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a b s t r a c t

We present polynomial-time algorithms for single machine problems with generalized positional

deterioration effects and machine maintenance. The decisions should be taken regarding possible

sequences of jobs and on the number of maintenance activities to be included into a schedule in order

to minimize the overall makespan. We deal with general non-decreasing functions to represent

deterioration rates of job processing times. Another novel extension of existing models is our

assumption that a maintenance activity does not necessarily fully restore the machine to its original

perfect state. In the resulting schedules, the jobs are split into groups, a particular group to be

sequenced after a particular maintenance period, and the actual processing time of a job is affected by

the group that job is placed into and its position within the group.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

One of the current trends in scheduling research is to increase

the practical relevance of deterministic machine scheduling

models, which is achieved by the introduction and study of

enhanced models that combine scheduling and logistic decision-

making. These include models that address the issues of machine

non-availability, transportation and delivery, resource manage-

ment, controlling the processing characteristics of jobs and

machines, and many others.

Planning machine maintenance is one of these features, and its

importance for production enterprises and service organizations

is widely recognized by both practitioners and management

scientists; see for example, popular books on maintenance [1,2],

and various Internet emporiums such as www.plant-mainte

nance.com, www.maintenanceworld.com, www.maintenancere

sources.com. The following quotation from the influential paper

by Gopalakrishnan et al. [3] is especially close to the spirit of

this paper:

‘‘Industrial systems used in the production of goods are subject

to deterioration and wear with usage and age. System dete-

rioration results in increased breakdowns leading to higher

production costs and lower product quality. A well-

implemented, planned preventive maintenance (PM) program

can reduce costly breakdownsy. Deciding what PM tasks to

do, and when, constitutes a critical resource allocation and

scheduling problem.’’

As seen from the quotation above, in the planning of machine

maintenance the decision-maker is faced with a trade-off

between two processes: (i) deterioration of the processing condi-

tions, and (ii) allocation of a maintenance period (MP) in order to

restore or improve these conditions. However, until very recently

the processes (i) and (ii) have not been fully integrated in the

models studied in the scheduling literature. There is a long list of

papers on process (i) alone, in which the sequencing problems

with job deterioration have been analyzed. On the other hand, in

various models of deterministic scheduling with maintenance, the

focus has mainly been on placing an MP to satisfy certain

requirements (e.g., the number of MPs to be scheduled, or the

deadline for an MP to start or to finish, or periodicity of MP), but

not on the effect that a scheduled maintenance might have on the

processing conditions.

This paper considers single machine scheduling models in

which the processing times of the jobs increase with their

position in a schedule due to the worsening of processing

conditions and running machine maintenance improves these

conditions, making the processing times shorter. The decision-

maker determines how many MPs to allocate and when to start

each of them in order to minimize the makespan, i.e., the

completion time of the last job to be processed.
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Below we present a brief literature overview, mainly concen-

trating on scheduling models with job deterioration or/and

maintenance considerations to minimize the makespan. In all

models that we consider n jobs should be processed on a single

machine without preemption.

Informally, in scheduling with deterioration it is assumed that

the later a job starts, the longer it takes to process. Less relevant

to this paper is the opposite effect, known as learning, under

which the actual processing time of a job gets shorter, provided

that the job is scheduled later. Scheduling problems with these

two types of non-constant processing times have received con-

siderable attention; we refer to the surveys [4–6] for recent state-

of-the-art reviews in this area, as well as for references to

practical applications of these models. Among most common

rationales for deterioration, the authors often mention the loss

of the processing quality of machinery over time and/or the

decrease in the productivity of a human operator who gets tired.

In a typical scheduling model with a deterioration effect, each job

j is given the value of its ‘standard’ or ‘normal’ processing time pj.

For every deterioration model, there is a particular rule that

explains how exactly the value of pj grows, depending either on

the start time of a job (time deterioration) or on its position in the

processing sequence (positional deterioration). Scheduling models

of the former type are well covered in a recent book by

Gawiejnowicz [7]. Below we focus on the positional deterioration

effects. For a single machine problem to minimize the makespan,

the models with a positional deterioration effect that have been

studied so far include those in which the actual duration of a job j

scheduled in the r-th position is equal to one of the following:

pjr
a, pjr

aj , pjg
r�1 or pjþbjr. The corresponding solution algorithms

are presented in [6,8–11]. As a rule the solution is based on

reducing the original problem to a linear assignment problem,

either in a general form or to a special case. We review these

results in more detail in Section 2.

There are several common drawbacks shared by most of the

publications on scheduling with deterioration/learning. First, in

many papers similar algorithmic ideas are applied to problems

with minor differences in formulation, while the common fea-

tures of these problems are overlooked. For instance, as we

demonstrate in Section 2, for the single machine problem to

minimize the makespan most known results remain true for a

more general form of positional deterioration, e.g., pjgðrÞ and

pjgjðrÞ, where g and gj are general non-decreasing functions.

Second, the practical impact of research on scheduling models

with a deterioration effect alone is somewhat questionable:

unless the processing conditions are improved by maintenance,

the processing times will grow to unacceptable values, especially

for a large number of jobs and high deterioration rates.

Another direction of research related to this study deals with

scheduling problems with machine maintenance. There are

numerous papers on scheduling with fixed machine non-avail-

ability intervals, and one possible interpretation of such an

interval is to understand it as an allocated time slot to perform

machine maintenance. We refer to the two most recent surveys

in this area, see [12,13]. Problems in which non-availability

(maintenance) intervals of a fixed duration have to be scheduled

periodically, with a given bound on how long a machine can work

between two MPs are studied in [14–18]. In these models, the

jobs are to be packed into the gaps created between the MPs;

however, the processing times of the jobs remain unaffected by

maintenance. Other models of periodic maintenance focus on

minimizing functions that include operational and maintenance

costs; see [19,20].

Under another maintenance scenario initiated by Kubzin and

Strusevich [21,22], the machines are subject to a compulsory

maintenance, and its duration depends on its start time. Still, in

these papers, the processing times of the jobs do not depend on

their place in a schedule with respect to an MP.

A common drawback of the papers on machine maintenance

reviewed above is that they fail to address the issue of machine

deterioration and improving its processing conditions, so that the

introduced periods are maintenance periods only by name, not by

nature. This calls for a study of enhanced models which involve

both general deterioration effects and rate-modifying mainte-

nance activities, and have motivated us to write this paper.

One of the first papers that study an effect of maintenance on

processing conditions is that by Lee and Leon [23], in which an

MP is treated as a rate-modifying activity. They look at the

problem of scheduling a single MP and assume that the proces-

sing time of a job j that is sequenced before the MP is pj, while if it

is sequenced after the MP the processing time becomes ljpj,

where 0oljo1. Polynomial-time algorithms for various sche-

duling problems, including due date assignment and due window

assignment, with a single rate-modifying activity are presented in

[24–26]. A generalized model in which the duration of a rate-

modifying activity depends on its start time is studied in [27].

What makes the impact of these results limited, is the fact that

typically only one MP is introduced and the issue of machine

deterioration is not fully incorporated.

Studies that consider integrated deterministic machine sche-

duling models with deterioration effects and machine mainte-

nance have started to appear only very recently. Given their high

practical relevance, one may expect that research on these models

may become one of the major directions in deterministic machine

scheduling in the near future. At the moment we only mention

the papers by Kuo and Yang [28], Zhao and Tang [29] and Yang

and Yang [30], who give polynomial-time algorithms for single

machine problems to minimize the makespan with specific

positional deterioration effects and machine maintenance that

fully restores the processing conditions. We review these papers

in more detail in the subsequent sections. Lodree and Geiger [31]

combine a single rate-modifying activity with time-dependent

deterioration.

Our paper delivers polynomial-time algorithms for single

machine problems with generalized positional deterioration

effects and machine maintenance. The MPs improve the proces-

sing conditions and the number of MPs to be included into a

schedule is decided by the decision-maker. Unlike many of our

predecessors, we do not look at different deterioration scenarios

(polynomial, exponential, etc.) but deal with general non-decreas-

ing functions to represent deterioration rates. We also make a

more realistic assumption regarding machine maintenance. Our

model allows a novel assumption that an MP does not necessarily

fully restore the machine to its original state. Thus, even after an

MP, there might remain some wear and tear in the machine’s

conditions and therefore a possibility of a worse initial condition

after each MP. In the resulting schedules, the MPs divide the jobs

into several groups in the processing sequence, and the actual

processing time of a job is affected by the group that job is placed

into and its position within the group. We are not aware of any

previously studied models that benefit from such a general set of

assumptions, in particular, from a three-way dependency (job-

group-position) of actual processing times.

What we deliver is a collection of polynomial-time algorithms

to handle these generalized models. And again, our research

compares favorably with what has been done earlier. Typically,

previously used methods, applicable to simpler models, would

include a straightforward use of the assignment problem or

scheduling by priority rules justified by pairwise-interchange

argument. We, on the other hand, offer a variety of more efficient

methods, such as, the use of a reduced search procedure based

on establishing a form of convexity of the objective function

K. Rustogi, V.A. Strusevich / Omega 40 (2012) 791–804792



(see Section 3), and reduction to a sequence of dynamically

generated rectangular assignment problems (see Section 5), among

others.

2. Preliminaries

In our main model, the jobs of set N¼ f1;2, . . . ,ng have to be

processed on a single machine. The jobs are available for proces-

sing at time zero and are independent, i.e., there are no pre-

cedence constraints and any processing sequence is feasible. At

time zero, the machine is assumed to be in perfect processing

state, and its processing conditions deteriorate as the number of

jobs processed increases. Running machine maintenance may

restore the state of the machine, either completely or partially.

Notice that during each MP no job processing takes place.

Each job jAN is associated with its normal processing time pj;

essentially pj is the duration of the processing of job j, provided

that job j is the first to be processed on the machine under perfect

conditions. For a particular schedule, assume that the jobs are

partitioned into k groups, 1rkrn, one to be scheduled before the

first MP and one after each of the k�1 MPs. The actual processing

time of job j may depend on

(i) the group it has been placed into,

(ii) the position of the job in the processing sequence in

that group.

In the most general model under consideration the actual

processing time of job j that is sequenced in the position rZ1 in

group x is given by

p½x�j ðrÞ ¼ pjg
½x�
j ðrÞ, jAN, 1rrrn, 1rxrkrn: ð1Þ

We will call the values g½x�
j
ðrÞ deterioration factors. We will

distinguish between several special cases of this general model:

Job-independent, group-independent deterioration: In this case,

it is assumed that

g½x�
j
ðrÞ ¼ gðrÞ, 1rxrn;

for all jobs jAN. The function g is given in the form of an ordered

array of numbers such that

1¼ gð1Þrgð2Þr � � � rgðnÞ: ð2Þ

Such a model represents a case where the machine conditions

are perfectly restored to the ‘‘as good as new’’ state after each MP.

Since the machine is brought back to the same state each time, all

groups are indistinguishable, thereby making deterioration fac-

tors group-independent.

Job-independent, group-dependent deterioration: In this case, it

is assumed that

g½x�
j
ðrÞ ¼ g½x�ðrÞ, 1rxrn,

for all jobs jAN. The function g is given in the form of a collection of

ordered arrays of numbers such that for a particular group xwe have

1rg½x�ð1Þrg½x�ð2Þr � � � rg½x�ðnÞ, 1rxrn, ð3Þ

where it is known that g½1�ð1Þ ¼ 1. Notice that in this model it is

assumed that after an MP the machine is brought to a condition that

is not necessarily perfect, and is no better than its condition after the

previous MP. In such a case every position (including the first

position) will have a worse deterioration factor than its counterpart

in an earlier group, such that

g½1�ðrÞrg½2�ðrÞr � � � rg½n�ðrÞ, 1rrrn: ð4Þ

It should be noted that in a schedule with k,1rkrn, groups, a

particular group can have a maximum of n�kþ1 jobs. This

reflects the fact that each of the other k�1 groups contains at

least one job.

Job-dependent, group-dependent deterioration: This is the most

general case that is governed by (1). Such a model represents a

scenario where each job wears out the machine in a different way,

hence each job jAN is associated with a unique set of deteriora-

tion factors. For each job jAN, the deterioration factors are given

in the form of a collection of ordered array of numbers, similar to

(3) and (4):

1rg½x�j ð1Þrg½x�j ð2Þr � � � rg½x�j ðnÞ, 1rxrn, ð5Þ

g½1�
j
ðrÞrg½2�

j
ðrÞr � � � rg½n�

j
ðrÞ, 1rrrn: ð6Þ

Informally, these conditions imply that for each job j (i) the

deterioration factors do not decrease with each group as the

position advances, and (ii) the deterioration factors for a fixed

position do not decrease as the number of MPs grows. Again, it

should be noted that in a schedule with k,1rkrn groups, a

particular group can have a maximum of n�kþ1 jobs.

Given a schedule S, let Cj(S) denote the completion time of job

jAN. In this paper, we focus on the makespan objective function,

i.e., we are looking for a schedule that minimizes the maximum

completion time CmaxðSÞ ¼maxfCjðSÞ9jANg. If it is clear which

schedule is being discussed, we might drop the reference to S and

simply write Cj and Cmax.

To refer to the scheduling problems under consideration, we

extend the standard three-field classification scheme employed

for scheduling problems. For our general model, we will write

19pjg
½x�
j
ðrÞ,MP9Cmax. Here, as usual, the first field implies that we

deal with a single-machine environment, and the third field

points out that our objective function is the makespan. The first

item in the middle field indicates the type of job deterioration; we

will use appropriate simplified notation for various special cases

of the model. Further in the middle field, we write ‘‘MP’’ to stress

that the machine is subject to maintenance, but the number of

MPs is not known and should be determined by the decision-

maker together with an optimal schedule. We number the MPs by

the integers 1;2, . . . ,x, . . ., and the duration of the x-th MP is

assumed equal to a given number t½x�. Thus, the problem essen-

tially captures a trade-off between the fast processing of the jobs

on a well-maintained machine and the time that is required to

guarantee that the machine is in an acceptable condition.

Often, we also consider a version of the problem in which the

number of MPs is known in advance and is equal to k�1. In this

case, we will write 19pjg
½x�
j
ðrÞ,MP½k�1�9Cmax with the first item in

the middle field appropriately adjusted for various cases. Besides,

for the problems with no maintenance, we will drop the second

item in the middle field and write either 19pjgjðrÞ9Cmax (for job-

dependent deterioration) or 19pjgðrÞ9Cmax (for job-independent

deterioration). In the remainder of this paper, for problem

19pjg
½x�
j
ðrÞ,MP½k�1�9Cmax with k groups, let S(k) denote the best

schedule and CmaxðSðkÞÞ denote the optimal value of the

makespan.

In addition to the models with fixed durations of the MPs, we

also study those in which the duration of an MP depends on its

start time.

We conclude this section with a brief review on the relevant

scheduling problems with deterioration and no maintenance.

Most of these results reduce the corresponding scheduling pro-

blem to a version of the linear assignment problem. Recall that in

an n�n assignment problem, given a matrix of values cji it is

required to select n elements, exactly one from each row (asso-

ciated with jobs) and exactly one from each column (associated

with a position), so that their sum is minimized. See the recent

K. Rustogi, V.A. Strusevich / Omega 40 (2012) 791–804 793



monograph [32], for an excellent review of the results on this

problem.

Several papers study problem 19pjgðrÞ9Cmax for specific func-

tions g(r) and show that an optimal permutation can be found by

the well-known LPT (Largest Processing Time) priority rule. Recall

that the LPT rule renumbers the jobs in non-increasing order of

their normal processing times, i.e.,

p1Zp2Z � � � Zpn: ð7Þ

For example, Mosheiov [10] proves the optimality of the LPT rule

for the polynomial deterioration that is defined by the function

gðrÞ ¼ ra, a40, ð8Þ

while Gordon et al. [6] do that for the exponential deterioration

that is defined by the function

gðrÞ ¼ gr�1
, g40:

It is surprising that prior to [33] no attempts have been made to

look at the problemwith general positional deterioration, defined by

a non-increasing array of the values g(r), r¼ 1;2, . . . ,n, as in (2).

Below we establish an easy link between problem 19pjgðrÞ9Cmax

and a special case of the assignment problem. Given a permutation

p¼ ðpð1Þ,pð2Þ, . . . ,pðnÞÞ, let CmaxðpÞ denote the makespan of the

schedule in which the jobs are processed in accordance with that

permutation. Then the actual processing time of a job in the r-th

position in that sequence is ppðrÞgðrÞ, so that

CmaxðpÞ ¼
X

n

r ¼ 1

ppðrÞgðrÞ:

Notice that this function can be understood as the objective in

an assignment problem with cji ¼ pjgðiÞ, 1r i,jrn. Recall that the

values g(r), r ¼ 1;2, . . . ,n are non-decreasing. Then, the classical

result by Hardy et al. [34] (see also Proposition 5.8 in [32]) states

that for the jobs renumbered in accordance with (7), for any

permutation p we have that

X

n

r ¼ 1

prgðrÞr
X

n

r ¼ 1

ppðrÞgðrÞr
X

n

r ¼ 1

pn�rþ1gðrÞ, ð9Þ

which implies that the following statement holds.

Proposition 1. For problem 19pjgðrÞ9Cmax with general job-inde-

pendent positional deterioration, a permutation that defines an

optimal solution can be obtained in Oðn log nÞ time by sorting the

jobs by the LPT rule.

Notice that if a function g is given as a collection of n non-

increasing values (this is known as a general positional learning

effect) the optimal permutation can be found by the SPT rule that

renumbers the jobs in non-decreasing order of their normal

processing times. For polynomial learning and exponential learn-

ing the optimality of the SPT rule is proved in [8,6], respectively.

For job-dependent deterioration rates, problem 19pjgjðrÞ9Cmax

directly reduces to an n�n assignment problem with cji ¼ pjgjðiÞ,

1r i,jrn. Here a decision variable xji is equal to 1 if a job jAN is

assigned to a position i in the processing sequence; otherwise it is

equal to zero. See [8,35] for the description of this approach;

notice that in both quoted papers the authors address the

problem with a learning effect, rather than a model with job

deterioration. The assignment problem can be solved by the

famous Hungarian algorithm; see [32] for more details. Thus,

the following statement holds.

Proposition 2. For problem 19pjgjðrÞ9Cmax with general job-depen-

dent positional deterioration, a permutation that defines an optimal

solution can be obtained in Oðn3Þ time by solving the corresponding

assignment problem with cji ¼ pjgjðiÞ, 1r i,jrn.

Notice that some authors study scheduling problems with a

special form of position-dependent processing times. For example,

Bachman and Janiak [11] consider a single machine problem to

minimize the makespan in which the processing time of job j

scheduled in position r is given by pjþbjr, where pj is the normal

processing time and bj is a job-dependent rate (positive in the case

of deterioration and negative in the case of learning). However,

even for a more general situation, e.g., when the actual processing

time of job j scheduled in position r is defined by pjðajþbjgðrÞÞ,

bj40, we have that for an arbitrary permutation of jobs:

CmaxðpÞ ¼
X

n

r ¼ 1

ppðrÞapðrÞþ
X

n

r ¼ 1

ppðrÞbpðrÞgðrÞ,

where the first term is a constant, and the second term can be seen

as the makespan in problem 19ðpjbjÞgðrÞ9Cmax, i.e., for the problem

with the normal processing times defined by pjbj, jAN. Thus, an

optimal permutation can be found by Proposition 1, i.e., by

applying the LPT rule to the values pjbj. This implies that job-

dependent positional deterioration of this type does not deserve a

separate treatment.

In the subsequent sections, we consider various versions of the

single machine scheduling problems to minimize the makespan,

provided that the jobs are subject to positional deterioration and

the machine is subject to maintenance.

3. Job-independent group-independent deterioration

The main problem addressed in this section is 19pjgðrÞ,MP9Cmax,

in which the jobs are subject to position-dependent deterioration,

with the deterioration factors g given as a sorted array (2).

The fact that the deterioration is group-independent implies

that each MP restores the machine to its initial ‘‘as-good-as-new’’

state. The objective is to find the optimal number of maintenance

activities such that the overall makespan of the schedule is

minimized. In a related problem 19pjgðrÞ,MP½k�1�9Cmax the num-

ber of MPs is known to be k�1Z0, i.e., the jobs are split into k

non-empty groups.

A special case of problem 19pjgðrÞ,MP9Cmax with a polynomial

deterioration function given by (8) and equal maintenance times

t½x� ¼ t is studied by Kuo and Yang [28]. Actually, they also look at

the problem 19pjþbjr,MP9Cmax, but as discussed in the end of

Section 2, this model does not require a separate consideration.

Kuo and Yang [28] turn to problem 19pjr
a
,MP½k�1�9Cmax with a

fixed number of maintenance periods and prove what they call

the group balance principle. According to this principle, for

problem 19pjr
a
,MP½k�1�9Cmax there exists an optimal schedule

with k groups such that the difference between the number of

jobs in any two groups is at most one. Proposition 1 implies that

in each group the jobs are sequenced in the LPT order. As a result,

an algorithm for solving problem 19pjr
a
,MP½k�1�9Cmax scans the

jobs in the LPT order and assigns them one by one to the smallest

available position across all k groups. Such an algorithm requires

O(n) time to output an optimal schedule S(k) and the optimal

makespan CmaxðSðkÞÞ, provided that the LPT sequence of jobs is

found. Trying all possible values of k from 1 to n, they obtain a

solution to the original problem 19pjr
a
,MP9Cmax as the best of all

found schedules S(k). It should be noted that Kuo and Yang [28]

make a mistake when they claim that their algorithm requires

Oðn log nÞ time: in fact they need Oðn2Þ time since they do not take

into account the linear time that is needed to compute the

function CmaxðSðkÞÞ for each schedule S(k).

It is easy to transfer the results given in [28] to an arbitrary

deterioration function given by (2) and arbitrary maintenance

times. One can verify that the group balance principle holds in

this general case as well, and the running times of the algorithms
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for solving problems 19pjgðrÞ,MP½k�1�9Cmax and 19pjgðrÞ,MP9Cmax

remain Oðn log nÞ (or O(n) if the LPT sequence of the jobs is

known) and Oðn2Þ, respectively.

The value CmaxðSðkÞÞ can be seen as PðSðkÞÞþTðkÞ, where PðSðkÞÞ

denotes the sum of actual durations of the jobs in an optimal

schedule with k groups, and T(k) is the total duration of all k�1

MPs. Kuo and Yang [28] have made a conjecture that in the case of

a polynomial deterioration function the sequence of values

CmaxðSðkÞÞ, 1rkrn, might be V-shaped with respect to k. Recall

that a sequence A(k) is called V-shaped if there exists a k0,

1rk0rn, such that

Að1ÞZ � � � ZAðk0�1ÞZAðk0ÞrAðk0þ1Þr � � � rAðnÞ:

If this were true for CmaxðSðkÞÞ, 1rkrn, then at most dlog2 ne

values of k should be tried to solve the original problem

19pjr
a
,MP9Cmax.

Below we show that under some reasonable conditions on

the maintenance times the sequence CmaxðSðkÞÞ, 1rkrn, is in fact

V-shaped, even for a general job-independent deterioration effect.

Lemma 1. For problem 19pjgðrÞ,MP½k�1�9Cmax, let the jobs be

numbered in the LPT order (7). There exists an optimal schedule in

which a job j, 1r jrn, is assigned to position dj=ke in some group.

Proof. Proposition 1 implies that the jobs in each group are

sequenced in the LPT order of their normal times. To minimize the

value PðSðkÞÞ, we need to assign the jobs one by one to the

smallest available position. This can be done by distributing

the first k jobs to the first positions in each of the k groups, then

the next k jobs going to the second positions in each of the

k groups, and so on, until all jobs have been sequenced.

If j¼ak then the predecessors of j are placed into the first a

positions of groups 1;2, . . . ,k�1 and take a�1 positions of group k,

so that job j gets position a¼ dj=ke. If j¼ akþb for 1rbrk�1, then

the predecessors of j will take the first a positions in each group and

additionally the (aþ1)-th position in each of the groups

1;2, . . . ,b�1, so that job j gets position aþ1¼ dj=ke in group b. &

It should be noticed that Lemma 1 essentially implies that the

group balance principle holds for problem 19pjgðrÞ,MP½k�1�9Cmax,

even in the case of arbitrary deterioration factors.

Hence, the actual processing time of a job jAN in a schedule

that is optimal for problem 19pjgðrÞ,MP½k�1�9Cmax is equal to

pjgðdj=keÞ, so that the makespan for that problem becomes

CmaxðSðkÞÞ ¼ PðSðkÞÞþTðkÞ ¼
X

n

j ¼ 1

pjg
j

k

� �� �

þ
X

k�1

x ¼ 1

t½x�: ð10Þ

For problem 19pjgðrÞ,MP9Cmax, we need to determine the

optimal number of groups k to be opened such that the function

CmaxðSðkÞÞ, 1rkrn, is minimized. As k increases, PðSðkÞÞ becomes

smaller since new groups are added and a greater number of

smaller positions become available. At the same time, TðkÞ

becomes larger, with more maintenance activities being per-

formed. The sequence CmaxðSðkÞÞ captures the trade-off between

its two components, PðSðkÞÞ and T(k).

An obvious way to find an optimal number of groups k
n
and the

corresponding optimal makespan for problem 19pjgðrÞ,MP9Cmax is

formally described in the following algorithm.

Algorithm 1

Step 1. For k from 1 to n, compute CmaxðSðkÞÞ by formula (10).

Step 2. Output k
n
such that

CmaxðSðk
n
ÞÞ ¼minfCmaxðSðkÞÞ91rkrng

and stop.

This method essentially coincides with the one employed in

[28] and requires Oðn2Þ time, since for each value of k computing

CmaxðSðkÞÞ takes O(n) time.

Now we demonstrate that the sequence CmaxðSðkÞÞ, 1rkrn, is

in fact V-shaped, provided that each sequence PðSðkÞÞ, 1rkrn,

and T(k), 1rkrn, is convex. Recall that a sequence A(k),

1rkrn, is called convex if

AðkÞr1
2ðAðk�1ÞþAðkþ1ÞÞ, 2rkrn�1: ð11Þ

Our reasoning is based on the following property proved in our

previous paper [36].

Lemma 2. The sequence

BðkÞ ¼
X

q

j ¼ 1

g
j

k

� �� �

, 1rkrn, ð12Þ

is convex for each q, 1rqrn.

We start with the following preliminary statement.

Lemma 3. Given a k, 1rkrn, let S(k) be a schedule in which the

jobs are numbered in the LPT order and job jAN is assigned to the

position dj=ke of some group, so that PðSðkÞÞ ¼
Pn

j ¼ 1 pjgðdj=keÞ. Then

the sequence of values PðSðkÞÞ, 1rkrn, is convex.

Proof. Due to (11), we need to prove that

PðSðkÞÞr1
2ðPðSðk�1ÞÞþPðSðkþ1ÞÞ, 2rkrn�1

or, equivalently,

X

n

j ¼ 1

pj 2g
j

k

� �� �

�g
j

kþ1

� �� �

�g
j

k�1

� �� �� �

r0,

2rkrn�1:

For a given jAf1;2, . . . ,ng, define

AjðkÞ ¼ 2g
j

k

� �� �

�g
j

kþ1

� �� �

�g
j

k�1

� �� �� �

,

2rkrn�1:

By Lemma 2, due to the convexity of the sequence B(k),

1rkrn, we deduce that

X

q

i ¼ 1

AiðkÞr0 ð13Þ

for each k, 2rkrn�1, and all q, 1rqrn.

In order to prove the lemma, we need to demonstrate that the

inequality:

X

n

j ¼ 1

pjAjðkÞr0 ð14Þ

holds for each k, 2rkrn�1.

Fix a k, 2rkrn�1, and transform

X

n

j ¼ 1

pjAjðkÞ ¼ pn
X

n

i ¼ 1

AiðkÞ�
X

n�1

i ¼ 1

AiðkÞ

 !

þpn�1

X

n�1

i ¼ 1

AiðkÞ�
X

n�2

i ¼ 1

AiðkÞ

 !

þ � � � þp1A1ðkÞ

¼ pn
X

n

i ¼ 1

AiðkÞþðpn�1�pnÞ
X

n�1

i ¼ 1

AiðkÞ

þðpn�2�pn�1Þ
X

n�2

i ¼ 1

AiðkÞþ � � � þp1A1ðkÞ
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¼
X

n

j ¼ 2

ðpj�1�pjÞ
X

j�1

i ¼ 1

AiðkÞ

" #

þpn
X

n

i ¼ 1

AiðkÞ:

The last right-hand expression is non-positive due to (7) and

(13), so that the desired inequality (14) holds and the sequence

PðSðkÞÞ, 1rkrn, is convex. &

It is easy to verify that the sum of two convex sequences is

convex and any convex sequence is V-shaped; the analogies of

these statements for convex functions are well-known. Thus,

Lemma 3 immediately implies

Theorem 1. For problem 19pjgðrÞ,MP9Cmax, the sequence CmaxðSðkÞÞ,

1rkrn, is V-shaped, provided the sequence T(k), 1rkrn, is

convex.

The assumption on convexity of the sequence T(k), 1rkrn, is

in fact quite natural; e.g., it will hold if the durations of the MPs,

t½x�,1rxrk�1, either form a non-decreasing sequence (an MP

performed later in the schedule takes longer to restore the initial

condition of machinery) or are equal (as in [28]).

Theorem 1 allows us to find an optimal schedule with an

optimal number of groups k
n by performing binary search with

respect to k. As a result at most dlog2 ne values of k need to be

explored, so that the running time of this method becomes

Oðn log nÞ. If, however, the sequence TðkÞ, 1rkrn, is not convex

then we cannot guarantee that the sequence CmaxðSðkÞÞ, 1rkrn,

is V-shaped, and problem 19pjgðrÞ,MP9Cmax remains solvable in

Oðn2Þ time by Algorithm 1.

4. Job-independent group-dependent deterioration

As discussed in Section 2, a maintenance activity may not be

able to fully restore the machine to its perfect conditions. Thus, in

this section we deal with models in which the deterioration

factors depend on the group, along with the position in that

group. The initial conditions after each MP keep becoming worse,

so that the deterioration factor for a particular position might not

be the same across all groups in a schedule. Recall that within a

group, the deterioration factors are non-decreasing and are

governed by (3). Besides, for a fixed position, the sequence of

the deterioration factors does not decrease as the number of MPs

grows; see (4).

We denote the problem of minimizing the makespan in these

settings by 19pjg
½x�ðrÞ,MP9Cmax, and its counterpart in which the

number of MPs is known and is equal to k�1 by 19pjg
½x�ðrÞ,

MP½k�1�9Cmax. For problem 19pjg
½x�ðrÞ,MP½k�1�9Cmax, the actual

processing time p½x�
j
ðrÞ of a job jAN in a position r of group

x,1rxrk, is given by

p½x�j ðrÞ ¼ pjg
½x�ðrÞ, 1rrrn�kþ1, 1rxrk,

where the deterioration factors g½x�ðrÞ obey the conditions (3) and (4).

We are not aware of any prior research on this model.

It can be checked that for this extended model the group

balancing principle does not apply. Intuitively, this is because if a

group deterioration is high enough, it would be more profitable to

have more jobs in earlier groups. Indeed, take an instance of

problem 19pjg
½x�ðrÞ,MP9Cmax with four jobs, such that

p1 ¼ p2 ¼ p3 ¼ p4 ¼ 1;

g½1�ð1Þ ¼ 1, g½1�ð2Þ ¼ 1, g½1�ð3Þ ¼ 2, g½1�ð4Þ ¼ 4;

g½2�ð1Þ ¼ 2:5, g½2�ð2Þ ¼ 3, g½2�ð3Þ ¼ 4;

g½3�ð1Þ ¼ 5, g½3�ð2Þ ¼ 5;

g½4�ð1Þ ¼ 5

and each maintenance time is equal to 0.5. As above, let S(k)

denote the best schedule with k groups. Then CmaxðSð1ÞÞ ¼

1þ1þ2þ4¼ 8, while CmaxðSð3ÞÞ ¼ 1þ1þ0:5þ2:5þ0:5þ5¼ 10:5

and CmaxðSð4ÞÞ ¼ 1þ0:5þ2:5þ0:5þ5þ0:5þ5¼ 15. In schedule

S(2) group 1 will contain three jobs and group 2 one job, so that

CmaxðSð2ÞÞ ¼ 1þ1þ2þ0:5þ2:5¼ 7, and this schedule is optimal.

On the other hand, applying the group balancing principle to a

schedule with two groups, we will obtain a schedule S0ð2Þ with

two jobs in each group, for which CmaxðS
0
ð2ÞÞ ¼ 1þ1þ0:5þ

2:5þ3¼ 8.

The counterexample above implies that for finding an optimal

schedule for problem 19pjg
½x�ðrÞ,MP9Cmax we need a technique

other than that based on the group balancing principle.

The approach discussed below is motivated by Proposition 1

and inequalities (9), according to which to obtain the best

schedule S(k) with k groups, the jobs should be scanned in the

LPT order and a job pj should be matched to the j-th smallest

available deterioration factor g½x�ðrÞ,1rxrk,1rrrn�kþ1.

Let G(k) denote a list of n smallest deterioration factors that

are available across all positions from each of the k groups. The

list is sorted in non-decreasing order. Let giðkÞ denote the i-th

element in the list G(k), so that GðkÞ ¼ ðg1ðkÞ, g2ðkÞ, . . . ,gnðkÞÞ. This
implies that

CmaxðSðkÞÞ ¼ PðSðkÞÞþTðkÞ ¼
X

n

j ¼ 1

pjgjðkÞþ
X

k�1

x ¼ 1

t½x�: ð15Þ

Suppose for a particular j, 1r jrn we have gjðkÞ ¼ g½x�ðrÞ,

where 1rxrk and 1rrrn�kþ1, then schedule S(k) is obtained

by assigning job j to position r of group x. This can be imple-

mented by running the following rather straightforward algo-

rithm that solves problem 19pjg
½x�ðrÞ,MP9Cmax in Oðn3Þ time.

Algorithm 2

Step 1. For k¼1, define grð1Þ ¼ g½1�ðrÞ, 1rrrn. Compute

CmaxðSð1ÞÞ by formula (15). Define k
0
:¼ n.

Step 2. For k from 2 to n do

(a) Take the factors g½x�ðrÞ, 1rxrk,1rrrn�kþ1. Find

G, the n-th smallest of these factors and create the

list GðkÞ ¼ ðg1ðkÞ,g2ðkÞ, . . . ,gnðkÞÞ of n factors that do

not exceed G. If necessary, sort the list G(k) in non-

decreasing order of its values.

(b) Compute CmaxðSðkÞÞ by formula (15). If PðSðkÞÞZ

PðSðk�1ÞÞ then define k
0
:¼ k�1 and break the loop

by moving to Step 3; otherwise, continue the loop

with the next value of k.

Step 3. Find the value k
n, 1rk

n
rk

0, such that

CmaxðSðk
n
ÞÞ ¼minfCmaxðSðkÞÞ91rkrk

0
g:

If the condition PðSðkÞÞZPðSðk�1ÞÞ in Step 2b holds, this

implies that the addition of the k-th group does not provide

positions with deterioration factors smaller than those in the list

Gðk�1Þ. If this happens for the k-th group, all groups that will be

opened after this will provide even worse deterioration factors

because of (4), and hence the makespan cannot be reduced by

running more MPs after the k
0
-th group is opened. Thus, no

further values of k should be examined and the best schedule

should be found from the set fSðkÞ91rkrk
0
g. A similar loop-

breaking rule is also included in several subsequent algorithms.
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Theorem 2. Algorithm 2 solves problem 19pjg
½x�ðrÞ,MP9Cmax in Oðn3Þ

time.

To prove the theorem, we only need to estimate the running time

of Algorithm 2. In each iteration for k, we use the median finding

procedure for determining G, so that it takes Oðkðn�kþ1ÞÞ ¼OðnkÞ

time to create a list of n smallest factors. To obtain a sorted list G(k),

we need additionally Oðn log nÞ time, and then O(n) time to compute

CmaxðSðkÞÞ. Thus, the overall running time of Algorithm 2 is at most
Pn

k ¼ 1 Oðnkþn log nÞ ¼ Oðn3Þ. The above algorithm is more or less a

brute force method for finding an optimal schedule, since nearly all

possible options are evaluated at each iteration.

However, to solve the given problem, the same idea can be

implemented faster, as described below. The new algorithm

manipulates with the list GðkÞ described above and another list,

which we denote by H(k) and which contains all factors coming

from the k-th group, 1rkrn.

Algorithm 3

Step 1. For k¼1, define a sorted list

Hð1Þ :¼ ðg½1�ð1Þ,g½1�ð2Þ, . . . ,g½1�ðnÞÞ

and Gð1Þ :¼ Hð1Þ, so that gjðrÞ ¼ g½1�ðrÞ, 1rrrn. Compute

CmaxðSð1ÞÞ by formula (15). Define k
0
:¼ n.

Step 2. For k from 2 to n, determine the sorted list

HðkÞ :¼ ðg½k�ð1Þ,g½k�ð2Þ, . . . ,g½k�ðn�kþ1ÞÞ

and create the list GðkÞ ¼ ðg1ðkÞ,g2ðkÞ, . . . ,gnðkÞÞ that con-

tains n smallest elements in the merger of the lists

Gðk�1Þ and H(k). Compute CmaxðSðkÞÞ by formula (15). If

PðSðkÞÞ ¼ PðSðk�1ÞÞ then define k
0
:¼ k�1 and break the

loop by moving to Step 3; otherwise, continue the loop

with the next value of k.

Step 3. Find the value k
n
, 1rk

n
rk

0
, such that

CmaxðSðk
n
ÞÞ ¼minfCmaxðSðkÞÞ91rkrk

0
g:

This algorithm, unlike Algorithm 2, generates the list of n

smallest deterioration factors by merging the list of previously

known factors and the list of the factors provided by adding a

new group. Unlike in Algorithm 2, the inequality PðSðkÞÞ4PðSðk�1ÞÞ

is impossible, and we use the condition PðSðkÞÞ ¼ PðSðk�1ÞÞ for

breaking the loop. The latter condition implies that the addition of

the k-th group does not provide positions with deterioration factors

smaller than those in the list Gðk�1Þ. Thus, the lists G(k) and Gðk�1Þ

are identical, and no further values of k should be examined.

Each of the lists H(k), 1rkrn, is available from the input data

in the sorted form. In each iteration of the loop in Step 2, the list

G(k) is obtained by merging two sorted lists, each containing at

most n elements. Besides, the value of CmaxðSðkÞÞ can be computed

in O(n) time. Thus, the overall running time of the new algorithm

is Oðn2Þ.

Theorem 3. Algorithm 3 solves problem 19pjg
½x�ðrÞ,MP9Cmax in Oðn2Þ

time.

Notice that Algorithm 3 can be applied to solving the problem

19pjgðrÞ,MP9Cmax considered in Section 3, in which case for each

position r the equalities g½x�ðrÞ ¼ gðrÞ hold for all x, 1rxrn. Under

these assumptions, Algorithm 3 essentially behaves as Algorithm

1 and still requires Oðn2Þ time.

Algorithm 3 clearly overperforms Algorithm 2 because it

captures the idea of reducing the search for potential deteriora-

tion factors for a schedule with k groups to examining the factors

used in an optimal schedule with k�1 groups and the new factors

contained in the k-th group. Still, we have included Algorithm 2

here, since the speed-up achieved in Algorithm 3 cannot be used

for various extensions of the problem under consideration, in

which deterioration factors are either less structured as the ones

in problem 19pjg
½x�ðrÞ,MP9Cmax or are dynamically changing in

every iteration; see Section 6. On the other hand, we take the

productive idea behind Algorithm 3 further, to the models with

job-dependent deterioration effects; see Section 5.

5. Job dependent, group dependent deterioration

Now we turn to the most general situation, in which positional

deterioration factors of the jobs depend on the group of the jobs and

on the job itself. We reduce the resulting problem 19pjg
½x�
j
ðrÞ,MP9Cmax

to a sequence of problems 19pjg
½x�
j
ðrÞ,MP½k�1�9Cmax with exactly k

groups, i.e., we assume that exactly k�1 maintenance periods are

included. For problem 19pjg
½x�
j
ðrÞ,MP½k�1�9Cmax, the actual processing

time p½x�
j
ðrÞ of a job jAN in a position r of group x,1rxrk, is

given by

p½x�
j
ðrÞ ¼ pjg

½x�
j
ðrÞ, 1rrrn�kþ1, 1rxrk,

where the deterioration factors g½x�
j
ðrÞ obey the conditions (5) and (6).

The problem closest to that introduced in this section is

19pjr
aj
,MP9Cmax which was studied by Zhao and Tang [29]. In their

problem, the deterioration factors are polynomial job-dependent

and group-independent, and an Oðn4Þ-time algorithm based on

solving a series of assignment problems with a square cost matrix

is given. In this section, we derive an algorithm for the most general

pattern of positional deterioration by solving a sequence of rectan-

gular assignment problems with dynamically generated columns.

The resulting running time of our algorithm is Oðn4Þ.

Problem 19pjg
½x�
j ðrÞ,MP9Cmax cannot be solved using any of the

previously discussed algorithms in this paper, since now each job

is associated with unique deterioration factors. Below we describe

an algorithm that solves the original problem 19pjg
½x�
j
ðrÞ,MP9Cmax

by reducing each problem 19pjg
½x�
j ðrÞ,MP½k�1�9Cmax to a rectangu-

lar assignment problem with n rows, each corresponding to a job

jAN, and m¼ ðn�kþ1Þk columns. For our purposes, it is con-

venient to number the columns by a string of the form ðx,rÞ, where

x refers to a group, 1rxrk, and r indicates a position within the

group. Thus, the first n�kþ1 columns ð1;1Þ,ð1;2Þ, . . . ,ð1,n�kþ1Þ

of the matrix are associated with the positions in group 1, the

next n�kþ1 columns ð2;1Þ,ð2;2Þ, . . . ,ð2,n�kþ1Þ are associated

with the positions in group 2, etc. Create an n�m cost matrix

C ¼ ðcj,ðx,rÞÞ containing all possible values of p½x�
j
ðrÞ. More precisely,

the value of element cj,ðx,rÞ at the intersection of the j-th row and

v-th the column of matrix C for v, 1rvrm, such that

v¼ ðn�kþ1Þðx�1Þþr, where 1rxrk and 1rrrn�kþ1, is

defined by

cj,ðx,rÞ ¼ pjg
½x�
j
ðrÞ: ð16Þ

For a group x, 1rxrk, let l½x� denote the number of potential

positions of that group that can be used in a schedule for problem

19pjg
½x�
j
ðrÞ,MP½k�1�9Cmax. Then problem 19pjg

½x�
j
ðrÞ,MP½k�1�9Cmax

reduces to a rectangular assignment problem written out below:

Min
X

jAN

X

k

x ¼ 1

X

l
½x�

r ¼ 1

cj,ðx,rÞzj,ðx,rÞ

s:t:
X

jAN

zj,ðx,rÞr1;1rxrk,1rrr l
½x�

X

k

x ¼ 1

X

l
½x�

r ¼ 1

zj,ðx,rÞ ¼ 1, jAN

zj,ðx,rÞAf0;1g, jAN, 1rxrk, 1rrr l
½x�
, ð17Þ

where in the case under consideration l
½x�
¼ n�kþ1 for 1rxrk.
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The algorithm to solve such a rectangular assignment problem

has been outlined in [37]. The running time of this algorithm is

Oðn2mÞ, mZn. See also [32] for a discussion of the rectangular

assignment problem and other modifications of the classical

assignment problem.

Later in this section we will establish several properties of the

algorithm that solves the rectangular assignment problem (17),

this is why we reproduce its main steps below, as described in

[37]. Let either a row or a column of the matrix C be called a line.

The algorithm manipulates with the cost matrix, reduces the

original (positive) elements on a line-by-line basis, so that some

of them become zeros. Two zeros that do not belong to the same

line are called independent. There are two types of labels applied

to a zero: it can be starred to become 0n or primed to become 00.

During the run of the algorithm, some lines are said to be covered.

In all iterations of the algorithm, the starred zeros are indepen-

dent, and their number is equal to the number of the covered

lines, with each covered line containing exactly one 0n. The

algorithm stops having found n starred zeros in the current

matrix. The primed zeros in a current partial solution are seen

as potential candidates to become starred zeros. In our case, the

matrix C due to (5) and (6) has a special structure that is

characterized by

� non-decreasing order of the elements of the same row that are

placed in the columns associated with positions of the same

group and

� non-decreasing order of the elements placed in the same row

and in those columns associated with a given position

r,1rrrn�kþ1, of each group, from group 1 to group k.

In the description below we make appropriate alterations to

the algorithm given in [37] to reflect that special structure. These

alterations affect neither the optimality nor the running time of

the algorithm.

Algorithm 4 (see Bourgeois and Lassale [37])

Step 0. Consider a row of the matrix C, subtract the smallest

element from each element in the row. Do the same for

all other rows.

Step 1. Considering the rows in an arbitrary order, search for a

zero, Z, in the current row that is located in the left-most

column with no starred zeros. If Z is found, star Z. Repeat

for each row of the matrix. Go to Step 2.

Step 2. Cover every column containing a 0n. If n columns are

covered, the starred zeros form the desired independent

set. Otherwise, go to Step 3.

Step 3. Choose a non-covered zero and prime it; in the case of

several available zeros prime the one in the left-most

column. Consider the row containing the primed zero. If

there is no starred zero in this row, go to Step 4. If there is a

starred zero Z in this row, cover this row and uncover the

column of Z. Repeat until all zeros are covered. Go to Step 5.

Step 4. There is a sequence of alternating starred and primed

zeros constructed as follows: let Z0 denote the uncovered

00. Let Z1 denote the 0n in Z0’s column (if any). Let Z2
denote the 00 in Z1’s row. Continue in a similar way until

the sequence stops at a 00, Z2a, which has no 0n in its

column. Unstar each starred zero of the sequence, and

star each primed zero of the sequence. Erase all primes

and uncover every line. Return to Step 2.

Step 5. Let h denote the smallest non-covered element of the

current matrix. Add h to each covered row, then subtract

h from each uncovered column. Return to Step 3 without

altering any asterisks, primes, or covered lines.

An iteration of Algorithm 4 is considered complete when all

zeros are covered by the end of Step 3. After this, a transition is

made to Step 5, where we search for the minimal elements in the

uncovered part of the matrix and convert them to zero. At the end

of an iteration, one of the two outcomes is possible: either new

0n’s are added to the matrix, or not. If the total number of 0n’s in

the matrix is less than n, the existing 0n’s represent a partial

solution to the assignment problem. If the total number of 0n’s in

the matrix is equal to n, then the solution is considered complete

and the optimal assignment is given by the positions occupied by

the 0n’s. Below we analyze the outcome of an iteration of this

algorithm.

Lemma 4. Suppose that after some iteration of Algorithm 4, for each

x, 1rxrk, the column ðx,l
½x�
Þ is such that it contains a 0n, while none

of the columns ðx,rÞ for r4 l
½x�

contain a 0n. If no column ðx,rÞ for

1rrrn�kþ1 contains a 0n, then define l
½x�
¼ 0. Then, for each x,

1rxrk, such that l
½x�
Z1, it follows that for each r, 1rrr l

½x�,

column ðx,rÞ contains a 0n.

Proof. See Appendix A.

We shall now outline an algorithm that solves the problem

19pjg
½x�
j ðrÞ,MP9Cmax by solving n rectangular assignment problems

of the form (17), each corresponding to problem 19pjg
½x�
j
ðrÞ,

MP½k�1�9Cmax. This is a brute-force algorithm, since we allow all

positions in each group to be potentially used in schedule SðkÞ.

Algorithm 5

Step 1. Find an optimal schedule Sð1Þ with no maintenance

periods, in which all jobs are placed in group 1. This is

done by solving the n�n assignment problem with

cj,ð1,rÞ ¼ pjg
½1�
j ðrÞ,jAN,1rrrn:

Compute PðSð1ÞÞ as the optimal value of the objective

function in this assignment problem. Determine sche-

dule Sð1Þ in which job j is processed in the r-th position of

group 1 if and only if zj,ð1,rÞ ¼ 1. Define CmaxðSð1ÞÞ ¼

PðSð1ÞÞ. Define Tð1Þ :¼ 0, k :¼ 1 and k
0
:¼ n.

Step 2. With the current value of k do

(a) Update Tðkþ1Þ ¼ TðkÞþt½k�. Compute all elements of

the matrix C by (16). Run Algorithm 4 to solve the

resulting n� ðn�kÞðkþ1Þ rectangular assignment

problem of the form (17) with l
½x�
¼ n�k for each x,

1rxrkþ1.

(b) Compute PðSðkþ1ÞÞ, the optimal value of the objec-

tive function in that assignment problem and

CmaxðSðkþ1ÞÞ ¼ PðSðkþ1ÞÞþTðkþ1Þ. If PðSðkþ1ÞÞZ

PðSðkÞÞ then define k
0
:¼ k and break the loop by

moving to Step 3; otherwise, proceed to Step 2(c).

(c) Update k :¼ kþ1. If krn�1, repeat Step 2; otherwise

go to Step 3.

Step 3. Find the value k
n, 1rk

n
rk

0, such that

CmaxðSðk
n
ÞÞ ¼minfCmaxðSðkÞÞ91rkrk

0
g:

Notice that the loop in Step 2 of Algorithm 5 is broken at k¼ k
0

if PðSðk
0
þ1ÞÞZPðSðk

0
ÞÞ. This corresponds to the existence of

empty groups in schedule Sðk
0
þ1Þ and in all schedules S(k)

that we might find for k4k
0
þ1. In this case, the optimum value

k
n
in Step 2 should be sought for among the values of k between

1 and k
0.

Theorem 4. Algorithm 5 solves problem 19pjg
½x�
j ðrÞ,MP9Cmax in Oðn5Þ

time.
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Proof. Suppose that for some k the solution of the assignment

problem (17) related to problem 19pjg
½x�
j
ðrÞ,MP½k�1�9Cmax is found.

Then zj,ðx,rÞ ¼ 1 implies that job j is assigned to the r-th position of

group x. The conditions of (17) mean that each job will be

assigned to a position and no position will be used more than

once. Lemma 4 guarantees that the found assignment admits a

meaningful scheduling interpretation, because for each of the k

groups either several consecutive positions starting from the first

are filled or the group is not used at all. Also notice that an empty

group cannot be followed by a group with at least one filled

position, since it is always better to move the job from the first

position of a group to the empty first position of an earlier group.

A solution to problem 19pjg
½x�
j
ðrÞ,MP½k�1�9Cmax is obtained by

solving an assignment problem in Oðn2ðn�kþ1ÞkÞ time. Thus,

solution to problem 19pjg
½x�
j
ðrÞ,MP9Cmax can be found in Oðn5Þ

time. &

The problem 19pjg
½x�
j
ðrÞ,MP9Cmax can be solved faster, if we

prove the fact that for creating an optimal schedule Sðkþ1Þ for

kþ1 groups, it suffices to consider the positions that become

available with the introduction of the (kþ1)-th group, plus the

positions that were used in the optimal schedule S(k). Notice that

this is the same philosophy that was used earlier to speed up

Algorithm 2, however its validity for the job-dependent case is

not as obvious.

Lemma 5. Under the conditions of Lemma 4, while processing all

uncovered zeros, the values l½x� for each x, 1rxrk, either remain the

same or exactly one of them increases by 1 for every zero considered.

Proof. See Appendix B. &

Without loss of generality, assume that each of the k groups in

schedule S(k) that is optimal for an instance of the problem

19pjg
½x�
j
ðrÞ,MP½k�1�9Cmax with a set of jobs N is not empty. Let l½x�

denote the number of positions used in a group x, 1rxrk, so

that
Px ¼ k

x ¼ 1 l
½x�
¼ n.

Now, find a schedule ~SðkÞ that is optimal for an instance of

problem 19pjg
½x�
j ðrÞ,MP½k�1�9Cmax with a set of jobs ~N �N. Let in

schedule ~SðkÞ the number of filled positions in a group x, 1rxrk,

be denoted by ~l
½x�
. Lemmas 4 and 5 immediately imply that

~l
½x�
r l

½x�
for each x, 1rxrk.

For a set of jobs N, consider problem 19pjg
½x�
j
ðrÞ,MP½k�1�9Cmax

with k groups and problem 19pjg
½x�
j
ðrÞ,MP½k�9Cmax with kþ1

groups. Let S(k) and Sðkþ1Þ be the corresponding optimal sche-

dules. Suppose that ~N �N is the subset of jobs that are assigned to

the first k groups in schedule Sðkþ1Þ. Then, as observed above,

none of these groups uses more positions in Sðkþ1Þ than it does in

S(k). Given the fact,
Px ¼ k

x ¼ 1 l
½x�
¼ n, this implies the following

statement.

Theorem 5. Let S(k) be an optimal schedule for problem

19pjg
½x�
j
ðrÞ,MP½k�1�9Cmax. In order to find schedule Sðkþ1Þ that is

optimal for problem 19pjg
½x�
j
ðrÞ,MP½k�9Cmax, it is sufficient to use the n

positions used in schedule S(k) together with n�ðkþ1Þþ1 new

positions in group kþ1.

The algorithm below starts with finding the best schedule with

one group, and having found the best schedule with k groups

finds the best schedule with kþ1 groups by solving an assign-

ment problem with O(n) columns and n rows. The columns to be

used while solving the problem with kþ1 groups are the n

columns for which an assignment was found in the previous

iteration and n�ðkþ1Þþ1¼ n�k new columns corresponding to

the new group kþ1.

Algorithm 6

Step 1. Find an optimal schedule Sð1Þ with no maintenance

periods, in which all jobs are placed in group 1. This is

done by solving the assignment problem with

cjr ¼ pjg
½1�
j
ðrÞ,jAN,1rrrn:

Compute PðSð1ÞÞ as the optimal value of the objective

function in this assignment problem. Determine schedule

Sð1Þ in which job j is processed in the r-th position of group

1 if and only if zj,ð1,rÞ ¼ 1. Define CmaxðSð1ÞÞ ¼ PðSð1ÞÞ. Define

Tð1Þ :¼ 0,l½1� ¼: n, k :¼ 1 and k
0
:¼ n.

Step 2. With the current value of k do

(a) Update Tðkþ1Þ ¼ TðkÞþt½k�. Define l
½kþ1�

:¼ n�k. Com-

pute all values of the matrix C by (16) for columns

ð1;1Þ, . . . ð1,l
½1�
Þ, . . . ,ðk,1Þ, . . . ðk,l

½k�
Þ and ðkþ1;1Þ, . . . ,

ðkþ1,l½kþ1�
Þ. Run Algorithm 4 to solve the resulting

n� ð2n�kÞ rectangular assignment problem of the

form (17) with the current values of l½x�, 1rxrkþ1.

(b) Compute PðSðkþ1ÞÞ as the optimal value of the objec-

tive function in that assignment problem and

CmaxðSðkþ1ÞÞ ¼ PðSðkþ1ÞÞþTðkþ1Þ. If PðSðkþ1ÞÞ ¼

PðSðkÞÞ then define k
0
:¼ k and break the loop bymoving

to Step 3; otherwise, determine schedule Sðkþ1Þ in

which job j is processed in the r-th position of group x,

1rxrkþ1, if and only if zj,ðx,rÞ ¼ 1. For each group x,

1rxrkþ1, determine the last filled position l
½x�.

(c) Update k :¼ kþ1. If krn�1, repeat Step 2; otherwise

go to Step 3.

Step 3. Find the value k
n
, 1rk

n
rk

0
, such that

CmaxðSðk
n
ÞÞ ¼minfCmaxðSðkÞÞ91rkrk

0
g:

Similar to Algorithm 3, the loop-breaking condition in Algo-

rithm 6 is PðSðkþ1ÞÞ ¼ PðSðkÞÞ, since the inequality PðSðkþ1ÞÞ4

PðSðkÞÞ is impossible due to the selection of positions used in

schedules Sðkþ1Þ and S(k).

Theorem 6. Algorithm 6 solves problem 19pjg
½x�
j ðrÞ,MP9Cmax in Oðn4Þ

time.

Proof. The correctness of Algorithm 6 is justified by Theorem 5.

To estimate the running time, notice that in Step 1 an n�n

assignment problem is solved in Oðn3Þ time. For each value of k in

Step 2, we solve a rectangular assignment problem which has n

rows and 2n�k columns, of which n columns, namely ð1;1Þ, . . . ,

ð1,l
½1�
Þ, . . . ,ðk,1Þ, . . . ,ðk,l

½k�
Þ are brought forward from the previous

iteration and the remaining n�k columns correspond to the new

group kþ1. Algorithm 4 will require Oðn2ð2n�kÞÞ time for each

k,1rkrn�1, so that the overall running time of Algorithm 6 is

Oðn4Þ. &

Notice that Algorithm 6 can be applied to solving the problem

19pjgjðrÞ,MP9Cmax, in which case for each position r the equalities

g½x�j ðrÞ ¼ gjðrÞ hold for all x, 1rxrn. Under these assumptions,

Algorithm 6 essentially behaves as the algorithm provided by

Zhao and Tang [29], who use the group balancing principle to

solve the special case 19pjr
aj
,MP9Cmax.

Example 1. Consider problem 19pjg
½x�
j
ðrÞ,MP9Cmax with five jobs. A

schedule can have up to four MPs, with maintenance durations

given as

t½1� ¼ 3, t½2� ¼ 3, t½3� ¼ 3:5, t½4� ¼ 4:

The jobs can be split in up to five groups. Table 1 represents the

actual processing times of jobs from the set N¼ f1;2,3;4,5g, with
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each row containing the values p½x�
j
ðrÞ ¼ pjg

½x�
j
ðrÞ for a job j when

placed in position r of group x. Notice that for each job the values

of p½x�
j
ðrÞ do not decrease within each group, and do not decrease

for each position r as the number x of a group grows. This is

consistent with (5) and (6). Besides, a group x,1rxrn, has only

n�xþ1 positions associated with it.

Table 2 shows the details of the run of Algorithm 6 for the

above instance.

The run starts with k¼1, i.e., we solve the 5�5 assignment

problem. The optimal solution determines a schedule Sð1Þ with no

MPs, in which the jobs are assigned to the positions marked by the

boxes. Since all positions of Group 1 are used in this schedule, the

list of possible positions in the next iteration k¼2 includes all five

positions of Group 1 and all four positions of Group 2. We solve the

corresponding rectangular assignment problem, and the numbers

marked with boxes determine a schedule S(2) in which the jobs 2, 3

and 5 occupy the first three positions of Group 1, respectively, while

the jobs 4 and 1 are respectively assigned to the first two positions

of Group 2, after the MP of duration 3. The positions that are not

used are crossed out; they will never be used in subsequent

iterations. In the next iteration k¼3 we use the positions associated

with schedule S(2) and three positions of the new Group 3. The

method stops here with k&¼2, since none of the positions of Group

3 is filled, i.e., PðSð3ÞÞ ¼ PðSð2ÞÞ as in the loop-breaking rule. Sche-

dules Sð1Þ and S(2) are the two candidates for a global optimal

solution, and we choose S(2) with the smaller makespan.

Table 1

Actual processing times for Example 1.

Job j Group 1 Group 2

p½1�j ð1Þ p½1�j ð2Þ p½1�j ð3Þ p½1�j ð4Þ p½1�j ð5Þ p½2�j ð1Þ p½2�j ð2Þ p½2�j ð3Þ p½2�j ð4Þ

1 5 6 7 8 9 6 6 8 9

2 10 12 13 15 16 11 12 14 15

3 1 1 2 2 3 1 2 3 4

4 3 5 7 8 9 4 5 7 9

5 7 7 7 8 8 7 7 8 8

Job j Group 3 Group 4 Group 5

p½3�
j
ð1Þ p½3�

j
ð2Þ p½3�

j
ð3Þ p½4�

j
ð1Þ p½4�

j
ð2Þ p½5�j ð1Þ

1 6 7 8 7 8 7

2 12 13 14 12 14 13

3 2 2 3 3 4 4

4 4 6 8 5 7 5

5 7 7 8 8 8 8

Table 2

Run of Algorithm 6 for Example 1.
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6. Start time dependent maintenance

In this section, we consider a model in which the duration of a

maintenance activity depends on the time that elapsed since the

previous MP. Thus, the later a machine is sent for maintenance,

the longer it takes to restore the machine to an acceptable

condition. Such a model has been introduced by Kubzin and

Strusevich [21,22] for shop scheduling models; see [27,30] for

further developments.

In this section, we assume the duration D½x�ðtÞ of the x-th

maintenance period to be a linear function of its start time t that

is either measured from zero (if x¼ 1Þ or from the completion of

the (x�1)-th MP (for 2rxrn�1). Thus,

D½x�ðtÞ ¼ a½x�tþb½x�
, 1rxrn�1, ð18Þ

where a½x� and b
½x�

are given positive constants such that

a½1�
ra½2�

r � � � ra½n�1�:

As stated by Kubzin and Strusevich [22], the rationale for such

a representation is that a maintenance period includes a series of

standard tests that require a constant time b½x� while a½x�t
corresponds to the duration of maintenance activities that depend

on the state of the equipment.

For a schedule with k�1 maintenance activities and k groups,

1rkrn, let F ½x� denote the completion time of group x, and P½x�

denote the total processing time of the jobs assigned to group x,

1rxrk. We deduce

F ½1� ¼ P½1�
;

F ½2� ¼ F ½1�þða½1�P½1�þb½1�
ÞþP½2� ¼ ð1þa½1�ÞP½1�þb½1�

þP½2�
;

F ½3� ¼ F ½2�þða½2�P½2�þb½2�
ÞþP½3� ¼ ð1þa½1�ÞP½1�þð1þa½2�ÞP½2�

þðb
½1�
þb

½2�
ÞþP½3�

;

� � �

F ½k� ¼
X

k�1

x ¼ 1

ð1þa½x�ÞP½x�þP½k�þ
X

k�1

x ¼ 1

b½x�
:

Notice that F ½k� is the makespan of a schedule with k groups.

First, assume that the deterioration factors are both group-

dependent and position-dependent, but not job-dependent, as in

Section 4. We denote the corresponding problem by 19pjg
½x�ðrÞ,

MPðtÞ9Cmax, where we write ‘‘MPðtÞ’’ to represent that the dura-

tion of each MP is start time dependent in the sense of (18).

The best schedule S(k) with k groups can be found by solving

the problem 19pjW
½x�ðrÞ,MP½k�1�9Cmax from Section 4, provided

that the number of groups k is fixed and the modified deteriora-

tion rates, or more appropriately, the positional weights W ½x�ðrÞ

are given by

W ½x�ðrÞ ¼ ð1þa½x�Þg½x�ðrÞ, 1rxrk�1, 1rrrn�kþ1

W ½k�ðrÞ ¼ g½k�ðrÞ, 1rrrn�kþ1 ð19Þ

and the maintenance duration t½x� is set equal to b½x�.

For each k, problem 19pjW
½x�ðrÞ,MP½k�1�9Cmax can be solved in

O(nk) time by matching the jobs taken in the LPT order to n

smallest weights W ½x�ðrÞ. This can be done by the running Algo-

rithm 2 with g½x�ðrÞ ¼W ½x�ðrÞ for all relevant values of x and r. Thus,

the overall running time for solving problem 19pjg
½x�ðrÞ,MPðtÞ9Cmax

is Oðn3Þ.

Notice that problem 19pjgðrÞ,MPðtÞ9Cmax, with group-indepen-

dent deterioration rates, i.e., the version in which g½x�ðrÞ ¼ gðrÞ

for all x,1rxrn, can be solved faster. We can directly apply

Algorithm 3 with Hð1Þ ¼ ðgð1Þ,gð2Þ, . . . ,gðnÞÞ in Step 1 and with

HðkÞ ¼ ðð1þa½k�Þgð1Þ,ð1þa½k�Þgð2Þ, . . . ,ð1þa½k�Þgðn�kþ1Þ for each k

in Step 2. Thus, problem 19pjgðrÞ,MPðtÞ9Cmax requires only Oðn2Þ

time.

Below we present a small numerical example that illustrates the

application of Algorithms 2 and 3 to problem 19pjg
½x�ðrÞ,MPðtÞ9Cmax

with job-independent, group-dependent positional factors with

start-time dependent maintenance. This example demonstrates

why the use of a faster Algorithm 3 does not guarantee an optimal

solution in this case, and we have to rely on Algorithm 2.

Example 2. Consider problem 19pjg
½x�ðrÞ,MPðtÞ9Cmax with six jobs,

with the following normal processing times listed in an LPT order

p1 ¼ 10, p2 ¼ 9, p3 ¼ 6, p4 ¼ 3, p5 ¼ 3, p6 ¼ 2:

A schedule can have up to five MPs, with the following

parameters

a½1� ¼ 2, b½1�
¼ 4,

a½2� ¼ 3, b½2�
¼ 0,

a½3� ¼ 3, b½3�
¼ 1,

a½4� ¼ 4, b½4�
¼ 5,

a½5� ¼ 4, b½5�
¼ 3,

where the a-values are non-decreasing as required. As a result of

these MPs, a schedule can be divided in up to six groups, with the

deterioration factors that obey (3) and (4) presented in Table 3.

Table 4 shows the details of the run of Algorithm 2 for the

above instance. Since grð3Þ ¼ g3ð2Þ for each r, 1rrr6, the algo-

rithm stops after the iteration k¼3, so that k0 ¼ 2. The algorithm

outputs the minimum value of the makespan from the set

fCmaxðSðkÞÞ91rkr2g, which is CmaxðSð2ÞÞ. In an optimal schedule

for k¼2, the sequence of jobs (3,6) is processed in the first group,

while the sequence of jobs (1,2,4,5) is processed in the second

group, after an MP of duration D½1�ð10Þ ¼ 24. The makespan of the

resulting schedule is 99.

If Algorithm 3 is applied to the same instance then for k¼3 the

values of grð3Þwould be obtained as the list of 6 smallest values in

the merger of the sequences grð2Þ, 1rrr6, and W ½3�ðrÞ, 1rrr4,

resulting into the list (2,2,2,2,3,4), which is wrong. Thus, since in

the model with the group-dependent factors the values W ½x�ðrÞ

change dynamically as k grows, the list of the best multipliers

found in the previous iteration is not relevant and Algorithm 3 is

not applicable. On the other hand, if the factors are group-

independent Algorithm 3 handles the resulting problem correctly

and faster than Algorithm 2.

Now, consider the general case, in which the deterioration

factors depend on a job, a group and a position. We denote the

corresponding problem by 19pjg
½x�
j
ðrÞ,MPðtÞ9Cmax. The durations of

the MP are still determined by (18). The best schedule S(k) with k

groups can be found by solving the modified problem

Table 3

Deterioration factors for Example 2.

Position (r) g½1�ðrÞ g½2�ðrÞ g½3�ðrÞ g½4�ðrÞ g½5�ðrÞ g½6�ðrÞ

1 1 2 2 3 3 4

2 2 2 2 4 4

3 3 4 4 5

4 5 5 5

5 8 8

6 10
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19pjW
½x�
j ðrÞ,MP½k�1�9Cmax, provided that the number of groups k is

fixed and the positional weights W ½x�
j
ðrÞ are given by

W ½x�
j
ðrÞ ¼ ð1þa½x�Þg½x�

j
ðrÞ, 1rxrk�1, 1rrrn�kþ1, jAN;

W ½k�
j ðrÞ ¼ g½k�j ðrÞ, 1rrrn�kþ1, jAN:

Thus, problem 19pjg
½x�
j
ðrÞ,MPðtÞ9Cmax reduces to a modified

problem 19pjW
½x�
j
ðrÞ,MP9Cmax. The latter problem can be solved

as a sequence of rectangular assignment problems, as described in

Section 5. Each of these assignment problems corresponds to

problem 19pjW
½x�
j
ðrÞ,MP½k�1�9Cmax, and the value b½x� is treated as

the maintenance duration t½x�, 1rxrk�1. The resulting problem

can be solved by Algorithm 5 in Oðn5Þ time. However, in the case

under consideration we cannot guarantee that the positions used

in an optimal schedule with kþ1 groups contain the positions

used in an optimal schedule with k groups. This is due to the fact

that the deterioration rates change dynamically as the number of

groups grows. As a result, Theorem 5 does not hold and the faster

Algorithm 6 cannot be adapted.

We now turn to the problem in which the deterioration rates

are group-independent, i.e., the version in which g½x�
j
ðrÞ ¼ gjðrÞ for

all x,1rxrn. Yang and Yang [30] consider a special case of

problem 19pjgjðrÞ,MPðtÞ9Cmax with a polynomial job-dependent

deterioration factors gjðrÞ ¼ raj , jAN, and a start time dependent

maintenance, such that the duration of each MP is equal to atþb.

They reduce the problem to a sequence of assignment problems

and give an algorithm that requires Oðn5Þ time. We show that a

more general problem 19pjgjðrÞ,MPðtÞ9Cmax can be solved faster.

It reduces to the sequence of problems of the form

19pjW
½x�
j
ðrÞ,MP½k�1�9Cmax to be solved for each k, 1rkrn, where

the modified deterioration rates become

W ½x�
j
ðrÞ ¼ ð1þa½x�ÞgjðrÞ, 1rxrk�1, 1rrrn�kþ1, jAN;

W ½k�
j
ðrÞ ¼ gjðrÞ, 1rrrn�kþ1, jAN:

In turn, each problem 19pjW
½x�
j
ðrÞ,MP½k�1�9Cmax reduces to an

assignment problem. Suppose that for some value of k,

1rkrn�1, we have found an optimal schedule S(k) for problem

19pjW
½x�
j ðrÞ,MP½k�1�9Cmax, so that in each group x, 1rxrk, the

number of consecutively used positions is l½x�, where
Pk

x ¼ 1 l
½x�
¼ n.

While making a transition to solving the assignment problem

associated with problem 19pjW
½x�
j
ðrÞ,MP½k�9Cmax with kþ1 groups,

notice that the deterioration rates used in problem

19pjW
½x�
j
ðrÞ,MP½k�1�9Cmax for groups from 1 up to k�1 remain

the same, while the rates previously used in group k will now be

used in group kþ1. Additionally, for group k the previously used

rates will be multiplied by ð1þa½k�Þ. By Theorem 5, this means that

in an optimal schedule Sðkþ1Þ at most l½x� positions will be used in

each group x, 1rxrk�1, and at most l
½k�

positions will be used in

group kþ1; i.e., at most n positions in total can be used in these

groups. Additionally, up to n�kþ1 positions can be used in group

k. This implies that we can adapt Algorithm 6 for solving problem

19pjgjðrÞ,MPðtÞ9Cmax with group-independent rates, so that the

problem can be solved in Oðn4Þ time.

7. Conclusion

The results of this paper on the enhanced single machine

scheduling models that combine machine deterioration

and maintenance are given in Tables 5 and 6. The developed

algorithms are applicable to a wider range of models and either

improve or match the running times known for less general

models. We hope this study will initiate further research

on machine scheduling with rate-modifying maintenance

activities.

Table 4

Run of Algorithm 2 for Example 2.

k¼1 r W ½1�ðrÞ grð1Þ grð1Þpr

1 1 1 10

2 2 2 18

3 3 3 18

4 5 5 15

5 8 8 24

6 10 10 20

CmaxðSð1ÞÞ ¼
P6

r ¼ 1 grð1Þpr ¼ 105

k¼2 r W ½1�ðrÞ W ½2�ðrÞ grð2Þ grð2Þpr

1 3 2 2 20

2 6 2 2 18

3 9 4 3 18

4 15 5 4 12

5 24 8 5 15

6 6 12

CmaxðSð2ÞÞ ¼
P6

r ¼ 1 grð2Þprþb
½1�

¼ 95þ4¼ 99

k¼3 r W ½1�ðrÞ W ½2�ðrÞ W ½3�ðrÞ grð3Þ grð3Þpr

1 3 8 2 2 20

2 6 8 2 2 18

3 9 12 4 3 28

4 15 20 5 4 12

5 5 15

6 6 12

CmaxðSð3ÞÞ ¼
P6

r ¼ 1 grð3Þprþb
½1�
þb

½2�
¼ 95þ4þ0¼ 99

Table 5

Results on problem 19pjg
½x�
j ðrÞ,MP9Cmax and its variations.

Deterioration factors Additional

conditions

Running time Reference

ra, a40 t½x� ¼ t Oðn2Þ Kou and Yang [28]

g(r) Oðn2Þ Algorithm 1

g(r) T(k)-convex Oðn log nÞ Binary Search

g½x�ðrÞ Oðn2Þ Algorithm 3

raj , aj40 t½x� ¼ t Oðn4Þ Zhao and Tang [29]

g½x�
j
ðrÞ Oðn4Þ Algorithm 6

Table 6

Results on problem 19pjg
½x�
j
ðrÞ,MPðtÞ9Cmax and its variations (see Section 6) with

D½x�ðtÞ ¼ a½x�tþb
½x� to define the duration of the x-th maintenance period that starts

at time t.

Deterioration

factors

Additional

conditions

Running

time

Reference or

Algorithm

to be Modified

g(r) Oðn2Þ Algorithm 3

g½x�ðrÞ Oðn3Þ Algorithm 2

raj , aj40 a½x� ¼ a,b½x�
¼ b Oðn5Þ Yang and Yang [30]

gj(r) Oðn4Þ Algorithm 6

g½x�j ðrÞ Oðn5Þ Algorithm 5
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Appendix A

Proof of Lemma 4. Suppose that the lemma does not hold, i.e.,

for some x there exists a column ðx,r0Þ that does not contain a 0n,

where r0o l
½x�. Assume that a 0n appears in position ðj,ðx,l

½x�
ÞÞ. Since

each covered line contains a 0n, it follows that the column ðx,r0Þ is

uncovered.

Observe that the only way for a zero to lose its ‘‘star’’ label is

Step 4 of the algorithm, but in this case a 00 from the same column

becomes a 0n. In short, once a column gets a 0n, then it will

contain a 0n (possibly, in a different row) in all subsequent

iterations. On the other hand, if a column does not have a 0n,

then it has not contained a 0n in all preceding iterations. Thus,

column ðx,r0Þ has not contained a 0n in all previous iterations, and

this column has always been uncovered.

Suppose that in some iteration i, the element in position ðj,ðx,l
½x�
ÞÞ

is reduced to zero as the current minimal element (see Step 5). At

the time the element is uncovered, i.e., in all previous iterations

column ðx,l
½x�
Þ has not contained a 0n and has not been covered,

exactly as column ðx,r0Þ. Thus, up to the i-th iteration both columns

ðx,r0Þ and ðx,l
½x�
Þ have been subject to the same transformations in

Step 5. In particular, the elements in positions ðj,ðx,r0ÞÞ and ðj,ðx,l
½x�
ÞÞ

either have been left the same in all previous iterations with row j

covered or have been reduced by the value of the current minimal

element in each previous iteration when row j was not covered.

Since originally pjg
½x�
j
ðr0Þrpjg

½x�
j
ðl
½x�
Þ, we deduce that in the beginning

of iteration i the element in position ðj,ðx,r0ÞÞ is less or equal to the

element in position ðj,ðx,l
½x�
ÞÞ. At the end of iteration i, we know that

position ðj,ðx,l
½x�
ÞÞ becomes zero. Now since the element in position

ðj,ðx,r0ÞÞ cannot be negative, we can deduce that it must be zero at

the end of iteration i. Therefore, all elements in the consecutive

positions ðj,ðx,r0ÞÞ,ðj,ðx,r0þ1ÞÞ, . . . , ðj,ðx,l
½x�
ÞÞ of row j are equal to zero.

We know that Step 3 of Algorithm 4 processes the zero in position

ðj,ðx,r0ÞÞ earlier than all other uncovered zeros in this row. Thus, the

zero in position ðj,ðx,r0ÞÞ will be primed.

If there is no 0n in row j, Step 4 of the algorithm will star the

primed zero in position ðj,ðx,rÞÞ, as we know that column ðx,rÞ does

not contain any 0n either.

If there is a 0n in row j, then the corresponding column, say,

column v, is covered. The algorithm in Step 3 will uncover column

v and cover row j. If this uncovers a 0 in column v, say, in row

ua j, then Step 4 of the algorithm will find a path that traverses

through the three positions ðu,vÞ,ðj,vÞ and ðj,ðx,r0ÞÞÞ, and redistri-

bute the stars. As a result, a 0n would appear in position ðj,ðx,r0ÞÞÞ.

Now we consider the situation when there are no uncovered

zeros in column v, row j is covered, the zero in position ðj,vÞ is

starred, the zero in position ðj,ðx,r0ÞÞ is primed and the zeros in

positions ðj,ðx,r0þ1ÞÞ, . . . ,ðj,ðx,l
½x�
ÞÞ have no labels. By the lemma

conditions, we know that eventually the zero in position ðj,ðx,l
½x�
ÞÞ

becomes starred. In the iterations that follow iteration i, the only

way to get a 0n in row j in a position other than ðj,vÞ is to start

with some 00 in the uncovered part of the current matrix, and to

find a path (as described in Step 4) that starts with the chosen 00

and finishes with the two positions ðj,vÞ and ðj,ðx,r0ÞÞÞ, that contain

a 0n and a 00, respectively. However, as a result of the correspond-

ing redistributions of stars, a 0n will appear in position ðj,ðx,r0ÞÞÞ.

We have proved that once column ðx,r0Þ gets a 0n, it will always

contain a 0n in all subsequent iterations. Hence, our assumption

that for some x, there exists a column ðx,r0Þ that does not contain a

0n, where r0o l
½x�, is false; thereby proving Lemma 4.

Appendix B

Proof of Lemma 5. Among all uncovered zeros, in Step 3 choose

zero Z that appears in the earliest column, and prime it. If the row

containing the primed zero contains a 0n, then we cover that row

and uncover the column, so that Z does not become a 0n yet.

Notice that as a result of this transformation, all zeros contained

in the same row with Z are covered, including those found in Step

5, and they will not be considered in this iteration of the

algorithm. Thus, the values l
½x�

for each x, 1rxrk, remain the

same for all remaining zeros in this row.

If Z does not have any 0n in its row (see Step 4), a path is formed

which is an alternating sequence of the primed and starred zeros

that starts with the primed zero Z ends with another 00. In such a

situation, all 0n’s in the path are unstarred and each 00 is

converted to a 0n. Since the number of primed zeros in the path

is always one greater than the number of starred zeros, it follows

that once the swap is performed we have exactly one extra 0n that

will replace the last 00 in the path. This includes a situation which

happens when for zero Z neither its row, nor its column contains a

0n, so that the path simply consists of Z alone and Z itself becomes

a 0n. Thus, a new 0n will appear in the column that has not had a

starred zero earlier, while all other columns will maintain the

number of contained 0n’s. Suppose that the new 0n appears in

position ðx,rÞ for some group x, 1rxrk, and rZ1. If r¼1, then

the old value l
½x�
¼ 0 grows by 1. Otherwise, we know from Lemma

4 that in a particular group x, all 0n’s appear in consecutive

columns ðx,1Þ, . . . ,ðx,l
½x�
Þ. Since column ðx,rÞ is the next to the

column ðx,l
½x�
Þ, the value l

½x�
for group x grows by 1.

Whenever a new 0n is added to the matrix, the columns

containing the 0n’s are covered and the remaining uncovered

zeros are processed one by one in the same manner.
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