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Abstract: The present work aimed to characterize the free vibrations’ behaviour of nanocomposite
plates obtained by incorporating graded distributions of carbon nanotubes (CNTs) in a polymeric
matrix, considering the carbon nanotubes’ agglomeration effect. This effect is known to degrade
material properties, therefore being important to predict the consequences it may bring to structures’
mechanical performance. To this purpose, the elastic properties’ estimation is performed according to
the two-parameter agglomeration model based on the Eshelby–Mori–Tanaka approach for randomly
dispersed nano-inclusions. This approach is implemented in association with the finite element method
to determine the natural frequencies and corresponding mode shapes. Three main agglomeration cases
were considered, namely, agglomeration absence, complete agglomeration, and partial agglomeration.
The results show that the agglomeration effect has a negative impact on the natural frequencies
of the plates, regardless the CNTs’ distribution considered. For the corresponding vibrations’
mode shapes, the agglomeration effect was shown in most cases not to have a significant impact,
except for two of the cases studied: for a square plate and a rectangular plate with symmetrical and
unsymmetrical CNTs’ distribution, respectively. Globally, the results confirm that not accounting for
the nanotubes’ agglomeration effect may lead to less accurate elastic properties and less structures’
performance predictions.

Keywords: nanocomposites; CNTs’ agglomeration; functionally graded material; Eshelby–Mori–
Tanaka approach; free vibrations’ behaviour; plates’ natural frequencies; plates’ vibration mode shapes

1. Introduction

Carbon nanotubes’ (CNTs) remarkable characteristics makes them well suited for acting as
a reinforcing phase in composite materials where high strength and low density are required or
in applications where superior physical, mechanical, thermal, and electrical properties have to be
guaranteed [1,2]. Considering these nanoparticles’ potential use in a number of engineering fields, it is
thus important to characterize the influence that their distribution and eventual agglomeration may
have in the behaviour of structures, namely in their free vibrations’ behaviour.

A number of researchers have developed very relevant work in the field of composite materials
reinforced with nanoparticles. Among them, one can refer the work developed by Sobhani Aragh et al. [3],
where an equivalent continuum model based on the Eshelby–Mori–Tanaka (EMT) approach was
employed to estimate the elastic properties of functionally graded carbon nanotube-reinforced
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composite (FG-CNTRC) cylindrical panels to study their free vibration response. These authors
found out that CNTs’ volume fraction can be used for the management of vibrational behaviour of
structures. A similar study was developed by Sobhadi Aragh et al. [4], this time using the third-order
shear deformation theory to investigate the dynamic behaviour of FG-CNTRCs cylindrical shells.
These authors concluded that symmetric distributions of the CNTs’ volume fraction, over the thickness
direction, provided a greater improvement of the dynamic behaviour when compared to uniform
or unsymmetrical volume fraction distributions. Yas and Heshmati [5] studied the influence of
various CNTs distributions and orientations, among other parameters on the dynamic behaviour of a
functionally graded nanocomposite Timoshenko beam.

Due to their high aspect ratio, low bending stiffness, and van der Waals forces, CNTs tend to
agglomerate into bundles [6,7], with this phenomenon interfering directly with the material properties
of a CNTRC (carbon nanotube-reinforced composite). To estimate the CNTRC’s properties more
realistically, it is necessary to take into account this agglomeration effect. However, in most of the
studies including CNTRC, the most common homogenization scheme employed is the extended rule
of mixtures (ROM) not taking into account this effect.

To overcome this problem, Shi et al. [8] proposed a two-parameter agglomeration model based on
the EMT for CNTRC property estimation with randomly oriented straight CNTs to investigate the
effect of nanotube waviness and agglomeration on the mechanical properties of CNTRCs.

Van der Waals forces play an important role on CNT micromechanical models namely, to model
the interphase between the resin and the CNT for nanocomposites, for predicting their mechanical
properties as proposed in the studies led by Shokrieh [9,10]. There is another important consideration
about the van der Waals forces when assessing the free vibration behaviour of MWCNT (multi-walled
carbon nanotubes), which is the interaction of the van der Waals forces between two different SWCNT
(single-walled carbon nanotube) layers and their effect on the natural frequencies and modes’ shapes.
The study developed by He et al. [11] indicated that when considering van der Waals forces, the modes’
shapes change when varying the radii in MWCNT from very small to very large, and the that these
forces have a significant impact in higher natural frequencies. Another study that considers the
influence of the van der Waals forces between two different SWCNT layers is the study developed
by Strozzi and Pellicano [12] on the linear vibrations of TWCNTs (triple-walled carbon nanotubes),
where these interactions are modelled by means of a radius-dependent function that relates the
displacements of two adjacent layers.

Since the EMT agglomeration model was proposed, a number of studies have emerged using this
technique for property estimation. Among them, the dynamic behaviour of an FG-CNTRC Timoshenko
beam resting on a Pasternak foundation was studied under the influence of CNT agglomeration,
showing that the natural frequencies of the beam are highly influenced by the agglomeration
effect [13]. Another study performed using beam models was developed by Heshmati and Yas [14],
where the dynamic behaviour of FG nanocomposite beams was evaluated under the influence of CNT
agglomeration, and it was also shown that the agglomeration exerted a significant weakening effect
in CNTRC.

Kamarian et al. [15] studied the dynamic behaviour under free vibrations of CNTRC conical
shells under the influence of agglomerated CNT using the EMT approach and they concluded that
the agglomeration significantly affects the natural frequency of the structure. Tornabene et al. [16]
performed a study on the effect of agglomerated CNTs on the natural frequencies of FG-CNTRC doubly
curved shells, where several parametric studies were developed varying the CNT volume fraction,
the CNTs distributions along the thickness, as well as the agglomeration parameters, proving their
influence on the dynamic behaviour of the structure. Tornabene et al. [17] published another study now
on the static response of nanocomposite plates and shells reinforced by agglomerated CNTs, where the
static response of these structures was shown to be considerably affected by the agglomeration of CNTs.

Eringen’s nonlocal elasticity theory was employed to develop bending and buckling analyses of
agglomerated CNTRC nanoplates resting on a Pasternak foundation by Daghigh et al. [18]. With this
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study, it was concluded that the presence of the foundation beneath the nanoplates reduced the effects
of CNT agglomeration. The same author led another study on the dynamic behaviour of size- and
temperature-dependent agglomerated CNTRC nanoplates resting on a visco-Pasternak foundation [19],
where it was concluded that ignoring the agglomeration effect causes an overestimation of the
elastic properties and the presence of the Pasternak foundation clearly increased the nanoplate
natural frequency.

More recently, Bisheh et al. [20] studied the dynamics of wave propagation in agglomerated CNTR
piezoelectric composite cylindrical shells. The developed analytical model showed a capacity to find the
effects of nanotube agglomeration on wave propagation characteristics of these smart nanocomposite
shells for the applications of structural health monitoring and energy harvesting. The performance of
CNTR porous composite plates bonded with piezoceramic material in the lower and upper faces under
static mechanical and electrical loading was evaluated by Moradi-Dastjerdi et al. [21], concluding that
embedding pores up to around 90% of the volume of the middle plate leads to an increase of around
11.3% and 2.2% in mechanical and electrical deflections, respectively. The inclusion of CNTs in the
middle plate was demonstrated to be beneficial; however, this was to limited values of the CNT volume
fraction due to the agglomeration effect.

A modelling paradigm for improving the piezoelectric performance for piezoelectric matrix-inclusion
composites based on lead-free ceramics through improved matrices and optimal polycrystallinity in
the piezoelectric inclusions was developed by Krishnaswamy et al. [22]. These authors demonstrated
for this case that CNT agglomeration near nanotube percolation and the clustering of nanotubes can
lead to better matrix hardening and higher permittivity, leading to an improvement exceeding 30% in
piezoelectric response.

As mentioned, CNTs have remarkable characteristics that are important for many engineering
applications; however, CNTs tend to agglomerate even for low volume fraction’s distributions [23].
Hence, assessing the influence of the agglomeration effect on the free vibration behaviour of
nanocomposites is fundamental to better design structures built from these materials. The present
work aimed to characterize the free vibration behaviour of FG-CNTRC square and rectangular plates
concerning the effect of CNTs’ distributions and agglomeration, regarding its influence on the natural
frequencies and modes’ shapes of these plate-type structures.

2. Materials and Methods

The present section is subdivided into two sub-sections, wherein the most relevant aspects,
techniques, and methodologies that support the present study are summarized.

2.1. Properties’ Estimation through the Eshelby–Mori–Tanaka Approach

In FG-CNTs, CNTs tend to agglomerate in a polymer matrix, due to its high aspect ratio,
low bending stiffness (small diameter and lower elastic modulus in its radial direction), and to van der
Waals forces. Shi et al. [8] developed a two-parameter model to describe the effect of agglomeration on
the elastic properties of randomly oriented CNTs.

The present Eshelby–Mori–Tanaka property estimation model [8] is based on the equivalent fibre
concept. The equivalent fibre properties are estimated by multiscale finite element method (FEM)
analysis or through molecular dynamics (MD) simulations. Through these simulations, one determines
the properties of the composite, and then the properties of the equivalent fibre might be calculated
using the rule of mixtures (ROM) presented in Equation (1). A virtual-equivalent fibre consists of a
straight CNT embedded in a polymeric resin and its interphase. For the SWCNT with a chiral index of
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(10,10), the equivalent fibre would be a solid cylinder with a 1.424-nm diameter [10]. The properties of
the equivalent fibre for the present studies are listed in Table 1.

ELEF =
ELC
VEF
−

EMVM
VEF

1
ETEF

= 1
ETCVEF

−
VM

EMVEF
1

GEF
= 1

GCVEF
−

VM
GMVEF

νEF =
νC

VEF
−
νMVM

VEF

(1)

where ELEF, ETEF, GEF, and νLEF are the longitudinal elastic modulus, transverse elastic modulus,
shear modulus, and Poisson’s ratio, respectively, of the equivalent fiber. ELC, ETC, GC, and νC are
the longitudinal elastic modulus, transverse elastic modulus, shear modulus, and Poisson’s ratio,
respectively, of the composite, which were determined using multiscale FEM or MD simulations.
EM, GM, and νC are the elastic modulus, shear modulus, and Poisson’s ratio, respectively, of the matrix.
Finally, VEF and VM are the volume fraction of the equivalent fibre and the volume fraction of the
matrix, respectively.

Table 1. Properties of the equivalent fibre for SWCNT (10,10) [10].

Equivalent Fibre

Longitudinal elastic modulus (GPa) 649.12

Transverse elastic modulus (GPa) 11.27

Transverse shear modulus (GPa) 5.13

Poisson′s ratio 0.284

Density (kg/m3) 1400

This model considers that a part of the CNTs’ reinforcement is dispersed throughout the matrix,
while another part appears in a cluster form due to the agglomeration effect. This model is based on
the Eshelby inclusion model, where it is assumed that the inclusions appear in spherical shapes and
they are represented in Figure 1 [13]. The total volume of CNT reinforcement in the representative
volume element (RVE) is denoted by Vr and is divided in Vinclusion

r , which is the volume of CNTs in the
agglomerated inclusions, and Vm

r , which is the volume of CNTs dispersed in the matrix. Note that from
now on, the subscripts r and m will stand for the reinforcing phase and for the matrix, respectively.
The employed homogenization scheme here described can be originally found in Section 4.1 of the
reference article [8].

Vr = Vinclusion
r + Vm

r (2)
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The two parameters used to describe the agglomeration are µ and η, where µ denotes the volume
fraction of the inclusions with respect to the volume V of the RVE, η is the volume ratio of CNTs that
are dispersed in agglomerated inclusions with respect to the total volume of CNTs Vr, and where
Vinclusion is the total volume of the inclusions within the RVE:

µ =
Vinclusion

V
, η =

Vinclusion
r

Vr
(3)

when µ = 1, all the CNTs are uniformly dispersed in the matrix. With the decrease of µ,
the agglomeration degree is more severe. If η = 1, all the CNTs are located within the agglomerated
inclusions. If η = µ, then the volume fraction of CNTs inside the inclusions is the same as the volume
fraction CNTs outside, which means the CNTs are uniformly distributed. When η > µ and the bigger
the value of η, the spatial distribution of CNTs throughout the matrix is more heterogeneous.

The average volume fraction fr of CNTs in the composite is described by:

fr =
Vr

V
(4)

Although assuming the nanotubes are transversely isotropic, considering that the nanotubes are
randomly dispersed within the inclusions as well as within the matrix, one might consider that the
material behaves as an isotropic material inside and outside the inclusions.

Using the Mori–Tanaka method for composite properties’ estimation for randomly oriented CNTs
and considering the agglomeration effect, one has:

Cr =



nr lr lr 0 0 0
lr kr + mr kr −mr 0 0 0
lr kr −mr kr + mr 0 0 0
0 0 0 pr 0 0
0 0 0 0 mr 0
0 0 0 0 0 pr


=



1
EL

−
νTL
ET

−
νZL
EZ

0 0 0
−
νLT
EL

1
ET

−
νZT
EZ

0 0 0
−
νLZ
EL

−
νTZ
ET

1
EZ

0 0 0
0 0 0 1

GTZ
0 0

0 0 0 0 1
GTZ

0
0 0 0 0 0 1

GLT



−1

(5)

where nr, lr, kr, mr, and pr are Hill’s elastic moduli calculated by the inverse of the compliance matrix
of the equivalent fibre. Note that EL, ET, EZ, GLT, GTZ, GTZ, and νLT are its properties, which can be
determined using ROM, but first the properties of the composite must be determined using a multiscale
FEM or an MD simulation analysis [13].

The Hill’s elastic moduli are used to determine the effective bulk moduli of the composite inside
the inclusions Kin and outside the inclusions Kout, and the same goes for the shear moduli inside and
outside the inclusions (Gin and Gout, respectively) [8]:

Kin = Km +
frη(δr − 3Kmαr)

3(µ− frη+ frηαr)
(6)

Kout = Km +
fr(1− η)(δr − 3Kmαr)

3[1− µ− fr(1− η) + fr(1− η)αr]
(7)

Gin = Gm +
frη(ηr − 2Gmβr)

2(µ− frη+ frηβr)
(8)

Gout = Gm +
fr(1− η)(ηr − 2Gmβr)

2[1− µ− fr(1− η) + fr(1− η)βr]
(9)

where:

αr =
3(Km + Gm) + kr − lr

3(Km + kr)
(10)
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βr =
1
5

{
4Gm + 2kr + lr

3(Gm + kr)
+

4Gm

Gm + pr
+

2[Gm(3Km + Gm) + Gm(3Km + 7Gm)]

Gm(3Km + Gm) + mr(3Km + 7Gm)

}
(11)

δr =
1
3

[
nr + 2lr +

(2kr + lr)(3Km + 2Gm − lr)
Gm + kr

]
(12)

ηr =
1
5

[
2
3
(nr − lr) +

8Gmpr

Gm + pr
+

8mrGm(3Km + 4Gm)

3Km(Gm + pr) + Gm(7mr + Gm)
+

2(kr − lr)(2Gm + lr)
3(Gm + kr)

]
(13)

The bulk and shear moduli of the matrix are Km and Gm, respectively. Finally, the effective
bulk modulus K and the effective shear modulus G of the composite can be determined using the
following expressions:

K = Kout

1 + µ
( Kin

Kout
− 1

)
1 + α(1− µ)

( Kin
Kout
− 1

)  (14)

G = Gout

1 + µ
( Gin

Gout
− 1

)
1 + β(1− µ)

( Gin
Gout
− 1

)  (15)

where:

νout =
(3Kout − 2Gout)

2(3Kout + 2Gout)
(16)

α =
1 + νout

3(1− νout)
(17)

β =
2(4− 5νout)

15(1− νout)
(18)

where νout is the Poisson’s ratio outside the inclusions. Finally, one can determine the effective Young
modulus E and Poisson’s ratio ν of the composite using:

E =
9KG

3K + G
(19)

ν =
3K − 2G
6K + 2G

(20)

Besides using the EMT agglomeration model to estimate the elastic properties of the FG-CNTRC,
the composite mass density is calculated using the Voigt’s rule [24,25]:

ρ = frρr + fmρm (21)

where fm and ρm are the matrix volume fraction and mass density, respectively. The matrix volume
fraction is given by fm = 1− fr.

To calculate the mentioned properties, one must define how the CNTs are distributed along the
matrix in the FG-CNTRC. For this purpose, three different CNTs volume fractions distributions were
considered in this work, these volume fraction distributions are represented in Figure 2. The first is the
uniform distribution (UD):

fr = f ∗r (22)

An unsymmetrical functionally graded distribution (USFG) of the CNTs:

fr =
(
1−

2z
h

)
f ∗r (23)
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A symmetrical functionally graded distribution (SFG) of the CNTs:

fr =
4|z|
h

f ∗r (24)

Knowing that z =
[
−

h
2 , h

2

]
, where h is the FG-CNTRC thickness and in which f ∗r is defined by [5]:

f ∗r =
wr

wr +
( ρr
ρm

)
−

( ρr
ρm

)
wr

(25)

where wr is the mass fraction of the carbon nanotubes.
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The plates are considered to be simply supported in the four edges, with a = b for the square plate
and b/a = 3 for the rectangular plate. The aspect ratio considered between the x-edge and thickness is
a/h = 10.
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2.2.1. Constitutive Equations

Considering the FSDT, the displacement field is given by [25–27]:

u(x, y, z, t) = u0(x, y, t) + zθx(x, y, t)
v(x, y, z, t) = v0(x, y, t) + zθy(x, y, t)

w(x, y, z, t) = w0(x, y, t)
(26)

where θx and θy are the first-order rotations and u0, v0, and w0 are the mid-surface displacements in
the (x, y, z) directions, respectively, and t denotes time. The superscript 0 is going to be used to refer to
the mid-surface of the plate. The present theory provides five degrees of freedom.

The strain field is given by [25–27]:



εxx

εyy

γxy

γyz

γxz


=



∂u
∂x
∂v
∂y

∂u
∂y + ∂v

∂x
∂y
∂z + ∂w

∂y
∂u
∂z + ∂w

∂x


(27)

where εxx, εyy, and γxy are the in-plane normal and shear strain components; and γyz and γxz are
transverse shear strains components.

In the context of a small strains approach, which is the one considered in the present work,
the strain field relates with the displacements in the following manner:

{ε} =


εxx

εyy

γxy

 =


∂u0

∂x
∂v0

∂y
∂u0

∂y + ∂v0

∂x

+ z


∂θx
∂x
∂θy
∂y

∂θx
∂y +

∂θy
∂x

,
{
γ
}
=

{
γyz

γxz

}
=

 ∂w0

∂y + θy
∂w0

∂x + θx

 (28)

Yielding to:

{σ} = [Q]{ε}



σxx

σyy

τxy

τyz

τxz


=


Q11 Q12 0 0 0
Q12 Q22 0 0 0

0 0 Q66 0 0
0 0 0 KcQ44 0
0 0 0 0 KcQ55





εxx

εyy

γxy

γyz

γxz


(29)

where σxx, σyy, and τxy are the in-plane normal and shear stress components; τyz and τxz are transverse
shear stress components; and Kc is the shear correction factor associated with the transverse shear
stress components, which for this study is assumed to have the typical value of 5/6.

Considering the random orientation of CNTs, the corresponding nanocomposites can be considered
as an isotropic material, thus the elastic stiffness coefficients associated to [Q] are given as:

Q11 = Q22 =
E

1− ν2 Q12 =
νE

1− ν2 Q44 = Q55 = Q66 = G (30)

2.2.2. Governing Equations of Motion

Hamilton’s principle can be generically stated as [25]:

δ

t1∫
t0

((T −U) + W)dt = 0 (31)
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where T is the kinetic energy, U is the elastic strain energy, and W is the work performed by applied
forces. Considering the aim of the present work, the last term will be null, while the kinetic energy and
the elastic strain energy are given as:

T =
1
2

∫
V
ρ
( .
u2

+
.
v2

+
.

w2)dVU =
1
2

∫
V

(
εTσ+ γTτ

)
dV (32)

By carrying out the necessary mathematical manipulations and considering free harmonic
vibrations, one achieves for the whole discretized domain the following equilibrium Equation:(

[K] −ω2
i [M]

)
{ui} = 0 (33)

where [K] is the global stiffness matrix, [M] is the global mass matrix, ωi is the natural frequencies,
and {ui} denotes the vibration mode shapes’ vectors associated to the corresponding natural frequencies
ωi [25–27].

The global stiffness matrix can be expressed as:

[K] =
N∑

e=1

(
[Kmm]

e + [Kbb]
e + [Kmb]

e + [Kss]
e
)

(34)

where [Kmm]
e, [Kbb]

e, [Kmb]
e, and [Kss]

e are stiffness matrices associated to individualized effects, namely
due to membrane, bending, membrane-bending coupling, and transverse shear, respectively. The index
e refers to a generic element and N is the total number of elements considered. The stiffness matrices
components are determined by the expressions below [26,27]:

[Kbb]
e =

1∫
−1

1∫
−1

[Bb]
T
e [D]i, j=1,2,6[Bb]edet([Je]) dξdη (35)

[Kmm]
e =

1∫
−1

1∫
−1

[Bm]
T
e [A]i, j=1,2,6[Bm]edet([Je])dξdη (36)

[Kmb]
e =

1∫
−1

1∫
−1

[Bm]
T
e [B]i, j=1,2,6[Bb]edet([Je]) dξdη (37)

[Kss]
e =

1∫
−1

1∫
−1

[Bs]
T
e [A]i, j=4,5[Bs]edet([Je]) dξdη (38)

where [A], [B], and [D] are the extensional stiffness, the bending extensional coupling stiffness, and the
bending stiffness matrices, where its components are given by:

(
Ai j; Bi j; Di j

)
=

h
2∫

−
h
2

Qi j
(
1; z; z2

)
dz i, j = 1, . . . , 6 (39)
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where [Bb]e, [Bm]e, and [Bs]e are the strain-displacement coupling matrices of the bending, membrane,
and shear of each element, respectively, and have the following constitution for the present shear
deformation theory:

[Bb]e =


0 . . . 0 ∂N1

∂x . . . ∂Nn
∂x 0 . . . 0 0 . . . 0 0 . . . 0

0 . . . 0 0 . . . 0 ∂N1
∂y . . . ∂Nn

∂y 0 . . . 0 0 . . . 0

0 . . . 0 ∂N1
∂y . . . ∂Nn

∂y
∂N1
∂x . . . ∂Nn

∂x 0 . . . 0 0 . . . 0

 (40)

[Bm]e =


0 . . . 0 0 . . . 0 0 . . . 0 ∂N1

∂x . . . ∂Nn
∂x 0 . . . 0

0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 ∂N1
∂y . . . ∂Nn

∂y

0 . . . 0 0 . . . 0 0 . . . 0 ∂N1
∂y . . . ∂Nn

∂y
∂N1
∂x . . . ∂Nn

∂x

 (41)

[Bs]e =

 ∂N1
∂x . . . ∂Nn

∂x N1 . . . Nn 0 . . . 0 0 . . . 0 0 . . . 0
∂N1
∂y . . . ∂Nn

∂y 0 . . . 0 N1 . . . Nn 0 . . . 0 0 . . . 0

 (42)

These matrices consider that the generalized displacements vector {u} for each node within each
element is ordered as follows:

{u} =
{
w0 θx θy u0 v0

}T
(43)

where Ni is the interpolating functions. In the initial phase of the present work, two plate elements
were considered: the bi-linear (Q4) and bi-quadratic (Q9) quadrilateral plate elements with 4 and
9 nodes, respectively [26,27], thus leading to the corresponding interpolating functions:


N1

N2

N3

N4

 =


1
4 (1− ξ)(1− η)
1
4 (1 + ξ)(1− η)
1
4 (1 + ξ)(1 + η)
1
4 (1− ξ)(1 + η)

;



N1

N2

N3

N4

N5

N6

N7

N8

N9



=



1
4

(
ξ2
− ξ

)(
η2
− η

)
1
4

(
ξ2 + ξ

)(
η2
− η

)
1
4

(
ξ2 + ξ

)(
η2 + η

)
1
4

(
ξ2
− ξ

)(
η2 + η

)
1
2

(
1− ξ2

)(
η2
− η

)
1
2

(
ξ2 + ξ

)(
1− η2

)
1
2

(
1− ξ2

)(
η2 + η

)
1
2

(
ξ2
− ξ

)(
1− η2

)(
1− ξ2

)(
1− η2

)



(44)

The Jacobian matrix [Je] relates the local coordinates (ξ, η) of a generic element e with the global
coordinates (x,y):

[Je] =

 ∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

 (45)

The global mass matrix cab be written as [27]:

[M] =
N∑

e=1

[M]e (46)

The matrix [M]e is the mass matrix associated with a generic element e and can be divided into
each of the degrees of freedom contributions, namely:

[Mw0 ]e =

1∫
−1

1∫
−1

{
N(ξ, η)

}TI0
{
N(ξ, η)

}
det([Je]) dξdη (47)
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[Mθx ]e =

1∫
−1

1∫
−1

{
N(ξ, η)

}TI2
{
N(ξ, η)

}
det([Je]) dξdη (48)

[Mu0 ]e = [Mv0 ]e = [Mw0 ]e;
[
Mθy

]
e
= [Mθx ]e (49)

where I0 and I2 are the inertias associated with the translational and the rotational degrees of freedom,
respectively, and they are determined by the following equation, where ρc is the mass density of the
nanocomposite [25,27]:

(I0, I2) =

h
2∫

−
h
2

(
1, z2

)
ρc dz (50)

3. Results

This section is divided into two sub-sections: a first one devoted to the verification of the developed
codes and a subsequent one that addresses the characterization of the free vibrations behaviour and
natural modes’ shapes of square and rectangular plates.

3.1. Verification Studies

3.1.1. On the Use of Eshelby–Mori–Tanaka Agglomeration Model

For the present verification study, which concerns the mechanical properties’ estimation for the
FG-CNTRC, the EMT agglomeration model proposed by Shi et al. [8] was used. The Hill’s moduli of
the CNTs considered for this purpose are listed in Table 2.

Table 2. Hill’s moduli of the SWCNT [28].

Hill’s Elastic Moduli (GPa)

kr 271
lr 88

mr 17
nr 1089
pr 442

Density (kg/m3) 1400

The material of the matrix considered in this case has the following elastic properties:
Em = 0.85 GPa, νm = 0.3. This study was performed considering the experimental results obtained by
Odegard et al. [29], where the material properties of the present materials were tested for different
values of volume fraction of the reinforcement.

In Figure 4, we observe that the experimental results obtained by Odegard et al. [29] are close
to the agglomerated model, where µ = 0.4 as predicted by Barai et al. [13,30] when considering a
complete agglomerated model where η = 1, meaning that all CNTs are located in inclusions, showing
that the employed agglomeration model based on the EMT method is in good agreement with the
previous literature (note that the considered points of the experiment led by Odegard et al. were
attained through graphic reading and might have slight differences).
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Figure 4. Young′s modulus for different levels of agglomeration and CNT volume fraction.

Taking the fully dispersed case as a reference, µ=1, where the Young’s modulus has the higher
increase in function of the volume fraction, it is possible to observe that when µ decreases, the increase
in the CNT volume fraction does not correspond to the expected increase of mechanical performance
due to the severity of the agglomeration effect.

However, partial CNT agglomeration is a more common situation, with this meaning that both
parameters η and µ are necessary to describe the agglomeration state [8]. The following graphics
represented in Figure 5 show how the Young’s modulus and the Poisson’s ratio behave with the
variation of these agglomeration parameters. For this illustration purpose, one considered the CNT
volume fractions of 0.1%, 0.5%, and 1%, because they coincide with the points of the experiment led by
Odegard et al.

One can observe that the highest values of the Young’ modulus appear when µ = η. It is also
possible to observe that the variation of the parameter µ has a higher impact on the elastic properties,
when compared to η.

3.1.2. On the Use of FSDT for Free Vibration Analysis

The following verification studies consider a unit length square plate as schematically illustrated
in Figure 3 with opposite hinged and simply supported edges in the directions of the plate plane (x,y).
Two edge-to-thickness ratios were considered, namely a/h = 10 and a/h = 100.

The material considered for the studies is considered as an isotropic material, and its Poisson’s
ratio assumes the value of ν = 0.3, and the Young’s modulus and the specific mass E and ρ are
considered in their SI units [31].

The results are compared in Table 3 with an analytical solution obtained through the Rayleigh–Ritz
method for vibration analysis of Mindlin plates [31]. The frequencies are presented in a non-dimensional
form using the multiplier:

λ = ωa

√
ρ

G
(51)
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Vf = 0.001, (b.1) Poisson’s ratio for Vf = 0.001, (a.2) Young’s modulus for Vf = 0.005, (b.2) Poisson’s
ratio for Vf = 0.005, (a.3) Young’s modulus for Vf = 0.01, (b.3) Poisson’s ratio for Vf = 0.01.
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Table 3. Convergence study for the first natural frequency of a square plate.

Mesh

a/h = 10 a/h = 100

Q4 (DOF) Q9 (DOF) Analytic
Solution Q4 (DOF) Q9 (DOF) Analytic

Solution

5 × 5 - 0.9305 (605)

0.9300

- 0.0963 (605)

0.0963
10 × 10 0.9399 (605) 0.9303 (2205) 0.0973 (605) 0.0963 (2205)
15 × 15 0.9346 (1280) 0.9303 (4805) 0.0968 (1280) 0.0963 (4805)
20 × 20 0.9327 (2205) - 0.0965 (2205) -
25 × 25 0.9318 (3380) - 0.0965 (3380) -

A convergence study is also presented in the same table.
From Table 3, it is possible to conclude that for both elements, the results are very approximate,

if not coincident to the analytic solution, which was expected since the analytic solution presented is
for a Mindlin plate. However, one can observe that the element Q9 gives better/faster results even with
a smaller number of elements, although the number of degrees of freedom is considerably higher.

Even when comparing the same number of degrees of freedom for the meshes Q4 10 × 10 and Q9
5 × 5 or Q4 20 × 20 and Q9 10 × 10, for example, one can observe a faster convergence for the element
Q9, with this happening due the quadratic degree of the interpolating functions that provides a better
approximation and thus a better performance for the Q9 plate model.

3.1.3. On the Verification of the FSDT Model for Free Vibration Analysis of an FG-CNTRC Beam
Estimated with the EMT Agglomeration Model

The beam was discretized using the Q4 and Q9 plate element models, considering that in the y
direction, there is only one element. The natural frequencies convergence study was developed by
increasing the number of elements in the x direction.

To allow for the intended verification purpose, the selected beam was the one studied by Yas and
Heshmati [5], and it is illustrated in Figure 6. The frequencies are presented in their dimensionless
form by considering the multiplier:

λ2 = ωL2

√
ρm

Em

A
I

, I =
bh3

12
(52)

where A is the area and I is the second moment of area of the cross-section of the beam.C 2020, 6, x 15 of 33 
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Figure 6. Beam schematic representation.

The reinforcement material considered in the next verification studies was the SWCNT with a
chiral index of (10,10) presented in Table 1, for the matrix phase, the material properties are E = 10 GPa,
ν = 0.3, and ρ = 1150 Kg/m3. The length-to-thickness aspect ratio considered was L/h = 20 and
f ∗r = 0.075. The length-to-thickness relation, L/b, is equal to 50.

The other authors considered randomly oriented straight CNTs in the matrix, without considering
the agglomeration effect. For this purpose, the material properties of the composite were calculated
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using the EMT agglomeration model using its parameters µ = η, which ensures a uniformly dispersed
state of the carbon nanotubes.

To ensure the results of the analysis of the natural frequencies, a convergence study was made
considering the distribution UD and using a clamped-clamped (C-C) boundary condition (B.C.). Table 4
presents the results for the bi-linear element Q4 and for the bi-quadric element Q9. The deviations
(dev) were calculated as:

dev (%) =

∣∣∣∣∣∣λre f − λpresent

λre f

∣∣∣∣∣∣·100 (53)

Table 4. Convergence analysis using the bi-linear element Q4 and the bi-quadratic element Q9.

Number of Elements

λ
15 25 50 (dev) 75 100 (dev)

Timoshenko beam [5]
Q4

1 5.24450 5.21481 5.20024 (1.994) 5.19698 5.19571 (1.905) 5.098585
2 8.71002 8.59864 8.54931 (7.757) 8.53935 8.53566 (7.585) 7.93386
3 12.21564 11.93952 11.82283 (13.41) 11.80034 11.79223 (13.11) 10.42527

Total DOF 160 260 510 760 1010

λ Q9

1 5.19881 5.19589 5.19410 (1.873) 5.19371 5.19358 (1.863) 5.098585
2 8.53882 8.53377 8.53089 (7.525) 8.53028 8.53008 (7.515) 7.93386
3 11.79418 11.78565 11.78162 (13.01) 11.78080 11.78055 (13.00) 10.42527

Total DOF 465 765 1515 2265 3015

In this convergence study, it is observed that using the bi-linear element Q4, the convergence is
slower than when using the bi-quadratic element Q9, for the same number of elements. However,
the element Q9 has a higher computational cost due to its higher number of nodes per element
(nine against four).

The results of the convergence studies seem to be in reasonable agreement with the results of
the considered reference (see [5]) mainly for the first natural frequency. The deviations increase for
higher frequencies. These results are expected as one is using 2-D elements, which provide a greater
stiffness to the computational model. Additionally, it will be expected that for higher order frequencies,
modes that are not expected to appear using Timoshenko beam theory will appear. It is the case of the
torsional mode shown in Figure 7.

Additionally, to verify the three CNT volume fraction distributions (UD, USFG, and SFG) and other
boundary conditions for the present problem, one performed another study considering the present
models to be compared with the Euler Bernoulli beam element and the Timoshenko beam element.
In Tables 5 and 6, where the first three natural frequencies are presented, where one reads H-H, C-F,
and C-H, it must be understood as hinged-hinged, clamped-free, and clamped-hinged, respectively.

Despite the convergence study considered until 100 elements, which was the mesh considered by
the reference author [5], one has considered a mesh of 50 elements for the next verification with the
Q9 element as it provides lower deviations, and also because from 50 to 100 elements, the deviations’
improvement was minimal.

The results presented seem to be in reasonable agreement with the reference, considering that
different assumptions are involved when considering a plate and a beam model. The deviations
were calculated considering the Timoshenko beam theory as a reference. As expected, they are lower
when compared with the Euler–Bernoulli beam results, since the Euler–Bernoulli beam theory does
not consider transverse shear components. The present results are higher when compared with the
Timoshenko beam theory results, since the 1-D model used to implement it provides a less stiff structure
when compared to the 2-D approach considered in the present study.
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Table 5. Natural frequencies in order of the material distribution and boundary conditions.

λ B. C.
Euler-Bernoulli Beam Element [5] Timoshenko Beam Element [5]

UD USFG SFG UD USFG SFG

1
C-C

5.4647 5.3708 5.7495 5.098585 5.031699 5.294657
2 9.0571 8.9005 9.5291 7.93386 7.85222 8.167861
3 12.6469 12.4262 13.3056 10.42527 10.3392 10.66974

1
H-H

3.63 3.6182 3.8192 3.574603 3.563695 3.748668
2 7.2489 7.1216 7.6266 6.854168 6.757675 7.133685
3 10.8457 10.6722 11.4107 9.71082 9.610907 10.02423

1
C-F

2.1672 2.13 2.2802 2.151246 2.115347 2.259759
2 5.4175 5.324 5.6998 5.167211 5.09299 5.385917
3 9.0443 8.887 9.5155 8.194459 8.096988 8.475179

1
C-H

4.5367 4.4696 4.7731 4.356794 4.302608 4.546786
2 8.1535 8.0173 8.5784 7.426815 7.341066 7.685675
3 11.7464 11.5427 12.3583 10.08701 9.991091 10.3645

In this last case, an important trend was identified by Yas and Heshmati [5], in which the
frequencies obtained when using the SFG distribution were higher than when using the USFG and the
UD, and it was stated that this phenomenon was caused by a better use of the CNTs’ distribution in
higher bending stress regions, where they are more concentrated, thus concluding that its bending
stiffness was larger than for USFG and UD distributions. In the present study, we can observe the
same phenomenon. In this case study, it was also found that there was one more natural frequency
between the second and the third natural frequencies considered by Yas and Heshmati [5], which is
associated with the natural modes of vibration of a plate. The first four modes of vibration for a UD
and (C-C) using the Q9 element type are illustrated in the Figure 7. As expected, the use of a plate
model to characterize beams’ natural frequencies is able to provide more information about its modes
of vibration.
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Table 6. Natural frequencies in order of the material distribution and boundary conditions.
Present model with Q9 element.

λ B. C.
Present Model [FSDT]

UD (dev) USFG (dev) SFG (dev)

1
C-C

5.19410 (1.873) 5.23446 (4.030) 5.41031 (2.184)
2 8.53089 (7.525) 8.59440 (9.452) 8.87200 (8.621)
3 11.78162 (13.01) 11.86476 (14.75) 12.23028 (14.63)

1
H-H

3.46974 (2.934) 3.52617 (1.053) 3.61832 (3.477)
2 6.89656 (0.618) 6.95265 (2.885) 7.18576 (0.730)
3 10.24292 (5.479) 10.33215 (7.504) 10.65856 (6.328)

1
C-F

2.07402 (3.590) 2.09119 (1.142) 2.16316 (4.275)
2 5.16153 (0.110) 5.20323 (2.165) 5.37898 (0.129)
3 8.55821 (4.439) 8.62481 (6.519) 8.90793 (5.106)

1
C-H

4.32579 (0.712) 4.36675 (1.491) 4.50872 (0.837)
2 7.72167 (3.970) 7.78485 (6.045) 8.03845 (4.590)
3 11.02165 (9.266) 11.10498 (11.15) 11.45557 (10.53)

3.2. Effect of the Agglomeration on FG-CNTRCs Square Plates’ Free Vibrations Behaviour

In the following subsubsections, the free vibrations behaviour of a simply supported square
plate as illustrated in the Figure 3 was evaluated using the element Q4 with 20 × 20 elements and
Q9 with 15 × 15 elements, where finer meshes were not considered due to its high computational
cost and because satisfactory results were obtained with coarser meshes as concluded in Section 3.1.2.
The plate’s aspect ratio a/h is equal to 10.

The material of the matrix considered in this study has the following elastic properties:
Em = 2.1 GPa, νm = 0.34, and ρm = 1150 kg/m3, and the material properties of the reinforcement
are listed in Table 2. A value of f ∗r = 0.075 was considered, as it was found that for a 7.5% concentration,
a large amount of CNTs are concentrated in inclusions [23]. The reinforcement distributions considered
were the UD, USFD, and the SFD with different levels of agglomeration tested. The dimensionless
frequencies to be presented were obtained using the following expression:

λ = ω
a2

h

√
ρm

Em
(54)

3.2.1. Free Vibration Analysis without the Agglomeration Effect

The present study does not consider an agglomerated state, µ = η, and its results serve as a
reference for the next ones that consider agglomerated states. For the UD distribution, the results are
presented in Table 7.

Table 7. First five natural frequencies for the FG-CNTRC square plate with different distributions
without the agglomeration effect.

λ
UD USFG SFG

Q4 Q9 Q4 Q9 Q4 Q9

1 11.1259 11.0975 10.2156 10.1876 13.0043 12.9717
2 26.6616 26.4300 24.0251 23.8584 30.7728 30.5147
3 26.6616 26.4300 24.3895 24.1794 30.7728 30.5147
4 40.8513 40.5000 26.0625 26.0013 46.6761 46.2997
5 50.3098 49.3144 29.7480 29.7034 57.1369 56.0610
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It is possible to observe that when compared to the other two distributions, the SFG provides the
best vibrational characteristics, since its natural frequencies assume higher values. This behaviour is
attained because the CNTs are in a higher concentration distributed to higher stress regions.

It is also possible to observe from this table when comparing the results from the Q4 element with
the Q9 element, we can see that the frequencies tend to be higher for the Q4 element, which correspond
to the expected behaviour.

The next figures present the plots corresponding to the results obtained using only the Q9 plate
element, since the results with the Q4 element were similar and the slight differences in the natural
frequencies do not interfere with the modes’ shape.

Figure 8 shows the first vibrational modes for the UD distribution of CNTs without the
agglomeration effect, noting that the third mode was omitted since it is symmetrical with the second.
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From Table 7, one can observe that this distribution has multiple modes, which is due to the
symmetries involved in the analysed plate.

In Figure 9, one can see the first five modes for the USFG distribution. Although some frequencies
are close, there is a slight difference that may be due to the CNT asymmetry distribution.

In Figure 10, the first modes for the SFG distribution are illustrated, where the third mode was not
displayed since it is symmetrical with the second mode.

Considering the better performance of the biquadratic (Q9) plate model when compared to the
bilinear one (Q4), we will only consider Q9 in the next studies.
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3.2.2. Free Vibration Analysis for Complete Agglomerated States (η = 1)

This study comprehends a complete state of agglomeration, when η = 1 for three different values
of µ = {0.25, 0.5, 0.75}. In these agglomerated states, it is considered that all the CNTs are aggregated in
the spherically shaped inclusions [8].

The modes’ shapes for agglomerated states will just be displayed if an observable change on them
was identified for any of these three CNT volume fraction distributions.

The results presented in Table 8 are associated to the UD distribution.

Table 8. First five natural frequencies for the UD distribution for three different states of
complete agglomeration.

λ η = 1 µ = 0.25 η = 1 µ = 0.5 η = 1 µ = 0.75

1 7.2119 9.8010 8.5212
2 17.1866 23.3547 20.3099
3 17.1866 23.3547 20.3099
4 26.3491 35.8032 31.1414
5 32.0929 43.6063 37.9327

From the three states of agglomeration considered, it is possible to observe that the worse
vibrational behaviour is precisely when µ = 0.25, which corresponds to the most heterogeneous
distribution of CNTs and where the level of agglomeration is more severe.

As it was foreseen in Section 3.1.1, the bigger the difference between the values of the agglomeration
parameters, the more its elastic properties would be affected by the agglomeration of the CNTs.

The differences between the natural frequencies are very significant, when comparing these two
states of complete agglomeration. When comparing these same frequencies with the ones obtained for
a non-agglomerated state in Section 3.2.1, the difference is even higher. Although, the agglomeration
effect seems to not interfere with the modes’ shape for this distribution of CNTs along the thickness.

The natural frequencies obtained for the three cases of complete agglomeration considering the
USFG distribution are listed in Table 9. From this table, one can conclude that for all cases of complete
agglomeration studied, the USFG is the CNT distribution that has the worse dynamic behaviour,
when comparing it with the same states of agglomeration for the other CNT distributions.

Table 9. First five natural frequencies for the USFG distribution for three different states of
complete agglomeration.

λ η = 1 µ = 0.25 η = 1 µ = 0.5 η = 1 µ = 0.75

1 6.9518 7.9533 8.9882
2 16.5096 18.8644 21.2173
3 16.5822 18.9727 21.4074
4 16.7036 19.5689 22.5596
5 19.0766 22.3055 25.7035

Similarly to the previous case, the complete agglomerated situations for the USFG CNT
volume fraction distribution seem not to interfere significantly with the natural modes’ shape for
this distribution.

For the SFG distribution (Table 10), one can observe that, as predicted, the lower the value of the
parameter µ, the lower the natural frequencies, just like for the previous distributions.



C 2020, 6, 79 21 of 32

Table 10. First five natural frequencies for the SFG distribution for three different states of
complete agglomeration.

λ η = 1 µ = 0.25 η = 1 µ = 0.5 η = 1 µ = 0.75

1 7.2801 10.6382 8.8357
2 17.3136 25.1455 20.9576
3 17.3136 25.1455 20.9576
4 26.4997 38.2979 32.0087
5 32.2457 46.4714 38.9016

The modes’ shapes for the SFG distribution are presented in Figure 11 for the severest case of
complete agglomeration and in Figure 12 for the least severe case of complete agglomeration studied.
The intermediate case is not displayed, since it has the same behaviour as the other cases. For these three
cases of complete agglomeration, it is possible to observe a significant change of the fifth mode’s shape,
when compared with the non-agglomerated case. For the other three modes’ shapes, no significant
changes were observed.
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Globally, one can say that for a completely agglomerated case, the more heterogeneous the
distribution, the lower the natural frequencies will be for the three CNT distributions studied.

It is also possible to conclude that besides the level of agglomeration, the SFG distribution shows a
better vibrational behaviour due to its distribution of CNTs in higher bending stress areas; however,
the lesser the value ofµ, the lower the differences of the natural frequencies become between distributions.
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3.2.3. Free Vibration Analysis for Partially Agglomerated States

In a more general situation, one has situations that are distinct from the completely
non-agglomerated state or from the completely agglomerated state, hence being very important
to achieve a plausible description of the degree of agglomeration through the parameters µ and η [8].

To investigate the free vibrations’ behaviour of simply supported FG-CNTRC square plates, two
different partially agglomerated situations were evaluated, one with η < µ and the other with η > µ,
when µ = 0.5 for both situations.

Table 11 presents the first five natural frequencies for the UD distribution.

Table 11. First five natural frequencies for the UD distribution for two different states of
partial agglomeration.

λ η = 0.25 µ = 0.5 η = 0.75 µ = 0.5

1 10.7993 10.6423
2 25.7258 25.3509
3 25.7258 25.3509
4 39.4283 38.8528
5 48.0147 47.3131

From this table, when comparing the two states of partial agglomeration, the best free vibration
behaviour is achieved with µ = 0.5 and η = 0.25, which corresponds to a state where there is less
volume fraction of CNTs in agglomerated inclusions, when compared with µ = 0.5 and η = 0.75.

Although significant differences were found for the natural frequencies when comparing both
states of agglomeration, and when comparing these agglomerated states with the results obtained in
Section 3.2.1 for a non-agglomerated state, the natural modes’ shapes do not suffer much influence
from the agglomeration effect, for these two partially agglomerated states.
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In Table 12, one presents the first five natural frequencies for the USFG distribution. In this case
the highest natural frequencies appear for η = 0.25, and once again the lesser the volume of CNTs inside
the agglomerated inclusions, the better the dynamic free vibrations’ behaviour obtained in the CNTRC.

Table 12. First five natural frequencies for the USFG distribution for two different states of
partial agglomeration.

λ η = 0.25 µ = 0.5 η = 0.75 µ = 0.5

1 9.9679 9.8321
2 23.3603 23.0535
3 23.6652 23.3503
4 25.3939 24.9567
5 28.9605 28.4688

It was observed that the natural modes’ shapes remained unchanged despite the agglomeration
effect when compared to the results obtained for the non-agglomerated state in Section 3.2.1, for the
USFG distribution.

Table 13 presents the first five natural frequencies for the SFG distribution. It was also observed
in this case that the highest natural frequencies appear for η = 0.25, which translates into a better
vibrational behaviour.

Table 13. First five natural frequencies for the SFG distribution for two different states of
partial agglomeration.

λ η = 0.25 µ = 0.5 η = 0.75 µ = 0.5

1 12.5694 12.2965
2 29.5889 28.9567
3 29.5889 28.9567
4 44.9194 43.9722
5 54.4064 53.2675

For this last distribution, it was observed that the modes’ shape remained unchanged despite
the agglomeration effect, for these two cases of partial CNTs agglomeration. The fifth mode change,
when in complete agglomeration, may indicate that the more severe the agglomeration, the more prone
the interference in the modes’ shapes.

3.3. Effect of the Agglomeration on FG-CNTRCs Rectangular Plates’ Free Vibration Behaviour

In the present case study, the free vibration behaviour of a simply supported rectangular plate
was explored under the influence of the agglomeration of CNTs for three different distributions along
the thickness direction. The plate is illustrated in Figure 3, with the aspect ratios of a/h = 10 and a/b = 3.
The dimensionless results were obtained according to Equation (54), as done in Section 3.2.

3.3.1. Free Vibration Analysis without the Agglomeration Effect

The present study does not consider an agglomerated state, µ = η, in order to consider the
achieved results as a reference for the next one, which will consider agglomerated states. Since here it
is considered that there is no influence of the agglomeration effect, this study illustrates the best free
vibrations’ performance of these rectangular FG-CNTRC plates.

The natural frequencies are presented in Table 14. As expected, one observes that there are no
multiple modes for any of the distributions considered, with this happening due to the symmetry loss.
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Table 14. First five natural frequencies for the FG-CNTRC rectangular plate with different distributions
without the agglomeration effect.

λ UD USFG SFG

1 49.3032 29.4880 56.0488
2 61.7868 45.0712 69.7297
3 81.0005 56.8115 90.5044
4 105.2993 74.2900 116.3783
5 133.2387 76.6857 145.6953

It is also possible to say that for the rectangular plate, the tendency of the SFG distribution having
the higher natural frequencies is maintained followed by the UD distribution and at last the USFG
distribution with the poorest dynamic behaviour. This results from the distribution of CNTs along the
thickness direction, as the higher the concentration of CNTs in high bending stress areas, the higher the
natural frequencies.

Figure 13 shows the natural modes’ shape without the influence of the CNTs’ agglomeration for
the UD distribution.
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Figure 14 shows the natural modes’ shape without the influence of the CNTs’ agglomeration for
the USFG distribution.
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3.3.2. Free Vibration Analysis for Complete Agglomerated States (η = 1)

Similarly to the squared plate, for the rectangular plate, the same three states of complete
agglomeration, when η = 1 for three different values of µ = {0.25, 0.5, 0.75}, were also considered.
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The results listed in Table 15 correspond to the UD distribution. The free vibrations’ behaviour of
the rectangular plate tends to worsen with the increase of the severity of the complete agglomerated
state, showing lower natural frequencies with the decrease of the parameter µ.

Table 15. First five natural frequencies for the UD distribution for three different states of
complete agglomeration.

λ η = 1 µ = 0.25 η = 1 µ = 0.5 η = 1 µ = 0.75

1 32.0856 37.9241 43.5964
2 40.2250 47.5490 54.6530
3 52.7614 62.3764 71.6812
4 68.6291 81.1477 93.2317
5 86.8894 102.7540 118.0290

For this case, one can observe that the agglomeration effect exerts influence in the values of the
natural frequencies, although the natural modes’ shape seems to be unchanged when comparing to the
shapes presented in Section 3.3.1 for the non-agglomerated state for this distribution.

For the USFG distribution, the results for the natural frequencies obtained for the three cases of
complete agglomeration can be observed in Table 16. From this table, one can conclude that for all
cases of complete agglomeration studied, the USFG is the distribution that has the worse dynamic
behaviour for the rectangular plate, when compared with the same states of complete agglomeration
for the other CNT distributions.

Table 16. First five natural frequencies for the USFG distribution for three different states of
complete agglomeration.

λ η = 1 µ = 0.25 η = 1 µ = 0.5 η = 1 µ = 0.75

1 19.0417 22.2483 25.5956
2 31.0008 35.5023 40.0258
3 38.8980 44.6043 50.3604
4 49.8835 58.2905 65.8665
5 50.4338 58.3212 66.9380

The modes’ shapes for the USFG distribution are presented in Figure 16 for the most severe case
of complete agglomeration and in Figure 17 for the intermediate case of complete agglomeration
studied. For this distribution, it is possible to see that the agglomeration effect, besides decreasing the
natural frequencies, also changes the shapes of the natural modes in some cases, namely the fourth
and the fifth mode of the USFG using η = 1 and µ = 0.25, and in the fifth mode when η = 1 and µ = 0.5,
when compared with the non-agglomerated state presented in Section 3.3.1. These differences are
apparently intensified with the agglomeration state, since for the least severe case, no differences were
observed; for the intermediate situation, a difference in the fifth mode was observed; and at last, for the
severest situation of complete agglomeration, differences in the fourth and fifth mode were observed.
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For the SFG distribution (Table 17), one can observe that, as predicted, the lower the value of the
parameter µ, the lower are the natural frequencies, just like for the previous distributions. Once again,
the best dynamic behaviour seems to prevail for this distribution regardless of the agglomeration effect
when compared with the same agglomeration states for the USFG and UD distributions.
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Table 17. First five natural frequencies for the SFG distribution for three different states of
complete agglomeration.

λ η = 1 µ = 0.25 η = 1 µ = 0.5 η = 1 µ = 0.75

1 32.2384 38.8929 46.4611
2 40.3660 48.6204 57.9616
3 52.8553 63.5232 75.5133
4 68.6205 82.2699 97.4962
5 86.7151 103.7140 122.5369

For this distribution, one can observe that the agglomeration effect has a high impact on the
natural frequencies, just like for the other distributions. However, the natural modes’ shape did not
present significant differences when compared to the non-agglomerated situation.

3.3.3. Free Vibration Analysis for Partially Agglomerated States

Similarly to the study developed for the square plate, the free vibrations’ behaviour of simply
supported FG-CNTRC rectangular plates, under different partially agglomerated situations were
evaluated, one with η < µ and the other with η > µ, when µ = 0.5 for both situations. As already
mentioned, partial agglomeration is more common than complete agglomeration in CNTRC.

In Table 18, we present the first five natural frequencies for the UD distribution.

Table 18. First five natural frequencies for the UD distribution for two different states of
partial agglomeration.

λ η = 0.25 µ = 0.5 η = 0.75 µ = 0.5

1 48.0037 47.3023
2 60.1669 59.2865
3 78.8925 77.7359
4 102.5815 101.0744
5 129.8282 127.9167

For this CNTs’ distribution, when comparing the two states of partial agglomeration, the best
behaviour found is achieved with µ = 0.5 and η = 0.25, which corresponds to a state where there is less
volume fraction of CNTs located in agglomerated inclusions, when compared with µ = 0.5 and η = 0.75.

Significant differences are presented for the natural frequencies when comparing both states of
agglomeration, and when comparing these agglomerated states with the results obtained in Section 3.3.1
for a non-agglomerated state. However, in terms of the natural modes’ shapes, no significant differences
were found for this partially agglomerated situation when compared with the non-agglomerated state.

Table 19 presents the first five natural frequencies for the USFG distribution. For the rectangular
plate with the USFG distribution, the tendency for the highest natural frequencies to appear for η = 0.25
is maintained, and once again, the lesser the volume of CNTs inside the agglomerated inclusions,
the better the dynamic behaviour of the plate.

Table 19. First five natural frequencies for the USFG distribution for two different states of
partial agglomeration.

λ η = 0.25 µ = 0.5 η = 0.75 µ = 0.5

1 28.7626 28.2805
2 44.1295 43.5517
3 55.6138 54.8666
4 72.7059 71.7045
5 74.9295 73.6747
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For these two situations of partial agglomeration, when comparing the modes’ shapes results
with the ones for a non-agglomerated state (Section 3.3.1), no significant differences were observed for
this CNTs unsymmetrical distribution along the thickness direction, different to the previous results
for the complete agglomeration (Section 3.3.2), which is another indicator that a more severe state of
agglomeration can be more prone to influencing the natural modes.

Finally, in Table 20, we present the first five natural frequencies for the SFG distribution. For this
last vibration analysis, it was observed that this distribution provides the highest natural frequencies,
which translates into a better vibrational behaviour, when compared to the other distributions due to
its enhanced bending stiffness properties.

Table 20. First five natural frequencies for the SFG distribution for two different states of
partial agglomeration.

λ η = 0.25 µ = 0.5 η = 0.75 µ = 0.5

1 54.3945 53.2559
2 67.6982 66.2947
3 87.9146 86.1159
4 113.1130 110.8318
5 141.6856 138.8681

When comparing both states of agglomeration, one can say that the best dynamic behaviour is
reached for η = 0.25, when there is a lesser volume of agglomerated CNTs’ inclusions.

For this last distribution, one can say that the shape of the natural modes remained unchanged
despite the agglomeration effect when compared to the results obtained for the non-agglomerated
state in Section 3.3.1; however, as already mentioned, there are significant differences in the values of
the natural frequencies.

4. Discussion

From the case studies considered, the element Q9 tends to provide lower natural frequencies
when compared to the element Q4, due to its greater ability to describe the plate’s shape kinematics,
yielding also to more expressive differences for higher order frequencies.

Considering the results of the free vibrations’ behaviour of the FG-CNTRC quadrilateral plates,
one can say:

• Since CNTs tend to agglomerate for relatively low CNT volume fractions, this leads to an important
conclusion, namely the one that not taking into account the effect of the CNTs’ agglomeration
might mislead into an overestimation of the elastic properties of the CNTRC, thus to a less accurate
prediction of structure behaviour.

• For all CNTs’ distribution in non-agglomerated situations, the natural frequencies of these
structures were always higher when compared with the results for the same CNT distribution if
under an agglomerated condition whether it would be a complete or a partial one.

• For all cases considered, i.e., no agglomeration, three different states of complete agglomeration and
the two different states of partial agglomeration, the CNTs’ SFG distribution along the thickness
direction provided higher natural frequencies, when comparing to the other two distributions
considered for the same state of agglomeration. This happens due to the higher concentration of
CNTs in high bending stress regions.

• The results of the complete agglomeration studies also demonstrate that the decrease of the
agglomeration parameterµdeteriorates the free vibrations’ behaviour of these structures, leading to
lower natural frequencies for all the distributions considered.

• When considering partial agglomeration of the CNTs in the FG-CNTRC plates, it can be concluded
that the higher the agglomeration parameter η, the lower the natural frequencies for the CNTs’
distributions considered.
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With respect to the natural modes’ shape associated to the different natural frequencies:

• On the FG-CNTRC square plates, no significant differences in the modes’ shapes due to the
influence of the agglomeration effect were found for the majority of the cases. However, for the
SFG CNTs distribution, the fifth mode was affected for complete agglomeration.

• On the FG-CNTRC rectangular plates, for the SFG and UD CNTs distributions, the natural modes’
shapes seem not to be affected with the agglomeration of CNTs; however, for the USFG distribution,
differences in the fourth and fifth modes for the complete agglomerated CNTs were found.

Table 21 summarizes the observed differences in the modes’ shapes considering the parametric
studies performed. For the majority of the agglomeration cases studied, the agglomeration effect did
not show an influence on the modes’ shape.

Table 21. Summary of the agglomeration effect in the natural modes′ shapes of the quadrilateral plates.

Square Plate

CNTs′ distribution
η = 1 µ = 0.5

µ = 0.25 µ = 0.5 µ = 0.75 η = 0.25 η = 0.75

UD - - - - -
USFG - - - - -
SFG 5th 5th 5th - -

Rectangular Plate

CNTs′ distribution
η = 1 µ = 0.5

µ = 0.25 µ = 0.5 µ = 0.75 η = 0.25 η = 0.75

UD - - - - -
USFG 4th, 5th 5th - - -
SFG - - - - -

For the cases where differences were observed, they appear for higher modes (fourth and fifth) and
for situations of complete agglomeration of the CNTs. As for the CNTs’ volume fraction distributions,
for the square plate, the observed differences occur in the SFG distribution, while for the rectangular
plate, the observed differences appeared in the USFG distribution. This allows the conclusion that
depending on the agglomeration state, its influence on the natural modes’ shapes also depend on the
geometry of the plate and on the CNTs’ distribution along the thickness.
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