
Paulo Jorge Sena Figueira

Test Automation Framework for Embedded
Systems

Dissertation submitted in partial fulfillment
of the requirements for the degree of

Master of Science in
Computer Science and Engineering

Adviser: João Costa Seco, Assistant Professor, Faculty of Sci-
ences and Technology - NOVA University of Lisbon

Co-advisers: Carla Ferreira, Assistant Professor, Faculty of Sciences
and Technology - NOVA University of Lisbon
Jorge Manuel Lopes, System Architect, Altran Portugal

Examination Committee

September, 2018

Test Automation Framework for Embedded Systems

Copyright © Paulo Jorge Sena Figueira, Faculty of Sciences and Technology, NOVA Uni-

versity of Lisbon.

The Faculty of Sciences and Technology and the NOVA University of Lisbon have the

right, perpetual and without geographical boundaries, to file and publish this disserta-

tion through printed copies reproduced on paper or on digital form, or by any other

means known or that may be invented, and to disseminate through scientific reposito-

ries and admit its copying and distribution for non-commercial, educational or research

purposes, as long as credit is given to the author and editor.

This document was created using the (pdf)LATEX processor, based in the “novathesis” template[1], developed at the Dep. Informática of FCT-NOVA [2].
[1] https://github.com/joaomlourenco/novathesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt

Acknowledgements

First and foremost, I would like to thank Professor João Costa Seco, Professor Carla Fer-

reira, and Jorge Manuel Lopes from Altran Portugal for their support and guidance. They

were vital for the development of this dissertation.

I also would like to thank all my colleagues from FCT/UNL and Altran Portugal for

the companionship and support.

I am very grateful to my friends. Their support, motivation, and entertainment gave

me the strength to continue.

Last but for sure not least, I would like to express my thanks and love to my family.

There is no distance (not even the ocean that separates us) that can break the love, support,

and encouragement that I receive every day.

vii

Abstract

Embedded systems are everywhere! Electronic systems in just about every engineering

market segment are classified as embedded systems, consumer electronics, medical, auto-

motive, avionics, etc. Embedded systems differ from more conventional systems, such as

computers, because they are limited to the embedded hardware, are designed to perform

a dedicated function and have high quality and reliability requirements.

Due to these characteristics, this type of system is strongly related to critical systems.

Critical systems are systems that in the event of a failure can cause damage to living

beings or the environment. Thus, it is necessary to ensure a high level of correctness

in this type of systems. One way to increase the correctness of a system is through the

process of testing. However, testing embedded systems presents a degree of difficulty

because they are typically closed systems and work with real-time data that is difficult to

reproduce and are non-deterministic.

In this way, and with the collaboration of Altran Portugal, we intend to solve this

problem by developing a framework that allows test automation for embedded systems.

Automating the test data creation and execution of test case increases the quality of these

systems by identifying defects to be fixed in a more efficient way.

To this end, a survey of automation tools is done and each tool evaluated according

to a set of criteria defined when designing the solution. The selected tool is Robot Frame-

work, which is a widely used tool in the web and desktop application. Thus, integrating

such a proficient tool in the embedded environment elevates the test automation in the

embedded systems context.

Then, we test the concept developed in this dissertation by executing functional tests

in embedded systems that follow a model-driven development approach.

Keywords: Test automation framework, Embedded systems, Test automation framework

analysis, Software testing, Evaluation of test automation frameworks, Robot Framework

ix

Resumo

Os sistemas embutidos estão em todo o lado! Sistemas electrónicos em qualquer mercado

de engenharia podem ser considerados sistemas embutidos, seja em electrodomésticos,

dispositivos médicos, automóveis, aviões, etc. Os sistemas embutidos diferenciam-se dos

sistemas mais convencionais, como os computadores, pelo facto de estarem limitados ao

hardware embutido, são construídos para desempenhar uma função e são sistemas que é

necessário um alto nível de qualidade e de confiabilidade.

Devido a estas características, este tipo de sistema está fortemente relacionado com os

sistemas críticos. Sistemas críticos são sistemas que em caso de ocorrência de uma falha

podem causar dano a seres vivos ou ao ambiente. Assim, é necessário garantir um alto

nível de correcção neste tipo de sistemas. Uma forma de aumentar a correcção de um

sistema é através do processo de testes ao sistema. Contudo, testar sistemas embutidos

apresenta um grau de dificuldade, pois tipicamente são sistemas fechados e trabalham

com dados a tempo real que são difíceis de reproduzir.

Desta forma, e com a colaboração da Altran Portugal, pretende-se resolver este pro-

blema desenvolvendo uma ferramenta que permita automatizar o processo de testes a

sistemas embutidos. Nomeadamente, na criação de dados de teste e na execução dos testes,

que irá permitir uma subida na qualidade dos sistemas embutidos através da identificação

de falhas que podem ser posteriormente resolvidas.

Para isso, será feito um levantamento de ferramentas de automatização de testes que

irão ser avaliadas segundo um conjunto de critérios definidos aquando o desenho da

solução, resultando na ferramenta mais adequada para o nosso problema. A ferramenta

resultante da avaliação foi a Robot Framework. Esta ferramenta é muito utilizada para fa-

zer a automatização de testes em contexto web e em contexto desktop. Assim, utilizar uma

ferramenta com um nível avançado de maturidade num contexto de sistemas embutidos,

permitirá elevar a automatização de testes neste mesmo contexto.

Finalmente, para testar o conceito desenvolvido na dissertação, é efectuado um pro-

cesso de teste a sistemas embutidos que sigam a metodologia de desenvolvimento model
driven development.

Palavras-chave: Ferramenta de automatização de testes, Sistemas embutidos, Análise de

ferramentas de automatização de testes, Levantamento de critérios, Robot Framework

xi

xii

Contents

List of Figures xvii

List of Tables xix

Listings xxi

Acronyms xxiii

1 Introduction 1

1.1 Contributions . 2

1.2 Document structure . 3

2 Preliminary Concepts and Constraints 5

2.1 Embedded Systems . 5

2.1.1 Automotive Context . 6

2.1.2 Embedded Communication - CANBus 7

2.2 Software Testing . 11

2.2.1 Introduction to the V-Model . 11

2.2.2 Testing methods . 13

2.2.3 Criteria for stopping the test process 14

2.3 Software testing — Embedded context . 14

2.3.1 TEmb generic . 15

2.3.2 Mechanism for assembling the dedicated test approach 15

2.4 Methodologies for automated software test case generation 18

2.4.1 Model-based test case generation 18

2.4.2 Combinatorial testing . 19

2.4.3 Adaptive random testing . 19

2.4.4 Search-based software testing . 19

2.5 Overview of testing automation . 20

3 Related Work 21

3.1 Test Automation Framework . 21

3.1.1 Types of Test Automation Framework 21

3.1.2 Examples of Automation Tools . 23

xiii

CONTENTS

3.2 Decision Analysis and Resolution . 26

4 Solution Evaluation 27

4.1 Architecture . 27

4.2 Tool Selection . 29

5 Robot Framework - Detailed 35

5.1 Test Library . 36

5.1.1 Test Library Name . 36

5.1.2 Configuring a Test Library . 36

5.1.3 Static keywords . 36

5.1.4 Communicating with Robot Framework 39

5.1.5 Dynamic library API . 41

5.1.6 Hybrid API . 43

5.2 Remote Library Interface . 44

6 TAFES Architecture 47

6.1 Testing Tool . 49

6.1.1 Robot Framework IDE (RIDE) . 49

6.2 Remote Library Proxy - External Component 52

6.2.1 Remote Library Module . 53

6.2.2 Communication Module . 54

6.3 Embedded Device . 55

6.3.1 Remote Library Server . 56

6.3.2 Library generator . 56

6.4 Summary . 59

7 Use Cases 61

7.1 Setup of Remote Library Proxy . 61

7.2 Simulated proximity sensor with Ethernet/Wi-Fi communication 62

7.3 Proximity sensor with Serial communication 69

8 Conclusion and Future Work 75

8.1 Conclusion . 75

8.2 Future Work . 76

Bibliography 79

Webography 83

A Auxiliary tables 85

B Proximity sensor test cases 87

B.1 Set Off . 87

xiv

CONTENTS

B.2 Set On . 87

B.3 Distance Reading . 87

B.4 Detection of object and LED output . 89

C Test Case’s output files 93

C.1 XML-RPC proximity sensor output files 93

C.2 Serial proximity sensor output files . 94

D Proximity sensor’s embedded software - Arduino 99

xv

List of Figures

2.1 Basic embedded systems structure (in [39]) 6

2.2 Standard CAN frame from [INTRODUTION to the CAN] 8

2.3 Extended CAN frame from [INTRODUTION to the CAN] 9

2.4 Linux networking subsystem in [11] . 9

2.5 Linux socket based in [11] . 10

2.6 V-Model representation . 12

2.7 The cost to fix a problem as a function of the time in the product life cycle

when the defect is found[38] . 13

3.1 Robot Framework architecture (in [45]) . 24

3.2 Formal evaluation process . 26

4.1 Suggested solution . 27

4.2 Proposed solution architecture . 28

5.1 Import library with arguments (in [45]) . 36

5.2 Implementation of a library (in [45]) . 37

5.3 Method considered keywords (in [45]) . 37

5.4 Import methods to library (in [45]) . 37

5.5 Set keyword names (in [45]) . 38

5.6 Example of a test case with defined keywords (in [45]) 38

5.7 Keywords with arguments (in [45]) . 38

5.8 Log levels (in [45]) . 40

5.9 Return values in test case (in [45]) . 40

5.10 Retuning values in list or tuples (in [45]) . 41

5.11 Get keyword names with decorator (in [45]) 42

5.12 Handling missing methods (in [45]) . 43

5.13 High level architecture of Remote Library (in [45]) 44

5.14 Import a Remote Library (in [45]) . 44

6.1 TAFES architecture . 48

6.2 Ride startup . 49

6.3 Ride suite settings . 50

xvii

List of Figures

6.4 Blank test case . 51

6.5 Keywords completion . 51

6.6 Generation of test libraries . 60

7.1 Detection mode ON and detection mode OFF in simulated proximity sensor 63

7.2 XML-RPC embedded device model . 64

7.3 Model annotation . 64

7.4 Configuration file for XML-RPC . 64

7.5 Remote Library Proxy’s keyword library . 65

7.6 Remote Library Server’s keyword library . 66

7.7 Test case 1 specification and embedded device state after execution 68

7.8 Test case 2 specification and embedded device state after execution 68

7.9 Use case XML-RPC test case number 3 - User keyword 70

7.10 Use case XML-RPC test case number 3 . 71

7.11 Proximity sensor with serial communication connected to the Raspberry Pi . 71

7.12 Serial embedded device model . 72

7.13 Configuration file for Serial communication 73

7.14 Remote Library Proxy’s keyword library . 74

B.1 Test case specification - Set Off . 88

B.2 Test case specification - Set On . 89

B.3 Test case specification - Distance Reading . 90

B.4 Check distance user keyword . 90

B.5 Set distance user keyword . 90

B.6 Test case specification - Detection of object and LED output 91

B.7 Check detection for a given distance user keyword 91

B.8 Check detection user keyword . 91

C.1 XML-RPC proximity sensor test report - PASS 93

C.2 XML-RPC proximity sensor test report - FAIL 94

C.3 XML-RPC proximity sensor log file with failed test case 95

C.4 Serial proximity sensor test report - PASS . 96

C.5 Serial proximity sensor test report - FAIL . 96

C.6 Serial proximity sensor log file with failed test cases 97

xviii

List of Tables

2.1 LITO-Matrix, adapted from [6] . 17

4.1 Criteria and respective weight . 29

4.2 Architecture sub-criteria evaluation . 30

4.3 Test Driver sub-criteria evaluation . 31

4.4 Generation of Test Data sub-criteria evaluation 31

4.5 Methods of Communication sub-criteria evaluation 32

4.6 Report sub-criteria evaluation . 32

4.7 Integration with other tools sub-criteria evaluation 32

4.8 Learnability sub-criteria evaluation . 33

4.9 Supported Platforms sub-criteria evaluation 33

4.10 Code sub-criteria evaluation . 33

4.11 Tool Selection result . 33

A.1 Relation between techniques and test levels and types, adapted from [6] . . . 85

xix

Listings

xxi

Acronyms

ECU Electronic control unit.

FSM Finite state machine.

MBT Model-based testing.

RLP Remote Library Proxy.

RLS Remote Library Server.

SUT System under test.

TAFES Test Automation Framework for Embedded System.

xxiii

C
h
a
p
t
e
r

1
Introduction

Embedded Systems are everywhere! Electronic devices in just about every engineering

market segment are classified as embedded systems, consumer electronics, office automa-

tion, networking, medical, industrial control, automotive, avionics, etc [1]. Embedded

systems differ from more conventional systems, such as computers, because they are lim-

ited to the embedded hardware, are designed to perform a dedicated function, and have

high quality and reliability requirements.

Due to these characteristics, embedded systems are strongly related to critical systems.

Critical systems are systems where malfunctions can cause harm to living beings or to

the environment. So, an important factor in the development of such systems is ensuring

their correctness, which means that they behave according to their specification.

We can verify a system correctness through the process of testing, where we identify

defects that can later be fixed and consequently improve the system correctness. However,

testing in embedded systems has a degree of difficulty. Firstly, an embedded system is

restricted to their own context and when we are performing a test in such systems it is re-

quired to know their functionalities and how they are triggered. Secondly, given the wide

usage of embedded systems in every engineering market segment, some communication

protocols are adopted within each segment, for example in the automotive embedded sys-

tems the standard communication protocol is CANBus. Moreover, embedded systems are

highly related to real-time events which are non-deterministic and not easy to replicate.

Given this difficulty of testing embedded systems, it is required to create a solution

that automates the testing process in embedded devices. In particular, a solution capable

of translating the embedded systems operations into test scripts that are callable and

execute functionalities, for example, turn on the charging of a device, or turn on GPS.

Test automation means the automation of testing activities including the development

and execution of test scripts, verification of testing requirements and use of test tools.

1

CHAPTER 1. INTRODUCTION

Choosing a test automation approach before manual, allows the testing to be less time

consuming and perform it with more efficiency[2]. These justifications allow products to

have an earlier time to market, which is vital for a manufacturer success. Nevertheless,

software testing when applicable can reduce the software costs, which may take more

than 50% off the overall software development effort[3].

Upon this problem and with the collaboration of Altran Portugal, we intend to solve

the hardship of testing embedded systems through a Test Automation Framework for

Embedded System (TAFES), providing the testers various benefits that help them to

develop, execute and report test scripts efficiently and consequently improve the system

correctness.

The automation of a test can only be achieved by a test automation tool. However,

choosing the right one for our context is not trivial. In the field of web application

and desktop application, test automation has achieved high levels of maturity, there are

very complete solutions in the market. Bringing such technology for the context of the

embedded systems will elevate the testing process of embedded devices.

Therefore, it is required an analysis of different tools and then an evaluation process

that selects the most suitable tool. For example, if it has the capability of communicating

with an embedded device, the ability to perform different types of automation testing and

how easy is to specify test cases. After the selection of the test automation tool to base our

solution on, we investigate how automatically create test data and how to communicate

with the embedded device.

When developing an embedded system, a usual method of development is model-

driven development. This methodology has a primary focus in the design of models that

unambiguously describe the embedded device. Moreover, models that describe the points

of connection to the embedded device are part of these artifacts, where it will explicitly

show the different functionalities of the system and how can they be triggered. Thus, the

challenge for our solution is to interpret these models and generate automatically the test

scripts that later will be called in the test specification. By having this functionality, our

framework is capable of generating test scripts of any kind of system.

To finalize, we developed embedded systems that follow the model-driven develop-

ment and through TAFES we have ensured that these systems are behaving accordingly

to their specification.

1.1 Contributions

The main contributions of this dissertation are:

• An analysis of different test automation frameworks;

• Evaluation of test automation frameworks for embedded systems;

2

1.2. DOCUMENT STRUCTURE

• Design and development of a test automation framework for automotive embedded

systems, having a mechanism for:

– Interpreting the test script and executing it on the embedded device;

– Storing common test scripts;

– Communicating with the embedded systems;

– Automatically generate test scripts from an embedded system’s model;

1.2 Document structure

The rest of the document is structured as follows:

• Chapter 2 - This chapter explains the concepts of embedded systems, software

testing, methodologies of test case generation and also testing automation. These

concepts are important as they permit to design the solution in an effective way.

• Chapter 3 - In this chapter, we explore the concept test automation framework, and

take a look at different approaches that have an impact on the current days.

• Chapter 4 - Here we analyse the problem and propose a solution design. Moreover,

we go through a tool selection to find the suitable framework for our solution.

• Chapter 5 - This chapter explain the selected test automation framework.

• Chapter 6 - Correlates the generic solution from chapter 4 and the selected test au-

tomation tool described in chapter 5. Here we establish and detail the architecture

of our Test Automation Framework for Embedded Devices.

• Chapter 7 - In this chapter we test embedded devices with the implemented solu-

tion.

• Chapter 8 - Finally, this chapter presents the conclusions regarding this dissertation,

as well as future improvements’ suggestions.

3

C
h
a
p
t
e
r

2
Preliminary Concepts and Constraints

This chapter presents multiple concepts that are fundamental to the development of this

dissertation. We start by presenting the concept of Embedded Systems, taking a closer

look at the automotive context based on [4]. Next, the base concepts of software testing,

where we are highly based on the concepts and methodology provided by the book The
Art of Software Testing [5] and the work The basics of embedded software testing [38]. After

this, we relate embedded systems (section 2.1) with software testing (section 2.2), based

on concepts written in Testing Embedded Software [6]. Next, we present an overview of

test data generation methods [7], a topic that has a strong impact on the effectiveness and

efficiency of the whole testing process [8–10].Finally, we present a brief examination of

automated testing, in order to understand the need for this type of testing.

2.1 Embedded Systems

In order to develop this dissertation we have to understand what is an automotive em-

bedded system, and how do they operate. To reach this goal, we first take a look at the

concept of embedded systems and then correlate the concept with the automotive context.

An embedded system is a combination of hardware and software with the objective

of executing some specific function. It can either be an independent system or a piece of

a large system, but always limited to the hardware specification that is embedded with.

Typically embedded systems required high reliability and quality requirements because

they’re vastly used in critical systems.

These systems are in several engineering markets, for example[1]:

• Automotive - ignition system, engine control, brake system, etc.

• Consumer electronics - televisions, cameras, etc.

5

CHAPTER 2. PRELIMINARY CONCEPTS AND CONSTRAINTS

• Industrial control - robotics and control systems, etc.

• Medical - Infusion pumps, prosthetic devices, etc.

We can clearly see that embedded systems are everywhere in multiple forms, dimen-

sions, and functionalities. Consequently, various architectures can be designed in order to

promote the required functionality. However, it is possible to identify a basic embedded

system architecture.

Figure 2.1: Basic embedded systems structure (in [39])

This structure is composed by the following elements[39]:

• Sensor - Collects data from the “outside world” and converts it to an electrical

signal which can be read by the A-D Converter. The sensor can also store the data

in the memory.

• A-D Converter - Converts analog signal by the sensor into a digital signal.

• Processor & ASICs - Process the data and store it in memory.

• D-A Converter - Converts digital data fed by the processor to analog data.

• Actuator - Given the data received from the D-A Converter they cause an event to

the “outside world”.

2.1.1 Automotive Context

With the rise of the capabilities and quality of these electronic components, the auto-

motive world has begun to embrace embedded electronics in their products in order to

provide improvements in functionalities, performance, comfort, safety, etc. If an embed-

ded system controls any other electronic system in a vehicle it is called Electronic control

unit (ECU).

According to (Navet et al., 2008), in-vehicle embedded systems are usually classified

according to domains that correspond to different functionalities, constraints, and models.

It is possible to divide them into functional domains, such as powertrain control, chassis

control, active or passive safety systems and finally multimedia/telematics, body/comfort,

and human-machine interface.

6

2.1. EMBEDDED SYSTEMS

Power Train Domain - This domain is related to the systems that control the engine

according to requests from the driver, for example speeding up or slowing down given

the throttle position sensor or the brake pedal.

Chassis Domain - In the chassis domain, the ECU aim to control the interaction of

the vehicle with the road. These ECU take as input the requests emitted by the driver

(steering, braking, speed up), the road profile, and the environmental conditions in order

to ensure the comfort and safety of the drivers. Example of elements that belong to this

domain are systems like ABS, ESP, automatic stability control (ASC), and four-wheel

drive (4WD).

Body Domain - The elements that belong to this domain are the wipers, lights, doors,

windows, seats, and mirrors.

Multimedia, Telematic, and HMI - This domain is a “passenger-centric” functional

domain. In this domain the ECU are responsible to control the interaction between

the vehicle and other mechanisms outside the vehicle. For example, using systems that

provide access to on-demand navigation, on-demand audio-video entertainment, Web

surfing, etc.

Active/Passive Safety - In this domain, we have embedded systems that are in charge

of the safety of the driver and passengers. To do so, it has two objectives: active safety

and passive safety. The first refers to avoiding or minimizing an accident, an example of

such systems are ABS, ESP, lane keeping, etc. Regarding passive safety systems, they help

reduce the effects of an accident, for example, airbag, seat belts, etc.

2.1.2 Embedded Communication - CANBus

The CANbus was developed by BOSCH as a multi-master message broadcast system,

which means that all nodes are capable of transmitting data and multiple nodes can

request access to the bus simultaneously. It is widely used in embedded systems, with

a higher impact in the automotive domain. This protocol as a maximum signaling rate

of 1 megabit per second(bps) and unlike traditional networks such as USB or Ethernet,

CAN does not send large blocks of data point-to-point from node A to node B under

a supervision of a central bus master. In a CAN network, many short messages like

temperature or RPM are broadcast to the entire network that will be received by all nodes

or by none, which provides for data consistency in every node of the system.

The CAN communication protocol is a carrier-sense, multiple-access protocol with

collision detection and arbitration on message priority (CSMA/CD+AMP). CSMA means

that each node must wait for a certain period of inactivity before attempting to send

a message. CD+AMP means that collisions are resolved through a bit-wise arbitration,

based on a previously programmed priority of each message in the identifier field of a

message. Having a higher priority identifier will always grant bus access.

The ISO-11898:2003 Standard, with the standard 11-bit identifier, provides for sig-

naling rates from 125kbps to 1Mbps. The standard was later amended with the extended

7

CHAPTER 2. PRELIMINARY CONCEPTS AND CONSTRAINTS

29-bit identifier. The Figure 2.2 illustrates the 11-bit identifier field in which is pro-

vides 211 (2048) different message identifiers, meanwhile Figure 2.3 represents a 29-bit

identifier meaning a total of 229 (537 million) different identifiers.

Figure 2.2: Standard CAN frame from [INTRODUTION to the CAN]

Regarding Figure 2.2 the meaning of the bit fields are:

• SOF - The single dominant start of frame (SOF) bit marks the start of a message,

and is used to synchronize the nodes on a bus after being idle.

• Identifier - The Standard CAN 11-bit identifier establishes the priority of the mes-

sage. The lower the value, the higher is the priority.

• RTR - The single remote transmission request (RTR) bit is dominant when informa-

tion is required from another node.

• IDE - A dominant single identifier extension (IDE) bit means that a standard CAN

identifier with no extension is being transmitted

• r0 - Reversed bit

• DLC - The 4-bit data length code (DLC) contains the number of bytes of data being

transmitted.

• Data - Contains the actual data values, up to 64 bits.

• CRC - The 16-bit (15 bits plus delimiter) cyclic redundancy check (CRC) contains

the checksum of the preceding application data for error detection.

• ACK - Upon receiving an accurate message every node overwrites this recessive bit

in the original message with a dominant bit, which indicates an error-free message

has been sent. When a receiving node detects an error and leave this bit recessive, it

discards the message and the sending node repeats the message after re-arbitration.

Therefore, each node acknowledges(ACK) the integrity of its data, ACK is 2 bits,

one is the acknowledgment bit and the second is a delimiter

• EOF - The end-of-frame(EOF), is a 7-bit field that marks the end of a CAN frame.

• IFS - This is a 7-bit inter-frame space (IFS) that contains the time required by the

controller to move a correctly received frame to its proper position in a message

buffer area.

8

2.1. EMBEDDED SYSTEMS

Figure 2.3: Extended CAN frame from [INTRODUTION to the CAN]

As described before the structure of extended CAN is an extension of the Standard

CAN, Figure 2.3 illustrates it where we can see the addition of:

• SRR - The substitute remote request (SRR) bit replaces the RTR bit in the standard

message location as a placeholder in the extended format.

• IDE - A recessive bit in the identifier extension (IDE) indicates that more identifier

bits follow. The 18-bit extension identifier follows IDE.

• r1 - Additional reserve bit.

SockenCAN package is an implementation of CAN protocols for Linux. It uses the

Berkeley socket API, the Linux network stack and implements CAN device drivers as

networks interfaces. The CAN socket API has a similar design to TPC/IP protocol, allow-

ing programmers that are familiar with network programming to easily learn how to use

CAN sockets.

The Linux networking subsystem itself is highly flexible containing several network-

ing protocols. Figure 2.4 illustrates different networking layers within the Linux kernel.

Figure 2.4: Linux networking subsystem in [11]

Starting at the application level exists a standard POSIX socket API defining the

interface to the kernel. Underneath follows the protocol layer, which consists of protocol

families, for example, PF_INET, that implement different networking protocols. Inside

each family exists several protocols, in this case, TCP and UDP. Moreover, below this

9

CHAPTER 2. PRELIMINARY CONCEPTS AND CONSTRAINTS

level is where routing and packet scheduling layer takes place and finally it is followed

by the layer containing the drivers for the networking hardware.

In order to have CAN networking to the Linux kernel, CAN support has been added

to the existing networking subsystem. To do so, it has two crucial procedures:

• Have a new protocol family PF_CAN including a CAN_RAW protocol;

• Drivers for various CAN networking devices;

Figure 2.5 illustrates a network subsystem with CAN support.

Figure 2.5: Linux socket based in [11]

Taking this approach brings several design advantages:

• Benefits from the existing and established POSIX socket API to assist the application

developer.

• The new protocol family is developed against established abstractions layers, socket

layer above and packet scheduler below.

• CAN network device drivers implement the same standardized networking driver

model as Ethernet drivers.

• Communication protocols and complex filtering can be implemented inside the

kernel.

• Support for multi-user and multi-application access to a single CAN interface is

possible.

However, this design of SocketCAN has some drawbacks and limitations. Using a

networking subsystem which was designed for a minimal Ethernet frame of 64-byte to

the maximal 8 data bytes in a can frame bring memory overhead than simpler character

device solution. Another problem is the fact that packet scheduler is a shared resource

10

2.2. SOFTWARE TESTING

among all networking devices(both Ethernet and CAN). Thus, heavy traffic on the Ether-

net leads to delays in CAN traffic.

SocketCAN does not support hardware filtering of incoming CAN frames. Every

CAN frames are received and passed to the CAN networking layer core, which processes

the application specific filter lists. Having a hardware filter would lead to an overall

reduction of the received CN traffic, but are a global setting. In a multi-user, multi-

application scenario hardware filter is not feasible until the overall CAN design has been

finalized and it is well known which CAN data is needed on the system.

SocketCAN’s main goal is to provide a socket interface to userspace applications built

upon the Linux network layers. In contrast to TCP/IP and Ethernet networking, CAN

bus is a broadcast-only medium that no MAC-layer addressing like Ethernet. The CAN-

identifier is used for arbitration of the CAN-bus, meaning that CAN-IDs have to be chosen

uniquely on the bus. When designing a CAN-ECU network the CAN-IDs are mapped to

be sent by a specific ECU.

2.2 Software Testing

When developing a software there’s a considerable chance that it will have defects, and

this chance increase with the complexity of the software. As it is impossible to produce

defect-free software, we can resort to testing as a way of identifying the defects that can

later be fixed. Hence, when testing a software we want to add value to it, which mean

raising its quality or reliability through the identification of errors.

2.2.1 Introduction to the V-Model

To support this idea exists a development process known as V-Model.The V-Model rep-

resents a development process that follows the typical waterfall model with step-by-step

stages. This model also illustrates the relationships between the development life cycle

and testing, where every stage of the first is associated with the second.

Throughout the development life cycle occurs the software verification phase where

every artifact produced(design documents and test cases) are reviewed.

1. Requirements - This is the initial phase of this process where the system require-

ments and analysis are performed. During this stage, it’s designed the correspond-

ing tests to be implemented later in the testing stages. In this phase occours the

creation of the acceptance tests.

2. Specification - After defining the requirements for the system the next step is to

generate a specification document. Also, in this phase the systems tests are written.

3. Design - Regarding the design phase of the model, it takes all the specifications writ-

ten in the last stage and detail how the various components link with one another.

During this phase, the integration tests are developed.

11

CHAPTER 2. PRELIMINARY CONCEPTS AND CONSTRAINTS

Figure 2.6: V-Model representation

4. Implementation - This is the stage where all the coding takes place. Furthermore,

the developers also write down the unit tests that have to be executed on the code

written.

After the implementation is the validation phase where the system is under multiple

test executions to ensure that it meets the operational needs.

1. Unit Testing - The first phase of testing is the unit testing, where individual devel-

opers test at the module level by writing stub code to substitute for the rest of the

system hardware and software. Tests focus on the logical performance of the code.

2. Integration Testing - After ensuring that a single module in logically correct, the

next step is to test the combination of different models.

3. System Testing - This is the process of testing an integrated system to verify it meet

the specified requirements.

4. Acceptance Testing - The last stage of the test execution process, in here it’s done

a formal testing with respect to user needs, requirements, and business processes

conducted to determine whether or not a system satisfies the acceptance criteria

and to enable the user, customers or other authorized entity to determine whether

or not to accept the system.

5. Regression Testing - When we are developing a system it isn’t enough to pass a test

once. Every time it is modified, it should be retested to assure the changes didn’t

break some unrelated behavior.

Besides the quality and reliability of the software, another motivation to test is to

reduce cost on solving possible future defects. In a software development, the earlier

12

2.2. SOFTWARE TESTING

Figure 2.7: The cost to fix a problem as a function of the time in the product life cycle
when the defect is found[38]

the bug is found the cheap it will be to fix it because the complexity is lower in the early

stages. The figure 2.7, represents the relationship between the cost and the time of finding

a defect.

2.2.2 Testing methods

Now that we have an idea of when and how to test a system, the next key point is which

tests we use on the different stage of the testing process with the goal of having the highest

probability of detecting defects. According to (Myers et al., 2011) it is impractical, often

impossible, to find all errors in a program. This problem will have implications for the

economics of testing, assumptions that the tester as to make about the program, and

the manner in which test cases are designed. Therefore, to combat these challenges it is

possible to assume some strategies, where black-box testing and white-box testing are

the most prevalent.

Black-box testing, also known as functional testing or data-driven testing, views the

program as a black box. The goal is to be completely unconcerned about the internal

behavior. Instead, concentrate on finding circumstances in which the program does not

behave according to the specifications. In this approach, test data are derived solely from

the specifications (without taking advantage of the knowledge of the internal structure

of the program)[5].

White-box testing, also known as coverage testing or logic-driven testing, allows you

to examine the internal structure of the program. This strategy derives test data from an

examination of the program’s logic[5].

Regarding which test we use for a certain stage, the white-box testing is mainly used

in the lower levels of testing(unit testing, integration testing). Consequently, black box

testing is mainly applicable to the higher levels(system testing, acceptance testing, and

also some integration testing).

13

CHAPTER 2. PRELIMINARY CONCEPTS AND CONSTRAINTS

2.2.3 Criteria for stopping the test process

Throughout this chapter many important questions related to software testing have been

answered, leaving one last key point that needs to be addressed. The last key point is how

to define a criterion where it is correct to assume that the system is fully tested and is

bug-free. Unfortunately, it is impossible to claim such statement, because there’s no way

of knowing if the last error detected is the last remaining error. Nevertheless, the most

common criteria are these [5]:

• Stop when the scheduled time for testing expires

• Stop when all the test cases execute without detecting errors

Although these are the most common criteria, they can be meaningless and counter-

productive. Where in the first criterion you can satisfy it without doing any testing,

therefore it doesn’t measure the quality of testing. The second criterion is useless because

it also is independent of the quality of the test cases.

To solve this problem [5] present three categories that are more useful than the de-

scribed before.

The first is base completion on the use of specific test-case design methodologies.

For example, in a unit test, we might define that a test is completed if it satisfies the

multi-condition coverage, and a boundary value analysis of the unit specification and all

resultant test cases found no error. However, this approach has some problems, one it

isn’t very helpful for a test phase in which specific methodologies are not available, such

as systems test. Secondly, it is a subjective measurement, because there’s no way to tell if

the methodology was properly and rigorously used.

The second category is to state completion requirements in positive terms, this means

setting a goal for the test. For example, when executing a test we set a goal of X number

of errors, and we only stop testing when that goal is reached.

The third and last type of completion criterion is to plot the number of errors per

unit time during the test phase. Obviously, it involves a lot of judgment and intuition

when examining the shape of the curve in order to determine whether to continue the

test phase or end it.

2.3 Software testing — Embedded context

In this section, we will discuss how the process of testing is managed when we want to

test an embedded software. This is based on an approach called TEmb.

“TEmb is a method that helps to assemble a suitable test approach for a particular

embedded system. It provides a mechanism for assembling a suitably dedicated test

approach from the generic elements applicable to any test project and a set of specific

measures relevant to the observed system characteristics of the embedded system.” [6]

14

2.3. SOFTWARE TESTING — EMBEDDED CONTEXT

2.3.1 TEmb generic

As we have seen in section 2.2, when developing a new system different kinds of tests

will be performed by multiple people, methods (automatic, manual), and multiple styles

(unit, integration, systems, acceptence, regression). So at the start of the new project, we

can produce a master test plan which will determinate who is responsible for which test

and what are the relationships of the different tests. So, in each test level questions like

“what”, “when”, “who”, “which” and “by whom” show up.According to (Broekman et al.)

to answer those questions the TEmb method introduce the following concepts, known as

cornerstones:

• Lifecycle - In the lifecycle model, the main test activities are divided into five

phases. The ordering of the phases is: planning & control(speed up and organize

workflow of the testing process), preparation(testing techniques), specification(test

cases), execution(testing) and finally completion.

• Techniques - Answers the question:“how”, by defining standardized ways to per-

form certain activities. For example, techniques that design test cases, safety analy-

sis, data-driven test automation, checklists, etc.

• Infrastructure - This will set all the facilities required for structured testing. It can

be divided into three parts: facilities needed for executing the test (test environ-

ment), facilities that support efficient test execution(tools and test automation) and

facilities for housing the staff(office environment). Regarding the test environment

there are three important elements:

– Hardware/software/network - A System under test (SUT) can have different

appearances in different development stages. For instance a model, a proto-

type, isolated units connected to a simulator, production type. And for each of

these stages, different test environment could be required.

– Test databases - Tests can be repeatable, meaning that test data has to be

stored.

– Simulation and measurement equipment - If the SUT cannot run in the real

world because it requires external signals, a solution is to simulate those signals.

May also exist systems that produce output that requires special equipment

for detection and analysis.

• Organization - Defines the roles and expertise required of those who perform the

planned activities and the way they interact with others disciplines.

2.3.2 Mechanism for assembling the dedicated test approach

Each embedded system project has many specific concrete measures to achieve its goals

and to solve its specific problems of testing. In the TEmb method, it is called Mechanism

15

CHAPTER 2. PRELIMINARY CONCEPTS AND CONSTRAINTS

for assembling the dedicated test approach, which is based on the analysis of risks and system

characteristics. The measure based on risk analysis is a process of negotiating what should

and should not be done, and set test priorities. Analysis of system characteristics is based

on the characteristics of the SUT.

The system characteristics approach, as the name suggests, is the examination of

the characteristics of the SUT, in order to help to answer the question “What makes

this system special and what must be included in the test approach to tackle this?” [6].

Examples of system characteristics are:

• Safety critical systems - An embedded system is considered safety critical if a mal-

function can cause serious damage to health. Examples of these systems are avionics,

medical equipment, automotive. This type of systems requires a great risk analysis

and rigorous techniques to analyze and improve reliability.

• Autonomous systems - Embedded systems that are designed to operate autonomously

for an undefined period of time. Examples of these systems are traffics signaling

systems. As this kind of systems is designed to work continuously and react to cer-

tain events without human intervention, a specific test environment with specific

test tools is required in order to execute the test cases and analyze the results.

• Hardware restrictions - Towards this characteristic, an embedded system has limi-

tations of hardware resources. Thus, it can compromise the embedded software, for

example with the memory usage or power consumption. Systems with this charac-

teristic require a significant amount of testing effort of a specialized and technical

nature.

• State-based behavior - This characteristic tell us that the embedded system can be

described in terms of a transition from a certain state to another state. So, with

this characteristic, the output of a certain input depend on previous events. Upon a

system with this behavior, we have to be careful with the planning of test cases and

test automation.

• Hard real-time behavior - Real-time means that at an exact moment a certain input

or output occurs, and it influences the system behavior. To test this kind of system

the test cases must contain detailed information about the timing of input and

outputs. Another point to have in consideration is that the result of test cases will

usually be dependent on the sequence in which they are executed, having a huge

impact on both test design and test execution.

• Control systems - Systems that interact with the environment by a continuous feed-

back mechanism. Between the system and the environment exists a relation where

the system’s output influences the environment, and consequently the environment

influences the behavior of the system. Testing of such systems requires a simulation

16

2.3. SOFTWARE TESTING — EMBEDDED CONTEXT

of the environmental behavior. Examples of this system: industrial process control

systems and aircraft flight control systems.

All these characteristics described above impact the testing process, because they

raise issues that need to be solved by the test approach. Also, the specific measures of

each embedded system help to solve certain issues related to its characteristic. With the

TEmb method, we can attribute these specific measures to one of the four cornerstones

referenced in 2.3.1. Thus, by connecting the embedded system characteristic with the

special measure of every cornerstone, we have a LITO-Matrix, represented by the table

2.1.

System characteristic Lifecycle Infrastructure Techniques

Safety critical
Safety test
Load/stress test

Coverage analy-
sers

FMEA / FTA
Model checking
Formal proof
Rare event testing

Autonomous system

Hardware in the
loop
Software in the
loop

Measurement
probes

Rare event testing

Hardware restrictions Host/target test-
ing environment

Algorithm effi-
ciency analysis

State-based behaviour State modelling
and testing tools

State transition
testing
Statistical usage
testing
Rare event testing

Hard real-time
Logic analyser
Time measure-
ment probes

Evolutionary algo-
rithms

Control system

Hardware in the
loop
Software in the
loop

Simulation of
feedback-loop

Statistical usage
testing
Rare event testing
Feedback control
test

Table 2.1: LITO-Matrix, adapted from [6]

Table A.1, completes the table 2.1 by detailing the test levels and types performed in

each technique.

With the representation of this matrix we conclude that systems with different char-

acteristics asks for different test approaches. Thus, when testing an embedded system we

need to know its characteristics to take full potential of the testing process and improve

systems’ correctness.

17

CHAPTER 2. PRELIMINARY CONCEPTS AND CONSTRAINTS

2.4 Methodologies for automated software test case generation

As we have seen in the previous sections, software testing is indispensable in the software

development. However, testing can be expensive in terms of time and expense, and

when the development isn’t timely, testing will most likely be the phase where measures

will be taken. So, reducing the time to test a system and increasing its efficiency is an

enormous advantage. One solution to this problem is to automate the test case generation,

so in this chapter, we will take a look at different approaches to reach this goal. These

approaches are based by An orchestrated survey of methodologies for automated software test
case generation[7].

2.4.1 Model-based test case generation

Model-based testing uses models of software systems in order to origin test suites. Here

we take a look at the Model-based testing (MBT) regarding the behavior of the SUT,

treating it as a “black-box” which accepts inputs and produces outputs. Thus, if the SUT

has an internal state that changes when inputs are given and outputs produced, we can

easily represent it as a model with the possible input/output sequences. Therefore, with a

test selection algorithm, it is possible to generate test cases from the model by choosing a

finite set from the potentially infinite set of sequences specified by the model. Regarding

MBT exists three main schools:

• Axiomatic approaches - the Axiomatic foundation of MBT is based on some form

of logic calculus. Given a conditional equation like p(x) =⇒ f (g(x), a) = h(x) where

f , g, and h are functions of the SUT, a is a constant, p a specified predicate, and x

a variable, the objective is to find assignment to x such that the given equality is

sufficiently tested [12].

• Finite state machine (FSM) approaches - In this approach, the model is formalized

by a Mealy machine, where inputs and outputs are paired on each transition. Test

selection derives sequences from that machine using some coverage criteria. We can

consider the SUT as an FSM, is an “unknown” black-box, only exposed by its input

and output behavior. Some of the practical FSM based MBT tools use structural

coverage criteria, like transition coverage, state coverage, path coverage, etc. as a

test selection strategy [13][14].

• Labeled transition system approaches - Regarding these approaches exist two

ways to generate tests. The first is based on the input/output conformance (IOCO),

defining a relation which describes conformance of a SUT with respect to a model [15].

The second approach is called interface automata [16], this approach makes testing

conformance a two-player game, where inputs are the moves of the test generated

from the model, with the objective to discover faults, and the outputs are the moves

of the SUT with to objective to hide faults. Regarding test selection, IOCO is based

18

2.4. METHODOLOGIES FOR AUTOMATED SOFTWARE TEST CASE

GENERATION

on coverage criteria[17], based on metrics[18] and based on test purposes [19]. Test

selection in interface automata is based on state partitioning [20], based on traversal

and coverage[21], and based on model slicing by model composition[22]

2.4.2 Combinatorial testing

Combinatorial testing is selecting a sample of input parameters that cover a prescribed

subset of combinations of the elements to be tested. In this type of testing the parameters

and their inputs (or configuration options and their setting) are modeled as sets of factors

and values. For each factor, a set of values is values is defined. Test cases or specific

programs configurations are generated by selecting a subset of the cartesian product of

the values for all factors. As referenced in (Anand et al.,2013) if a program with five

factors, each of them with three possible values, then 35 or 243 are the possible program

configurations. Combinatorial interaction testing is the most common way of doing this

sampling, where all t-way combinations of factors values are within the sample.

2.4.3 Adaptive random testing

According to (Anand et al.,2013), empirical studies have proved that failure-causing in-

puts tend to form contiguous failure regions. As a consequence, non-failure-causing

inputs should form contiguous non-failure regions. That being said, if previously ex-

ecuted test cases didn’t reveal a failure, the newer test cases should be far away from

the already executed non-failure-causing test cases. Thus, test cases should be evenly

spread across the input domain. This is the basic intuition for adaptive random testing,

to generate a family of test case selection methods in order to improve the bug detection

effectiveness of random testing by enforcing an even spread of randomly generated test

cases across the input domain.

2.4.4 Search-based software testing

Search-based software testing is a process of generating test cases, or inputs of test cases

using search-based algorithms, guided by a fitness function that captures the current

test objective. SBST has been applied to a variety of testing goals:structural [23], func-

tional[24], non-functional [25], and state-based properties[26]. This approach can also

be applied in a wide and diverse range of domains: based on agents[27], aspects[28],

interactions[29], integration[30], mutation[31], regression[32], stress[33] and web appli-

cation[34]. The reason that this approach is widely applicable is that any test objective

that can be measured is a candidate for this transformation into a fitness function.

19

CHAPTER 2. PRELIMINARY CONCEPTS AND CONSTRAINTS

2.5 Overview of testing automation

In this section, we look at what testing automation is and its importance in the software

testing.

To begin with, testing automation is a technique where testers write some form of

script that will be executed by some software with the goal of testing another software. It

takes on a manual testing process and automate it through automation tools(allowing to

write and execute test cases) [40], we detail the concept of automation tool in the section

3.1.

Performing test automation has the following benefits:

• Increase productivity;

• Increases software quality;

• Reduces testing time;

• Increase testing coverage;

• Reduction of repetitive work;

• Greater consistency;

• Human interaction is not required while execution

Regarding which test cases to automate, it should be the high-risk/critical, repeatedly

executed, difficult or tedious to perform manually, and time-consuming [41].

Testing automation can be used to improve the software development, for example,

in continuous integration. Continuous integration is a software development practice

where team members integrate their work frequently. Each integration is verified by an

automated build to detect integration errors as soon as possible, test automation has a

strong impact on this phase of the continuous integration, allowing an efficient execution

of test cases at the time of the new work integration. [42].

20

C
h
a
p
t
e
r

3
Related Work

In this chapter, we expand the concepts referenced in the previous chapter and relate it

to the main context of this dissertation. Therefore, we first take a look at the different

approaches used in testing automation frameworks, mainly which types of frameworks

exist. Next, we present an overview of distinct testing automation frameworks that have

an impact in testing automation on the present days.

3.1 Test Automation Framework

As mentioned in section 2.5, in order to reach automation on test process we have to

resort to some software. This third-party software is called test automation framework

which allows the tester to develop, execute and report the automation test script in an

efficient way [43]. Automation frameworks define automation guidelines, coding stan-

dards, concepts, processes, project hierarchies, modularity, reporting mechanism, test

data injection, etc. to back up automation testing [44].

3.1.1 Types of Test Automation Framework

In this section, we explore the most popular [44]. Such as:

• Module Based Testing - This type of testing framework breaks the SUT into a

number of logical and isolated modules. In each module, a test script is dedicated

to a piece of the SUT and when all modules are grouped a larger test script is built

representing more than one module. The separation between modules is done by an

abstraction layer so that changes made in the SUT doesn’t affect the whole module.

Regarding this type of test automation framework, the main advantages are the

high level of modularization and consequently how easy and cheap it is to maintain,

21

CHAPTER 3. RELATED WORK

and scalability. However, it also presents disadvantages as the test data is directly

embedded in the module, so if changes in test data are made it requires changing

the test script of the corresponding module.

• Library Architecture Testing - Frameworks of this type have a similar approach

to the module based ones. But instead of separating the application into different

modules (test scripts), it divides the SUT into functions and creates a common func-

tion library for the SUT. Thus, test scripts in order to communicate with the SUT

go through this common library. The advantages of this approach are high modu-

larization, easy and low-cost maintenance, and finally reusability. The drawback is

the complexity of this approach, and in case of changes in the test data, changes in

the test script have also to be made.

• Data Driven Testing - Towards this approach, the test automation framework sep-

arates the logic and test data, storing the data in an external database(for example

in XML, Excel, CSV files). The data is stored in “Key-Value” pairs and to access or

populate the data it is used the key. The main advantage of this architecture is that

it reduces the number of test scripts require to cover all scenarios. Changing the

data on the external database will not affect the test scripts. Elevates the flexibility

and maintainability, and a single test scenario can run with different test data values.

The drawback is essentially the increase in terms of complexity because it needs

new elements capable of reading data from an external source.

• Keyword Driven Testing - Much like data-driven testing this approach separates

the test data from the test scripts, besides that it keeps the test scripts code in an

external file. The code on this file is called keyword and is organized in a tabular

fashion. Whenever in the main test script an specific code is needed and it belongs to

the keywords file, the automation tool calls the corresponding keyword providing

the respective arguments. One big advantage of this approach besides the ones

referenced in data-driven testing is that the tester doesn’t need scripting knowledge.

Most of the cases the keyword is self-explanatory on its functionality. Another

advantage is that as the keywords are external to the automation tool they can be

used multiple times by multiple scripts. The drawback of this approach is that the

tester has to have some idea of the keyword mechanism in order to take its full

potential. Another drawback is that it becomes more complicated as the number of

keywords grows.

• Behaviour Driven Development - Test frameworks associated with this type, have

a test script language that is easy to read for various professionals. Behaviour-driven

development describes the acceptance criteria in terms of scenarios which take the

following form:

Given some initial context,

22

3.1. TEST AUTOMATION FRAMEWORK

When an event occurs,

Then ensure some outcomes.

A story behavior is simply its acceptance criteria, meaning if the SUT fulfill all

the acceptance criteria then it’s behaving correctly. These scenarios are written

using the Given-When-Then template. The advantage of this approach is how easy

it is to understand the test scripts by multiple team members, allowing a better

communication between them. Another advantage is the possibility of writing the

test scenarios before any development of the SUT. However, it is required some

coding knowledge in order to execute the defined test scenarios in the SUT.

• Hybrid Testing Framework - A framework is considered a Hybrid Testing Frame-

work if it has a combination of two or more approaches mentioned in this section.

Towards the description of these types of automation framework and the main ob-

jective of this dissertation, keyword-driven, library architecture, and data-driven are

more relevant than the others. Keyword-driven is relevant given the fact that with this

approach the tester doesn’t need any scripting language to write the test cases and the

keyword can be reusable. Library architecture for allowing the creation of a library with

the most common functions of the SUT, from which we can execute commands for var-

ious embedded systems. Data-driven is also relevant because it separates the data from

the test script giving a high flexibility on the test automation framework.

3.1.2 Examples of Automation Tools

Taking into consideration the analysis of a test automation framework and its most popu-

lar types, in this section, we present four different test automation tools. The reasons to

choose these tool are: suggestion by Altran Portugal (Robot Framework section 3.1.2.1 and

Unified Functional Testing section 3.1.2.2); comparable with Robot Framework (Gauge

Framework section 3.1.2.3); popular in the embedded systems development (VectorCAST

section 3.1.2.4).

3.1.2.1 Robot Framework

Robot Framework is a test automation framework for acceptance testing and acceptance

testing development. This framework is python based and contains a keyword driven

testing approach. It is possible to extend the capabilities by creating new test libraries

implemented in Java or Python, or users can create new keywords from the existing ones.

There are many reasons to use Robot Framework, for example:

• Easy-to-use tabular syntax to create test cases.

• Reusability of keywords, and ability to create new keywords from the existing ones.

• Provides a library API for creating customized test libraries (Java or Python).

23

CHAPTER 3. RELATED WORK

• Supports data-driven testing.

• Modular architecture.

Regarding the architecture of this framework, it is totally independent of the technol-

ogy used by the SUT.

Figure 3.1: Robot Framework architecture (in [45])

As we can in the figure 3.1, Robot Framework presents a high level of modularity.

Thus, to execute a test, the test data that is written in tabular syntax is processed by the

core, executing the test case and generating logs and reports. The Robot Framework is

unaware of the target under test, as the interaction with it is made by the test libraries.

3.1.2.2 Unified Functional Testing

The next tool we examine is Unified Functional Testing (UFT), which provides functional

and regression test automation. This is a commercial tool developed and maintained by

the company Micro Focus, and one of the most popular tools available in the market. In

UFT the testing is highly focused on two aspects: GUI Testing and API Testing. With

the possibility to combine both enabling to test functionality across multiple application

layers, such as front-end GUI layer as well as back-end service layers. In our case, we

are not interested in GUI testing, as in embedded systems there is no GUI. Regarding

the API testing, it is interesting because embedded systems have an interface, and as our

objective is to test the integration of different devices, testing their functionality through

the interface is essential. However, an additional component has to be developed in order

to enable UFT to embedded device communication.

Unified Functional Testing much like Robot Framework offers a keyword driven ap-

proach, besides that it also supports scripting of tests under the scripting language VB-

Script. Another approach that this tool allows is data-driven testing, being possible to

have data in an external database and use it in the test case. Lastly, it is also possible to

create test libraries [35].

24

3.1. TEST AUTOMATION FRAMEWORK

3.1.2.3 Gauge Framework

Gauge framework is an open source test automation framework with the objective of

writing tests that are comprehensible by all roles in a product development. In order to

do so, exists the following Gauge Terminologies [46]:

• Specifications - Here will be the business layer test cases that can also represent the

feature documentation. Basically, in this file will be described particular features of

the SUT.

• Scenarios - They represent a single flow of a specification.

• Steps - These are the executable components of the specification. Every step has a

code implementation(Java, C# or Ruby) which will be executed when the steps in-

side a specification are executed. They can also be parametrized, even with external

files (Excel, CSV).

• Concepts - They provide the ability to re-use and combine steps into a single unit.

Regarding the type of automation, this framework follows behavior driven given the easy

to read approach, and data-driven as it is possible to generate test cases with external

data.

3.1.2.4 VectorCAST

VectorCAST is a family of products that automate the test process across the development

life-cycle. These commercial tools are developed and maintained by Vector Software and

have a high focus on the embedded systems.

Within this family of solutions we have:

• VectorCAST/C++ - Automatically generate executable test harness for one or more

units of application source code written in C/C++. Also, generate and execute test

cases and report results.

• VectorCAST/RSP - This complements the VectorCAST/C++ allowing it to extend

the testing one step further executing them in an embedded target environment.

When combining the two we have the following architecture:

When combining the two solutions the source code is parsed to generate the Test

Harness through the VectorCAST/C++. Then, the VectorCAST/RSP automates the com-

munication between the executable generated by the VectorCAST/C++ and the target

embedded device, downloading the test harness to the target passing its test case data

and retrieving results back from the target. Although this solution isn’t ideal for the type

of tests that we intend to execute, we still selected it as a relevant tool given its popularity

in the embedded systems development.

25

CHAPTER 3. RELATED WORK

3.2 Decision Analysis and Resolution

As we intend to select the most suitable framework for our test automation framework

we have to resort to some evaluation process. That is the case of Decision Analysis and

Resolution (DAR) that evaluates identified alternatives against established criteria.

In this process, we start by establishing the guidelines to determine which issues have

to be subject to formal evaluation, in our case it’s the tool selection. This formal evaluation

process is represented in figure 3.2, and is constituted by the following actions:

1. Establish evaluation criteria for evaluating alternatives;

2. Identify alternative solutions;

3. Select evaluation methods for evaluating alternatives;

4. Evaluate the alternatives solutions using the criteria and methods previously estab-

lished;

5. Select the recommended solutions from the alternatives based on the evaluation;

Figure 3.2: Formal evaluation process

After the execution of this process, the selected alternative is accompanied by docu-

mentation of selected methods, criteria, alternatives, and rationale for the recommenda-

tion.

26

C
h
a
p
t
e
r

4
Solution Evaluation

This chapter presents the proposed solution to our problem. First, we present the design

development of this solution and the rationale behind every step taken. Then, in section

4.2, we evaluate the different test automation tools referred in section 3.1.2 with the

Decision Analysis and Resolution explained in section 3.2. In the end, we identify the

most suitable framework to use in our proposed solution.

4.1 Architecture

As explained in the chapter 1, the objective is to create a framework able to execute tests

in multiple embedded devices. Thus, at the start of this dissertation, the suggested solu-

tion is having a test automation framework that is capable of communicating with the

embedded device in order to test its functionalities and integration with other compo-

nents.

Figure 4.1: Suggested solution

Figure 4.1 is a representation of this suggested solution. However, it is too vague

requiring more detail in each component. In order to reach a detailed solution, we resort

27

CHAPTER 4. SOLUTION EVALUATION

to the concepts of chapter 2 and the frameworks in chapter 3.

Taking into consideration the architecture of an embedded system and how do they

communicate in the automotive context, we know that the ECUs can interact with each

other through the communication methods described in the section 2.1.2. Hence, if two

components are connected (one being the testing framework and the other the SUT) by a

communication protocol with their interface exposed, it is possible to test the behavior

of the SUT upon certain inputs.

Regarding host running testing framework we split it into two components, the testing

tool, and an external component.

The testing tool component is in charge of the interaction between tester and frame-

work. It is in this component where the tester specifies the test cases, that will be inter-

preted by the specification editor in order to create the test driver which executes the

steps. During the test execution, the output values of the embedded device are given to

the test driver and then used to generate a report by the test report.

The second component is called external component that is composed of library, com-

munication and discovery mechanisms. The library is where all the common test scripts

are located. The communication mechanism is in charge of setting up the communication

between the test script and the embedded device. The discovery mechanism’s functional-

ity, as the name suggests, is discovering the functionalities of the embedded device. So,

when testing an embedded system the discover will check for his functionalities publish-

ing them to the library and then notify the tester. Following the discovery and under the

assumption that a test case is running, every test step will call the library, then it will

interact with the device through the communication mechanism.

The figure 4.2 presents the a more detailed view of the suggested solution (4.1).

Figure 4.2: Proposed solution architecture

28

4.2. TOOL SELECTION

4.2 Tool Selection

Following the process described in section 3.2, the first step is to establish where and when

should we use formal evaluation, in our case it is in the Tool Selection process. The second

step is to establish the evaluation criteria, resulting in the following: test automation

framework type; test driver; generation of test data; methods of communication; report;

integration with other tools; learnability; supported platforms; code availability.

These are the main criteria and in each one of them are divided into sub-criteria in

order to provide an objective evaluation. The third step of the tool selection process is

identifying the alternatives solution which are the ones described in the section 3.1.2.

The fourth is selecting the evaluation methods, consisting of a study of the framework

and then an creation of a table that will illustrate the result of an alternative for a given

criterion. The way that this table is built is by attributing a weight to each criterion and

within that criterion set weights in each sub-criteria. Resulting in a sub-total value:

sub − total =
∑

(sub − criteria weight ∗ sub − criteria value) (4.1)

Having the sub-total calculated we can calculate the total score for each alternative:

T otal Score =
∑

(sub − total ∗ criteria weight) (4.2)

Regarding the criteria weight, the selected values are in table 4.1.

Table 4.1: Criteria and respective weight

Criteria Weight(%)
Test automation framework type 18
Test Driver 10
Generation of Test Data 8
Methods of Communication 25
Report 15
Integration with other tools 2
Learnability 8
Supported platforms 4
Code availability 10
Total: 100

The reasoning behind the weights in table 4.1 is based on the importance of them

in order to have a framework capable of reaching the main goals. As we intend to test

embedded systems it is essential that the test automation framework interacts with the

SUT, with the purpose of executing the test on the embedded system. Thus, the criterion

regarding the methods of communication is the one with the highest weight.

Secondly, we want our solution to be capable of testing multiple devices with a little

to no extra work needed in terms of configuration. Therefore, the criterion Test automa-

tion framework type is considered important, but not as important as the methods of

communication criterion.

29

CHAPTER 4. SOLUTION EVALUATION

In third place of relevance for our solution we have the report criterion, the reason for

this is that reporting and the way it is structured is critical to find any defect that might

exist. With a good reporting, the tester can go to the root of the problem and solve it.

Next we considered Test Driver and Code availability equally important. The reason

is that Test Driver criterion provides an easier approach to creating test cases which is

something nice to have but not as important as the previous criteria, regarding the Code

availability the reason for having a weigh of ten percent is that if an automation tool has

this criterion it will be free of charge and access to the source code, therefore turning

interesting when developing and new solution like in our case.

Regarding the Generation of Test Data criterion, it doesn’t have much impact on the

selection of the framework as in this solution we are highly concerned on the ability to

test multiple embedded devices and Generation of Test Data is considered that helps

the test case generation. Learnability is something important because when presenting

the solution to new users if they can learn to operate in a very short time, the period of

testing the devices will be larger and well explored.

The two left criterion Supported platforms and Integration with other tools are

ranked lower because they don’t interfere directly with the core functionality of the frame-

work.

Now that the selection process is defined we present the result and its thought process

for each criterion.

Test automation framework type, in this criteria we will evaluate the tool regarding

its type. As we want our framework to be capable of test multiple embedded systems

where the test steps are similar, the go-to type is Library Architecture, which will allow

common functions to be called from multiple test scripts. Therefore, tools that follow this

type are considered more relevant. Approaches like data-driven and keyword-driven are

also interesting for our solution because they allow to cover all different possibilities of

scenarios with different data and the tester doesn’t need to possess scripting knowledge.

Module based only approach is ranked lower because it relies on the test data being

embedded into each module. Behaviour-driven is also ranked lower because the only

value that it brings is the help in the engagement from multiple stakeholders towards the

test process, it is something nice to have but not a must.

Evaluating each alternative against each test automation framework type criterion we

have the table 4.2.

Table 4.2: Architecture sub-criteria evaluation

30

4.2. TOOL SELECTION

Test Driver, here we evaluate how much manual work has to be done to build a test

case. In the best scenario, the alternative is managed through a GUI and no code is

required. So, in this criteria what we value the most is the code required to generate a

test case giving an evaluation of zero if it is required a lot of coding and one otherwise

and 2/3 when work effort is average. Another criterion is if it has a GUI feature, which

means if it is possible to create test cases through drag & drop functionality. To finalize

we evaluate the framework in terms of parametrization of test cases, if it is possible

to list input/expected values or over a range of values within the test case execution.

The corresponding evaluation of each alternative against each test driver criterion is

representable in the table 4.3.

Table 4.3: Test Driver sub-criteria evaluation

Generation of Test Data, in this evaluation criteria we take in consideration the

concepts of the section 2.4. The reason for selection this criterion is the ability to increase

the testing process efficiency. Towards the different methods, the ones that are considered

more important are combinatorial testing and random values, the reason behind this is

the fact that both of these approaches are totally independent of the system and only

take care of the input. Meanwhile, the model-based approaches (axiomatic, FSM, LTS)

requires a model representation of the SUT. The table 4.4 represents the evaluation.

Table 4.4: Generation of Test Data sub-criteria evaluation

Methods of Communication, to test the embedded system our proposed solution has

a host-target approach, where the framework is the host and the embedded system the

target. Therefore, it is really important the ability that the alternative has to communicate

with the embedded system (for example through CANBUS [4]). Another criterion that we

also evaluate is the possibility of remote communication, with this feature it is possible

to have the main test script in a computer an then, for example, through a raspberry PI

communicate with the embedded system. Allowing a great portability and scalability

31

CHAPTER 4. SOLUTION EVALUATION

of the framework. In the table 4.5 we can find the evaluation made with respect to the

communication criteria.

Table 4.5: Methods of Communication sub-criteria evaluation

Report, as presented in the section 2.5 one of the fundamentals of a test automation

framework is reporting the result of the test execution. Thus, in this criteria, we evaluate

the alternatives against multiple forms of exporting the test reports and its logging. We

classified the most important the ability to generate log files, with the full logging on

the test execution. Then is the export format (HTML, CSV, TEXT, XML) and if they are

generated automatically. Another criterion we evaluate the alternative is the possibility

of customizing the test report. The table 4.6 summarizes the evaluation.

Table 4.6: Report sub-criteria evaluation

Integration with other tools, in this criterion we want to evaluate the alternative

regarding its potential in integrating with different tools. For example, if we can integrate

the framework with an IDE in order to increase the efficiency of the test cases develop-

ment. When evaluating the alternative we find it relevant if it has an Open API, because if

it does it allows a high integration with multiple tools through its API. Table 4.7 presents

us the result of the evaluation.

Table 4.7: Integration with other tools sub-criteria evaluation

Learnability, with this criteria we want to evaluate the alternative regarding how

quick and easy it is to learn. The criterion with most weight is the learning curve, which

means the rate of a person ’s progress in gaining experience and skills. Then, it also took in

consideration the documentation provided, if it presents a bad or unclear documentation

32

4.2. TOOL SELECTION

it will be classified with a zero and one if otherwise, in case of being neither really good

or really bad it will be classified as 2/3. Finally, we examine how good the community is

on each criterion. To illustrate the evaluation we have the table 4.8.

Table 4.8: Learnability sub-criteria evaluation

Supported Platforms, it is convenient to have a solution that supports multiple plat-

forms. Therefore we evaluate the alternatives against their supportability with two dis-

tinct platforms(Windows/Unix-like systems). The table 4.9 represents the evaluation

done.

Table 4.9: Supported Platforms sub-criteria evaluation

Code Availability, another nice to have characteristic of the framework is being open

source. Typically means that it is free to use and its code is accessible. To summarize the

evaluation done we have the table 4.10

Table 4.10: Code sub-criteria evaluation

Now that all sub-criteria are evaluated the next step is to calculate the total score

of each alternative. To do so, we first have to set weight on all criteria, which can be

represented in the table 4.1. Then with the formula 4.2 we get the total score of an

alternative, the sub-total is given in each table of sub-criteria evaluation.

Applying this method of evaluation we have the following result:

Table 4.11: Tool Selection result

Robot Framework Unified Functional Testing Gauge Framework VectorCAST
Total Score: 85,83 68,20 73,73 42,52

We can conclude that the most suitable test automation framework for our solution is

the Robot Framework.

33

CHAPTER 4. SOLUTION EVALUATION

This framework has a test case editor (RIDE) delivering an easy write in the test cases,

corresponding to the specification module presented in the figure 4.2. Robot framework

has the functionality of remote library [45], in which it’s possible to implement robot

framework keywords with the programming languages Java or Python [45], correspond-

ing to the library module of the proposed solution. The communication between the

testing tool and the external component is ensured by the robot framework core function-

alities (RemoteLibrary [45]).

Regarding the communication between the external component and the embedded

device, it is ensured by existing Java or Python libraries for embedded communication

protocol (for example python-can [47]).

34

C
h
a
p
t
e
r

5
Robot Framework - Detailed

In this chapter we analyse Robot Framework to understand how to implement our pro-

posed solution. We examine two major functionalities of Robot Framework, the creation

of test libraries and the remote library interface. With both of these functionalities, we

are able to create the test library in the Remote Library Proxy and execute its keywords

remotely.

Robot Framework as previously described is a powerful test automation framework

widely used in different fields of software testing. One of its many perks is the ability

to extend the framework with new custom test libraries that are composed of keywords

that interact with the SUT. As Robot Framework is developed in Python, test libraries

can be easily implemented by this language. Besides Python it is also possible to im-

plement libraries in Java, however it requires the usage of Jython to be interpreted by

Robot Framework. We have selected Python given the high usage of the C programming

language in embedded context and Python provides a well-constructed module (ctypes)

to communicate with this language.

This framework has three different test library APIs:

• Static API - This approach takes in a module (Python) or class (Python or Java) and

its corresponding methods and maps them into keyword names that later are used

by the test case. Keywords generated also take the same parameters as the methods

that implement them. It is also possible to report failures with exceptions, log by

writing to standard output, and return values with the usual return statement.

• Dynamic API - This type of library must be a class that implements a method to get

the names of the implemented keywords (get_keyword_names()) as well as a method

to execute a named keyword with given arguments(run_keyword(name,args)). Key-

word’s names and how they are executed is determined dynamically at runtime.

35

CHAPTER 5. ROBOT FRAMEWORK - DETAILED

Figure 5.1: Import library with arguments (in [45])

Regarding the reporting status, logging and returning values it takes the static API

approach.

• Hybrid API - As the name suggests this is a hybrid between static and dynamic API.

Here libraries are classes with a method who tells them which keywords they imple-

ment (get_keyword_names()), but unlike Dynamic API it does not have the method

to run keywords run_keyword(name,args). Other features besides discovering what

keywords are implemented are similar as in the static API.

5.1 Test Library

5.1.1 Test Library Name

Test libraries are implemented as Python modules or Java classes. Thus, when creating a

library it will take the name of the given Python module or Java class. For example, having

a python module MyLibrary.py it will create a test library with name MyLibrary. Moreover,

it is possible to have classes inside a Python module where it will implement a certain

library. If this class name is the same as the module the library Robot Framework allows

dropping the class name when importing the library. For example, class MyLibrary in the

module MyLibrary.py can be used as a library with name MyLibrary. In another hand, if

the class’ name is different, for example MyLib, the library name will be MyLibrary.MyLib.

5.1.2 Configuring a Test Library

When implementing a test library as a class it is possible to provide arguments. The argu-

ments are specified in the Setting table after the library name. When Robot Framework

creates an instance of the imported library, it passes them into its constructor. Figure 5.1

represents an example of passing arguments to a library in the Settings section of the test

case.

A representation of the implementation of MyLibrary can be found in Figure 5.2,

where the constructor has two arguments that locates the library with a host and port.

5.1.3 Static keywords

5.1.3.1 What methods are considered keywords

In static library API, we have a library class/module and Robot Framework uses reflection

to find its public methods. In libraries implemented with Python, all methods starting

with an underscore will be excluded, regarding libraries in Java it will be the private

36

5.1. TEST LIBRARY

Figure 5.2: Implementation of a library (in [45])

methods. The remaining methods are considered keywords and are callable by the Robot

Framework. Figure 5.3 is a representation of a implementation of a test library in Python,

where the method my_keyword is considered keyword and the method _helper_method is

excluded.

Figure 5.3: Method considered keywords (in [45])

Methods that are in a base class and functions imported into the module namespace

are considered keywords. For example in Figure 5.4 if the module is used as a library,

it will have keywords: Example Keyword, Second Keyword, and Current Thread, the third

comes from a Python’s standard library and it returns the current Thread object.

Figure 5.4: Import methods to library (in [45])

5.1.3.2 Keyword names

When implementing a custom test library the keyword names are the method names.

Thus, keywords written in the test data are compared with methods names to find

the implementation method. This comparison is case-insensitive, moreover, spaces

and underscores are also ignored. Figure 5.5 have an implementation of two meth-

ods(hello,do_nothing). Given the properties of robot framework, if we want to call method

37

CHAPTER 5. ROBOT FRAMEWORK - DETAILED

hello, it is possible by having a keyword named Hello, hello or even h e l l o. Regarding

method do_nothing we can call it with a keyword named Do Nothing.

Figure 5.5: Set keyword names (in [45])

Figure 5.6 represents an example of a test case that uses the defined library MyLibrary,

and keywords Hello and Do Nothing from that library.

Figure 5.6: Example of a test case with defined keywords (in [45])

5.1.3.3 Keyword arguments

In static and hybrid APIs, keyword arguments are directly related to the method that im-

plements that keyword. Meaning that the number of arguments needed for the keyword

is the same as the number of arguments defined in the method. For example, if a method

takes no argument the keyword will also take no argument, or if it takes one the keyword

will also take one, and so on.

Figure 5.7: Keywords with arguments (in [45])

Figure 5.7 represents the implementation of three keywords in which the first takes

no arguments, the second one, and the third takes three, resulting on the keywords: No
Arguments, One Argument, Three Arguments.

As the keyword arguments are dependent on keyword implementation, and in our

case, it’s in python. We can take advantage of this language having multiple types of

arguments:

• Arguments with default values.

38

5.1. TEST LIBRARY

• Variable number of arguments(*varargs).

• Free keyword arguments(**kwargs).

Given that arguments in python do not hold any information regarding the type, there

is no possibility to automatically convert the argument in the test case to the correspond-

ing type in the library. Thus, calling a python method implementing a keyword with the

correct number of arguments always succeeds. However, the execution fails later if the

arguments are incompatible.

5.1.4 Communicating with Robot Framework

When executing a certain keyword we are expecting that it somehow communicates

with the SUT and then sends messages to the Robot Framework, returning information

about that execution and use it in log files, variables defined in the test case and most

importantly report if a keyword has passed or not.

How to report a keyword status To report a keyword status we resort on exception,

which means if an executed method raises an exception the keyword status is Fail, other-

wise its status is Pass.

Thus, the error message shown in logs, reports, and console is created from the excep-

tion message type and its message.

Logging information Exception messages are not the only way of sending information

to the users, another way to do so is setting the methods in order to send messages to the

log file of Robot Framework by writing to the standard output stream (stdout) or to the

standard error stream (stderr). Logging has different levels:

• Fail - Used when a keyword fails.

• Warn - Used to display warns.

• Info - This is the default level for normal messages. Messages below this level are

not shown in the log file.

• Debug - Used for debugging purposes. Useful for logging what libraries are doing

internally.

• Trace - More detailed debugging level. The keyword arguments and return values

are automatically logged using this level.

Info is the default level when sending information to Robot Framework. To change

the logging level it has to be set in the message itself following the format: *LEVEL*

LOG MESSAGE. Thus, for example, if we want to have a warn log we just had to send

39

CHAPTER 5. ROBOT FRAMEWORK - DETAILED

a message: *WARN* LOG MESSAGE. Figure 5.8 illustrates an example of different log

levels.

Figure 5.8: Log levels (in [45])

Return Values Another way of communication to the robot framework is returning the

information retrieved from the SUT or generated by other means. These values can be

assigned to variables in the test case and used as inputs for others keywords.

To return these values it is used the return statement from Python method implement-

ing the keyword.

Figure 5.9: Return values in test case (in [45])

Figure 5.9 is a example of returning values to Robot Framework core. As shown it is

possible to send one value into one scalar variable, as well in a more complex variable in

case of an object value.

Moreover, the return values can be assigned into several scalar variables at once, into

a list variable, or into a scalar variable and list variable. To do so, the returned values

represent Python lists or tuples, Figure 5.10 illustrates this functionality.

40

5.1. TEST LIBRARY

Figure 5.10: Retuning values in list or tuples (in [45])

5.1.5 Dynamic library API

In the upper sections we have seen how to create a test library, however, it is limited to

the static and hybrid library API. Dynamic library API takes a few different approaches.

In most ways, it is similar to the static API, for example when reporting keywords

status, logging or returning values. Moreover, the importing a dynamic library to the test

case is equal to importing a static or hybrid library. Therefore, users who are writing test

cases cannot treat all libraries in the same way.

The differences between static and dynamic libraries are the way of discovering what

keywords are implemented, their arguments, documentation, and implementation. As

we have seen in the static API this is done using reflection, but in dynamic libraries, it is

done through special methods that will be used for these purposes.

Additionally, with dynamic library API, it is possible to implement a library so that

it works as a proxy for an actual library possibly running on other process or even on

another machine. Given that keywords names and all other information is obtained

dynamically, there is no need to update the proxy when new keywords are added to the

actual library.

Getting keyword names Dynamic libraries must have the method get_keyword_names
responsible for telling what keywords are implemented. This method takes no arguments

and returns a list with the names of the keywords that the library implements.

In case of being a dynamic library with methods meant to be keywords and meth-

ods which are meant to be private helper methods, keyword method should be marked

facilitating the implementation of method get_keywords_names.

41

CHAPTER 5. ROBOT FRAMEWORK - DETAILED

Figure 5.11: Get keyword names with decorator (in [45])

Figure 5.11 illustrates an implementation of get_keywords_names that checks if meth-

ods have the attribute robot_name which is setted by an decorator. If a method has this

attribute it is considered an keyword and its name will be returned.

Running keywords For executing keywords of a dynamic library it is required to have

a special method called run_keyword. Whenever a keyword from a dynamic library is

used in the test data, Robot Framework resources to this method to execute the keyword.

This method receives two to three arguments, the first being a string with the name of

the keyword to be executed, the second a list of arguments given to the keyword, the last

is an optional argument to use free keyword arguments (**kwargs).

With the keyword name and arguments, the library is free to execute the keyword.

It must use the same mechanism to communicate with the framework as static libraries,

which means that it must use exception for reporting keyword status, logging by writing

to the standard output, and use the return statement to return values.

Getting keyword arguments Another method used in dynamic library is get_keyword_arguments
which has the functionality of getting arguments of a certain keyword.

Unlike methods previously described(get_keyword_names and run_keyword this method

is not require to execute keywords. However, this is problematic as its non-existence will

create a doubt in the number of arguments of a keyword. As most keywords expect a

certain number of arguments this will be problematic.

Therefore, it is recommended to have get_keyword_arguments implemented as it will

tell Robot Framework what arguments is a keyword expecting to receive. This method

has as input the name of a keyword and returns a list of strings containing the arguments

accepted by that keyword.

Dynamic keywords can take any number of arguments, have default values, accept a

variable number of arguments and free keyword arguments.

If get_keyword_arguments is missing or return a None for a given keyword, it means

that keyword gets a specification on accepting all arguments. An example of a library

that uses the dynamic API is Remote Library, section 5.2 explores this library.

42

5.1. TEST LIBRARY

5.1.6 Hybrid API

The last library API that we describe is the Hybrid API. As the name suggests this is a

mix between the static API and the dynamic API.

Getting keyword names To get all keyword names in hybrid API it is used the same

procedure as in dynamic API. So, the library needs a method called get_keyword_names
and much like in dynamic API this method has the mission of returning a list of all

keywords in the library.

Running keywords In getting keywords, hybrid library API follows the same policy

of dynamic API. However, in executing the keywords it takes a different path from the

dynamic API as it does not exist a method for running keywords. Instead, it uses reflection

to find the implementation of keywords like static API.

With hybrid library API, it is possible to have the methods implementation directly

on the library or dynamically.

As Robot Framework allows us to write libraries in Python it is easy to handle missing

methods dynamically with the method __getattr__. Figure 5.12 illustrates an example of

handling missing methods dynamically.

Figure 5.12: Handling missing methods (in [45])

In this example, the method __getattr__ is not executing the keyword, like run_keyword
in dynamic API. Instead, it returns a callable object that Robot Framework can execute

later.

Getting keyword arguments and documentation Regarding getting the keyword ar-

guments and documentation it takes a route similar to static API. Robot Framework

uses reflection to find the implementation methods of the keywords, thus searches for

arguments and documentation.

43

CHAPTER 5. ROBOT FRAMEWORK - DETAILED

5.2 Remote Library Interface

The remote library interface is a Robot Framework feature for having test libraries on

different machines than where Robot Framework itself is running, furthermore, it allows

us to implement libraries with other languages than Python and Java. Remote libraries

look pretty much the same as any other test library, thus developing test libraries using

the remote library interface is similar to create regular test libraries.

Remote library interface is provided by a special library of Robot Framework called

Remote. This library does not have keywords of its own, instead, it acts as a proxy between

the core framework and the implemented keywords elsewhere which are reached through

remote servers. The communication between Remote Library and the servers are through

a remote protocol on top of an XML-RPC channel. Figure 5.13 illustrates a high level

architecture of Remote Library.

Figure 5.13: High level architecture of Remote Library (in [45])

When importing a Remote Library to the test case it is required to specify where

the remote server is located by giving its address. Figure 5.14 shows three examples of

importing remote libraries.

Figure 5.14: Import a Remote Library (in [45])

In the regular test library, the import of a libray was performed by using the Library

command and then complement it with the module, for example, Library.py. However,

in the remote library it is used the Remote and then the address of the remote library. In

the example of the Figure 5.14 it is used a WITH NAME syntax that sets a name to the

library. It is useful when using multiple libraries. Moreover, in the last line, it has an

extra parameter regarding a time interval. This will be used to create a timeout to the

remote library when performing the initial connection. Obviously, this time has to be set

carefully to prevent interrupting a keyword execution.

Given that the remote library interface is written on top of XML-RPC, which is a

remote procedure protocol using XML over HTTP, it is possible to implement it with

44

5.2. REMOTE LIBRARY INTERFACE

the most mainstream languages has they support XML-RPC. However, it has to follow

some requirements in order to successfully communicate with Robot Framework. Re-

mote server in XML-RPC has to have specific methods in its public interface similar

to the dynamic library API, get_keyword _names and run_keyword are obligatory, but

get_keyword_arguments, get_keyword_tags and get_keyword_documentation are also recom-

mended. The explanation of these methods is in section 5.1.5.

Remote servers can act as wrappers for the real test libraries, or implement keywords.

Additionally, method stop_remote_server should also be in the public interface to ease the

server termination and to enable the possibility to call it in the test data regardless of the

test library.

As the XML-RPC protocol does not support all possible object types, remote servers

have to follow a set of rules in the returning of values as well as the keyword arguments

received from the Robot Framework:

• String, numbers, and Boolean values are passed without modifications.

• Python None is converted to an empty string.

• All lists, tuples, and other iterable objects (except strings and dictionaries) are

passed as lists so that their contents are converted recursively.

• Dictionaries and other mappings are passed as dicts so that their keys are converted

to string and values converted to supported type.

• Returned dictionaries are converted to dot-accessible dicts allowing the access to

keys as attributes like ${result.key}

• Strings containing bytes in the ASCII range that cannot be represented in XML(e.g

the null byte) are sent as Binary objects that internally use XML-RPC base64 data

type. When received they are converted to byte strings.

• Other types are converted to strings.

Robot Framework already disposes of generic remote servers for various languages

like Python, Java, Ruby, .NET, and so on.

45

C
h
a
p
t
e
r

6
TAFES Architecture

In the proposed solution (chapter 4) we have selected three main components: testing

tool, external component, and embedded device. These three components follow a generic

approach which is totally independent of a test automation tool. However, we have se-

lected the most suitable tool to implement this solution, the Robot Framework. Therefore

the previously designed components will suffer changes and adapt to the selected frame-

work. Figure 6.1 represents the end result of adapting the proposed solution to Robot

Framework, consequently representing TAFES architecture.

47

C
H
A
P
T
E
R

6
.
T
A
F
E
S
A
R
C
H
I
T
E
C
T
U
R
E

Figure 6.1: TAFES architecture

48

6.1. TESTING TOOL

6.1 Testing Tool

The Testing Tool component is in charge of the interaction between the tester and the

framework. It is in this component where the tester specifies the test cases, that will be

interpreted by the specification editor and executed by the test driver. After a test case’s

execution, a test report is generated automatically stating if the test case failed or passed

and the various outputs generated in each test step.

6.1.1 Robot Framework IDE (RIDE)

In this section, we explore Robot Framework IDE and within its various features, the one

that we highlight is keyword completion, that allows search by keywords when typing

into a test case.

Installation Robot Framework is totally independent of RIDE, meaning that in order

to use this IDE we must install it externally from the Robot Framework. To run RIDE it is

required Python with the minimum version of 2.6. Moreover, RIDE’s GUI is implemented

with wxPython toolkit, only version 2.8.12.1 is officially supported, however, it might

work fine in other versions. RIDE is only used to edit test cases, therefore installing Robot

Framework is required to run the created tests.[48]

Having completed and checked all the prerequisites, RIDE is easily installed using a

manager for Python modules named pip. Upon the installation, RIDE can be started and

Figure 6.2 show the result after starting up RIDE.

Figure 6.2: Ride startup

Test Case Specification Test specification is a detailed summary of what scenarios will

be tested, how they will be tested, how often they will be tested, all this for a given feature.

49

CHAPTER 6. TAFES ARCHITECTURE

Moreover, test specification gives the purpose of a specific test, identification of required

inputs and expected results, step-by-step procedures for executing the test, and outline

the pass/fail criteria for determining acceptance. [49]

A test plan is a collection of all test specification, it contains a high-level overview of

what is tested, detailing the objectives, resources, and processes for testing. It normally

contains a detailed understanding of the test workflow.

With Robot Framework IDE is it possible to specify multiple tests and later execute

them. However, robot framework requires test suites which are collections of test cases,

to show that it has some specified set of behaviors. Additionally, it is possible to organize

these test suites in directories. For example, a system might have a smoke test1 suite that

consists only of smoke tests.

Figure 6.3: Ride suite settings

Figure 6.3 is a representation of a new test suite, where it is possible to customize the

test suite, for example, setting a documentation, suite setup which is executed before the

first test case execution, suite teardown which is executed after the last test case execution,

it is also possible to import libraries and variables.

Having a test suite created, the next step is indeed to create test cases. Once again,

RIDE is a perfect tool to work with robot framework, thus the creation of a test case is

pretty straightforward.

As shown in Figure 6.4, it is possible to distinguish two features:

• Settings - Similarly to the creation of a test suite, it has a settings section where it is

possible to set some options on the test case.

• Table - Robot Framework works as a tabular syntax, thus it is in this table where

the test steps are specified using available keywords.

1Test that usually is executed before the commencement of more rigorous tests. The goal is to verify if
SUT’s main features are working properly.

50

6.1. TESTING TOOL

Figure 6.4: Blank test case

Keyword completion As previously described, one of the main perks of using RIDE

is its efficiency and time consumption by using features like keyword auto-completion.

When using this feature, RIDE user will be confronted with a list of available completions

from imported Test Libraries or resource files.

Figure 6.5: Keywords completion

Figure 6.5 shows us an example of keyword completion feature. In this example, the

keyword expected is from the BuiltIn library of Robot Framework named: No Operation.

Therefore, by typing “No” and then activating the auto-completion feature the suggestion

box appears showing us the keyword as well as its arguments and documentation.

Obviously, if this feature was only available to Robot Framework’s core libraries it

51

CHAPTER 6. TAFES ARCHITECTURE

would have no use for our solution as we want to develop new test libraries, thus, it is

also possible to use keyword completion for imported libraries or resources.

With all these features, the creation of test cases is efficient as it provides all the

information that the tester needs regarding every keyword, and alerts for possible errors

involving test steps.

Test execution RIDE allows adding additional functionality via plugins, several plugins

are included in the basic installation and others may be available from other sources. One

included plugin is the test runner plugin, which runs robot directly within RIDE. It

supports multiple profiles, for instance pybot2 and jybot3 profiles come with the plugin.

Moreover, with this plugin, it is possible to run an entire test suite or a subset by selecting

a check-box next to individuals tests. Another approach is tagging test cases, which is a

feature of Robot Framework, and then identify which tags are eligible to be executed in

the pybot script command with –include-tags or –exclude-tags options.

Another feature of this plugin is the execution of profiles, as previously described it

is possible to execute a test in Python or Jython with it respective profile (pybot,jybot).

Additionally, exists an option of creating a custom profile. This is valuable as it allows to

write a script and for example, use it if a test depends on other tools.

Executing a test to our framework only requires the usage of pybot, which is a Robot

Framework command that interprets the test case and calls the test library in the Remote

Library Proxy component and its keywords.

6.2 Remote Library Proxy - External Component

The testing tool is responsible for specifying test cases by writing keywords into its test

steps. These keywords might be user keywords when written by the tester or belong to

a keyword library. Keyword libraries can be native in the Robot Framework, for exam-

ple, the BuiltIn library or custom made libraries. As our framework is intended to test

embedded systems, Remote Library Proxy is designed to integrate Robot Framework’s

functionality and test these kind of systems.

As seen in Figure 6.1, Testing Tool, and Remote Library Proxy are totally independent.

Separating these two elements allows test cases to be specified in different machines and

in order to execute them it is only required to connect to the Remote Library Proxy. It

also allows the capability of using multiples Remote Library Proxies within the same

Testing Tool, this could be interesting when testing systems with a high complexity level.

Additionally, the complexity to communicate with the embedded system is all on Remote

Library Proxy and the tester does not need to take care of it, as his main responsibility is

only to specify test cases and start its execution.

2Script to execute tests using Python
3Script to execute tests using Jython

52

6.2. REMOTE LIBRARY PROXY - EXTERNAL COMPONENT

Remote Library Proxy main objective is to store all possible keywords for a given

embedded system, and consequently, have the capability to run them after the inspection

of the test case done by Robot Framework. However, this is not an easy task because our

framework has to have flexibility in communicating with the embedded system, that is be-

cause the communication towards the SUT might differ within systems. For example, one

communicates via Serial and another via Ethernet (represented in Figure 6.1). Therefore,

Remote Library Proxy is not only a proxy server storing the implementation of keywords,

but it is also capable of communicating with the embedded system. Thus, to execute tests

in the system under test successfully, Remote Library Proxy is composed of two modules,

Remote Library and Communication.

6.2.1 Remote Library Module

As described in section 5.2, Robot Framework supports a powerful feature known as

remote library interface that allows the Robot Framework’s core to communicate with a

remote library. In TAFES it is represented as the communication between the testing tool

and the remote library of Remote Library Proxy.

A Robot Framework’s remote library has to follow a set of rules (described previously

in section 5.2), however, as we are developing in the programming language Python,

Robot Framework has already developed a remote library server for this technology.[50]

Server configuration The python remote server for Robot Framework is configurable,

meaning that it accepts various configuration parameters when initialized:

• library - Mandatory argument that corresponds to a test library instance or module

with the intent of hosting and ultimately let the tester call its keywords.

• host - Represents the address on which the server is waiting for commands from

the Robot Framework’s core. Using “0.0.0.0” listens to all available interfaces.

• port - Here is designed the port that Remote Library Proxy is on. If given a value of

“0”, a free port is automatically selected.

• serve - This argument is a boolean where if set as “True” starts the server automati-

cally and waits for it to be stopped when generated. Otherwise, the server instance

is created and only will be up if a specific method is called.

• allow_remote_stop - Boolean argument if set as “True” allows the server being

stopped remotely through the keyword Stop Remote Server and XML-RPC method

stop_remote_server, if set otherwise disallow this functionality. We set this argument

with the positive value, thus allowing the server to be stopped through a keyword.

53

CHAPTER 6. TAFES ARCHITECTURE

Test Library The server configuration (section 6.2.1), is composed by multiple argu-

ments. Among them exists library, which is a test library written in Python, the remote

server accepts this test library (from a module or instance) by wrapping it and conse-

quently allowing different machines to access that library via the protocol defined in

5.2.

In TAFES, the remote library is organized by two groups of keywords:

• Generic Keywords - These keywords are common among embedded systems. They

are executable independently what is the system under test.

• Specific Keywords - Keywords that are specific to an embedded system. Thus, these

keywords are only created for a certain system and consequently, when testing

another system they have to be recreated. The creation of this kind of keywords is

automatically from a system under test model specifying which are the points of

observation.

6.2.2 Communication Module

When running a test case in TAFES, the end goal is to test its functionality by executing

commands into the system and ensuring that it behaves accordingly. So, a vital part of

the testing is the communication between the test driver (Robot Framework) and the

embedded system. Consequently, if any error exists in this section, the testing of the SUT

is not trustful and system errors might arise in the future.

TAFES is designed to perform tests automatically in any kind of embedded systems.

Knowing that the method of communication in systems differs, it must have a commu-

nication module capable of communicating with multiple protocols. In our solution we

have three methods of communicating to the embedded device, allowing TAFES to be

executed in a wide variety of systems.

• Ethernet/Wi-Fi - In the recent years, we have seen an increase in the number of

devices connected to a network by either Ethernet or Wi-Fi. Therefore, having

TAFES prepared to communicate over these protocols is allowing our test platform

for a broad number of devices.

We selected the XML-RPC as the communication protocol between the Remote

Library Proxy and the embedded device. As it is a remote procedure call it is

required to have a RPC-Client and a RPC-Server, both with the exposed methods

that ultimately represent keywords for the tester. In this context, the RPC-Client is

the Remote Library Proxy and the RPC-Server is the Embedded Device. However, in

order to have the Embedded Device acting like a RPC-Server is required additional

software in its system (section 6.3.1.

54

6.3. EMBEDDED DEVICE

• Serial - Serial communication is widely used in embedded devices, for example in

computer peripherals or in printers. For that reason, we have chosen to have this

communication method in TAFES.

In serial communication the data is transferred in a sequential manner and in the

form of binary pulses, this communication can take different modes such as:[51]:

– Simplex - One-way communication technique, a node acts either as a sender

or as a receiver. If a sender transmits the receiver can only accept.

– Half Duplex - A node can be both sender and receiver but cannot be both

at the same time, for example, if a sender transmits, the receiver can accept

but cannot send and vice versa. An example of a half-duplex mode is when

a browser sends requests for a web page, then the web server processes the

application and sends back information.

– Full Duplex - In this mode, a node can act as sender or receiver at the same

time.

Given the fact that when executing test steps into the embedded device it is expected

some sort of output from the SUT, thus we require a Half or Full Duplex serial

communication.

• CANBus - The last implemented communication method is CANBus, but it follows

a different approach than the other two communication methods.

When communicating with CANBus we broadcast a message through a BUS with

a certain priority number that will affect the CANBus nodes that it is intended

to affect. Through this process, it is not guaranteed that the SUT interpreted the

corresponding message. Thus, in TAFES when using CANBus a message is sent to

the BUS but there is no response like when using XML-RPC or Serial. Therefore,

when executing a test step a message is sent and is assumed that it arrived at the

SUT and the device acts accordingly to the message received.

It is also assumed that the embedded device broadcast messages that represent

its state, therefore, Remote Library Proxy communication module has to have the

capability to read broadcast messages from the SUT.

6.3 Embedded Device

After describing the Testing Tool the and Remote Library Proxy, the next component is

the embedded device that ultimately acts as a system under test. However, an embedded

device is truly eligible to be a system under test in TAFES if it meets these conditions:

• It exposes an interface that is capable of connecting to the Remote Library Proxy.

55

CHAPTER 6. TAFES ARCHITECTURE

• Has a model representation of all of its accessible operations and consequently

follows a Model Driven Development.

Probably when analyzing the conditions one might think that it is too strict and it is

against the motivation of having a generic framework capable of testing any embedded

system, fortunately , the Remote Library Proxy component is constructed to have the

most popular interfaces in the embedded context (Ethernet, Serial and CANBus), thus

this requirement is easily achieved by an embedded system that shares one of these

interfaces. Sometimes this interface can not exactly correlate to the systems operations,

for that specific case TAFES has a special component that is implemented in the device

with the objective of allowing an external component to execute commands. This special

component is called Remote Library Server and is described in the section 6.3.1.

The second condition is the most restrictive as we cannot ensure that a device follows

Model Driven Development, however, this approach has many benefits and is increas-

ing in popularity among the embedded system development professionals [36]. Model

Driven Development and automatic code generation are highly related and to improve the

testing process efficiency, TAFES also generates test libraries through analyzing a model

of the embedded device. Section 6.3.2 explains the process to automatically generate test

libraries for a given embedded device.

6.3.1 Remote Library Server

Even if the system has an interface to communicate there might not exist a relationship

between the communication interface and the system interface. To overcome this problem

a special component of TAFES exists called Remote Library Server. As the name suggests

it works as a server, and much like Remote Library Proxy, it also has a storage of the

multiple operations that the system executes. With the generic and specific keywords that

are generated automatically (section 6.3.2).Thus, it is possible to communicate between

the Remote Library Proxy (RLP) and Remote Library Server (RLS) with remote procedure

calls as the first works as a client and the second as a server that interacts directly with the

software. This interaction is possible by the points of contact of the embedded software,

for example in the .so files (shared libraries) when developing a software with the C

language.

Given its characteristics, Remote Library Server is ideally used in a more complex

embedded system that supports programming languages like Python and C. Regarding

any other systems that do not support these languages they must have Serial, or CANBus

communication interface to be tested with TAFES.

6.3.2 Library generator

In embedded systems, developers use traditional programming languages such as C

and C++ and make use of the processes and techniques inherent by these languages to

56

6.3. EMBEDDED DEVICE

improve reliability and reduce security flaws. However, model-driven development is

another approach which can achieve this objective.

Model-driven development uses models as primary artefacts throughout the system

engineering life cycle, elevating functional models to a central role in the specification,

design, integration, and validation of software.[52]

It is important to model in an unambiguous way that can be understood by the domain

experts that determine what the resulting system does as well as the software developers

that implement the system. The major advantage is that models are expressed using

concepts that have a lower bound to the underlying implementation technology [37],

making easier to specify, understand, maintain and ultimately reduces flaws that might

lead to system failures.

To design these models it is used a modeling language with a well-defined grammar

and semantics, there are two groups of languages:[52]

• Vendor-specific languages - Languages developed and promoted by a specific ven-

dor of a model-driven development platform, eg. MatLab and Simulink from Math-

Works.

• Standardized languages - These languages are defined by industry groups of in-

terested users and model-driven development platform vendors, most commonly

based on the Unified Modeling Language(UML).

Between vendor-specific and standardized languages, the preferred one is the second

as it is vendor-independent which offers the possibility for models to be exchanged be-

tween platforms. Thus, enabling to model in a broader set of systems than vendor-specific

languages.

Model-driven development has the benefit of increasing the degree of automation

applied to the development by generating code automatically, this indeed is one of the

most powerful characteristics which assures correspondence between specification and

implementation. However, it can only be achieved if the generation process from model

to code is running flawlessly and models are previously validated.

TAFES takes advantage of this feature of model-driven development to generate au-

tomatically its test libraries. This process massively increases the efficiency of testing

the embedded system because all the relation between the system’s operation and the

communication is automatically generated, leaving only the creation of the test cases to

the tester.

Embedded System’s Model As previously explained, the preferred language to model

is UML, thus, to allow TAFES to interpret the model, it is required some annotations.

So, to have a viable model for library generation, it has to follow these steps:

1. First the supported communication method has to be explicitly defined by anno-

tating the model with a specific tag that starts with the prefix “#TAFES_RobotLib”

57

CHAPTER 6. TAFES ARCHITECTURE

followed by the communication method.“#TAFES_RobotLibSERIAL” is an exam-

ple of an annotation when the embedded system allows a communication via Serial.

2. Upon annotating the whole model with the communication method, all of the in-

terface’s elements are examined and its operations are aggregated and form the test

library used in the Remote Library Proxy and Remote Library Server. A specific

method of communication like CANBus and Serial needs an extra annotation on

the operation itself. For example, it is required the CAN ID and DATA that activates

a given operation.

Configure TAFES for the embedded device To fully generate the libraries it is required

some to fill some configuration files with information regarding the method of communi-

cation applied to the embedded system. By writing these files, the Library Generator not

only will generate the keyword but also their content, translating it to the communication

mechanism of Remote Library Proxy.

Therefore, the content required in the configuration for the given method of commu-

nication used are:

• CANbus - For communicating in CANBus we are using the Python library python-

can[47]. The requirements needed to communicate via CAN are:

– INTERFACE - Python-can’s interface to use in the Remote Library Proxy, it has

to be according with the controller area network adapter used by the hardware

that the RLP is deployed at.

– CHANNEL - Can interface name with which Remote Library Proxy connects

to.

– BITRATE - Channel’s bit rate.

– RLP_HOST_IP - The host and IP used to communicate with the Remote Library

Proxy, it has to follow the syntax : “hostip”.

• Serial - For serial communication it is used the Python library pySerial[53] requiring

the following configuration parameters:

– PORT - Device name defined in the Remote Library Proxy.

– BAUDRATE - Baud rate of the serial communication.

– TIMEOUT - Read timeout.

– WRITE_TIMEOUT - Write timeout.

– MESSAGE_START_MARKER - To communicate with the embedded device it is

required markers that define a message, this define the message start marker.

– MESSAGE_END_MARKER - End of message marker.

58

6.4. SUMMARY

– MESSAGE_CONTENT_SEPARATOR - Marker that separated the message con-

tent, it is used when multiple values are passed in a message.

– RLP_HOST_IP - The host and IP used to communicate with the Remote Library

Proxy, it has to follow the syntax : “hostip”.

• XML-RPC - Regarding the XML-RPC protocol communication(through Ethernet/Wi-

Fi) it is required the following configuration:

– SERVER_ADDRESS - The Remote Library Server http server address.

– RLP_HOST_IP - The host and IP used to communicate with the Remote Library

Proxy, it has to follow the syntax : “hostip”.

– RLS_HOST_IP - Host and IP to communicate with the Remote Library Server.

Follows the syntax : “hostip”.

Figure 6.6 illustrates the process of generating test libraries automatically. It starts

with the definition of a Model with annotations regarding the communication method

supported by the embedded device. Additionally, it is required a configuration file that

will configure the communication to the embedded device.

Then the Library Generator mechanism will have both of these files as input and

will translate the operations set in UML format to keywords in Robot Framework. The

content of these keywords is to call the communication module of RLP. For this reason,

the configuration file is required, which allows opening a connection to the embedded

device.

After creating the test library, the next step of Library Generator is to deploy this

library in the corresponding components. Given that RLP is into a Raspberry Pi, it is used

ssh in the communication between the Library Generator and the RLP. After storing the

library, the remote server is updated. With an updated version of RLP, the testing tool

is capable of discovering which new keywords are available, and consequently execute

them.

6.4 Summary

In this chapter, we presented the architecture of our solution and restrictions to perform

test automation in an embedded system. It is composed of three components that are

totally independent and deployed in different systems. The testing tool component is lo-

cated in the tester’s computer, the Remote Library Proxy in a portable system (Raspberry

Pi) and then the last component is the Embedded System itself.

First and foremost an embedded system is eligible to be tested with our solution if

it has a model that exposes all its operations and if its communication method is one

that TAFES supports (Ethernet/Wi-Fi, Serial, CANBus). Therefore, the generation of test

scripts (Library Generator) requires two inputs: An UML file with all the corresponding

59

CHAPTER 6. TAFES ARCHITECTURE

Figure 6.6: Generation of test libraries

annotations required to that method of communication; and a configuration file to set up

the communication between components (mainly Remote Library Proxy and Embedded

Device). As output, library generator automatically generates and saves the test library

in the Robot Framework style into the corresponding components (Remote Library Proxy

and in case of an Ethernet/Wi-Fi communication also in Remote Library Server). After

storing the test library, the components then are accessed to the outside be starting a

server that exposes the test library.

At this stage, the Remote Library Proxy contains all the operations that are possible

to execute in the embedded device stored as test library. Thus, to access these operations

it is required the Testing Tool component. In this component, the test case in specified

and it imports the test library located in the RLP. Robot Framework has an IDE that turns

the whole test specification process more efficient, where one of its key features is the

auto-completion of keywords.

Finally, with the test specified it is possible to run it through Robot Framework. By

doing so, it will generate output files that report the test cases’ execution. In these files,

it is possible to understand if the test cases have passed or failed, as well as analyze its

behavior through the logging file.

60

C
h
a
p
t
e
r

7
Use Cases

Having selected a test automation framework to base TAFES on, and already designed its

architecture the next step is to analyse its functionality and ultimately use our solution to

test an embedded system. Thus, in section 7.1 we deploy and setup the Remote Library

Proxy into a hardware device (Raspberry Pi). Then we utilize it to test a proximity sensor,

first a simulated version where it exposes communication via Ethernet/Wi-Fi (section 7.2),

then with a real-world sensor that exposes operations via Serial communication (section

7.3).

7.1 Setup of Remote Library Proxy

Remote Library Proxy is a vital component for our solution has it stores the test library

and sends instructions to the embedded device. Acting like a proxy server, it is required

to be assigned to some kind of hardware. Given that the main property of our framework

is to test a wide variety of embedded systems, we have selected to deploy the Remote

Library Proxy into a Raspberry Pi 3B+.

Being deployed in a Raspberry Pi allows adaptability to different embedded devices

interfaces, since it support Ethernet/Wi-Fi and Serial(USB) communication. Regarding

CANBus communication, it is required extra hardware. Thus, deploying Remote Library

Proxy in a Raspberry Pi not only allows flexibility in testing embedded devices, as well

as portability. The Raspberry Pi has the Raspbian Stretch Lite operating system and the

following files and folders stored:

• /RemoteLibraryProxy/ - In this folder, it is located the code for the Remote Library

and the communication to the embedded device:

– rlp.py - Python module that contains a implementation of remote server from

Robot Framework and the test library.

61

CHAPTER 7. USE CASES

– specificKWProxyCan.py - Implementation of keywords to CANBus commu-

nication embedded device.

– specificKWProxySerial.py - Implementation of keywords to Serial communi-

cation embedded device.

– specificKWProxyXmlRpc.py - Implementation of keywords to Ethernet/Wi-

Fi communication embedded device, this represents the XML-RPC client.

– Utils/canutilities.py - Python module that implements communication via

CANBus with the Python library python-can.

– Utils/serialutilities.py - Module with the implementation of communication

via Serial using pySerial library.

– Utils/xmlrpcutilities.py - Implementation of an XML-RPC client for commu-

nication with the XML-RPC server located in the embedded device.

• /RLS Files/ - This folder contains files that have to be propagated to the embedded

device when the communication is through XML-RPC:

– specificKWServerXmlRpc.py - File corresponding the Remote Library Server

on the embedded device, capable of listening and translating commands to

embedded device functionalities.

• scp_script.sh - This is a script that propagates the content on the folder “RLS FILES”

to the embedded device.

• rlp_restart.sh - Script that automatically restarts and updates Remote Library

Proxy.

7.2 Simulated proximity sensor with Ethernet/Wi-Fi

communication

In this section, we will walk through the process of testing in an embedded system that

supports communication via Ethernet or Wi-Fi, being this method of communication the

interaction to the embedded device is through XML-RPC protocol (section 6.2.2).

Nevertheless, it was not possible to acquire a device capable of exposing a connection

via Ethernet or Wi-Fi, therefore we have simulated such device. The simulated proximity

sensor is a program that:

• Outputs the distance and activates a, exists three lights and each light is activated

on when the detected distance belongs to one of the following ranges:

– Red light - [0, 10[.

– Yellow light - [10, 20[.

62

7.2. SIMULATED PROXIMITY SENSOR WITH ETHERNET/WI-FI

COMMUNICATION

– Green light - [20,∞[.

• Has a button that switches the sensor state:

– ON - Sensor can detect objects and consequently output distance and conse-

quently turning on the corresponding light.

– OFF - Sensor can no longer detect objects, distance takes a negative value and

lights are all off.

Figure 7.1 represents the embedded device’s states, where in 7.1a the device is ON
and detecting a object, and in 7.1b it is OFF, therefore, not detecting anything.

(a) ON

(b) OFF

Figure 7.1: Detection mode ON and detection mode OFF in simulated proximity sensor

To execute TAFES on the embedded device it is required to have a model that illus-

trates the operations available to the “outside”. It was used the Papyrus Eclipse plug-in

to design the respective model (Figure 7.2).

As described in section 6.3.2, models requires labelling, as this is a device that allows

Ethernet/Wi-Fi communication, the data is transmitted through the XML-RPC proto-

col, therefore, the model has the following label “#TAFES_RobotLibXMLRPC” (Figute

7.3). After successfully design and annotate the model, the next step is to open the

configuration file for the respective communication method (XML-RPC) and fill it with

the information regarding the TAFES components following the topics in section 6.3.2.

Figure 7.4 illustrates the end result of the configuration file.

Papyrus plug-in produces an XML representation of the designed model. It can easily

be interpreted and that is exactly what the Library Generator does (section 6.3.2), then

generates the test library and sends it to the Remote Library Proxy and Remote Library

Server.

Figure 7.5 is a sample of the generated library for the Remote Library Proxy where

we can find a Python class where the methods correspond the operations defined in the

63

CHAPTER 7. USE CASES

Figure 7.2: XML-RPC embedded device model

Figure 7.3: Model annotation

Figure 7.4: Configuration file for XML-RPC

64

7.2. SIMULATED PROXIMITY SENSOR WITH ETHERNET/WI-FI

COMMUNICATION

Figure 7.5: Remote Library Proxy’s keyword library

model. Moreover, each method sends command that the embedded device will interpret

and consequently execute. Additionally, a connection to the server is open where the

address is the one defined in the configuration file.

The embedded device that we are testing only supports communication through

Ethernet/Wi-Fi, therefore, the messages between to the device are sent via XML-RPC.

As we have seen before this method of communication requires an additional software

in the device that acts like a RPC-Server. This server, that is represented by the Remote

Library Server shares the same methods as the RPC-Client, represented by the Remote Li-

brary Proxy. However, in the Remote Library Server the implementation of these methods

differs, as it now calls direct operations of the embedded software,.

In this use case, the embedded device was developed in C language, thus exposing

its operation through shared objects that can later be accessed by the keyword library of

Remote Library Server using the Python’s library ctypes (Figure 7.6.

65

CHAPTER 7. USE CASES

Figure 7.6: Remote Library Server’s keyword library

66

7.2. SIMULATED PROXIMITY SENSOR WITH ETHERNET/WI-FI

COMMUNICATION

Now that the model has been interpreted and transformed into keyword libraries

for the Remote Library Proxy and the Remote Libary Server, the embedded system is

viable for testing. That is the purpose of Testing Tool component (Section 6.1), it uses

Robot Framework IDE (RIDE) to create and run test cases. For this use case we have the

following test cases:

• Set auto detection OFF and verify if the lights are off and detected distance is -1.

• Set auto detection ON and verify if the distance is positive.

• Set a detection distance and verify if the corresponding light is on and the others

off.

Test Case 1 - Set auto detection OFF As described previously in this test case we look

for setting off the detection of the embedded system and then ensure that the distance

reads negative values and the light are all off. In the model, the operation that controls the

auto-detection is in the interface AutoDetect. Thus the keyword for setting auto detection

OFF is AutoDetect Debug Set Off, and to activate the detection the keyword is AutoDetect
Debug Set On. In the model it is described by an operation that can return the value of

the detection (1 when the detection is activated and 0 otherwise) this keyword is named

AutoDetect Read Detect.

The keywords that correlate the light status are located in the interface DetectionStatus,
thus the keywords to get the red, yellow and green light status are called DetectionSta-
tus Get Red Light, DetectionStatus Get Yellow Light and Detection Status Get Green Light
respectively.

Figure 7.7a is the test case specification where we execute the set off operation and

verify if the device if no longer detecting objects. Figure 7.7b is the device state after

executing this test case.

Test Case 2 - Set auto detection ON This second test case is pretty similar to the previ-

ous test case, but instead of executing a command to set the detection OFF we execute the

activation of detection. The keyword is also from the interface named AutoDetect, and

the keyword originated is AutoDetection Debug Set On.

After setting the auto detection ON, the device detects an object on a random distance

between 1 and 30. Therefore, the test case has to verify if a valid distance was detected.

Figure 7.1a is a representation of the specification of this test case in the RIDE. Figure

7.8b is the device state after executing test case 2.

Test Case 3 - Detection of an object and lights output The last test case selected has

the purpose of checking if the device can correctly turn on the light of the detected

distance. The embedded device’s state is stored in files, thus changing these files will

overwrite the state of the embedded system, another approach to change the detected

67

CHAPTER 7. USE CASES

(a) Test case specification

(b) Device state

Figure 7.7: Test case 1 specification and embedded device state after execution

(a) Test case specification

(b) Device state

Figure 7.8: Test case 2 specification and embedded device state after execution

68

7.3. PROXIMITY SENSOR WITH SERIAL COMMUNICATION

distance is using the keyword DetectionStatus Debug Set Distance which have the same

effect of changing the file.

When changing this distance it is expected that the light turns ON/OFF accordingly,

thus to verify this we use the keyword to get the light status of each light.

In this test case, we change the distance to the following values, and it is expected

only the following lights to be ON:

• 5 - Red light on.

• 10 - Yellow light on.

• 15 - Yellow light on.

• 20 - Green light on.

• 30 - Green light on.

Using Robot Framework functionality, we have created a user keyword that accepts a

distance and the lights expected status. This keyword is used as a template.therefore, that

in our test case we can call this keyword with different arguments. Figure 7.9 illustrates

this keyword, where we call keyword DetectionStatus Debug Set Distance to change the

detected distance. The new distance value comes as a argument of the user keyword.

Moreover, the expected detection status of each light also comes from the user keyword

parameter and it is used to check if it corresponds to the systems true value.

When using a user keyword as a template, the test case’s specification is a set of

values that act as arguments to the user keyword. Thus, for each row of the test case, the

first column is the distance to detect and the following three the expected light status.

Figure 7.10 is a representation of the test case specification on Robot Framework IDE, it

is possible to see that user keyword Check detection for a given distance is a template and

the test specification is the parameters for that keyword.

After executing the test cases, the report and log files from Robot Framework are

generated automatically stating if the test case passed or failed and logging every test

step. Appendix C.1 presents example of these files for this embedded device.

7.3 Proximity sensor with Serial communication

Based on the simulated proximity sensor (section 7.2) we have built a real-world proximity

sensor that fully works as an embedded system that supports Serial communication. It

was developed using the micro-controller board Arduino UNO and the ultrasonic sensor

HC-SR04, Figure 7.11 represents the device connected to the Raspberry Pi that deploys

the Remote Library Proxy.

The device’s functionality is quite similar to the simulated version, it detects an object

and depending on the distance (in centimetres) a light turns ON. The distance boundaries

69

CHAPTER 7. USE CASES

Figure 7.9: Use case XML-RPC test case number 3 - User keyword

are the same, meaning that a red light will light up if the distance is greater than zero

and less than ten, yellow if greater than or equal to ten and less than twenty, and green if

greater than or equal to twenty. Moreover, a blue light indicates if the detection of objects

is activated or not.

Adding to the lights we have six toggles, located at the bottom right of the embedded

device (Figure 7.11), which purpose is to inject bugs into the system. They are classified

into two groups and have a toggle for each light:

• Detection Status toggles - With options Working and Fail. When selected as Fail, a

bug is injected into the detection of an object, meaning that is not possible to detect

in the range of the respective light, when selected as Working the detection of the

respective light is working flawlessly.

• LED Health Status toggles - OK and Not OK are the options for these toggles. When

selected as Not OK, a bug is injected when turning the light on.So, it stays OFF

regardless if the sensor has detected an object that corresponds to that light or not.

The OK option allows the light to be turned on.

70

7.3. PROXIMITY SENSOR WITH SERIAL COMMUNICATION

Figure 7.10: Use case XML-RPC test case number 3

Figure 7.11: Proximity sensor with serial communication connected to the Raspberry Pi

71

CHAPTER 7. USE CASES

Regarding the model for this embedded device it can be found in Figure 7.12 and it

is composed by two interfaces. The first interface is SystemControl exposes operations

that control the whole system, operations set_on and set_off activates and deactivate the

detection of objects, the operation get_auto_detection returns the detection’s status, if it is

ON or OFF.

The second interface, Detection, exposes operations regarding the detection and the

lights, it has an operation to get the detection distance (get_distance) and for each light

there are three methods:

• get_*light colour*_light_detection : This operation returns one if it was detected an

object in that light distance range, zero otherwise.

• get_*light colour*_light_detection_status : This operation correlates with the Detec-

tion Status toggles, it returns one if it is possible to detect objects within the light

distance range, zero otherwise.

• get_*light colour*_light_health_status : Similar to detection status operation this is

related to the LED Health Status toggles, return one if the light is health and zero

otherwise.

Figure 7.12: Serial embedded device model

As this embedded system communicates to the Remote Library Proxy via Serial, it is

required to annotate the model with that information. As the communication is serial

not only it requires the label “#TAFES_RobotLibSERIAL”, as well as annotating each

operation with the command that the embedded device expects to receive with the pre-

fix “#TAFES_SerialCommand_”. For example, the operation set_off is annotated with

72

7.3. PROXIMITY SENSOR WITH SERIAL COMMUNICATION

“#TAFES_SerialCommand_1” as the command that the embedded device expects to re-

ceive to set the detection OFF is 1.

Following the design and annotation of the embedded device it is configuring neces-

sary to configure TAFES to successfully generate the test library to test the SUT. As the

communication required to interact with the device is Serial, we have to configure the file

serial.conf. The end result of the configuration in this use case is presented in Figure 7.13.

Figure 7.13: Configuration file for Serial communication

With the .uml file originated from the eclipse plug-in Papyrus, and the configuration

adapted to the embedded device, the test library can be generated automatically and

deployed at the Remote Library Proxy. Figure 7.14 is a sample of the library, where is

used the information from the configuration file to create a connection via Serial to the

embedded device.

Next step is to use the .uml file generated from the model and the configuration file

to automatically generate the test library and deploy it into the Remote Library Proxy

through (section 6.3.2).

The core functionality of this embedded system is the same as the simulated version,

which detects an object and turns on the light that corresponds to that distance. However,

the developed embedded device has an extra functionality which is the capability of

recognizing the status of detection and LED health for each distance range. Regarding

the functionality of the embedded system we have selected the following test cases, their

specification can be found in appendix B:

• Set auto detection OFF and verify if the detection state is OFF, and it is not detecting

any object in any light distance range, and distance is -1.

• Set auto detection ON and verify if the detection state is ON, and the detection and

LED status are positive.

• Place an object at a certain distance and verify if the sensor detection distance is

correct.

• Place an object at a certain distance and verify if lights turn on accordingly.

73

CHAPTER 7. USE CASES

Figure 7.14: Remote Library Proxy’s keyword library

In every test case we connect to the Remote Library Proxy to call the required key-

words for specifying the test case. Additionally, Robot Framework generates the report

and log files automatically, that can latter be accessed informing the tester the test case

execution status. Appendix C.2 represent a example of output files for this embedded

device

74

C
h
a
p
t
e
r

8
Conclusion and Future Work

8.1 Conclusion

Throughout this document, we have argued the importance of testing, particularly in

embedded systems. In embedded systems given its complexity, and harm that can be

inflicted to the real-word if the system does not behave accordingly to its specifications.

Thus, we present a study on how to test embedded devices where we have seen that

systems with different characteristics require different testing techniques.

To face the problem of testing embedded systems, we resort to an novel method of

testing which relies on automating all the test process with the objective of increasing

the efficiency. We selected a proficient test automation tool and explored how could it be

used to test embedded systems. As we are ultimately performing black-box testing, our

test automation tool has to be capable of communicating with the system under testing,

and verify that it behaves as expected.

We have selected four test automation tools which we could potentially expand for

testing embedded systems. These frameworks go through an evaluation process to select

the most suitable. Upon the evaluation process we selected Robot Framework as the

test automation tool. The reason behind this selection is the fact that this framework is

quite rich and supports various types of test automation (Keyword-Driven, Behaviour-

Driven, etc.). Furthermore, the creation of libraries can easily be done through Python

programming language that itself has a huge capability on communicating with embed-

ded devices.

We have designed a solution that requires three components. First, we have the

Testing Tool component, this is where the tester can specify and run test cases. Robot

Framework, together with its IDE (RIDE) belongs to this component, allows a clean and

easy writing of test cases, execution of test cases and generation of report files. The second

75

CHAPTER 8. CONCLUSION AND FUTURE WORK

component is responsible of storing the test library as well as executing the test steps

that most likely to communicate with the embedded device. The introduction of Robot

Framework in this component is done through the Robot Framework remote server that

stores the test library. Moreover, Remote Library Proxy has a module that communicates

with the embedded device in order to execute the test step. Given the fact that Remote

Library Server is an external component from the others it can be deployed in a different

system, for example in a Raspberry Pi. The last component is the Embedded Device that

represents the system under test. A embedded system is considered viable to be tested

with our solution if it is under development and follows a Model Driven methodology

which will allow our framework to automatically generate test libraries by annotating the

model with the specific labels and complete the configuration files regarding the method

of communication that the embedded device allows.

To finalize and prove that our solution is viable we have set up two use cases with a

proximity sensor as an embedded device. The development of these use cases followed

a Model Driven methodology where the primary artifacts are models that describe each

device and its operations reachable from the "outside world". These use cases were chosen

given the fact that both have a different method of communication. The first is a simu-

lated proximity sensor that communicates via XML-RPC , while the second a proximity

sensor that communicates via Serial communication. We wrote test cases for these em-

bedded devices and they were successfully tested with the Test Automation Framework

for Embedded Devices (TAFES).

Therefore, we proved that indeed it is possible to use conventional test automation

tools like Robot Framework, highly used in web testing, to test embedded devices, and

take full advantage of its perks to elevate the efficiency of testing. Also, having an external

component that acts as a proxy server between the Robot Framework and the embedded

device allows a new approach to testing these devices. In particular, embedded devices

can now be tested remotely using only a single hardware tool, for example, a Raspberry

Pi. Finally, model-driven development is a respected development method for embed-

ded devices and utilizing it to automatically generate test libraries enhances our testing

framework in terms of flexibility among different embedded systems and time efficiency.

8.2 Future Work

The dissertation’s goals were achieved, however, additional features and improvements

can be made:

• TAFES model analysis is restricted, it can only analyze class diagrams and generate

keywords from the operations in the Interface element. TAFES could be extended

to be able to analyze different models and generate test data from them. For exam-

ple, the analysis could generate test cases or high level keywords from activity or

sequence diagrams.

76

8.2. FUTURE WORK

• We have introduced the two types of libraries: Standard and Specific. However,

setting standard keywords can add complexity to our problem as it is not possi-

ble to ensure that every embedded system has that keywords that we considered

standard. Therefore, some analysis to establish which keywords are considered

generic. Another approach to consider every keyword as an embedded device spe-

cific, which means it comes from the model. Ultimately the tester will not recognize

any difference between both approaches.

• As the test libraries are saved in a remote server, an interesting feature is having

the possibility of having multiple test libraries that can either be stored in a single

external component or in multiple external components. This is quite useful when

having a complex system under test.

77

Bibliography

[1] T. Noergaard. Embedded Systems Architecture: A Comprehensive Guide for Engineers
and Programmers. Newnes, 2005. isbn: 0750677929.

[2] E. Dustin, J. Rashka, and J. Paul. Automated Software Testing: Introduction, Manage-
ment, and Performance. Boston, MA, USA: Addison-Wesley Longman Publishing

Co., Inc., 1999. isbn: 0-201-43287-0.

[3] E. Kit and S. Finzi. Software Testing in the Real World: Improving the Process. New

York, NY, USA: ACM Press/Addison-Wesley Publishing Co., 1995. isbn: 0-201-

87756-2.

[4] N. Navet and F. Simonot-Lion. Automotive Embedded Systems Handbook. 1st. Boca

Raton, FL, USA: CRC Press, Inc., 2008. isbn: 084938026X, 9780849380266.

[5] G. J. Myers, C. Sandler, and T. Badgett. The Art of Software Testing. 3rd. Wiley

Publishing, 2011. isbn: 1118031962.

[6] B. Broekman and E. Notenboom. Testing Embedded Software. Addison-Wesley Pro-

fessional, 2002. isbn: 0321159861.

[7] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen, W. Grieskamp, M. Harman,

M. J. Harrold, P. McMinn, A. Bertolino, J. J. Li, and H. Zhu. “An orchestrated

survey of methodologies for automated software test case generation.” In: Journal
of Systems and Software 86.8 (2013), pp. 1978–2001. doi: 10.1016/j.jss.2013.

02.061.

[8] H. Zhu, P. A. V. Hall, and J. H. R. May. “Software unit test coverage and adequacy.”

In: ACM Computing Surveys 29.4 (1997), 366–427. doi: 10.1145/267580.267590.

[9] A. Bertolino. “Software Testing Research: Achievements, Challenges, Dreams.” In:

Future of Software Engineering (FOSE 07) (2007). doi: 10.1109/fose.2007.25.

[10] M. Pezze and M. Young. Software testing and analysis: process, principles, and tech-
niques. Wiley, 2008.

[11] M. Kleine-Budde. “SocketCAN - The official CAN API of the Linux kernel.” In:

(2012).

79

https://doi.org/10.1016/j.jss.2013.02.061
https://doi.org/10.1016/j.jss.2013.02.061
https://doi.org/10.1145/267580.267590
https://doi.org/10.1109/fose.2007.25

BIBLIOGRAPHY

[12] M.-C. Gaudel. “Testing Can Be Formal, Too.” In: Proceedings of the 6th Interna-
tional Joint Conference CAAP/FASE on Theory and Practice of Software Development.
TAPSOFT ’95. London, UK, UK: Springer-Verlag, 1995, pp. 82–96. isbn: 3-540-

59293-8.

[13] J. Offutt and A. Abdurazik. “Generating Tests from UML Specifications.” In: Pro-
ceedings of the 2Nd International Conference on The Unified Modeling Language: Be-
yond the Standard. UML’99. Fort Collins, CO, USA: Springer-Verlag, 1999, pp. 416–

429. isbn: 3-540-66712-1.

[14] G. Friedman, A. Hartman, K. Nagin, and T. Shiran. “Projected State Machine

Coverage for Software Testing.” In: SIGSOFT Softw. Eng. Notes 27.4 (July 2002),

pp. 134–143. issn: 0163-5948. doi: 10.1145/566171.566192.

[15] J. Tretmans. “Formal Methods and Testing.” In: ed. by R. M. Hierons, J. P. Bowen,

and M. Harman. Berlin, Heidelberg: Springer-Verlag, 2008. Chap. Model Based

Testing with Labelled Transition Systems, pp. 1–38. isbn: 3-540-78916-2, 978-3-

540-78916-1.

[16] L. de Alfaro and T. A. Henzinger. “Interface Automata.” In: SIGSOFT Softw. Eng.
Notes 26.5 (Sept. 2001), pp. 109–120. issn: 0163-5948. doi: 10.1145/503271.

503226.

[17] R. Groz, O. Charles, and J. Renévot. “Relating conformance test coverage to formal

specifications.” In: Formal Description Techniques IX. Springer US, 1996, pp. 195–

210. doi: 10.1007/978-0-387-35079-0_12.

[18] L. M. G. Feijs, N. Goga, S. Mauw, and J. Tretmans. “Test Selection, Trace Distance

and Heuristics.” In: Testing of Communicating Systems XIV. Springer US, 2002,

pp. 267–282. doi: 10.1007/978-0-387-35497-2_20.

[19] C. Jard and T. Jéron. “TGV: Theory, Principles and Algorithms: A Tool for

the Automatic Synthesis of Conformance Test Cases for Non-deterministic Reactive

Systems.” In: Int. J. Softw. Tools Technol. Transf. 7.4 (Aug. 2005), pp. 297–315. issn:

1433-2779. doi: 10.1007/s10009-004-0153-x.

[20] W. Grieskamp, Y. Gurevich, W. Schulte, and M. Veanes. “Generating Finite State

Machines from Abstract State Machines.” In: Proceedings of the 2002 ACM SIGSOFT
International Symposium on Software Testing and Analysis. ISSTA ’02. Roma, Italy:

ACM, 2002, pp. 112–122. isbn: 1-58113-562-9. doi: 10.1145/566172.566190.

[21] L. Nachmanson, M. Veanes, W. Schulte, N. Tillmann, and W. Grieskamp. “Opti-

mal Strategies for Testing Nondeterministic Systems.” In: Proceedings of the 2004
ACM SIGSOFT International Symposium on Software Testing and Analysis. ISSTA ’04.

Boston, Massachusetts, USA: ACM, 2004, pp. 55–64. isbn: 1-58113-820-2. doi:

10.1145/1007512.1007520.

80

https://doi.org/10.1145/566171.566192
https://doi.org/10.1145/503271.503226
https://doi.org/10.1145/503271.503226
https://doi.org/10.1007/978-0-387-35079-0_12
https://doi.org/10.1007/978-0-387-35497-2_20
https://doi.org/10.1007/s10009-004-0153-x
https://doi.org/10.1145/566172.566190
https://doi.org/10.1145/1007512.1007520

BIBLIOGRAPHY

[22] W. Grieskamp, N. Kicillof, and N. Tillmann. “Action Machines: a Framework for

Encoding and Composing Partial Behaviors.” In: 16 (Oct. 2006), pp. 705–726.

[23] M. Harman, S. G. Kim, K. Lakhotia, P. McMinn, and S. Yoo. “Optimizing for

the Number of Tests Generated in Search Based Test Data Generation with an

Application to the Oracle Cost Problem.” In: 2010 Third International Conference
on Software Testing, Verification, and Validation Workshops. 2010, pp. 182–191. doi:

10.1109/ICSTW.2010.31.

[24] J. Wegener and O. Bühler. “Evaluation of Different Fitness Functions for the Evo-

lutionary Testing of an Autonomous Parking System.” In: Genetic and Evolutionary
Computation – GECCO 2004. Springer Berlin Heidelberg, 2004, pp. 1400–1412.

doi: 10.1007/978-3-540-24855-2_160.

[25] J. Wegener and M. Grochtmann. In: Real-Time Systems 15.3 (1998), pp. 275–298.

doi: 10.1023/a:1008096431840.

[26] K. Derderian, R. M. Hierons, M. Harman, and Q. Guo. “Automated Unique Input

Output Sequence Generation for Conformance Testing of FSMs.” In: Comput. J.
49.3 (May 2006), pp. 331–344. issn: 0010-4620. doi: 10.1093/comjnl/bxl003.

[27] C. D. Nguyen, A. Perini, P. Tonella, S. Miles, M. Harman, and M. Luck. “Evolution-

ary Testing of Autonomous Software Agents.” In: Proceedings of The 8th Interna-
tional Conference on Autonomous Agents and Multiagent Systems - Volume 1. AAMAS

’09. Budapest, Hungary: International Foundation for Autonomous Agents and

Multiagent Systems, 2009, pp. 521–528. isbn: 978-0-9817381-6-1.

[28] M. Harman, F. Islam, T. Xie, and S. Wappler. “Automated Test Data Generation for

Aspect-oriented Programs.” In: Proceedings of the 8th ACM International Conference
on Aspect-oriented Software Development. AOSD ’09. Charlottesville, Virginia, USA:

ACM, 2009, pp. 185–196. isbn: 978-1-60558-442-3. doi: 10.1145/1509239.

1509264.

[29] M. B. Cohen, P. B. Gibbons, W. B. Mugridge, and C. J. Colbourn. “Constructing Test

Suites for Interaction Testing.” In: Proceedings of the 25th International Conference
on Software Engineering. ICSE ’03. Portland, Oregon: IEEE Computer Society, 2003,

pp. 38–48. isbn: 0-7695-1877-X.

[30] T. E. Colanzi, W. K. G. Assunção, S. R. Vergilio, and A. Pozo. “Integration Test of

Classes and Aspects with a Multi-Evolutionary and Coupling-Based Approach.” In:

Search Based Software Engineering. Springer Berlin Heidelberg, 2011, pp. 188–203.

doi: 10.1007/978-3-642-23716-4_18.

[31] M. Harman, Y. Jia, and W. B. Langdon. “Strong Higher Order Mutation-based

Test Data Generation.” In: Proceedings of the 19th ACM SIGSOFT Symposium and
the 13th European Conference on Foundations of Software Engineering. ESEC/FSE

’11. Szeged, Hungary: ACM, 2011, pp. 212–222. isbn: 978-1-4503-0443-6. doi:

10.1145/2025113.2025144.

81

https://doi.org/10.1109/ICSTW.2010.31
https://doi.org/10.1007/978-3-540-24855-2_160
https://doi.org/10.1023/a:1008096431840
https://doi.org/10.1093/comjnl/bxl003
https://doi.org/10.1145/1509239.1509264
https://doi.org/10.1145/1509239.1509264
https://doi.org/10.1007/978-3-642-23716-4_18
https://doi.org/10.1145/2025113.2025144

BIBLIOGRAPHY

[32] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S. Roos. “TimeAware Test

Suite Prioritization.” In: Proceedings of the 2006 International Symposium on Software
Testing and Analysis. ISSTA ’06. Portland, Maine, USA: ACM, 2006, pp. 1–12. isbn:

1-59593-263-1. doi: 10.1145/1146238.1146240.

[33] C. Del Grosso, G. Antoniol, M. Di Penta, P. Galinier, and E. Merlo. “Improving

Network Applications Security: A New Heuristic to Generate Stress Testing Data.”

In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation.

GECCO ’05. Washington DC, USA: ACM, 2005, pp. 1037–1043. isbn: 1-59593-

010-8. doi: 10.1145/1068009.1068185.

[34] N. Alshahwan and M. Harman. “Automated Web Application Testing Using Search

Based Software Engineering.” In: Proceedings of the 2011 26th IEEE/ACM Interna-
tional Conference on Automated Software Engineering. ASE ’11. Washington, DC,

USA: IEEE Computer Society, 2011, pp. 3–12. isbn: 978-1-4577-1638-6. doi:

10.1109/ASE.2011.6100082.

[35] H. P. Enterprise. HPE Unified Functional Testing-User Guide. English. Version Ver-

sion 14.02. HPE. 859 pp.

[36] M. Broy, S. Kirstan, H. Krcmar, B. Schätz, and J. Zimmermann. “What is the benefit

of a model-based design of embedded software systems in the car industry ?” In:

2011.

[37] B. Selic. “The Pragmatics of Model-Driven Development.” In: IEEE Softw. 20.5

(Sept. 2003), pp. 19–25. issn: 0740-7459. doi: 10.1109/MS.2003.1231146. url:

https://doi.org/10.1109/MS.2003.1231146.

82

https://doi.org/10.1145/1146238.1146240
https://doi.org/10.1145/1068009.1068185
https://doi.org/10.1109/ASE.2011.6100082
https://doi.org/10.1109/MS.2003.1231146
https://doi.org/10.1109/MS.2003.1231146

Webography

[38] A. Berger. The basics of embedded software testing. 2011 (accessed at February 8,

2018). url: https://www.embedded.com/design/other/4212929/1/The-

basics-of-embedded-software-testing--Part-2.

[39] tutorialspoint.com. Embedded Systems Overview. 2018 (accessed at February 8,2018).

url: https://www.tutorialspoint.com/embedded_systems/es_overview.htm.

[40] What is Automation Testing? 2014 (accessed at February 18, 2018). url: http:

//www.softwaretestingclass.com/what-is-automation-testing/.

[41] AUTOMATION TESTING Tutorial: Process, Planning & Tools. accessed at February

8, 2018. url: https://www.guru99.com/automation-testing.html.

[42] Continuous Integration. 2018 (accessed at February 19, 2018). url: https://www.

martinfowler.com/articles/continuousIntegration.html.

[43] G. Technologies. How to Choose the Right Test Automation Framework. 2017 (ac-

cessed at February 8, 2018). url: https://www.glowtouch.com/blog/testing/

how-to-choose-the-right-test-automation-framework/.

[44] S. Tutorials. Most Popular Test Automation Frameworks with Pros and Cons. 2017

(accessed at Frebruary 8, 2018). url: http://www.softwaretestinghelp.com/

test-automation-frameworks-selenium-tutorial-20/.

[45] Robot Framework User Guide. 2018 (accessed at September 20, 2018). url: http:

//robotframework.org/robotframework/latest/RobotFrameworkUserGuide.

html.

[46] Gauge Framework’s Documentation. 2018 (accessed at February 9, 2018). url:

https://docs.gauge.org/index.html.

[47] Python-can’s Documentation. 2018 (accessed at February 19, 2018). url: http:

//python-can.readthedocs.io/en/latest/.

[48] Robot Framework IDE Wiki. 2018 (accessed at September 20, 2018). url: https:

//github.com/robotframework/RIDE/wiki.

[49] Test Case Specification. 2018 (accessed at September 20, 2018). url: http://

toolsqa.com/software-testing/test-case-specification/.

[50] Robot Framework’s python remote server. 2018 (accessed at September 20, 2018).

url: https://github.com/robotframework/PythonRemoteServer.

83

https://www.embedded.com/design/other/4212929/1/The-basics-of-embedded-software-testing--Part-2
https://www.embedded.com/design/other/4212929/1/The-basics-of-embedded-software-testing--Part-2
https://www.tutorialspoint.com/embedded_systems/es_overview.htm
http://www.softwaretestingclass.com/what-is-automation-testing/
http://www.softwaretestingclass.com/what-is-automation-testing/
https://www.guru99.com/automation-testing.html
https://www.martinfowler.com/articles/continuousIntegration.html
https://www.martinfowler.com/articles/continuousIntegration.html
https://www.glowtouch.com/blog/testing/how-to-choose-the-right-test-automation-framework/
https://www.glowtouch.com/blog/testing/how-to-choose-the-right-test-automation-framework/
http://www.softwaretestinghelp.com/test-automation-frameworks-selenium-tutorial-20/
http://www.softwaretestinghelp.com/test-automation-frameworks-selenium-tutorial-20/
http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html
http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html
http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html
https://docs.gauge.org/index.html
http://python-can.readthedocs.io/en/latest/
http://python-can.readthedocs.io/en/latest/
https://github.com/robotframework/RIDE/wiki
https://github.com/robotframework/RIDE/wiki
http://toolsqa.com/software-testing/test-case-specification/
http://toolsqa.com/software-testing/test-case-specification/
https://github.com/robotframework/PythonRemoteServer

WEBOGRAPHY

[51] What is serial communication and how it works? 2018 (accessed at September 20,

2018). url: https://www.codrey.com/embedded-systems/serial-communication-

basics/.

[52] Using model-driven development to reduce system software security vulnerabilities.
2018 (accessed at September 20, 2018). url: https : / / www . embedded . com /

design/programming-languages-and-tools/4429403/Using-model-driven-

development-to-reduce-system-software-security-vulnerabilities-.

[53] PySerial documentation. 2018 (accessed at September 20, 2018). url: https://

pythonhosted.org/pyserial/.

84

https://www.codrey.com/embedded-systems/serial-communication-basics/
https://www.codrey.com/embedded-systems/serial-communication-basics/
https://www.embedded.com/design/programming-languages-and-tools/4429403/Using-model-driven-development-to-reduce-system-software-security-vulnerabilities-
https://www.embedded.com/design/programming-languages-and-tools/4429403/Using-model-driven-development-to-reduce-system-software-security-vulnerabilities-
https://www.embedded.com/design/programming-languages-and-tools/4429403/Using-model-driven-development-to-reduce-system-software-security-vulnerabilities-
https://pythonhosted.org/pyserial/
https://pythonhosted.org/pyserial/

A
p
p
e
n
d
i
x

A
Auxiliary tables

Table A.1: Relation between techniques and test levels and types, adapted from [6]

Techniques Test levels, types

Failure mode and
effect analysis (FMEA)

Detailed design verification

Fault injection (FTA) Hardware/software integration test
Formal verification Model integration test
Rare event testing Software integration test
Fault tree analysis Host/target test
State transition testing System integration test
Statistical usage testing Unit test

85

A
p
p
e
n
d
i
x

B
Proximity sensor test cases

In this appendix’s chapter we present the specification of test cases executed in the prox-

imity sensor (section 7.3). The following sections describe each test case specification.

B.1 Set Off

The first test case is called Set Off. The goal of this test case is to verify that the embedded

device can successfully turn OFF the detection of objects. In this action the state of the

embedded device change. The auto detect is set to OFF, it is not possible to detect in any

distance range, thus the detection for each range is turn down to 0. Moreover, in this

test case we verify the status of detection is Working and LED health Ok is for each range.

Figure B.1 represents the test specification in the Robot Framework IDE.

B.2 Set On

Second test case executed in the proximity sensor is Set ON. For this test it is expected to

activate the auto detection of objects. After activating the auto detection, we check if its

state is ON. Then we verify if the status of detection is and the LED health status are Ok.

Figure B.2 is a representation of the test case specification in the Robot Framework IDE.

B.3 Distance Reading

The third test case for the proximity sensor has the goal of verifying the detected distance.

To perform this we have created a user keyword called Check Distance (Figure B.4). This

keyword calls another user keyword name Set Distance (Figure B.5) which tells the tester

87

APPENDIX B. PROXIMITY SENSOR TEST CASES

Figure B.1: Test case specification - Set Off

88

B.4. DETECTION OF OBJECT AND LED OUTPUT

Figure B.2: Test case specification - Set On

to move the object to an certain distance from the embedded device. After executed Set
Distance it is verified if the detected distance is approximately the expected.

Moreover, we have set the user keyword Check Distance as a Robot Framework tem-

plate, allowing to parametrize the test execution. A set of values of expected distance

values is selected (Figure B.3). Thus, when executing this test case it is required to change

the object distance accordingly to the input parameters.

B.4 Detection of object and LED output

The final test that we perform in the proximity sensor has the purpose of verify if the

embedded device can correctly correlate the detected distance to the output LED lights.

Therefore, it uses a user keyword named Check detection for a given distance (Figure B.7).

89

APPENDIX B. PROXIMITY SENSOR TEST CASES

Figure B.3: Test case specification - Distance Reading

Figure B.4: Check distance user keyword

Figure B.5: Set distance user keyword

This keyword is the aggregation of the previously used user keywords, Check Distance (Fig-

ure B.4 and a new user keyword Check Detection (Figure B.8. The later is for verification

of the detection values in the different ranges.

This test case uses Check detection fora a given distance as a template, where the input

the expected distance and expected detection value in the three distance ranges. Thus,

the execution of this test case requests to set a object in the selected distance and then it

verifies if the detection values are the expected.

90

B.4. DETECTION OF OBJECT AND LED OUTPUT

Figure B.6: Test case specification - Detection of object and LED output

Figure B.7: Check detection for a given distance user keyword

Figure B.8: Check detection user keyword

91

A
p
p
e
n
d
i
x

C
Test Case’s output files

In this appendix, we present the automatically generated output files after execution of a

test case. In chapter 7, we selected two use cases for our framework and in the end result,

we specified a set of test cases to execute. Thus, section C.1 indicates the output files for

the simulated proximity sensor, which communication method is XML-RPC. Section C.2

exposes the generated output files from the second use case (Proximity sensor with Serial

communication). For each case, we present a successful and a failed test case execution.

C.1 XML-RPC proximity sensor output files

Regarding the simulated proximity sensor, we have executed three test cases. Figure C.1

represents the test report when the test has passed. Moreover, it presents the status of

each test case and its elapsed time.

Figure C.1: XML-RPC proximity sensor test report - PASS

93

APPENDIX C. TEST CASE’S OUTPUT FILES

Figure C.2: XML-RPC proximity sensor test report - FAIL

Together with the development of the embedded device, we also developed a software

that causes the system to fail. Thus, by running such software the test execution has

failed. By analysing the test report it is clear that the failed test case is the third, Detection
of object and LED output, figure C.2 represents the test report. Along with the status

comes an execution message and in the failed test case the message gives us the raised

exceptions. It is now clear on each stage of testing the embedded device did not behave

accordingly. Thus, we have to analyze the test case execution with deeper detail, to do

so, we resort on the generated log files. Figure C.3 show us the two keywords that have

raised exception. In Figure C.3a, the reason that resulted in a test case failure is the fact

that with the expected distance values of 10 and detection values of 0/1/0 corresponding

to the red, yellow and green light. However, when verifying if the green light had a

detection value of 0 the test case failed, meaning that the embedded device was detection

in a distance range that it was not supposed to, then a bug exists.

Regarding the second failure on the test case (Figure C.3b), it was provoked in the

next iteration, and it is related to a detected distance. It was expected to detect an object

at 15 but instead, it detected a hundredth higher.

C.2 Serial proximity sensor output files

For the embedded device with the support of communication via Serial we have also

presented a set of test results and test logs. Figure C.4 show us the test report when the

execution of the test case is successful.

We later performed the same test cases, but this time they had the test result of FAIL.

Figure C.5 is the test report for that execution.

The test report has failed in two different test cases of the same test suit. However,

error messages have the same structure suggesting that the failure might be the same. To

94

C.2. SERIAL PROXIMITY SENSOR OUTPUT FILES

(a) Green light detection error

(b) Detected distance error

Figure C.3: XML-RPC proximity sensor log file with failed test case

analyse with more detail we resort on the generated log files (Figure C.6). In this file, we

have a failure in the test execution on both test cases. For the test case Distance Reading
(Figure C.6a) the failure occurs in the user keyword Check Distance. The first iteration

of this keyword is executed with success, however, the remaining test execution results

are failures. The bug is encounter in the verification of detected distance. It is required

a certain distance for each iteration, however, the distance detected in all iterations is

similar.

Regarding test case Detection of object and LED output, the error messages are similar

to the earlier test case. The reason for this is the fact that Detection of object and LED output
also calls the user keyword Check Distance and the errors are in the same iterations.

With the analysis of the test report and log files of this test execution we can conclude

95

APPENDIX C. TEST CASE’S OUTPUT FILES

Figure C.4: Serial proximity sensor test report - PASS

Figure C.5: Serial proximity sensor test report - FAIL

that a defect exists with a high probability in Check Distance keyword.

96

C.2. SERIAL PROXIMITY SENSOR OUTPUT FILES

(a) Distance Reading - FAIL

(b) Detection of object and LED output - FAIL

Figure C.6: Serial proximity sensor log file with failed test cases

97

A
p
p
e
n
d
i
x

D
Proximity sensor’s embedded software -

Arduino

1 #include "Ultrasonic.h"

2

3 /////////Setup up/////////

4

5 //create a ultrasonic object defined by the pins. Trigger - 6, Echo - 7

6 Ultrasonic ultrasonic(6,7);

7

8 //declare digital pins

9 const int greenLight = 13;

10 const int yellowLight = 12;

11 const int redLight = 11;

12 const int lightSwitch = 8;

13 //////////////////////////

14

15 // Receive with start- and end-markers combined with parsing

16 const byte numChars = 64;

17 char receivedChars[numChars];

18 char tempChars[numChars]; // temporary array for use by strtok() function

19

20 // variables to hold the parsed data

21 char commandCode[numChars] = {0};

22

23 boolean newData = false;

24

25 boolean isOn = true;

26 float distance = 0;

27 long microsec = 0;

28

29 const char startMarker = ’<’;

99

APPENDIX D. PROXIMITY SENSOR’S EMBEDDED SOFTWARE - ARDUINO

30 const char endMarker = ’>’;

31 const String messageOk = "OK";

32 const String messageFail = "FAIL";

33 //============

34

35 void setup() {

36

37 Serial.begin(9600);

38

39 pinMode(greenLight, OUTPUT);

40 pinMode(yellowLight, OUTPUT);

41 pinMode(redLight, OUTPUT);

42 pinMode(lightSwitch, INPUT);

43

44

45 }

46

47 //============

48

49 void loop() {

50

51

52 if(isOn){

53

54 //read sensor

55 microsec = ultrasonic.timing();

56

57 //distance in cm

58 distance = ultrasonic.convert(microsec, Ultrasonic::CM);

59

60 updateStatus();

61 }

62

63 recvWithStartEndMarkers();

64 if (newData == true) {

65 strcpy(tempChars, receivedChars);

66 // this temporary copy is necessary to protect the original data

67 // because strtok() replaces the commas with \0

68 parseData();

69 //showParsedData();

70 newData = false;

71 }

72 delay(500);

73 }

74

75 void setOff(){

76

77 isOn = false;

78 digitalWrite(greenLight,LOW);

79 digitalWrite(yellowLight,LOW);

100

80 digitalWrite(redLight,LOW);

81 distance = -1;

82 //string out = startMarker + messageOk + endMarker;

83 Serial.write("<OK,>");

84 //Serial.println("Recebi");

85 }

86

87 void setOn(){

88

89 isOn = true;

90 //string out = startMarker + messageOk + endMarker;

91 //Serial.println("Recebi");

92 Serial.write("<OK,>");

93 }

94

95 void getAutoDetection(){

96 if(isOn){

97 //string out = startMarker + messageOk + ",ON" + endMarker;

98 Serial.write("<OK,ON,>");

99 }else{

100 Serial.write("<OK,OFF,>");

101 }

102 }

103

104

105 void getGreenLightStatus(){

106 int greenLightStatus = 0;

107

108 //if(digitalRead(lightSwitch)){

109 greenLightStatus = digitalRead(greenLight);

110

111 //}

112 Serial.write("<OK,");

113 Serial.print(greenLightStatus);

114 Serial.write(",>");

115 }

116

117

118 void getYellowLightStatus(){

119 int yellowLightStatus = 0;

120

121 //if(digitalRead(lightSwitch)){

122 yellowLightStatus = digitalRead(yellowLight);

123 //}

124 Serial.write("<OK,");

125 Serial.print(yellowLightStatus);

126 Serial.write(",>");

127 }

128

129

101

APPENDIX D. PROXIMITY SENSOR’S EMBEDDED SOFTWARE - ARDUINO

130 void getRedLightStatus(){

131 int redLightStatus = 0;

132

133 //if(digitalRead(lightSwitch)){

134 redLightStatus = digitalRead(redLight);

135 //}

136 Serial.write("<OK,");

137 Serial.print(redLightStatus);

138 Serial.write(",>");

139 }

140

141 void updateStatus(){

142 digitalWrite(greenLight,LOW);

143 digitalWrite(yellowLight,LOW);

144 digitalWrite(redLight,LOW);

145

146 if (distance >= 20){

147 digitalWrite(greenLight,HIGH);

148 }

149

150 if(distance < 20 && distance >= 10) {

151 digitalWrite(yellowLight,HIGH);

152 }

153

154 if(distance < 10){

155 digitalWrite(redLight,HIGH);

156 }

157 }

158

159 //============

160

161 void recvWithStartEndMarkers() {

162 static boolean recvInProgress = false;

163 static byte ndx = 0;

164

165 char rc;

166

167 while (Serial.available() > 0 && newData == false) {

168 rc = Serial.read();

169

170 if (recvInProgress == true) {

171 if (rc != endMarker) {

172 receivedChars[ndx] = rc;

173 ndx++;

174 if (ndx >= numChars) {

175 ndx = numChars - 1;

176 }

177 }

178 else {

179 receivedChars[ndx] = ’\0’; // terminate the string

102

180 recvInProgress = false;

181 ndx = 0;

182 newData = true;

183 }

184 }

185

186 else if (rc == startMarker) {

187 recvInProgress = true;

188 }

189 }

190 }

191

192

193 void parseData() {

194

195 // split the data into its parts

196 char * strtokIndx; // this is used by strtok() as an index

197

198 strtokIndx = strtok(tempChars,","); // get the first part - the string

199 strcpy(commandCode, strtokIndx); // copy it to commandCode

200

201 switch (atoi(commandCode)) {

202 case 1:

203 setOff();

204 break;

205 case 2:

206 setOn();

207 break;

208 case 3:

209 getAutoDetection();

210 break;

211 case 4:

212 getGreenLightStatus();

213 break;

214 case 5:

215 getYellowLightStatus();

216 break;

217 case 6:

218 getRedLightStatus();

219 break;

220 }

221 }

103

	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	Introduction
	Contributions
	Document structure

	Preliminary Concepts and Constraints
	Embedded Systems
	Automotive Context
	Embedded Communication - CANBus

	Software Testing
	Introduction to the V-Model
	Testing methods
	Criteria for stopping the test process

	Software testing — Embedded context
	TEmb generic
	Mechanism for assembling the dedicated test approach

	Methodologies for automated software test case generation
	Model-based test case generation
	Combinatorial testing
	Adaptive random testing
	Search-based software testing

	Overview of testing automation

	Related Work
	Test Automation Framework
	Types of Test Automation Framework
	Examples of Automation Tools

	Decision Analysis and Resolution

	Solution Evaluation
	Architecture
	Tool Selection

	Robot Framework - Detailed
	Test Library
	Test Library Name
	Configuring a Test Library
	Static keywords
	Communicating with Robot Framework
	Dynamic library API
	Hybrid API

	Remote Library Interface

	TAFES Architecture
	Testing Tool
	Robot Framework IDE (RIDE)

	Remote Library Proxy - External Component
	Remote Library Module
	Communication Module

	Embedded Device
	Remote Library Server
	Library generator

	Summary

	Use Cases
	Setup of Remote Library Proxy
	Simulated proximity sensor with Ethernet/Wi-Fi communication
	Proximity sensor with Serial communication

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Webography
	Auxiliary tables
	Proximity sensor test cases
	Set Off
	Set On
	Distance Reading
	Detection of object and LED output

	Test Case's output files
	XML-RPC proximity sensor output files
	Serial proximity sensor output files

	Proximity sensor's embedded software - Arduino

