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Complex shaping of the depth of focus
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Abstract: In this manuscript an exact solution to the inverse problem of axial beam shaping
along the focus of a convergent lens is found. This allows to extend, within the framework of the
scalar theory of diffraction, the mathematical formalism of complex pupils to include axial phase
modulation. Numerical simulations based on Fourier transform as well as convolution operations
indicate that amplitude and phase modulation can be performed simultaneously. It is also shown
that include or not phase modulation in the beam shaping process can increase its efficiency more
than three times. In addition, an analytical expression for the Gouy phase that depends on the
introduced phase modulation was also derived. It is expected that obtained results benefit many
photonic applications involving the control and manipulation of light along the focal region.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Properly designed optical pupils can be used to engineer the light distribution at the focal region.
Several efforts to achieve full control over amplitude, phase and polarization of light focused
with high numerical aperture objective lenses have been carried out [1–4]. Furthermore, within
the framework of the scalar theory of diffraction some alternative focal beam shaping methods,
valid under the paraxial approximation, have also demonstrated their usefulness in many practical
applications [5–7]. Several types of pure amplitude pupils were used to increase the depth
of focus and/or control the distribution of light near the focus. On this point, among other
proposals one can find spatial filters based on the definition of Strehl irradiance ratio [8], specific
apodizers applied upon zone plates that generate multiple foci [9], the cascade of two binary
phase diffractive optical elements [10], or the combination of diffractive grating and a binary
diffractive lens [11]. With similar purposes, phase-only optical elements have been employed to
get axial super-resolving imaging [12] or extend the depth of focus through different strategies
that include, but are not limited to an optimization design method [13], an adaptive-optic loop
working as a dynamic programmable phase-only filters [14] or specific designed diffractive
optical elements (DOEs) like the so-called peacock eye DOE [15] and light sword lens [16,17],
which were recently proposed for ophthalmic presbyopia compensation.

In general the design of optical pupils for approaching the field amplitude near the focus
depends on the solution of an inverse problem. That is; starting from a three-dimensional
distribution of light around the focal region one should be able to find the most suited optical
element that once placed at the pupil plane fits the expected field amplitude. This is a highly
challenging task because axial and transversal irradiance profiles cannot be tailored separately,
but one influences the shape of the other. Even so depending on the application users might be
more interested in a particular type of beam shaping. For instance, in surface microprocessing of
materials i.e., for texturing or cleaning, the transverse rather than the axial shape of the laser
irradiance is usually more important. In contrast, for applications including beam focalization for
volumetric ablation of transparent objects, or supercontinuum generation and filamentation, axial
beam shaping is what really matters. In the latter case, it is known that Fourier transform (FT)
formalism gives us a powerful tool to calculate the complex pupil functions corresponding to the
inverse problem [18]. Hence, the beam shaping can be carried out with relative high-accuracy
and low computation time at the expense of using complex pupils that cannot be directly encoded

#400238 https://doi.org/10.1364/OSAC.400238
Journal © 2020 Received 16 Jun 2020; revised 17 Jul 2020; accepted 18 Jul 2020; published 5 Aug 2020

https://orcid.org/0000-0002-3248-1780
https://doi.org/10.1364/OA_License_v1
https://crossmark.crossref.org/dialog/?doi=10.1364/OSAC.400238&amp;domain=pdf&amp;date_stamp=2020-08-05


Research Article Vol. 3, No. 8 / 15 August 2020 / OSA Continuum 2176

into single optical elements or devices. To overcome this limitation the designed complex pupils
were implemented on two spatial light modulators (SLMs) to separately display the amplitude
and phase contributions [19]. In this context, an early publication of an approximate method to
encode complex functions with phase filters [20] allowed the amplitude of complex pupils to be
encoded into first prototypes of twisted nematic liquid-crystal SLMs working in the phase-only
configuration, but still having low spatial resolutions (640× 480 pixels) [21,22]. At present, the
FT formalism can benefit from both the current progresses in SLM technology as well as the
increased number of reported techniques aimed to encode complex fields. In addition, to the best
of my knowledge, axial beam shaping with complex pupils is currently limited to reproduce the
amplitude of the desired electric field along the focus, without considering its phase content.

In this manuscript the theory of complex pupils is extended to include phase modulation. The
implementation of the FT formalism with the double-phase encoding method [23] and high spatial
resolution (1920× 1080 pixels) phase-only SLMs is also discussed. Furthermore, the proposed
beam shaping method is complemented with the analysis of aspects related to its efficiency and the
associated Gouy phase. It is shown that the extended theory of complex pupils allows performing
not only amplitude but also phase shaping of the focus in the axial direction, simultaneously. In
this context, the double-phase method ensures a high accurate reconstruction of the complex
pupils at the input plane of the focusing element. The designed complex pupils composed of
circularly symmetric masks are calculated from a direct (non-iterative) fast Fourier transform
(FFT), and a rescaling process. In addition, the potential of the FT formalism for carrying out
the dynamic spatial shaping of the focal region is shown by means of a couple of visualizations.
Numerical simulations were used to corroborate all theoretical results. Accordingly, several
electric fields having desired amplitude and phase profiles with different depth of focus were
numerically reconstructed, achieving root mean squared errors (rmse) less than 10% in all cases.
Additionally, the effects of axial beam shaping on the three-dimensional distributions of light at
the focal region are also shown.

2. Theory of complex pupils using the double-phase method

In the scalar theory of diffraction, the focused electric field E◦(z,R) near the Fourier plane of
a convergent lens of focal length f and radius a can be determined by means of the Fresnel
diffraction integral written in polar coordinates as follows

E(z,R) =
k
iz
∫

a
0 p(r)e−i kr2

2f ei kr2
2z J0

(
krR
z

)
rdr (1)

In Eq. (1), the plane wave term eikz was considered as E◦(z,R) = E(z,R)eikz, where E(z,R) is
simple the electric field without the phase of the plane wave. The axial and radial coordinates
near the focus are given by z and R, respectively. In addition, J0 represents the Bessel function of
the first kind of order zero, k = 2π/λ, where λ is the wavelength of an incident monochromatic
uniform wave. In the thin lens approximation, the quadratic exponential term kr2/2f holds for
the phase of the convergent lens with an axially symmetric complex pupil p(r) defined within
the interval r ∈ [0, a], being p(r) = 0 outside this interval. If we restrict our analysis to pupils
p(s) that depend on the squared radial coordinate s = r2/a2 − 1/2, where s ∈ [−1/2, 1/2], the
electric field E(z,R) in the axial direction (R = 0) can be reduced to the expression

E(ξ) =
2π
i
(ξ + ξ0)eiπξ

∫
1
2
− 1

2
p(s)ei2πξsds (2)

In Eq. (2) the variable ξ = a2/(2λz) − ξ0, and the constant ξ0 = a2/(2λf ). Now, after multiplying
left and right parts of Eq. (2) by the term ie−i2πvξe−iπξ/[2π(ξ + ξ0)], where v ∈ [−1/2, 1/2],
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and integrating over ξ to infinity one can get to the expression

p(v) =
i
2π
F −1

{
E(ξ)e−iπξ

(ξ + ξ0)

}
(3)

The result shown in Eq. (3) can be regarded as an exact solution to the inverse problem related
to the axial beam shaping along the focus of a convergent lens. The symbol F −1{ } denotes
the inverse FT operation. Note that to obtain Eq. (3) no approximations or assumptions have
been made. Consequently, from a desired electric field E(ξ) one can fully determine the complex
pupil p(v), so also p(r) able to optically reconstruct this field near the focus. Here, it should
be emphasized that beam shaping based on Eq. (3) is not limited to the amplitude of E(ξ), but
also includes its phase content. At this point, the complex field is conveniently expressed as
E(ξ) = −2πiΛdes(ξ)ei[πξ+Θdes(ξ)], where Λdes(ξ) and Θdes(ξ) hold for the desired amplitude and
phase functions which are subject to be shaped. Then, after the substitution of E(ξ) into Eq. (3)
the codification of the linear phase term −ieiπξ within p(v) can be avoided

p(v) = F −1
{

Λdes(ξ)eiΘdes(ξ)

(ξ + ξ0)

}
(4)

From Eq. (4), the complex pupil p(v), expressed in the squared radial coordinate v, is calculated
by the one-dimensional inverse Fourier transform of the electric field Λdes(ξ)eiΘdes(ξ) divided
by ξ + ξ0. It can be easily verified that the term ξ + ξ0 compensates for a linear decrease in
the amplitude Λdes(ξ) along the direction of propagation of the laser beam. To obtain the pupil
function in the linear coordinate r a rescaling process p(v) → p(r) that consists of a numerical
interpolation is carried out. Further details of this process are given in the next section. Here,
one might realize that the beam shaping method depends on the ability to encode the complex
pupils p(r). In this manuscript the double-phase method [23] is used to encode these pupils into a
phase-only SLM and optically reconstruct them at the input plane of the convergent lens. Hence,
retrieved pupils pret(x, y) expressed in the Cartesian coordinates x, y are given by the expression
[23]

pret(x, y) � p
(
−

x
Mag

,−
y

Mag

)
⊗ F {P(fx, fy)} (5)

In Eq. (5), the term Mag holds for the magnification of the 4f imaging system (please, see Fig. 1),
whereas the symbol ⊗ represents the convolution operation. Therefore, the optical reconstruction
is exact except for a small loss of spatial resolution caused by the convolution of p(x, y) with
the FT of the spatial filter P(fx, fy) expressed in the coordinates fx, fy of the frequency space. In
practice, as the period δ of the sampling gratings used in the double-phase method is the lowest,
for most commercially-available phase-only SLMs the spatial frequency separation 1/δ between
zero and first diffraction orders should be great enough to neglect the effects of this convolution.

Fig. 1. Optical setup utilized to perform the axial beam shaping of the focus associated
with a convergent lens L. The filtered 4f imaging system composed of lenses L1 and L2 is
used to optically reconstruct the complex pupil at the input plane of the lens L.
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3. Numerical simulations of complex beam shaping

In this section the theory of complex pupils discussed above is corroborated bymeans of numerical
simulations. These simulations describe the behavior of the optical system shown in Fig. 1 whose
optical components and/or parameters are summarized below. A uniform wave with central
wavelength of 800 nm impinges onto a phase-only SLM (with spatial resolution 1920x1080 pixels,
and pixel width 8 µm). The reflected light travels through a 4f imaging system composed of a
couple of identical convergent lenses L1 and L2 of focal lengths f1 = f2 = 1 m. The phase element
α(x, y) used to encode a given complex pupil is sent to the SLM. The imaging system forms a
filtered image of α(x, y) at the pupil plane of an ideal (free from optical aberrations) convergent
lens L of focal length f = 50 mm. The filtering process is carried out with a circular iris of radius
ε = fλ/δ located at the Fourier plane of the optical imaging system. The radius ε coincides
with the distance from the propagation axis to the first diffraction order of the above-mentioned
sampling gratings. Each phase element α(x, y) is computer generated following the procedure
described below.
It starts with the definition of the desired amplitude and phase functions Λdes(ξ) and Θdes(ξ).

Each of these functions are sampled with N1 points determined from the absolute value of
ξ(zini) − ξ(zend), where the axial positions zini = f − ∆z/2, zend = f + ∆z/2, and ∆z is the depth
of focus. The term 1/(ξ + ξ0) is also sampled with N1 points and multiplied by the function
Λdes(ξ). Then a couple of vectors of N2 = 541 points are digitally constructed. Their central N1
points contain the sampled functions Λdes(ξ) and Θdes(ξ), whereas the remaining points are zero.
Before making the inverse FFT defined by Eq. (4), the amplitude and phase vectors are zero
padded to longer vectors e.g., N3 = 100N2 points. Finally, the complex pupil p(v) is calculated
by downsampling the inverse FFT to N2 points.
In the next step, the complex pupil p(v) is rescaled to get the unknown function p(r). To do

that the interpolation algorithm associated with the MATLAB function interp1 is used. In Fig. 2
a representative example is given. It shows a complex pupil p(s) designed to generate a focus
with super-Gaussian amplitude Λdes(ξ) = e−ξγ/σ , where γ = 8, σ = 10−3, and linear phase
Θdes(ξ) = πξ. In this example the depth of focus was ∆z = 3 mm. The amplitude and phase
profiles of p(v) are shown in Figs. 2(a) and 2(d), respectively. After rescaling, the corresponding
profiles of p(r) appear in Figs. 2(b) and 2(e), respectively. Owing to the rescaling algorithm
both profiles were displaced and compressed toward the outer parts. Two-dimensional amplitude
A(x, y) and phase ϕ(x, y) masks are computer generated after the azimuthal rotation of curves
given in Figs. 2(b) and 2(e) around their origins as shown in Figs. 2(c) and 2(f), respectively.

Fig. 2. Amplitude (a), (b) and phase (d), (e) masks of a complex pupil expressed in r2 and r
coordinates. This complex pupil generates a super-Gaussian amplitude with a linear phase
at the focal region of a convergent lens.
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Then, the complex pupil p(x, y) = A(x, y)e−iϕ(x,y) is encoded into a single-phase element α(x, y)
by using the expression (4) of the double-phase method [23]. In Figs. 3(a), 3(b) and 3(c), the
circularly symmetric masks θ(x, y) and ϑ(x, y) and α(x, y) for the example discussed above are
shown. The phase element α(x, y) is defined within the interval [−3π/2, 3π/2] so, a total phase
range of 3π is needed for its implementation with a phase-only SLM. The 4f optical system
described in Fig. 1 carries out the optical reconstruction of the complex pupil p(x, y) in front of the
convergent lens. This is done with a theoretical approximation given by Eq. (5). Consequently, at
this plane instead of p(x, y) one gets the retrieved pupil pret(x, y) (or pret(r) in polar coordinates).

Fig. 3. Phase element α(x, y) used to encode the complex pupil p(r). In accordance with the
double-phase method α(x, y) is computer generated with the phase masks θ(x, y) and ϑ(x, y)
corresponding to two uniform waves.

The accurate of the axial beam shaping is numerically tested by means of four user-defined
electric fields with different depth of focus. For this purpose, the retrieved amplitude and phase
profiles Λret and Θret assessed from a direct numerical evaluation of the Fresnel diffraction
integral for p(r) = pret(r) and R = 0, are compared with the desired amplitude and phase profiles
Λdis and Θdis, respectively. The results are shown in Fig. 4. The desired electric fields are
plotted with solid lines, whereas the retrieved ones are represented by circular points. The first
electric field corresponds to the pupil shown in Fig. 2. It is composed of a super-Gaussian
amplitude Λdes(ξ) = e−ξγ/σ , where γ = 8, σ = 10−3, see Fig. 4(a), and a linear phase
Θdes(ξ) = πξ, see Fig. 4(b), with (∆z = 3 mm, N1 = 15). The second electric field has triangular
amplitude profile Λdes(ξ) = 1 − |ξ |, see Fig. 4(d), and the cosine phase Θdes(ξ) = π cos πξ,
see Fig. 4(e), with (∆z = 6 mm, N1 = 29). For the third electric field, the amplitude profile
Λdes(ξ) = sin 2πξ + cos πξ/2, see Fig. 4(g), and a cubic phase Θdes(ξ) = πξ

3, see Fig. 4(h), with
(∆z = 9 mm, N1 = 43) are selected. In the last example, all previously defined amplitude and
phase profiles are included in a unique electric field that forms three different foci of similar
characteristics, simultaneously. It means that, one single complex pupil is employed to synthetize
three different foci, each one having a different amplitude and phase pattern. In this last example
all foci were designed with ∆z = 4 mm and N1 = 19. In order to have desired phase functions
defined within the phase range of the SLM, the variable ξ was sampled within the interval
ξ ∈ [−1, 1] with N1 points. To do that, ξ = ξ/ξave − min(ξ/ξave) − 1, where ξave is the mean
value of ξ between the points z = zini and z = zend, whereas the function min yields the minimum
value.

After a visual inspection of these curves it is apparent that desired and retrieved profiles are
very close. In fact, the calculus of the rmse gets values [0.79 %, 0.55 %], [0.53 %, 3.3 %]
[1.73 %, 3.99 %] and [4.42 %, 7.71 %] for the amplitude and phase profiles, respectively. Small
discrepancies are mainly due to the limited number of N1 points used to sample the desired
functions. If the selected depth of focus ∆z is great enough to guarantee full recovery of desired
functions after simple interpolation, beam shaping should be done with low values of rmse. As
a rule of thumb for a fixed set of optical components and light parameters a, f , λ, those values
of ∆z such that N1 ≥ 15 should give low rmse e.g., below 10%. It is also expected that rmse
increases when increasing of the complexity of desired functions.
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Fig. 4. Comparison between retrieved (circle symbols) and desired (solid lines) amplitude
and phase distributions of light near the focus of a convergent lens. In the right part,
corresponding two-dimensional amplitude fields are included.

The results shown in Fig. 4 corroborate the extended theory of complex pupils discussed above.
Furthermore, in the right-part of Fig. 4 appears the two-dimensional normalized amplitude fields
calculated by means of Eq. (1) for p(r) = pret(r), but this time R , 0, please see Figs. 4(c), 4(f),
4(i), and 4(l). As it can be noted axial beam shaping also influences the transversal distribution
of light along the focal region. In particular, the spatial shape of transversal amplitude patterns
depends on the axial phase Θret(ξ). This type of amplitude-phase coupling could be used to make
a rough estimation of the axial phase along the focus by raster scanning measurements of the
transversal irradiance using a typical CCD or CMOS camera.
Now the suitability of complex beam shaping for the dynamic management of the focused

light is illustrated with the help of two visualizations shown in Fig. 5. Each movie was edited
from a set of 50 pre-calculated phase masks α(x, y) stored in the computer’s memory. For this
simulation two similar sets of complex pupils were calculated. The first one generates a variable
light filament with constant phase along the propagation direction of the laser beam. These
filaments were synthetized from the functions Λdes(ξ) = e−ξγ/σ and Θdes(ξ) = 0, varying the
depth of focus in the range 2 mm ≤ ∆z ≤ 20 mm, see Visualization 1. For the second movie the
constant phase was substituted by the sinusoidal function Θdes(ξ) = π sin 3πξ with ξ = [−1, 1],
but the amplitude function Λdes(ξ) and the depth of focus ∆z remain the same, see Visualization 2.

https://doi.org/10.6084/m9.figshare.12480842
https://doi.org/10.6084/m9.figshare.12480851
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For completeness, the corresponding two-dimensional normalized amplitude field is also shown
at the top-part of each visualization. From these movies one can realize the potential of the
method to dynamically modify both the amplitude and phase of the electric field, simultaneously.
Owing to the relative fast evaluation of Eq. (4) by using the direct FFT the maximum shaping
velocity depends on the refresh rate of the liquid crystal display which is basically determined by
the speed of the control electronics. The refresh rate of phase-only SLMs are typically from 60
Hz up to 200 Hz but after improving their dynamic response [24] it can be increased up to few
kHz, or even in excess of GHz when applying novel architectures [25]. In addition, the absence
of iterative Fourier-transform algorithms (e.g. Gerchberg–Saxton’s or Fienup’s method) may
allow faster-enough operations to deal with certain beam shaping applications in real time. In
this context it was also found that the amplitude full-width-at-half-maximum of the longest light
filament achieved for ∆z = 20 mm is increased 67 times with respect to that of the axial Airy
pattern.

Fig. 5. Examples of dynamic axial beam shaping. Light filaments with variable depth of
focus and constant phase (see Visualization 1) or sinusoidal phase (see Visualization 2). In
the right part, the comparison of efficiency between the constant phase case (solid line) and
sinusoidal one (dotted line) is shown.

Another important aspect to consider is the efficiency of the axial beam shaping. Here, the
efficiency η was evaluated by the ratio η = Iret/Icir between axial irradiances originated by a
complex pupil (Iret = |Aret |

2), and a circular aperture of radius a (Icir = |A0sincξ |2, where A0 is a
constant). For above visualizations, the evolution of this parameter with video frames shows
values below 25% in all cases. In the Visualization 1, as the depth of focus becomes longer the
efficiency abruptly decreases from η = 23.4 % (∆z = 2 mm) up to η = 2.0 % (∆z = 20 mm). In
contrast, with the introduction of phase modulation in the light filament (see Visualization 2) the
efficiency of the diffracted light was increased. Specifically, for the two absolute maxima of the
sine phase curve located at frames 20 and 80 the efficiency changes from 4.5% (constant phase
curve) to 16.4% (sine phase curve), which is more than 3 times the efficiency without phase
modulation. This fascinating behavior is originated by the change in the transmittance of the
complex pupil due to the introduction of phase modulation in the focus. To clarify this point,
one-dimensional complex pupils used to obtain constant and sinusoidal phase modulation are
shown in Figs. 6(a), 6(b), 6(e) and 6(f), respectively. Note that, although both complex pupils
generate equal on-axis light filaments, please see two-dimensional field amplitudes in Figs. 6(d)
and 6(h), their transmittances are clearly different. To emphasize this fact, corresponding
two-dimensional amplitude masks are shown in Figs. 6(c) and 6(g). The calculus of the ratio
between transmittances of these masks yields 3.4, which justify the increasement of the efficiency
reported before.
On the other hand, the phase modulation along the axial focus is related to the well-known

Gouy phase [26,27], defined as the difference between the phase of the electric field and that of a
plane wave with the same wavelength. Hence, as the plane wave term eikz was taken into account
in Eq. (1) by the expression E◦(ξ) = E(ξ)eikz, the Gouy phase G(ξ) due to electric fields in the

https://doi.org/10.6084/m9.figshare.12480842
https://doi.org/10.6084/m9.figshare.12480851
https://doi.org/10.6084/m9.figshare.12480842
https://doi.org/10.6084/m9.figshare.12480851
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Fig. 6. Comparison of two complex pupils that generate the same on-axis super-Gaussian
amplitude, but different phase modulation along the focus. One-dimensional amplitude and
phase profiles (a), (b), (e), and (f) for the constant and sinusoidal phase modulation cases,
respectively. Corresponding two-dimensional amplitude masks (c) and (g) as well as the field
amplitudes (d) and (h) around the foci and normalized to the second case are also shown.

form E◦(ξ) = 2πΛdes(ξ)ei[πξ+Θdes(ξ)−π/2+kz] can be written as

G(ξ) = πξ + Θdes(ξ) − π/2 (6)

The additive phase term πξ in Eq. (6) is common to all solutions of Eq. (1) discussed in this
manuscript. It changes from positive to negative values when light passes through the focus. So,
within the axial interval defined from zini = f −∆z/2 to zend = f +∆z/2, the focused light acquires
a Gouy phase shift that can be determined by G(ξend)−G(ξini), where ξend = a2/(2λzend)− ξ0 and
ξini = a2/(2λzini) − ξ0. This Gouy phase shift increases when increasing the depth of focus ∆z,
and does not depends on the amplitude functions Λdes(ξ). Phase discontinuities (or phase jumps)
by an amount of π occur at zeros of Λdes(ξ). For instance, for a binary circular pupil of radius a the
analytical solution for the electric field yields E(ξ) = 2πei(πξ−π/2)(ξ + ξ0)[sin(πξ)]/(πξ). Then,
phase anomalies appear for ξ = ±n, where n = 1, 2, . . . at the axial positions z± = f /(1 ± 2nλf /a2).
The Gouy phase calculated by Eq. (6) gives the set of values G(±n) = (±2n − 1)π/2. In Fig. 7(a)
the first six phase anomalies in the Gouy phase G(ξ) are represented using the mod π function
and the parameters a = 1 cm, f = 2 cm, and λ = 632.8 nm. This coincides with a classical result
reported in [27], please see Fig. 2 of this publication. In addition, at the focal position (z = f
and ξ = 0) G(0) = −π/2, and the symmetry property of Gouy phase G(n) + G(−n) = −π is also
fulfilled.

Fig. 7. Gouy phase associated with the beam shaping method. Classical Gouy phase
provided by Eq. (6) due to a circular binary pupil placed in front of a convergent lens a),
and Gouy phase due to the generation of a super-Gaussian amplitude along the focus with
(dotted lines) and without (solid lines) phase modulation b).
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Equation (6) suggests that Gouy phase can be tuned due to the phase modulation originated by
phase functions Θdes(ξ), i.e., for Θdes(ξ) = −πξ one can compensate for the Gouy phase shift
within the axial interval [zini, zend]. Another example is given in Fig. 7(b). Here, the Gouy phase
for the electric field E(ξ) = 2πei(πξ+Θdes(ξ)−π/2)(ξ + ξ0)e−ξ

γ/σ with parameters γ = 8, σ = 10−3,
∆z = 2 mm, a = 4.3 mm, f = 50 mm, and λ = 800 nm is represented for two different situations.
The first one (plotted with solid lines) corresponds to the classical case of Θdes(ξ) = 0, whereas
in the second curve (plotted with dotted lines) Θdes(ξ) = −π sin πξ with ξ = [−1, 1]. From the
comparison of both curves the induced changes in the Gouy phase are apparent. Note also that as
the amplitude term 2π(ξ + ξ0)e−ξ

γ/σ does not vanish, the Gouy phase shows no phase anomalies.

4. Conclusions

In this manuscript the theory of complex pupils is extended to include axial phase modulation
within the focus. It is shown that Fresnel diffraction integral allows for an exact solution of the
inverse focal shaping problem along the axial direction (R = 0). Electric fields with desired
amplitude and phase profiles were encoded into circularly symmetric complex pupils calculated
by a direct Fourier transform and a simple rescaling operation. The double-phase method
was used to optically reproduce the complex pupils at the input plane of the convergent lens.
This method ensures an almost exact reconstruction of the desired electric fields around the
focus. Numerical simulations showed simultaneous amplitude and phase modulation of the focus
by using representative functions having super-Gaussian, triangular or sinusoidal profiles and
different depth of focus. The ability of the method for dynamic shaping was used to generate
light filaments under controllable conditions. In this context, it was found that phase modulation
can significantly increase the efficiency of shaping (more than three times in the present work).
Furthermore, an analytical expression for the Gouy phase was also reported. It suggests that
Gouy phase might be tailored in accordance with the shape of user-defined phase functions.
Apart from being limited to low numerical aperture focusing the main weaknesses of the

proposed shaping method relies on the lack of accuracy to shape electric fields with axial
dimensions in the order of the axial Airy pattern. That is; to reproduce the desired amplitude
and phase functions with a minimum number of sampling points one cannot set the depth of
focus below certain limit. This imposes a physical restriction to the method which is unable
to shape a focus below this limit without increasing the rmse up to values that might not be
assumed from a practical point of view. In contrast, this method has several strengths that can be
briefly summarized as: it allows tailoring at will both the amplitude and phase of the focused
light simultaneously, it is a direct rather than iterative beam shaping algorithm, it provides high
accuracy generation of complex pupils and corresponding desired electric fields, it is based
on the FT formalism that ensures a fast and dynamic focal shaping operation, and its practical
implementation with the double phase method is straightforward. I believe that several photonic
applications, including but not limited to laser material processing, generation and control of
non-linear effects or light coupling into optical fiber can benefit from the proposed method.
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Spaleniak, A. Składowska, A. Kołodziejczyk, and M. Rękas, “The Light Sword Lens - A novel method of presbyopia
compensation: Pilot clinical study,” PLoS One 14(2), e0211823 (2019).

17. K. Petelczyc, A. Kolodziejczyk, N. Błocki, A. Byszewska, Z. Jaroszewicz, K. Kakarenko, K. Kołacz, M. Miler, A.
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