”, “Mariscos Islas Cies”, “Bivaqua”,
“Decomar”, “Cooperativa de viveiristas da Ria Formosa”, and “Societá Agricola Kappa”,
respectively. The rationale for the defined sampling regions was based on the following
criteria: (i) the presence of Perkinsus in the different localities (Leite, Afonso & Cancela,
2004; Pretto et al., 2014; Ramilo et al., 2016), as Perkinsus resistance it is one of the most
important traits for the breeding program and therefore individuals should be already
exposed to the parasite; (ii) the convenience of a regular supply of clams all year round
(Darriba, 2017; Instituto Nacional de Estatística, 2018; Leite, Afonso & Cancela, 2004;
Pellizzato et al., 2011; Leppakoski, Gollasch & Olenin, 2002; Pesca de Galicia, 2017) to avoid
costs associated with sampling and transportation during the breeding program
implementation, and (iii) a good representation of the most important R. decussatus
production regions in Europe (FIGIS, 2020). Samples were collected between October and
February, as it is known that seasonality and the respective ecological conditions of the
environment can contribute for the incidence of different P. olseni’s infection levels on
bivalves (Yang et al., 2012). Also P. olseni infection intensity and prevalence can be high

Table 1 Sample collection details.

Code Locality Coastal region Country Sampling date Sample size

RB El Tesón, Ría de Ribadeo Rías Altas Spain October 2017 50

BA Barallobre Spain October 2017 50

PO Campelo, Ría de Pontevedra Rías Baixas Spain November 2017 50

CA Cangas, Ría de Vigo Spain February 2018 50

AV Ria de Aveiro North coast of
Portugal

Portugal November 2017 49

OB Lagoa de Óbidos Portugal December 2017 50

AL Ria Formosa, Algarve Gulf of Cadiz Portugal October 2017 50

VE Venice Lagoon Adriatic Sea Italy December 2017 50

Figure 1 Map of the sampled localities in the study. RB, Ribadeo; BA, Barallobre; PO, Ría de Ponte-
vedra; CA, Cangas; AV, Aveiro; OB, Óbidos; AL, Algarve (Gulf of Cádiz); VE, Venice Lagoon.

Full-size DOI: 10.7717/peerj.9728/fig-1
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when clams are under physiological stress, that in R. decussatus occur after spawning in
October (Matias et al., 2013). All clams were transferred at 4 �C to Oceano Fresco
laboratory (Mira, Portugal). The individuals examined had an average length of 41.3 ±
2.1 mm and a visceral condition (VCI) and gonadal condition index (GCI) ranged from
42.1 ± 7.0 to 54.7 ± 5.4 and 8.5 ± 2.0 to 15.1 ± 2.5, respectively. VCI and GCI were
evaluated using the following formula: visceral/gonadal index = (viscera/gonad fresh
weight (g)/shell fresh weight (g)) × 100 (according to Cerviño-Otero (2012)).

Diagnosis of Perkinsus sp. by Ray’s fluid thioglycollate medium
Hemi-gill from 50 individuals of each location were analyzed for the Perkinsus sp.
detection by using the standard Ray’s fluid thioglycollate medium (RFTM) assay
(Ray, 1966; Bushek & Allen, 1996). Briefly, a piece of gill (half gills) was placed in fluid
thioglycollate medium supplemented with mycostatin and incubated in the dark at room
temperature for 5 days. Tissue was stained with a Lugol’s iodine and observed under
light microscopy for the presence of hypnospores. The Perkinsus sp. infection intensity was
scored using 0–5 Mackin’s infection intensity scale (Ray, 1954), where “0” is “absence
of parasite” (0 cell/preparation); “1” is “very slight infection” (from 1 to 10 cells/preparation);
“2” is “slight infection” (in 10 random microscopic fields (m.f.) (4×), >1 cell/m.f.); “3”
is “moderate infection” (in 10 random m.f. (4×), >10 cells/m.f.); “4” is “intensive infection”
(in 10 randomm.f. (10×), >50 cells/m.f.); and “5” is “very intensive infection” (in 10 random
m.f. (40×), >25 cells/m.f.).

Perkinsus diagnosis by PCR and Perkinsus species confirmation
Clam genomic DNA was obtained from a small piece of adductor muscle using the method
described by Walsh, Metzger & Higuchi (1991).

Clams negative for perkinsosis by RFTM from all populations were confirmed to be
negative by PCR using the PerkITS 750/85 primers developed by Casas, Villalba & Reece
(2002) (F: ACATCAGGCCTTCTAATGATG; R: CCGCTTTGTTTGGATCCCC). Some
samples with high infection detected by RFTM were used as positive controls. All PCR
reactions were performed using one µL of genomic DNA, one µL of each primer (10 mM),
10 µL of water and 12 µL of NZYTaq Green Master Mix 2x (NZY Tech, Portugal). Cycling
parameters were 4 min at 95 �C, 40 cycles (1 min at 95 �C, 1 min at 65 �C, 1 min at 72 �C)
and 5 min at 72 �C. Also, positives samples for Perkinsus were used to confirm the
Perkinsus species present in each location. After amplification, all samples presenting a
703 bp band were subjected to Perkinsus species identification using the RFLP method
developed by Abollo et al. (2006). RsaI and HinfI restriction enzymes were both from NZY
Tech (Portugal).

Clam microsatellite genotyping
Clam individual genotypes were determined for 13 microsatellite loci arranged into two
multiplex PCRs (RdMTP-1 and RdMTP-2) following Borrell et al. (2014). Since evidence
of linkage between RdATC-022 and RdATC-199 loci included in RdMTP-2 multiplex
has been shown (Arias-Pérez et al., 2016), the first locus was excluded for the analysis.

Cruz et al. (2020), PeerJ, DOI 10.7717/peerj.9728 5/24

http://dx.doi.org/10.7717/peerj.9728
https://peerj.com/


Genetic data analysis
Generally, all data were collected by using the same pipeline as previously described in
Arias-Pérez et al. (2016) and Nantón et al. (2017). Specifically, GENETIX v.4.03 software
(Belkhir et al., 2004) was used to assess allele frequencies, observed number of alleles
per locus (NA), observed heterozygosity (Ho), and unbiased expected heterozygosity (He)
of Nei (1978). FSTAT v.2.9.3.2 (Goudet, 2001) was used to obtain allelic richness (RS).
To compare heterozygosity values and allelic richness between localities, Friedman tests
were conducted with the SPSS 16.0 statistical package (SPSS Inc., Chicago, IL, USA).
A post analysis based on the Wilcoxon–Nemenyi–McDonald–Thompson procedure
(Hollander & Wolfe, 1999) was carried out using an R function (Galili, 2010), when the
tests were significant.

GENEPOP v.4.0 (Rousset, 2008) was used to test deviations from Hardy–Weinberg
equilibrium (HWE) and linkage disequilibrium between pairs of loci within each locality.
The same program was also used to calculate the inbreeding coefficient (Fis) following
Weir & Cockerham (1984). A Markov chain method was used to determine the significance
by applying 10,000 dememorizations, 5,000 batches and 5,000 iterations per batch.
FreeNa software (Chapuis & Estoup, 2007) was used to estimate the frequency of null
alleles (i.e., alleles that fail to amplify by PCR).

Weir and Cockerham’s F statistics (1984) computed over all localities, over all loci, and
on a pairwise basis between localities were obtained using GENETIX v.4.03 software,
which was also used to determine probability of significance of FST values by a
nonparametric permutation approach (10,000 permutations). Whenever multiple tests
were performed, P values were adjusted using the sequential Bonferroni correction
(Rice, 1989).

STRUCTURE v.2.3.1 (Pritchard, Stephens & Donnelly, 2000) was used to perform a
Bayesian clustering analysis. The range of possible clusters tested (K) was set from one to
the total number of sample sites included in the analysis. Ten independent runs were
carried out for each K, using prior location information and assuming an admixture model
with correlated allele frequencies. The lengths of the Markov chain Monte Carlo and
burn-in were set at 250,000 and 100,000, respectively. The program STRUCTURE
HARVESTER (Earl & Von Holdt, 2012) was used to process the results obtained. The most
likely value for K was selected considering both the ΔK statistic (the second-order rate of
change in the log probability of the data between successive values of K (Evanno,
Regnaut & Goudet, 2005)), and the maximum value of the log likelihood [Ln Pr(X|K)] of the
posterior probability of the data for a given K (Pritchard, Stephens & Donnelly, 2000).
The average permutated individual Q-matrices were obtained by using CLUMPP v.1.1.2
(Jakobson & Rosenberg, 2007) and results were visualized in DISTRUCT (Rosenberg, 2004).

To examine genetic diversity within and among regions, a hierarchical analysis of
molecular variance (AMOVA) locus by locus (10,000 permutations) was conducted by
using ARLEQUIN v.3.11 (Excoffier, Laval & Schneider, 2005). Linear correlation between
genetic differentiation (FST(1-FST)

−1) and the geographical distance between samples
(measured as the coastline distance (km) between sampling locations) was checked using a
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Mantel test with 10,000 randomizations, as implemented in IBDWS v.3.16 (Jensen,
Bohonak & Kelley, 2005).

For each microsatellite locus, tests for significant differences in allele and genotypic
frequencies between infected and non-infected individuals were accomplished in
GENEPOP v.4.0. Markers that remained significant after Bonferroni correction were
further examined through a correspondence analysis performed in R version 3.5.3. to
explore the relationships between individual alleles of each microsatellite locus and
infection/non-infection.

RESULTS
Semi-quantification of P. olseni
Different levels of P. olseni infection were observed in the eight localities ranging from low
to high levels of infection (Fig. 2). Lower levels of P. olseni infection were found at RB
and AV.

The detection of Perkinsus was also verified by PCR (Fig. 3A), to confirm the Perkinsus
infection observed by RFTM. All positive samples observed by RFTM were positive by
PCR whereas five negative samples by RFTM were positive by PCR.

The RFLP technique confirms after RsaI digestion that all positive samples presented
three bands of 400, 193 and 74 bp and two bands of 360 and 150 bp after HinfI digestion,
which identify P. olseni as the causative agent of disease of all positive clams (Fig. 3B).

Genetic variation
Genetic variation statistics by locus, locality, and overall were analyzed (Table S1,
Supplemental Data). All loci were polymorphic in all localities with a number of alleles per
locus ranging from 6 (RdATC-219) to 18 (RdATC-215), and the allelic richness between

Figure 2 Percentage of P. olseni infection level of the different analyzed clams localities by RFTM
method. RB, Ribadeo; BA, Barallobre; PO, Ría de Pontevedra; CA, Cangas; AV, Aveiro; OB, Óbidos;
AL, Algarve (Gulf of Cádiz); VE, Venice Lagoon. Right legend represents P. olseni infection intensity
scored using 0–5 Mackin’s infection intensity scale (Ray, 1954).

Full-size DOI: 10.7717/peerj.9728/fig-2
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3.643 (RdATC-28b) and 13.767 (RdATC-215). In both cases, the lowest value was
observed in RdATC-219 and the highest one in RdATC-215. Across localities, the mean
number of alleles and the allelic richness varied between 7.231(AL) and 8.308 (VE), and
between 6.786 (RB) and 7.763 (VE), respectively. Expected heterozygosity per locality
ranged from 0.643 (OB) to 0.740 (VE), and observed heterozygosity from 0.622 (VE) to
0.682 (BA). Except RB and AL, all localities showed a total number of private alleles
ranging from 1 (PO) to 11 (VE). Private alleles were always at low frequencies (<4%),
except one locus at VE (frequency: 0.210, locus RdATC-238). The Friedman test detected
significant differences in expected heterozygosity (Friedman chi-square = 17.905, df = 7,
P = 0.012) among localities. A post hoc analysis showed significant differences between
VE and localities from North coast of Portugal (AV and OB).

After sequential Bonferroni correction for the 624 comparisons analyzed, the linkage
disequilibrium tests conducted for all pair of loci across localities were not significant,
and 101 out of 104 locality-locus combinations showed no significant deviations from
HWE after sequential Bonferroni correction. The loci RdATC-177, RdATC-199 and
RdATC-212 departed from HWE in VE locality. All combinations departing from HWE
were caused by a heterozygote deficit (FIS ≥ 0.444). According to FreeNa results, the
three loci departing from HWE correspond to those showing the highest null allele
frequencies (from 0.193 to 0.307).

Figure 3 PCR diagnosis of P. olseni infection. (A) PCR amplification using PerkITS 750/85 primers.
Positive results showed a clear band at 703 bp. (B) RFLP pattern produced withHinfI (lines 1–7) and RsaI
(lines 8–14). Lines 1, 2 and 8, 9 were done with DNA from P. olseni negative clams; lines 7 and 14 are PCR
negative controls (water instead of DNA). All RFLPs showed a clear pattern corresponding to P. olseni
species. Line M: 100 bp DNA ladder. Full-size DOI: 10.7717/peerj.9728/fig-3
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Population genetic differentiation
The global multilocus estimate for FST was significantly different from zero (FST = 0.032,
P-value < 0.001), indicating the existence of genetic differentiation among samples.
FST estimates per locus ranged from 0.007 (RdATC-1.79) to 0.089 (RdATC-185), being
all significantly different from zero (Table 2).

Pairwise multilocus FST values (Table 3) ranged from 0.000 (BA-RB and BA-PO) to
0.110 (AL-VE), being significant after sequential Bonferroni correction in 24 of 28 tests.
Samples from different regions showed significant pairwise FST estimates after Bonferroni
correction with the exception of BA and PO. Pairwise FST values for comparisons involving
the Adriatic sample (VE) were, on average, eight times higher.

Bayesian clustering analysis revealed that the ΔK distribution peaked at K = 2 (Fig. 4A).
The maximum value for the “estimated likelihood of K” was at K = 3 (Fig. 4B), and
with this K three differentiated population groups (1: Rías Altas, Rías Baixas and Gulf of
Cadiz; 2: North coast of Portugal; 3: Adriatic Sea) could be distinguished (Fig. 5A).
“Estimated likelihood of K” at K = 4 and K = 5 were similar to the value at K = 3 (Fig. 4B).
For K = 4, the three groups are more evident (Fig. 5B) and the analysis with K = 5 suggests
a noticeable differentiation between Rías Altas, Rías Baixas and Gulf of Cadiz (Fig. 5C).
Analysis excluding VE, the most genetically differentiated locality, did not change the
inferred genetic structure pattern for the Atlantic samples (Figs. 4C, 4D and 5D–5F).
Hierarchical AMOVAs grouping the localities based on the different groups inferred from
Bayesian analysis were carried out (Table 4). Percentage of variation among groups was
higher when samples were grouped into five regions (Rías Altas, Rías Baixas, North coast of
Portugal, Gulf of Cadiz and Adriatic Sea) (variation among groups = 3.553%, P < 0.001).
Furthermore, this grouping showed a non-significant within-groups component
(Fsc = 0.001, P > 0.05). When Atlantic samples were not subdivided into four regions

Table 2 FST values per microsatellite marker for all individual from eight localities of R. decussatus.

Locus Fst P-value

RdATC-1.34 0.019 <0.001

RdATC-1.79 0.007 0.007

RdATC-125 0.072 <0.001

RdATC-177 0.011 <0.001

RdATC-185 0.089 <0.001

RdATC-199 0.020 <0.001

RdATC-212 0.010 0.003

RdATC-215 0.055 <0.001

RdATC-219 0.071 <0.001

RdATC-223 0.014 0.004

RdATC-238 0.011 <0.001

RdATC-263 0.080 <0.001

RdATC-28b 0.020 0.003
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(3 and 4 subdivision levels), the percentage of variation among groups was zero or close
thereto and also showed a significant within-groups component (3 subdivision level:
Fsc = 0.001, P < 0.001; 4 subdivision level: Fsc = 0.001, P < 0.001).

Table 3 Pairwise FST values (above the diagonal) for eight localities of R. decussatus using 13
microsatellite markers and P-values (above diagonal).

RB BA PO CA AV OB AL VE

RB – 0.000 0.007** 0.014** 0.018** 0.016** 0.012** 0.086**

BA 0.466 – 0.000 0.007** 0.011** 0.012** 0.014** 0.090**

PO 0.006 0.399 – 0.002 0.006** 0.009** 0.011** 0.084**

CA <0.001 0.004 0.215 – 0.008** 0.008** 0.007** 0.099**

AV <0.001 <0.001 0.010 0.003 – 0.002 0.013** 0.093**

OB <0.001 <0.001 <0.001 0.002 0.226 – 0.015** 0.098**

AL <0.001 <0.001 <0.001 0.004 <0.001 <0.001 – 0.110**

VE <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 –

Note:
** Significant after sequential Bonferroni correction.

Figure 4 Bayesian analysis of genetic structure from microsatellite data with (A and B) and without
VE individuals (C and D). For each data set, ΔK as a function of K (A and C) and distribution of
estimated log likelihood of K, L(K), (B and D) are shown. For L(K) each point corresponds to the mean
L(K) ± SD across 10 independent runs. Full-size DOI: 10.7717/peerj.9728/fig-4

Cruz et al. (2020), PeerJ, DOI 10.7717/peerj.9728 10/24

http://dx.doi.org/10.7717/peerj.9728/fig-4
http://dx.doi.org/10.7717/peerj.9728
https://peerj.com/


Table 4 Analysis of molecular variance (AMOVA) in R. decussatus using different subdivision levels.

Subdivision
levels1

Percentage of variation F-statistics

Among
groups

Among populations
within groups

Within
populations

FCT FSC FST

3 −0.020 0.110 99.900 −0.002 0.001* 0.001*

4 0.010 0.100 99.890 0.000 0.001* 0.001*

5 3.553 0.103 96.344 0.036* 0.001 0.037*

Notes:
1 Three levels: Rías Altas, Rías Baixas and Gulf of Cadiz vs North coast of Portugal vs Adriatic Sea. Four levels: Rías Altas
vs Rías Baixas and Gulf of Cadiz vs North coast of Portugal vs Adriatic Sea. Five levels: Rías Altas vs Rías Baixas vs
North coast of Portugal vs Gulf of Cadiz vs Adriatic Sea. FCT, fixation index among groups; FSC, fixation index among
populations within groups; FST, fixation index within populations.

* Significant at P < 0.001.

Figure 5 Graphic representation of the estimated membership coefficients for each individual
obtained from the Bayesian clustering analysis of genetic structure for K = 3–5 including all
samples (A–C) and for K = 2–4 excluding VE individuals (D–F). Colours correspond to genetic
clusters. Each individual is represented as a vertical bar, partitioned into K colored components that
represent the individual’s estimated membership coefficients in the K clusters. There is no color corre-
spondence across figures based on different data sets. Sample names are abbreviated as in Table 1.

Full-size DOI: 10.7717/peerj.9728/fig-5
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When samples were pooled according to the five geographical regions inferred by
Bayesian clustering analysis and AMOVA, all FST pairwise values were significant, with
higher values recorded in comparisons involving the Adriatic region (Table S2).

Mantel tests revealed a significant correlation between FST and geographic distance
(R2 = 0.705, P = 0.0002) when all localities were analyzed (Fig. 6A) and when only Atlantic
localities were included (R2 = 0.517, P = 0.0012) (Fig. 6B).

Microsatellite variation and P. olseni infection
Individuals showing congruent results with RFTM and PCR assay respecting to the
infection detection were used to compare allele and genotypic frequencies between those
infected and non-infected. Significant differences in the allele frequency distribution were
found at six loci before sequential Bonferroni correction (RdATC-125, RdATC-215,
RdATC-263, RdATC-238, RdATC-179, RdATC-177). After such correction significant
differences were restricted to four loci (RdATC-125, RdATC-215, RdATC-263, RdATC-238)
(Table 2). The same results were obtained for genotypic frequency distribution.

A correspondence analysis was carried out to determine which individual alleles of each
of the four microsatellite loci may be more specifically involved in the allele frequency
differences detected between the infected and non-infected individuals. This was done
including (Fig. 7A) and excluding VE individuals (Fig. 7B) due to the higher genetic
differentiation of VE respect to other localities and because all individuals from this sample
were infected by the parasite. When VE individuals were included, both a relatively high
positive (>47%) and/or negative (~40%) correspondence value was detected for the
frequency of at least one allele of the four loci. However in several cases, the involved
alleles, such as RdATC125-149 or RdATC215-134, were mainly present in VE individuals
(Tables S3 and S4), which can skew the analysis. When VE individuals were excluded,
some alleles, namely RdATC215-143 or RdATC238-164 presented also a higher
correspondence value (58.42% and 72.93% respectively), indicating that individuals
with these alleles might have higher propensity for infection. On the other hand, although
less prominent, the allele RdATC215-152 could indicate greater likelihood individuals

Figure 6 Linear regression established between genetic distance based on microsatellite data and
log-transformed geographic distance from all localities (A) and from Atlantic localities (B).

Full-size DOI: 10.7717/peerj.9728/fig-6
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being resistant to the disease (correspondence value: −35.68%). Although this could also be
deduced for individuals with the RdATC263-195 allele when VE individuals were not
considered, the rarity presence of this allele (Tables S3 and S4) makes its role respect to
resistance/susceptibility unclear.

DISCUSSION
Considering the high economic value of R. decussatus and the problems that farmers
face in cultivating this species, it is evident that a well-structured breeding program of
Perkinsus resistance is needed. Breeding programs are increasingly recognized as a key
component of sustainable production of aquaculture species. To establish a sound strategy
for breeding and deployment, a good understanding of the genetic diversity and Perkinsus
infection levels of the individuals from different R. decussatus populations is a necessary
first step towards a long-term sustainable goal. The success of selective breeding programs
can be compromised by reduction of fitness or inbreeding depression, which may be
caused by loss of genetic variability and inbreeding. In particular, inbreeding depression
may affect both individual and population performance, namely growth in weight,

Figure 7 Correspondence values for the frequency of alleles at the microsatellite loci and infection/
non-infection. Analysis carried out including (A) and excluding (B) VE individuals. With red and
green rectangles are highlighted the alleles that might indicate higher and lower propensity for P. olseni
infection, respectively. Full-size DOI: 10.7717/peerj.9728/fig-7
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survival, reproduction, resistance to disease, predation and environmental stress
(Keller & Waller, 2002).

Clam population genetic characterization
Up to now, several studies assessing genetic diversity have been carried out in R. decussatus
using different markers: allozymes (Worms & Pasteur, 1982; Jarne, Berrebi & Guelorget,
1988; Borsa, Zainui & Delay, 1991; Borsa et al., 1994; Jordaens et al., 2000; Gharbi et al.,
2011); RAPDs (Pereira et al., 2011), internal transcribed spacers of ribosomal genes
(ITS, Gharbi et al., 2010), introns (Cordero, Peña & Saavedra, 2008; 2014; Arias-Pérez
et al., 2016); cytochrome c oxidase subunit I (COI, Cordero, Peña & Saavedra, 2014;
Habtemariam et al., 2015; Sanna et al., 2017) and microsatellites (Borrell et al., 2014;
Arias-Pérez et al., 2016). Regardless of the marker used, most of studies were mostly focused
on the Mediterranean coast. Moreover, the P. olseni infection level of those populations
was not evaluated in these studies. The selection of the eight localities of R. decussatus
examined here, three from Portugal, four from Spain and one from Italy (the most
important clam producers’ countries within Europe) responded to the need to obtain
clams easily for the breeding program implementation in the future. Among the available
markers, microsatellites, characterized by their codominant nature and usually high
polymorphism, were chosen because their suitability both for genetic diversity assessment
and monitoring, and for obtaining pedigree information, an aspect of great interest for a
successful breeding program in aquaculture.

The present study provided data about genetic diversity for new localities of
R. decussatus. According to the Friedman test results, all genetic diversity measures were
non-significantly different among examined localities, except He of VE that was higher
than in the North coast of Portugal. As is common in population genetics surveys, several
diversity parameters had been estimated in this study, and among them Rs, which is
better adapted to problems related with conservation genetics (Petit, El Mousadik & Pons,
1998). While heterozygosity measures are sensitive to the allele frequencies in the
population, Rs is indicative of their presence and consequently is a good indicator of the
evolutionary potential of a population (Greenbaum et al., 2014 and references therein).
Focusing, therefore, in Rs, values obtained here (6.786–7.763) were similar or higher than
those reported by Borrell et al. (2014; 5.80–6.83) for wild samples from three Spanish
localities of Cantabrian Sea and Galician coast, and similar or lower than those reported by
Arias-Pérez et al. (2016; 6.877–8.240) for a set of eleven Spanish localities. Nevertheless, it
must be remembered that data comparisons between different studies entail some
difficulties. Rs is usually calculated based on a minimum sample size, which differs among
studies. Moreover, at the same locality, the estimated values may show temporary changes or
be influenced by the sampling strategy (Borrell et al., 2014). Regarding He (0.643–0.740)
and Ho (0.622–0.682), the values obtained were very similar to previous studies
(He = 0.619–0.734 and Ho = 0.608–0.675 in Borrell et al. (2014); He = 0.633–0.736 and
Ho = 0.613–0.693 in Arias-Pérez et al. (2016)). The higher values of Rs and He in the VE
sample agree with the higher genetic diversity at microsatellite loci in clams from the
Mediterranean coast than those from Atlantic shores (Arias-Pérez et al., 2016).
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Only three out of 104 locality-locus combinations studied showed significant deviations
from HWE after sequential Bonferroni correction. In contrast to previous studies in
R. decussatus (Borrell et al., 2014; Arias-Pérez et al., 2016), all deviations were found at the
same locality (VE). Deviation from HWE may be due to one or several factors, including
the substructure of samples, inbreeding, selection, and the presence of null alleles.
Given that all deviations were caused by a heterozygote deficit and that the higher
frequency of null alleles was found at the loci implicated, it seems reasonable to assume
that these alleles may be the main cause of HWE deviations detected. The fact that all null
alleles were found in the Venice sample suggest that these clams may display a high
mutation rate in the flanking regions of at least some microsatellites, which could be
associated with a more polluted environment (Rico et al., 2017).

The analyses of population differentiation (FST, Bayesian clustering and AMOVAs) are
consistent with the existence of a pattern composed of five groups: Rías Altas (RB and BA),
Rías Baixas (PO and CA), North coast of Portugal (AV and OB), Gulf of Cadiz (AL)
and Adriatic Sea (VE). Significant genetic differentiation between Atlantic and VE is not
unexpected given the geographic distance. In fact, in a phylogeographic analysis of introns
and COI gene including eleven populations from French Atlantic coasts to Turkey,
Cordero, Peña & Saavedra (2014) found three groups of populations: Atlantic populations,
Mediterranean populations plus Tunisia and Adriatic and Aegean populations. Historical
and present day hydrographic conditions, as well as an endogenous genetic barrier could
cause the observed restrictions in gene flow (Cordero, Peña & Saavedra, 2014). Moreover,
Venice Lagoon is a well-known location where several events of mass mortality have
occurred over the years, which can result in selection on individuals by disease pressure
(Pretto et al., 2014) and consequently a modification of the genetic composition. Data
concerning the Atlantic coast refines the population structure identified previously,
providing evidence of a greater genetic subdivision. Arias-Pérez et al. (2016) identified
three genetically different regions, Cantabric Sea, Rías Baixas and the Gulf of Cadiz.
The genetic differentiation of Rías Altas found in this study suggests that the genetic
differentiated region of Cantabric Sea identified by Arias-Pérez et al. (2016) extends up to
BA, given that RB examined here and the Eo locality examined in Arias-Pérez et al. (2016)
are in a small ría with about 14 km2 of extension and, therefore, it is unlikely that those
localities are genetically differentiated. Although the localities examined differ, the results
obtained for Rías Baixas and Gulf of Cadiz are in good agreement with those of Arias-Pérez
et al. (2016). The analysis for the first time of samples from the North coast of Portugal
allowed us to detect a new genetically differentiated region. The levels of genetic
differentiation detected between the Atlantic regions were low (FST < 0.02), but it should be
taken into account that highly variable microsatellites markers rarely yield high FST values
(Edelaar & Bjorklund, 2011). The picture of marked subdivision along the Atlantic coast of
the Iberian Peninsula contrasts with the population structure inferred for other bivalves
such as the musselMytilus galloprovincialis (Diz & Presa, 2008), the sword razor shell Ensis
siliqua (Arias-Pérez et al., 2012) or the wedge clam Donax vittatus (Fernández-Pérez et al.,
2017), where a reduced or insignificant genetic structure was detected. The pattern of
genetic variation across the Atlantic Iberian Peninsula coast could be more likely explained
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by contemporary environmental conditions than historical factors. As in Arias-Pérez et al.
(2016), the degree of genetic differentiation detected in R. decussatus with microsatellites
markers increased significantly with geographic distance, according to a model of isolation
by distance, where gene flow is prevalent but the exchange of individuals is more frequent
among nearby than more remote populations. However, it cannot be ruled out that local
factors, such as currents affecting larval dispersion or the selection, could subtly affect the
detected pattern of isolation-by-distance.

Perkinsus infection and clam genetic composition
Perkinsus infection levels among European populations have been studied for many years
due to its association with episodes of massive mortality (Ruano, Batista & Arcangeli,
2015). Herein, the semi-quantitative RFTM assay was used to evaluate Perkinsus´ infection
level. This method is easy to perform, sensitive, and very cost-effective. However, it is not
specific at the species level and it is very invasive. The RFTM assay is the most widely
used method, allowing the detection of all known Perkinsus species with exception of
P. qugwadi (Blackbourn, Bower & Meyer, 1998). For that, infection by the parasite was
evaluated by molecular techniques such as the amplification of the ITS region to detect the
presence/absence of the parasite; and also by RFLP technique to determine the species
(Abollo et al., 2006). All positive samples were infected by the P. olseni parasite. It is
interesting that only this species was found in clams when other species of the parasite are
present in the same areas such as P. chesapeaki in Galician waters (Ramilo et al., 2016).
VE and AV were the localities with higher and lower Perkinsus infection level, respectively.
Moreover, within the same location, different levels of P. olseni infection were detected in
clams with similar size/age. This may suggest that within the same locality, there are
individuals with different susceptibility for Perkinsus. These data are in line with those
reviewed by Ruano, Batista & Arcangeli (2015), who reported the presence of Perkinsus in
different localities from Portugal, Spain and Italy. In fact, the distribution of Perkinsus
spp. in Europe is extensive, ranging from the North eastern Atlantic and Mediterranean
Sea (Ruano, Batista & Arcangeli, 2015), being P. olseni the most prevalent species.
Different factors can affect Perkinsus infection level in clams, namely the abundance of
infectious stages, hydrodynamics of the environment, density of the host population and
clam age. Moreover, temperature, salinity, clam condition (stress, immunity system,
gonadal stage, food availability, among others) can affect infection level of individuals
within populations. Thus, it is important to monitor Perkinsus infection level over time in
the different populations and also to carry out challenge tests in controlled environment to
select for Perkinsus resistant varieties for use in a breeding program.

The detection of significant differences in allele and genotypic frequencies at the loci
RdATC-125, RdATC-215, RdATC-263 and RdATC-238 between P. olseni non-infected
and infected individuals could be interpreted as result of a potential association with
QTL related to P. olseni infection. Three specific alleles, RdATC215-143, RdATC238-164
and RdATC215-152 were identified as more directly related to P. olseni infection.
Individuals with RdATC215-143 or RdATC238-164 might have higher susceptibility to
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the infection, while, those with RdATC215-152 might have higher propensity for disease
resistance, at least in clams from Atlantic coast of the Iberian Peninsula. During the
implementation of selective breeding programs, conducting further analysis of loci along
several generations, it would be possible to test the utility of the identified alleles and its
linkage to Perkinsus resistance. Therefore, the data provided open the first way for the
identification of markers that assist the obtaining of perkinsosis resistant varieties of
R. decussatus.

As described before, to establish the founder population to conduct a selective breeding
program the following main aspects should be considered: (i) broad genetic diversity to
avoid rapid inbreeding and to maximize the likelihood of long-term genetic response;
(ii) broodstocks should come from locations with long-term exposure to Perkinsus, where
high natural selection pressure exists. This may result in highly infected individuals
that can tolerate the infection and stay alive and/or individuals with low infection or
without infection that present a combination of genes that confer resistance to the parasite;
(iii) the facility of a regular supply of clams all year round is also desirable. Considering
this, integrating results of genetic diversity within and among populations to obtain the
maximum genetic diversity, the origin of the populations chosen to establish a founder
population with clams for a breeding program would be BA from Rías Altas, PO or CA
from Rías Baixas, OB from North Coast of Portugal, and AL and VE. Regarding the
analysis of Perkinsus infection level and microsatellite results, individuals with the presence
of alleles RdATC215-152 should be prioritized, in order to have parental individuals with a
potential molecular trait associated with the resistance to the parasite.

CONCLUSIONS
This work reports an assessment of the genetic diversity and population differentiation of
new localities of R. decussatus and an evaluation of P. olseni infection levels. Significant
differences in allele and genotypic frequencies at four microsatellite loci between
P. olseni infected and non-infected individuals were found, and also both a positive or
negative relationship between the frequency of certain alleles and the parasite infection.
Based on the genetic and infection analysis a founder population for a breeding program is
proposed. The data provided constitute a preliminary base for selecting R. decussatus clams
with resistance to perkinsosis.
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