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Abstract—Distance estimation is a challenge for robots, human
beings and other animals in their adaptation to changing envi-
ronments. Different approaches have been proposed to tackle
this problem based on classical vision algorithms or, more
recently, deep learning. We present a novel approach inspired
by mechanisms involved in fixational movements to estimate a
depth image with a monocular camera. An algorithm based
on microsaccades and head movements during visual fixation
is presented. It combines the images generated by these micro-
movements with the ego-motion signal, to compute the depth
map. Systematic experiments using the Baxter robot in the
Gazebo/ROS simulator are described to test the approach in two
different scenarios, and evaluate the influence of its parameters
and its robustness in the presence of noise.

Index Terms—Robot prototyping of human and animal skills,
Development of skills in biological systems and robots, Sensori-
motor development, Cognitive vision, Monocular depth estima-
tion

I. INTRODUCTION

The human visual-oculomotor system is a source of inspi-
ration for solving problems pertaining to visual perception in
robotics. Many species exhibit behaviours that require accurate
depth estimation in their environments. In particular, primates
solve this problem by the concurrent use of multiple estimators
deriving from different visual cues [5]. Even so, the most
popular sensors used in robotics nowadays to obtain this
information are arguably RGB-D sensors, such as Microsoft
Kinect [13] and any of its variations [19]. They are typically
based on the projection of a known infrared pattern and,
depending on the objects in front of the sensor, the deformation
of this pattern is used to estimate the depth. In computer vision,
a number of methods and algorithms have been established
for determining the depth of a scene using a single camera
or image. For instance, by applying patches to determine the
pose of planes in a single image it is possible to generate the
depth map with a single image [30]. Also, from a stream of
images, the depth map can be deduced if the velocity of the
camera is known [22]. Recent results about obtaining structure
from motion with a monocular camera are based on feature
tracking and triangulation methods [24], [31]. In addition to
these methods, novel deep learning approaches use complex
neural network architectures to learn the correlation between
an RGB image and its equivalent RGB-D in an unsupervised

way [25], [8]. All of these procedures have in common that
they only consider the visual cues as inputs, ignoring the
motion of the camera, and sometimes even computing it from
the images. RGB-D sensors and deep learning techniques
have certain drawbacks. In the case of the former, objects
with absorption in the infrared range are not detected, and
these sensors have also problems outdoors and with reflective
and transparent objects. From a more practical point of view,
robotic manipulation in a confined space requires a streamlined
design with a sensor in hand and, even though state-of-the-art
RGB-D cameras are more compact, they are not an option
compared with the fully integrated built-in eye-in-hand camera
we use in our experiments. In the case of deep learning, long
training processes along with large and pertinent datasets are
necessary; moreover, a number of specific problems arise when
this technique is applied in robotics [9].

In humans, it has been suggested that the retinal image
motion is not enough to determine the depth sign in reference
to the fixation plane, and the direction of the image movement
relative to the observer motion is decisive to obtain this
depth sign [23]. A number of species use eye movements
in coordination with small displacements of the head during
the process of visual fixation to obtain depth information of
the gazed scene [4]. The ’fixation’ process is anything but
fix, since during maintained fixation tiny intersaccadic eye
movements around the gazed location are produced. A large
fraction of these movements is smooth, but seemingly random
changes in eye position occur: so-called ocular drift and
ocular tremor, respectively [17]. Moreover, during maintained
fixation, very small saccades (microsaccades) are generated
with variable frequency and amplitude. Even though microsac-
cades and saccades exhibit similar motor characteristics and
share a common neural substrate [16], there has been a long
controversy over the visual functions of these movements.
Recent studies show that these microsaccades are precisely
directed and play a fundamental role in enhancing visual acuity
[14].

These ideas from biology inspired earlier work in robotics
for distance estimation based on the parallax produced by
camera rotations [29] and compensatory head/eye movements
[18]. In later works the concept is extended to depth estimation
[1]. Although Antonelli and co-workers based their work on
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the coordination of the neck and the oculomotor system to
maintain the fixation point, they did not consider microsac-
cadic movements [2], [3].

In this paper, we build on our earlier work [7] on monoc-
ular depth estimation taking inspiration from mechanisms
involved in fixational movements in humans and primates,
namely, micro-displacements of the head and microsaccadic
movements. The key idea is to consider the images after
micro-movements as perturbations of the initial fixation image
and use them, in combination with the ego-motion signal, to
generate the depth map. Our preliminary results suggested that
the approach was able to satisfactorily estimate the depth in
a scene, and that microsaccades play an essential role in this
process [7]. Here, we consolidate our procedures and expand
our results. First, the mathematical model is presented in detail
in section II including its algorithmic implementation. Then,
in section III, a set of systematic experiments using the Baxter
robot in the Gazebo/ROS simulator are thoroughly described,
with the purpose of evaluating the approach in two different
scenarios, and studying the influence of its parameters and its
robustness in the presence of noise. The results are evaluated
in comparison with the depth provided by the simulator as
ground truth, and also with the detector algorithm for the
Aruco visual markers located in the scenario. Finally, these
results are discussed in section IV.

II. MODEL

A. Model hypothesis

The human fixation mechanisms are the source of inspi-
ration to develop the proposed model which is sustained
by these hypotheses: i) During the fixation process, head-
eye movements can be considered as perturbations around
an initial pose. A complex set of coordinated movements
implicating the head and the oculomotor system are generated
in the fixation process [4]. The aim of these movements is to
maintain the gaze point in spite of random displacements of
head and eyes during fixation. ii) So-called visual suppression
occurs during microsaccadic movements [12] to the effect that
only in the intersaccadic gaps is visual information accessible.
In consequence, the fixation process can be regarded as a
spatial image sampling. iii) The main cue for the estimation
of depth and 3D perception is the optical flow produced by
the observer. When it is not the result of external movements,
optic flow and motion parallax are consistent when other depth
cues are not available [11]. iv) The contribution generated by
ego-motion signal makes it possible to clarify the inherent
ambiguity associated with the optical flow [15].

B. Mathematical model

In the beginning, there is no information about the depth of
the scene. We consider an initial gazed point. Then, the visual
system moves to the initial fixation pose and the image that
is received by the visual system is taken as reference. After
that, microsaccades and head movements start. The source of
movements is only produced by the visual system, and the
scene is considered static during this fixation process. Due
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Fig. 1: Simplified scheme to show the sphere of eye move-
ments. These poses result from head-eye movements. The
figure is not scaled and it just illustrates that there are two
spaces: the space of eye-head movements (a sphere with radius
rm) and the microsaccade space composed by the projections
of the end point of a microsaccade around the initial gazed
point (radius rg).

to perception suppression, images are not considered during
saccades. When the saccadic movement has just finished the
image received by the visual system is compared with the
reference image and depth perception is updated with this new
information. To simplify the problem, we consider a range of
distances in the scene defined by a near plane Zn and a far
plane Zf which are perpendicular to the Z visual system axis.
Therefore, depth perception takes place within this range. A
schema of this behaviour from a robotic point of view is shown
in Fig.2. When t=0 the camera has a pose to look at the gazed
point. This is the starting point of the fixation process with
initial image of reference I0. Given a point of the scene (P0)
that generates an intensity value in that image and projecting
it onto the image plane, the pixel

{
x0i , y

0
i

}
is obtained. The Z

axis of the visual system is aligned with the gaze point and
Z0 is the value of the depth in P0, understanding depth here
as the distance from the camera frame of reference {C0} to
the perpendicular plane to the camera Z-axis containing P0.

After a head movement and a microsaccade (t=t), the gazed
point has been displaced, and the new camera pose is aligned
with this new gazed point. The depth with respect to the
new camera frame {Ct} has changed. After the microsaccade,
a new image It is obtained. The original P0 is now Pt

with respect to the new camera frame and its projection on
the image plane corresponds to a new pixel position in the
image {xti, yti}. An optical displacement has taken place in
the image plane Of = {Sx, Sy}. This value can be estimated
by computing the optical flow between both images.

Our aim is to determine the value of Z0 that corresponds
to depth sensation in the fixation point. In order to reach this
goal, we define several matrices and vectors in homogeneous
coordinates. The pixel coordinates in It and I0 are defined
by vectors mt = [ut, vt, 1, 1]T and m0 = [u0, v0, 1, 1]T ,
where u and v are expressed in the centred image coordinates
system. We define a projection matrix K that is a function
of the camera parameters, mainly of the focal lengths. To
simplify the model K = {ki,j ,∀i, j ∈ {1, . . . , 4}, i 6= j =⇒
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Fig. 2: Schema of the considered camera movements. Initially,
the camera is represented by the {C0} frame of reference. A
point P0, with coordinates in {C0} given by {X0, Y0, Z0},
projects onto the image plane with coordinates

{
x0i , y

0
i

}
and

pixel coordinates {u0i , v0i }, which are computed using the
projection matrix K. A roto-translation (RT ) of {C0} results
in a new frame {Ct} and the projection of that point changes to
{xti, yti} and {uti, vti}. Its apparent displacement on the image
is given by Of = {Sx, Sy}

ki,j = 0 ∧ diag(K) = {f, f, 1, 1}} where f is the focal
length of the camera. To work in homogeneous coordinates,
we define two matrices that depend on the depth value:
H(Z) = {hi,j ,∀i, j ∈ {1, . . . , 4}, i 6= j =⇒ hi,j =
0 ∧ diag(H) = {1/Z, 1/Z, 1/Z, 1}}}. Thus, there are two
such matrices, one for the initial camera pose H(Z0) and the
other one for the other pose H(Zt). Finally, regarding roto-
translation matrix between the frames, we consider that the
angular variation is small enough to approximate the rotation
by using the skew matrix M; in addition, the translation matrix
T is given by the Cartesian difference between {C0} and {Ct}.
These matrices are defined in (1).

M =

 0 −∆Wz ∆Wy

∆Wz 0 −∆Wx

−∆Wy ∆Wx 0

 ; T =

(
∆X
∆Y
∆Z

)
(1)

Where ∆W(x,y,z) is the angular variation in each axis. The
roto-translation matrix RT is defined as a composition in (2).

RT =
(

1 + M T
0 1

)
(2)

If the ego-motion signal is known by means of T and M, the
new pixel position in the image plane mt can be computed by
using expression (3) from the reference image pixel position.

mt = H(Zt) ·K · RT ·K−1 ·H(Z0)−1 ·m0 (3)

The value of Zt can be obtained from the expression: Pt =
RT · P0, and taking into account that P0 = {u0 · Z0/f, v0 ·
Z0/f, Z0}, the value of Zt can be calculated with equation
(4).

Zt = Z0 + ∆Z −X0∆Wy + Y0∆Wx (4)

From equations (3) and (4), it can be concluded that mt

is only a function of the camera parameters (f ), the ego-
motion components ({∆X,∆Y,∆Z,∆Wx∆Wy,∆Wz} and
the initial depth Z0. When the scene is considered static, the
apparent displacement produced in the image of pixel m0 is
only originated by ego-motion, therefore equation (5) must be
satisfied.

m0 = mt −Of (5)

However, given that both the ego-motion and the optic flow
(Of ) can have an error in their estimations, we can rewrite
equation (5) as (6).

m0 = m̂t − Ôf + ε −→ ε = m0 − m̂t + Ôf (6)

Where ε represents the accumulative error resulting from
computing mt using expression (3), and also includes the optic
flow estimation error. m0 is known, since it is the initial pixel
position in the reference image, whereas mt can be calculated
from expressions (3) and (4). ε is a vectorial magnitude and
thus, a cost function based on its module can be defined as
(7).

L = 1
2 ‖ ε ‖

2= 1
2

(
ε2u + ε2v

)
= 1

2

(
(u0 − ût + Sx)2 + (v0 − v̂t + Sy)2

)
(7)

If we assume that the value of Z0 is not correct and the
errors corresponding to optic flow components {Sx, Sy} and
ego-motion estimation are approximately constant, the greatest
contribution to the value of ε is the undetermined knowledge
about Z0. If Z0 were the optimum value for the cost function
defined in (7), it could be computed using expression (8).

Z∗0 = arg minZ∗
0∈[Zn,Zf ]

L = {Z∗0 | ∀α ∈ [Zn, Zf ] :

L(α) ≥= L(Z∗0 )} (8)

Deriving (7) with respect to Z0, we obtain (9)

∂L

∂Z0
= −[m0 − m̂t + Ôf ]T · ∂m̂t

∂Z0
(9)

It is useful to define these expressions to implement (9):

fu = uo/f ; fv = vo/f

Vz = (1−∆Wyfu + ∆Wxfv) ; Az =∆Z + Z0Vz

Vy = (∆Wx − fv −∆Wzfu) ; Ay =∆Y − Z0Vy

Vx = (∆Wy + fu −∆Wzfv) ; Ax =∆X + Z0Vx (10)

Then, m̂t, m0 and Ôf in (9) can be expressed as:

m̂t =

[
f
Ax

Az
, f
Ay

Az
, 1, 1

]T
;

m0 =[u0, v0, 1, 1]T ; Ôf =[Sx, Sy, 0, 0]T (11)



The derivative of m̂t with respect to Z0 can be written as:

∂m̂t

∂Z0
= [Mx,My, 0, 0]

T (12)

where

Mx =
fVx
Az
− fVz

Ax

A2
z

; My =
fVy
Az
− fVz

Ay

A2
z

(13)

From the above equations it can be concluded that the value
of the derivative of the cost function depends only on the initial
point coordinates (u0, v0), the variation of the camera pose
(∆X,∆Y,∆Z,∆Wx,∆Wy,∆Wz) and the measured optical
flow (Sx, Sy) in the initial image pixel.

Under these conditions, depth estimation has been converted
into many independent optimisation problems (one for each
image pixel). This fact conditions the method of optimisation
to use. Even though simple stochastic gradient descent (SGD)
could solve it, it would be necessary to define a different
learning rate for each optimisation problem since each pixel
from the initial image is independent of the rest. Probably this
learning rate could depend on the real Z value corresponding to
each pixel. Consequently, gradient-based methods that work at
a constant learning rate are discarded. The learning ratio must
be adapted in each iteration for each pixel. Another aspect to
consider is the noise in the signals for the gradient calculation.
Due to the estimation method, the optical flow has an inherent
variability especially in areas where there is an absence of
texture. In addition, the position increase is estimated from
self-perception data which may also present some noise.

A gradient descent method that can deal with these two
issues to successfully compute Z∗0 , is the ADADELTA method
[32]. This algorithm is based on SGD with and adaptive filter,
but it also introduces several filters in the estimation of the
gradient and second derivatives. These filters can reduce the
noise influence.

C. Depth estimation algorithm

Algorithm 1 implements the above mathematical formula-
tions inspired by the fixation process. The starting point is the
reference image (I0) and camera pose (C0) captured at the time
of the initial fixation process. Initially, no depth information
is available, therefore all pixels in the image are assigned
the same value Zn. When the fixation process has begun, the
movements of the head and the oculomotor system generate
displacements in the image (It) and in the camera pose (Ct).
That is, the microsaccades used to carry out the sampling. The
initial image I0 is correlated with each new obtained image It
using the Lucas-Kanade method [21]. From here, the algorithm
iterates for each image pixel, updating the gradient descent
computation with the ADADELTA equations.

As the algorithm advances, the received information in-
creases the sense of depth in the image that corresponds to the
initial fixation point. Ultimately, this increase in information
is represented in the algorithm by the term ∆Gt(i, j), which
in turn depends on the cost function according to (9). Thus,
if there is no optical shift between the current image and the

Algorithm 1 Depth estimation

Require: I0,Zn, ρ, σ, C0

1: Z
(0)
0 ← Zn, t← 0, h,w ← size(I0);

2: G0 ← zeros(h,w); ∆G0 ← zeros(h,w)
3: loop
4: C ← HeadEyeMovement()
5: I ← getNewImage()
6: OF ← OpticF low(I0, I)
7: S, T ← getEgomotion(C0, C)
8: for i = 1 to h do
9: for j = 1 to w do

10: v ← i− h/2; u← j − w/2
11: gt(u, v, S, T,OF (i, j))← ∂L

∂Z0
// Eq. 9

12: Gt(i, j)← ρG(i, j)t−1 + (1− ρ)g2t
13: τt ←

√
∆G(i, j)t−1 + σ/

√
G(i, j)t + σ

14: ∆G(i, j)t = ρ∆G(i, j)t−1 + (1− ρ)τ2t
15: Z

(t)
0 (i, j) = Z

(t−1)
0 (i, j) + ∆Gt(i, j)

16: t← t+ 1
17: end for
18: end for
19: end loop

reference image (I = I0), there is no improvement in depth
estimation knowledge.

From a computational complexity point of view, each pixel
is visited once in each iteration, as shown in algorithm
1, and the computations made on each pixel only depend
on the state of that pixel in the previous step, the optical
flux estimated on this point and the camera displacement.
Therefore, the temporary asymptotic cost in this part of the
algorithm is O(N ), where N is the total number of pixels
in the image. Regarding the asymptotic spatial cost, for the
complete algorithm it is necessary to store the resulting depth
image, the optical flux components in each iteration, the initial
image and the current image. Therefore, the spatial cost has a
magnitude of Θ(5N ). This algorithm is amenable to parallel
computing, since each pixel is independent of the previous
and current states of the rest of the pixels. This allows it to
be implemented using parallel computing techniques on either
GPUs or CPUs.

D. Algorithm parameters

As it can be seen in the description of Algorithm 1, it
is necessary to set a number of parameters for its proper
execution: Z0 is the initial distance for all image pixels; ρ
acts as the coefficient of a low pass filter for the gradient
adaptation and its derivative, and σ regulates the gain of the
gradient variation in each step. Due to the fact that gradient
descent techniques do not differentiate between local and
global minima, the selection of these parameters is important
to obtain good quality results.

In addition, if the span of the work area is known, the limits
of the search can be defined a priori; if the sought minimum
lies outside these limits, the algorithm will not converge. Also,



the noise factor affects its performance to the effect that the
values it generates may be outside these limits. In such cases,
it is necessary to define an action policy for the pixels in which
this phenomenon occurs.

III. EXPERIMENTS

A. Experimental setup

Evaluation tests are carried out with the Baxter robot in
the Gazebo/ROS simulator. Given the degrees of freedom of
the Baxter’s head it is not possible to replicate with it the
movements of the primate’s oculomotor system. Instead, we
use the 7-DOF arm of this robot with an eye-in-hand camera.

Although some robotic systems described in the literature
could perform this task correctly [18], [28], the design of the
experiments based on this specific platform was developed in
the context of the RoboPicker [6] project for which a low-cost
robot is called for and manipulation takes place in a confined
space; this will also allow for future experiments with this real
system. The basic function of the arm in our experiments is to
move the camera in such a way that it maintains orientation
and it positions itself in the same way that a human eye would
perform fixational movements.

Baxter’s wrist camera can be configured in several ways.
Of all the possible ones, we chose a resolution of 900x600
pixels and a focal length of 405.7. We set up the same
parameters for the camera simulation. In addition, we added
white gaussian noise to the image in order to introduce
uncertainty in the optical flow computation. This value is
common to all performed experiments and is equal to 0.01
pixels.

The space of movements for the camera is specified as
a sphere defined by two parameters: the central point and
the radius of movements rm (see Fig.1). rm is considered
constant in order to reduce the number of experiments, with a
value of 0.015 m according to the order of magnitude in the
experiments of Aytekin and Rucci [4] (these authors suggest
rm is not uniform and its value depends on the distance to
the fixation point). A controversial point in the literature is
the maximum radius of a microsaccade. Some studies set
this value between 1o and 2o. However, most microsaccades
have a magnitude smaller than 0.5o for many tasks [27]. The
parameter rg is defined by the microsaccade amplitude as
shown in Fig.1. Taking an amplitude of 0.5o, rg varies with
the fixation point distance as:

rg ≈ 0.0088 · d (14)

B. Experimental procedure

Based on the fixation process, we define a procedure that
is used in all experiments:
• An artificial scenario is placed in front of the wrist camera

of the Baxter robot. (Fig.3a) and a starting point of the
camera for the fixation process is selected.

• In order to simplify, three distances are selected for the
fixation point in the scenario, all of them on the same

axis Z from the camera. In addition, the microsaccade
radius rg is computed as a function of that distance (14).

• The initial image I0 and pose C0 are saved.
• The camera starts to move randomly within a sphere of

radius rm maintaining the fixation point projected onto
the image plane within the circle of radius rg .

• The successive images (It) and poses (Ct) are compared
with the initial image and pose by applying Algorithm 1.

C. Evaluation methods

We consider two kind of scenarios to test Algorithm 1.
The first scenario is used to evaluate the accuracy of depth
estimation and the influence of the algorithm parameters. The
performance of the algorithm is evaluated using two kinds of
backgrounds. The first one uses the depth image generated by
the simulator (Fig.3c), as the most accurate depth estimation
ground truth. The second background utilises 6 squared plates
placed in the simulated scenario on which 6 Aruco Markers
are printed [10]. The type of markers and their relative position
with respect to the initial camera location are shown in
table I and Fig.3b. The error is estimated from the standard
deviation after 30 measures for each marker position using the
Aruco markers detector algorithm. These error values provide
information about the repeatability of the measurement, not
its accuracy with respect to the background. Using the Aruco
markers, we can estimate the depth of each marker plane. In
addition, each marker encloses an image area where the depth
should be approximately the same. Therefore, applying this
mask to the obtained depth image and computing the mean
and standard deviation for each marker area, the result must
be comparable to the distance estimated by the Aruco detector.

The second evaluation scenario is composed of a number
of simulated objects with different shapes and textures in the
same setup. Then, the obtained depth image is compared in
each iteration with the real one using the mean square error
between them. Several Aruco markers are also introduced in
this scenario to be used as control points.

TABLE I: Aruco markers used and estimations of the depth
from the camera with the Aruco detector.

Marker
101

Marker
201

Marker
301

(0.509± 0.006)m (0.386± 0.005)m (0.605± 0.004)m

Marker
401

Marker
501

Marker
601

(0.694± 0.003)m (0.866± 0.002)m (1.071± 0.009)m

D. Experimental tests

We present several experiments that have as primary objec-
tive the evaluation of the proposed algorithm. As additional
secondary goals we intend: i) to study the influence of the
choice of parameters on the performance and results of the
adaptive process. ii) To evaluate the effect of a plausible
Gaussian error in the inputs of the algorithm. iii) To validate
the algorithm in an environment with ordinary objects.To
avoid shifts in the image due to changes in perspective and



(a) (b) (c)

Fig. 3: Experimental setup. a) Relative position between Baxter robot and scenario. b) Layout of markers in the test scenario.
c) Depth image generated by the simulator, using a virtual depth camera with the same intrinsic parameters than the RGB
camera, and placed in the same position.

to keep the set of control markers within the scene in all
images, three virtual fixation points were selected at different
distances from the initial position of the camera –which is
the same for all experiments– d = {0.3, 0.6, 0.9}(m). We try
to avoid any interference produced by the choice of fixation
points within the environment. In this way, it can be assured
that all Aruco markers will appear in almost all images and
therefore it is possible to track and compare with them in each
iteration. Considering that the final objective is to obtain a
depth estimation as similar as possible to the image generated
by the simulation of the depth camera, two of the criteria
used to evaluate the results are the structural similarity index
(SSIM) [33] and the global mean square error (MSE), along
with the standard deviation (STD) between the depth images
in each iteration. To check whether there exist differences in
the performance of the algorithm depending on the depth,
the comparison between the estimation of the distance in the
planes defined by the aruco markers and the one estimated by
the algorithm in each iteration is used. Moreover, since the
exact position of each plane corresponding to each marker is
known, this value is compared to the estimation of the markers
and the results of the algorithm.

In addition, we defined a policy regarding how to proceed
when the estimated value of the distance lies outside the
defined limits of the work area. This can occur when there is an
error in the optical flow estimation or in the position variation.
One option was to reset its value to the initial distance or,
alternatively, to decide not to adapt the value of Z∗t . After
several tentative tests, this second policy was implemented.

1) Influence of the choice of parameters: It can be observed
from the adaptive part of the proposed algorithm that ρ acts
as the smoothing coefficient in an exponential mean filter,
both for the gradient square and ∆G(i, j)t adaptation. The
choice of ρ must be modulated by the possible noise that the
estimation of the gradient and its derivative may present. It
can be assumed that this noise has a similar effect on all depth
image pixels, therefore the value of ρ is taken as the same for
all of them.

The σ parameter –as defined by Zeiler [32]– has a regular-

isation function to prevent a zero value for the denominator
of the τt estimate. Its importance changes depending on the
relative value of the estimation of the square of the gradient
with respect to the σ value.

To study the influence of both parameters, we fix the rest
of system variables. Thus, the fixation point is placed at
0.6 m; 0.1 m is assigned as the initial value of Z for all
pixels in the depth image; and, finally, the displacements of
the camera and RGB images are the same for all variations
of the studied parameters. Under these conditions, we fix
the value of ρ and vary σ and vice versa. The considered
parameter values are σ = {0.001, 0.005, 0.01, 0.05} and
ρ = {0.4, 0.5, 0.7, 0.9, 0.99}. An example of the obtained

0 20 40 60 80 100 120 140 160 180 200

iteration

10 -2

10 -1

10 0

S
T

D
 d

e
s
v
ia

ti
o

n
 (

m
)

Std desviation evolution

0 20 40 60 80 100 120 140 160 180 200
10 -3

10 -2

10 -1

10 0

M
S

E
 (

m
)

MSE error evolution

 = 0.40,  =0.010  = 0.50,  =0.010  = 0.70,  =0.010  = 0.90,  =0.010

Fig. 4: MSE and STD deviation between the background depth
image and the estimation made by the proposed algorithm for
60 cm fixation point and different values of ρ for a constant
value of σ = 0.01

results for these tests is shown in Fig.4 and 5. From the
analysis of these plots, it is apparent that when σ is kept
constant and the value of ρ is changed, the final MSE and
STD is similar for all cases (in Fig.4, the mean of the last 50
iterations is 0.0169± 0.0787m). Also, these results suggest a
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behaviour for the influence of ρ for a constant σ, in the sense
that the lower ρ is, the faster the algorithm converges (around
30 iterations for ρ = 0.4).In principle it seems that the lower
σ is, the better the obtained results are (Fig.5). This trend,
however, has a limit and for a very low sigma, the results are
poor.

In addition, we studied the influence of the initial value of Z
on the algorithm results. Thus, we fixed the rest of parameters
and varied the value of Z0. The obtained results are shown
in Fig.6. It can be checked that the convergence to the final
result seems faster the higher the value of Z0.

2) Influence of noisy input signals: Even though the gra-
dient descent algorithm takes advantage of parameters ρ and

σ to filter in some way the noise in the input signals, still
the estimation of the gradient and its derivative is severely
affected by this noise. To asses the impact of this issue, we
introduced in our experiments a gaussian error in the image
that directly affects the precision in obtaining the optical flow.
This error acts on each pixel individually, whereas the error
in the estimation of the displacement of the camera affects the
calculation of depth in all pixels.

From this point of view, we used the same experimental
conditions, that is, radius of movements (rm = 0.015m); fixa-
tion point at distance 0.6 m; same captured RGB images and
camera displacements. However, in each iteration we disturb
the camera displacement computations with white gaussian
noise affecting its rotational and translational components,
and characterised by standard deviations φr and φt. The
chosen values for φt are φt = {0.0001; 0.00050; 0.0010} m
that represent {1.2%, 6.6%, 13.2%} of the maximum possible
displacement respectively. Moreover, the selected values for
φr are φr = {0.005◦, 0.1◦, 0.3◦}. After the execution of the
algorithm, the obtained results are shown in Fig.7. Gray-scale
representations of the final depth images for the best and worst
cases are shown in Fig.8.

3) Aruco marker comparison: The purpose of using Aruco
markers in the simulation is twofold. First, to create surfaces
where the distance to the camera is known, and second,
to build a scenario that is easy to test when moving from
simulation to reality. In simulation it is straightforward to
compare the results since the distances from the markers to
the camera frame are perfectly known. It is also possible to
check the predictions that the Aruco algorithm makes for these
known distances. In order to test these errors we applied our
algorithm in the same scenario but only varying the distance
of the fixation point, and keeping the rest of the parameters
constant for all the tests. In table II, the obtained results are
shown. The first column lists the relative errors between the
estimation of the algorithm and the distance predicted from
Aruco markers. The second column compares the relative
errors between the estimation of the algorithm and the distance
given by the simulator. A graphical example is shown in Fig.9.

4) Environment with ordinary objects: So far, only a simpli-
fied scenario has been considered, which has made it possible
to evaluate the accuracy of depth estimation as well as the
influence of the algorithm parameters and noise. All the
surfaces involved were planes perpendicular to the camera.
In order to test the effectiveness of the algorithm in other
more complex environments, models of several objects have
been chosen [26] and arranged in front of the camera in the
same way as the markers. The RGB image for this scenario is
shown in Fig.10a. There are various types of objects in terms
of shape, texture and transparency. the corresponding depth
image as generated by the simulator is shown in Fig.10b; it
will be used as reference ground truth image.

To evaluate the results we used MSE as we did before. Due
to the fact that MSE can yield misleading results in certain
circumstances, SSIM was also used. SSIM provides us with
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Fig. 7: MSE with error bars representing STD of the last 20
iterations. The bars are grouped by the added white noise.
Ei = {φt(i), φr(i)}.

information about the structural similarity between the depth
image generated by the simulator and that estimated by the
algorithm. For these tests, the parameters were given the values
for which the best results in Fig.8 were obtained without white
noise error. Namely, ρ = 0.5 and σ = 0.005. The evolution
of MSE and STD are shown in Fig.11b with the expected
behaviour. Fig. 11a illustrates the evolution of SSIM index
along the whole adaptive process. The range of possible values
for SSIM extends from 0 to 1, being more similar the closer
it is to 1. In this case, the variability of that index oscillates
between 0.75 and 0.85 at the end of the algorithm iteration
for all selected fixation points, comparing with the ideal depth
image represented in Fig.10b.

IV. DISCUSSION

The results of the above experiments allow us to asses
the robustness of the algorithm in relation to the addition
of noise, as well as the influence of the parameters on its
performance. In contrast to [7], here we evaluate the algorithm
more thoroughly. For this reason, MSE and STD are used to

Fig. 8: Image depth, showing the distance for each pixel
scaled in 0-255 range. The upper image corresponds to the
best obtained MSE and on the bottom the worst MSE for all
experiments where white noise error was added to the camera
displacement.φr is expressed in radians and φt in meters

measure the average error over the whole image. Using the
simulator makes possible to have a perfect background in order
to compute MSE and STD. We can also compare the results
of our algorithm with those generated by the Aruco Markers
in the simulation.

1) Parameter selection: In view of the results shown in
Fig.4 and Fig.5, it is apparent that, as expected, ρ parameter
acts as a filter causing the stabilisation of the final results in
exchange for the number of iterations to reach them. On the
other hand, the behaviour of σ is more complex. As it can
be seen in Fig.5, for a given ρ the lower the value of σ the
better the overall result. However, if σ becomes too small, the
algorithm gets frozen (purple line in Fig.5). This is also the
case for too high values of ρ (green line in Fig.4). In any case
the choice of σ and ρ should be made jointly since the closer
ρ is to 1 –and, therefore, filters more– the higher the value of
σ should be. Finally, the initial value Z0 only conditions the
moment of reaching a more or less stable result, as shown in
Fig.6, but it does not seem to have an effect on the final depth
image.

2) Noise addition: By adding a Gaussian error to the
estimation of the camera position, that affects equally each
pixel of the final depth image, we are pushing the application
of the algorithm to the limit. Notwithstanding, it is in this
case when the effects of σ and ρ become more apparent.



TABLE II: Relative errors between depth estimated by the
algorithm and the distance predicted from Aruco markers, and
between the estimation of the algorithm and the distance given
by the simulator, for the six Aruco markers and three fixation
distances.

d=30 cm
Aruco difference Simulator difference

M.201 (0.57± 0.60)) % (0.83± 0.68)) %
M.101 (0.57± 0.42)) % (1.64± 0.42)) %
M.301 (0.35± 0.07)) % (0.33± 0.07)) %
M.401 (0.97± 0.10)) % (0.12± 0.09)) %
M.501 (0.61± 0.07)) % (1.04± 0.07)) %
M.601 (2.79± 0.07)) % (1.41± 0.08)) %

d=60 cm
Aruco difference Simulator difference

M.201 (2.30± 0.24)) % (0.52± 0.22)) %
M.101 (0.46± 0.17)) % (1.16± 0.17)) %
M.301 (0.62± 0.09)) % (0.38± 0.09)) %
M.401 (1.05± 0.04)) % (0.28± 0.04)) %
M.501 (1.82± 0.03)) % (0.24± 0.03)) %
M.601 (5.10± 0.13)) % (2.98± 0.14)) %

d=90 cm
Aruco difference Simulator difference

M.201 (1.75± 1.61)) % (1.70± 1.54)) %
M.101 (0.77± 0.21)) % (0.75± 0.21)) %
M.301 (0.59± 0.59)) % (0.59± 0.59)) %
M.401 (0.56± 0.09)) % (0.09± 0.04)) %
M.501 (0.48± 0.17)) % (0.95± 0.17)) %
M.601 (2.36± 0.11)) % (0.10± 0.08)) %
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Fig. 9: Example of the evolution of depth estimate mean for the
Aruco regions only, wit a fixation point at 60 cm. The dotted
lines are the distances of the markers given by the simulator,
and the dashed lines are the distances estimated by the Aruco
algorithm.

These experiments serve also the purpose of establishing the
error limits when applying the algorithm to a real robot. Our
results raise some points for discussion. i) The lower σ is, it
seems that the more robust the performance is in all cases; ii)
increasing ρ tends to stabilise the algorithm results in some
cases, depending on the value of σ, and with a limit (as in
Fig.4 where for a value of ρ = 0.99 the algorithm hardly
progresses); iii) the uncertainty when the added noise error is
too high generates non-valid results. As it can be seen in Fig.8

in a qualitative way, the added error has a manifest influence
in the quality of the results.

3) Aruco markers comparison: As suggested in [20], the
accuracy of the Aruco Markers decays with distance. Table II
shows that the greater the distance from a given marker, the
results generated by the algorithm are closer to the simulator
ground truth than to the values provided by the markers. This
suggests that for this particular case the proposed algorithm is
less sensitive to error variation with distance than the Aruco
markers.

4) Real object simulation: Both the numerical results ob-
tained from the analysis of Fig.11a and Fig.11b as well as the
qualitative results derived from Fig.12 show that the proposed
algorithm is able to determine the depth image of a more
complex scenario. Thus, the evolution of SSIM and MSE is
analogous and reaches the convergence value at iteration 40 for
all cases. It is remarkable that SSIM reaches a value of about
0.80 which indicates a very high structural similarity with the
reference image. It is also important to highlight the behaviour
of the algorithm with respect to non-textured objects such as
the night lamp or the camera for which the determination of
the optic flow involves more difficulties. It is also noteworthy
the behaviour for semi-transparent objects –such as the wine
bottle or the beer mug handle, where the algorithm gives good
results which could not be obtained, for instance, with standard
depth sensors.

V. CONCLUSION AND FUTURE WORK

In this work, we have stated several hypotheses based on
monocular human visual fixation. We have proposed a model
that from an initial image and camera pose is able to estimate
its depth map by considering the optical displacement in the
images induced by the different poses of the camera as a con-
sequence of eye-head movements inspired by those involved in
human fixation, namely, microdisplacements of the head and
microsaccadic movements. It is important to highlight the fact
that our algorithm is agnostic to the specific robot hardware
as long as it is able to replicate the described 3D camera
fixation movements. In consequence, our conclusions can be
extended to other robotic platforms since it is only necessary
to know the pose of the camera at each instant from the robot
proprioception, and compare it with the initial pose. We have
studied the behaviour of the proposed algorithm in several
scenarios in order to quantify its stability with respect to noisy
input signals and how its parameters influence its performance,
both qualitatively and quantitatively. Our good results pave the
way for the implementation in a real robot.
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Fig. 10: Layout for the experiments with ordinary objects. a) RGB image of the scenario. b) Ground truth depth image
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Fig. 11: Evolution of the algorithm results for fixation points at 30, 60 and 90 cm. a) SSIM evolution. b) MSE and STD
evolution
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Fig. 12: Gray-scale experimental results for the scenario with ordinary objects and fixation points at 30, 60 and 90 cm.
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