Blue Door

Tiago Manuel Vieira Martins

Engenharia de Redes e Sistemas Informaticos
Departamento de Ciéncias de Computadores
2018

Orientador
Luis Filipe Coelho Antunes, Professor Associado,
Faculdade de Ciéncias da Universidade do Porto

Coorientador
Pedro Manuel Roque Cabral, Investigador,
Faculdade de Ciéncias da Universidade do Porto

[BAPORTO

F FACULDADE DE CIENCIAS
UNIVERSIDADE DO PORTO

Todas as corre¢Bes determinadas
pelo juri, e sé essas, foram efetuadas.

O Presidente do Juri,

Porto, / /

Abstract

Nowadays, a large number of physical access control systems, that are implemented in many
distinct environments, such as airports, office buildings and even universities, are based on
contactless smartcards. However, it has already been shown that these cards have several flaws
that can be easily exploited, also putting their surrounding system at risk. Therefore, it is

necessary to develop an alternative to achieve a truly secure access control system.

In the recent years, the smartphone became an almost indispensable equipment for people,
replacing several tasks and even several objects from our everyday life, with a simple mobile

application.

With that in mind, we designed a physical access control system, that instead of using the
insecure smartcard, it takes advantage of the smartphone capabilities, thus creating a possible

alternative way for securely authenticate the user.

In this thesis, we first present the desired properties and characteristics that our idealized
access control system would have. We also explain the overall composition and operation of the
system, including the two main activities: the enrollment, where the user registers himself in the

system, and the authentication, where the actual user’s access permissions are verified.

We then describe a prototype implementation of the presented access control system, composed
by an Arduino Uno board, a BLE Nano 2 module and an Android smartphone, that is able to

create a secure communication channel for the authentication to be fulfilled.

Resumo

Hoje em dia, um grande ntimero de sistema de controlo de acesso fisico, que sdo implementados
em varios ambientes distintos, tais como aeroportos, edificios empresariais e até universidades,
sao baseados em contactless smartcards. No entanto, ja foi demonstrado que este tipo de cartoes
tém vérias falhas e que podem ser facilmente exploradas, pondo também o seu sistema envolvente
em risco. Devido a esta problematica, é necessario desenvolver uma alternativa para obter um

sistema de controlo de acesso verdadeiramente seguro.

Nos ultimos anos, o smartphone tornou-se num equipamento quase indispensavel para as
pessoas, substituindo varias tarefas e até varios objetos do nosso quotidiano, com uma simples

aplicacao mével.

Com isso em mente, concebemos um sistema de controlo de acesso fisico, que em vez de
utilizar o smartcard inseguro, utiliza e tira vantagem das capacidades do smartphone, criando

assim uma possivel alternativa para autenticar o utilizador com seguranca.

Nesta tese, comecamos por apresentar as propriedades e caracteristicas desejadas que o nosso
sistema de controlo de acesso idealizado teria. Também explicamos a composicao e funcionamento
geral do sistema, incluindo as duas principais atividades: o enrollment, onde o utilizador se

regista no sistema, e a autenticagdo, onde as permissoes de acesso do utilizador sdo verificadas.

De seguida, descrevemos a implementacao de um protétipo do sistema de controlo de acesso
apresentado, composto por um Arduino Uno, um moédulo BLE Nano 2 e um smartphone Android,

que é capaz de criar um canal de comunicacdo seguro, para que a autenticagdo seja realizada.

ii

Aos meus pais e 4 minha irma

iii

Contents

Abstract i
Resumo ii
Contents vi
List of Tables vii
List of Figures viii
Acronyms ix
1 Introduction 1
1.1 Motivation e e e 2
1.2 Proposed objectives 2
1.3 Structure e 2

2 State Of The Art 3
2.1 Cryptographic protocols 3
2.1.1 Rivest-Shamir-Adleman 4

2.1.2 Advanced Encryption Standard)

2.1.2.1 Counter with CBC-MAC / AES-CCM 6

2.1.2.2 Galois/Counter Mode / AES-GCM 6

2.1.3 Diffie-Hellman e 7

iv

2.2

2.3

2.1.4 Elliptic Curve Cryptography
2.1.5 Elliptic-curve Diffie-Hellman

2.1.5.1 Curve2b519
Communication protocols e
2.2.1 Quick Response Code
2.2.2 Bluetooth Low Energy
2.2.3 Near Field Communication
2.24 Wi-FiDirect
Physical access control systemso oo
2.3.1 Bluetooth-based access control system
2.3.2 NFC-based access control system

Proposed Solution

3.1 Overview e
3.2 System Functioning
3.21 Enrollment
3.2.2 Authentication
3.3 Communication methods o o
3.3.1 Communication in Enrollment
3.3.2 Communication in Authentication

System Implementation

4.1

4.2

4.3

Overview
Material Used/System Architecture
System Operation e
4.3.1 Android application

4.3.1.1 Features and permissions

4.3.1.2 Operation.
432 BLE Nano 2 e

10

11

13

13

14

14

16

16

18

18

19

20

20

21

23

4.3.3 Arduino Uno

4.4 Problems found

5 Conclusion and Future Work

Bibliography

vi

35

List of Tables

2.1 Communication protocols comparison

4.1 Material used in the implementation

vii

List of Figures

2.1

2.2

3.1

3.2

3.3

4.1

4.2

4.3

4.4

4.5

AES Encryption process, image from [43] L. 5
Elliptic curve example, image from [6] Lo 8
System components diagram (example) 17
Communication sequence between components 18
Communication protocols between components 22
Schematic representation of the Arduino and BLE Nano 2 circuit 25
Android application’s list of found devices 27
Android application activity diagram L. 29
Arduino and BLE Nano 2 with green LED lightedup 32
Communication sequence between the Arduino and the Smartphone 32

viii

Acronyms

AES Advanced Encryption Standard

AES-CCM Advanced Encryption Standard -
Counter with Cipher Block

Chaining-Message Authentication
Code

AP Access Point

BLE Bluetooth Low Energy

CBC-MAC Cipher Block Chaining -
Message Authentication Code

CCM Counter with Cipher Block Chaining -
Message Authentication Code

CSRK Connection Signature Resolving Key
CTR Counter

DES Data Encryption Standard
ECC Elliptic Curve Cryptography
ECDH Elliptic Curve Diffie-Hellman

ECDLP Elliptic Curve Discrete Logarithm
Problem

GCM Galois/Counter Mode
GFSK Gaussian Frequency Shift Keying
GHASH Galois Hash

GO

Group Owner

HCE Host Card Emulation

ix

HF High Frequency

IRK Identity Resolving Key

ISM Industrial Scientific Medical

LED Light-Emitting Diode

LF Low Frequency

LTK Long Term Key

MAC Message Authentication Code

MITM Man in the Middle

MTU Maximum Transmission Unit

NFC Near Field Communication

NIST National Institute of Standards and
Technology

OOB Out of Band

PACS Physical access control system

PIN Personal Identification Number

PSK Phase Shift Keying

P2P Peer-to-Peer

QR code Quick Response Code

RF Radio Frequency

RFID Radio Frequency Identification
RSA Rivest-Shamir-Adleman

SE Secure Element

SIG Special Interest Group

SIM

SoC

TK

TLS

Subscriber lidentity Module
System-On-Chip
Temporary Key

Transport Layer Security

URL Uniform Resource Locator
WPA2 Wi-Fi Protected Access 11

WPS Wi-Fi Protected Setup

Chapter 1

Introduction

Bluetooth Low Energy (BLE) is a wireless network technology designed for short to medium
range communications. It was developed and licensed by Bluetooth Special Interest Group
(SIG), that introduced it in 2010 in the Bluetooth 4.0 specification. With BLE, it is possible
to connect and share information between a wide range of electronic devices, like smartphones,
computers, printers and beacons. BLE was designed to be a communication protocol with a
low energy consumption, and also to be a low cost technology. With BLE, several new features
were implemented with the aim of improving the security and efficiency of discovery and pairing
between devices. BLE communicates via radio, using the 2.4 GHz ISM band, and can have a
maximum range of several tens of meters. With this last feature, the devices do not need to have

a clear line of sight from each other to be able to communicate.

Near Field Communication (NFC) is a communication standard created from the Radio
Frequency Identification (RFID) technology, that enables two devices to communicate, simply
by being close to each other. It was released as a specification in 2002, by Sony and Philips.
The NFC-capable devices are divided in two categories: passive and active devices. An active
device uses its own power to create the Radio Frequency (RF) field that is used to transmit the
data, while a passive device uses the RF field created by other devices to communicate. Some
NFC devices contain a Secure Element (SE), identical to the ones found in smartcards, which

represents a environment capable of storing and processing data in a secure way.

Each contactless smartcard has an unique identifier that can be read without authentication,
by any available reader. That identifier, in addition to assigning an identity to the card, also
prevents collisions during the reading process, if there are other smartcards nearby. Although
unique, the identifier is attributed based on the type, manufacturer and serial number of the
card. Therefore, it is not difficult to find the identifiers of cards from the same lot, just by
knowing one of them. This is the main reason why the identifier is not secure enough to be used

in authentication and access control systems.

A correct implementation of an authentication protocol for access control, requires a system

that allows authenticating a card and validating the access, by using the communication with

1.1. Motivation 2

the SE to implement a cryptographic protocol for authentication. That is, besides identifying
the read card, there is also the need for a parallel system to validate the access privileges of that

card.

1.1 Motivation

A fairly large number of access control systems are based on contactless smart cards. However,
as Cabral demonstrated and concluded in his thesis[10], the security in this type of cards can be
almost non-existent, and even cards that have implemented some sort of cryptographic protocol,

can be easily exploited.

This raises an important problem. Nearly all the access control systems that uses smart cards,
are not secure and can be compromised. The motivation for this work is to design and implement
a system with a high degree of usability and security, that solves the problem identified by
Cabral.

1.2 Proposed objectives

We aim to design, develop and implement a prototype of a secure physical access controller based

on a smartphone, mainly for proof of concept. The proposal must have the following properties:

1. Multi-platform (Android and i0S);
2. Secure cryptographic protocols;
3. Range of several meters;

4. Low energy consumption.

1.3 Structure

The remainder of this thesis is divided in 3 chapters. In Chapter 2, it is presented some background
knowledge regarding some cryptographic protocols, as well as wireless communication protocols.
In Chapter 3, it is presented our idea for a secure physical access control system based on the
use of a smartphone. Chapter 4 contains a description of how the prototype of our proposed

solution was developed.

Chapter 2

State Of The Art

In this chapter, it is addressed and explained several subjects that either are relevant or related

with the work to be done in this thesis.

First, it is mentioned some basic concepts about cryptographic protocols. Following, the
Rivest-Shamir-Adleman (RSA), Advanced Encryption Standard (AES), Diffie-Hellman, Elliptic
Curve Cryptography (ECC) and Elliptic-curve Diffie-Hellman (ECDH) protocols are presented.

Next, it is given a general overview of the Quick Responde Code (QR code), BLE, NFC and

Wi-Fi Direct. Finally, some already implemented physical access control systems are presented.

2.1 Cryptographic protocols

A protocol specifies a sequence of steps of how an interaction between to or more parties must
occur, in order for a task to be accomplished or a problem to be solved. A protocol needs to
have the following characteristics:

e All the parties involved must, beforehand, know the protocol and all its steps;

e All the parties involved must agree with all the protocol steps;

e There cannot be any ambiguity in any step of the protocol;

e The protocol must be complete, in a way that it covers all possible situations.

A cryptographic protocol follows the previous definition. A key characteristic of this type of
protocol, is that it uses cryptographic algorithms. The parties taking part in the protocol can

share secrets, prove one another identity, or sign a contract. The main utility of cryptographic

protocols is to ensure privacy and prevent eavesdropping[41].

Cryptographic protocols can be divided in two different types: Symmetric Key, also known

as Secret Key Cryptography, and Asymmetric Key, also know as Public Key Cryptography.

2.1. Cryptographic protocols 4

In Symmetric Key algorithms, the same key is used for both the encryption and decryption
functions. The sender and the receiver must then, agree on a secret key K, before they can
send encrypted messages to each other. The sender, encrypts some message M with the key
K, obtaining a ciphertext C. Then, the receiver decrypts the ciphertext C with the same key
K, getting the original message M. This two processes can be represented as Ex (M) = C and
Dk (C) = M, respectively[27]. Symmetric Key algorithms can use stream ciphers, meaning that
it encrypts/decrypts the bits from a message, one at a time. It can also use block ciphers, where

the message is divided into groups of bits, and each one is encrypted/decrypted as a unit.

In the case of Asymmetric Key algorithms, the keys used for encryption and decryption are
different. The key used in the encryption of a message can be known by anyone, since only one
person has another specific key that can decrypt that message. Given that the encryption key is
public, it must be infeasible to compute the decryption key only with that knowledge[27]. The
encryption key can be referred as public key (K)), and the decryption key is also named as
private key (K). The processes of encrypting a message M and decrypting a ciphertext C' can
be represented as Ek, (M) = C and Dk (C) = M, respectively.

Forward Secrecy is an important feature in key agreement protocols, that protects past
shared secret keys even if future private keys get compromised. If both parties agree in a unique
secret key for each session, then if that secret key is discovered by a third party, only the data

transmitted in that session can be affected, while the previous sessions remain protected[29].

2.1.1 Rivest-Shamir-Adleman

RSA is a public-key encryption cryptosystem designed in 1977 and named after its creators,
Ron Rivest, Adi Shamir and Leonard Adleman. This algorithm is used for data encryption, key
exchange and digital signatures. In public-key cryptography, there is a key pair associated with
each individual. It contains a public key that is shared with everyone and used to cipher, and
a private key, that is secret and is used to decipher. RSA’s security is based on the difficulty
of factoring large numbers, more specifically, large integers that result from the product of two

large prime numbers[41].

In the key generation process, first it’s selected two different, random and large prime numbers,
p and ¢. Then, the value n is calculated from the product of p with ¢. The value n is the
connection between the public and the private key, since it is used to compute both of them[13].
The size of n represents the key size that RSA uses, which is typically between 2048 and 4096
bits. The next step is to randomly choose the encryption key e, which needs to be co-prime with
(p-1)(g-1). The final value to be obtained is the decryption key d, which is the multiplicative
inverse of n mod (p —1)(¢ —1). Using the extended Euclidean algorithm it’s possible to calculate
d, such that ed = 1 mod (p — 1)(¢ — 1).

In the encryption operation, a message m is transformed in an encrypted message c. First, m

is divided into blocks smaller than the value of n, meaning that ¢ will be composed from several

2.1. Cryptographic protocols)

c; blocks. Each one of those blocks will contain the value of m{ mod n. Finally, to decrypt an
encrypted message, it is simply applied the formula cfl mod n to each ¢; block, in order to obtain

all the m; blocks that compose the original m message.

As previously stated, the security of the RSA algorithm relies on the difficulty of factoring
large numbers. To date the biggest factorized RSA number has 232 digits and a size of 768
bits[31]. However, it was already possible to break a 4096-bit RSA, using an acoustic cryptanalysis
attack[23].

2.1.2 Advanced Encryption Standard

In 1997, the need for a substitute of the Data Encryption Standard (DES), lead the National
Institute of Standards and Technology (NIST) to accept a new encryption algorithm, the AES[12].
From all the different implementations of the algorithm that were received, fifteen went through
a thorough evaluation. In October 2000, NIST announced that it had chosen the Rijndael cipher,
developed by Vincent Rijmen and Joan Daemen, as the algorithm for AES.

The Rijndael cipher is a symmetric key algorithm, meaning that it uses the same key in the
encryption and decryption process. It supports three different key sizes, 128-bit, 192-bit and
256-bit, but only one block size of 128-bit. Since AES works with bytes, the 128-bit data block
is divided into 16 bytes, that are arranged in a 4x4 matrix, called the state matrix. Both in
the encryption and decryption process, the AES algorithm performs 10 rounds if the key size is
128-bit, 12 rounds if the key size is 192-bit, and 14 rounds for 256-bit key size[43].

—| Round (1)

4

W[4i4i+3] }

Round 10

Add Round Key

Figure 2.1: AES Encryption process, image from [43]

2.1. Cryptographic protocols 6

There are four different transformations in each one of the rounds, with only the exception of
the last round, that only executes three of those four transformations. In the SubBytes operation,
each one of the 16 bytes from the state matrix is converted into another block using an 8-bit
substitution box, known as Rijndael S-box. In the ShiftRows transformation, a simple shift
operation is applied to each row of the matrix. The first row is not shifted at all, the second
row is shifted one byte to the left, the third row two bytes to the left, and finally, the fourth
row is shifted 3 positions to the left. Next there is the MixzColumns operation, where each four
byte column of the state matrix is transformed, by multiplying it with a fixed matrix. The
MizColumns operation is not executed in the last round of the AES algorithm. The last operation
is called AddRoundKey. In this function, the 128 bits of the state matrix are XORed with the
128 bits of the round key. The state matrix is replaced with that result. In the last round, the

state matrix corresponds to the ciphered text.

The decryption process is very similar to the encryption one, but in an opposite order. Both

the sequence of the functions and the functions themselves are reversed[44].

The AES has demonstrated to be a very reliable and secure cipher. To date, there is no
known practical attack against it. Some attacks like [24] and [8], were able to break the AES
cipher. However these attacks were made on reduced round versions of AES, meaning that they

are not effective in the normal version of AES.

2.1.2.1 Counter with CBC-MAC / AES-CCM

Counter with Cipher Block Chaining Message Authentication Code (CCM) is an authenticated
encryption cipher mode, designed to work with 128-bit block ciphers, such as AES. CCM works
by combining the CBC-MAC technique and the Counter (CTR) mode[46].

Let us assume that a message m can be viewed as a sequence of blocks. In the first stage,
CBC-MAC is applied to that sequence in order to obtain a message authentication code (MAC)
representing the message m. A MAC is a tag that is used to provide authentication and integrity
to a message[38]. CBC-MAC works together with a block cipher encryption, so, in this case, it is
used the AES encryption function, hence the name AES-CCM.

On the second stage, the message and the MAC obtained on the first stage are encrypted

together with Counter mode.

2.1.2.2 Galois/Counter Mode / AES-GCM

Galois/Counter Mode (GCM) is a mode operation used for symmetric key cryptographic block
ciphers, such as AES, that provides authenticated encryption, thus achieving both data integrity
and confidentiality[2].

This mode works with block ciphers with an 128-bit block size, and its operation consist of

2.1. Cryptographic protocols 7

two major separate functions. First, it is used a variation of the Counter mode of operation for
the encryption process. Then, the authentication process is accomplished by using the Galois
Hash (GHASH) function, that creates an authentication tag[33].

2.1.3 Diffie-Hellman

The Diffie-Hellman protocol was first published in 1976 by Whitfield Diffie and Martin Hellman[17].
Diffie-Hellman is a key exchange and agreement protocol, which allows two random parties, that
do not know neither have any information about each other, to exchange a shared secret key
over a public and insecure communication channel. That shared key can then be used by any
symmetric-key protocol, thus encrypting the communication and establishing a secure channel
between the two parties. The protocol’s security is based on the discrete logarithm problem[22],

which is considered to be computationally infeasible.

Considering two public known numbers p and e, where p is a large prime number and e is the
primitive root of p, and lets suppose that two parties, Alice and Bob, want to establish a shared
key. First, Alice generates a random value a, such that a < p. In the same way, Bob generates
a random value b. These values will remain secret to each party. Then, both calculate their

public values: Alice obtains A = e* mod p, while Bob obtains B = ¢’

mod p. Next, Alice sends
its public value A to Bob, and Bob sends its public value B to Alice. Finally, Alice calculates
K = B® mod p and Bob calculates K = A’ mod p, where K represents the shared secret key.

It is easy to demonstrate that both Alice and Bob end up with the same K value:

K=B" modp=¢e® modpa mod p
=" mod P
=e’+xa modp
= mod p
=¢* mod p® mod p
= A modp

=K

In addition to the public values p and e, an eavesdropper can also get access to A and B,
since these values are sent via an insecure channel. However, even with all these values, an
attacker can not calculate the key K generated by Alice and Bob, because both a and b were not

transmitted and are they required to accomplish that calculation.

2.1.4 Elliptic Curve Cryptography

The concept of ECC was first proposed, independently, by Neal Koblitz[32] and Victor Miller[37],
in 1985. ECC can be defined as a public key cryptographic system based on elliptic curves over

finite fields, and is mainly used for key agreement and digital signing.

2.1. Cryptographic protocols 8

An elliptic curve over a finite field K, is the set of all points satisfying the equation:
V=23 +azr+b

where a,b € K and 4a® 4+ 27b% # 0. The values of a and b define the shape of the curve. Two
main characteristics of elliptic curves, is that they are symmetric about the x-axis, and that by
drawing a line over two points belonging to the curve P and @, that line will intersect a third

point R, that is also in the curve.

Figure 2.2: Elliptic curve example, image from [6]

Figure 2.2 shows a visual representation of an elliptic curve.

ECC is based on the Elliptic Curve Discrete Logarithm Problem (ECDLP), that raises the
following question: “if we know the points P and @ (which belong to the curve), what is k& such
that @ = kP?”. The difficulty in finding the value of k is the basis of the ECC security.

One advantage that ECC has over RSA, it that it can use considerably smaller keys than

RSA, while maintain the same level of security[14].

2.1.5 Elliptic-curve Diffie-Hellman

ECDH is a key agreement protocol that enables two parties, with two distinct elliptic curve
public-private key pairs, to achieve a shared secret key, over a possible insecure channel[22]. This

generated secret key can then be used as an encryption key in a symmetric-key algorithm.

As the name implies, this protocol is a variant of the Diffie-Hellman protocol with elliptic-
curve cryptography. Before the protocol itself begins, both parties must agree in the elliptic curve
parameters that they are going to use[15]. These parameters are: the prime p, that represents
the size of the finite field; coefficients @ and b, from the elliptic curve equation; the base point G,

which generates the subgroup; the order n and the cofactor h of the subgroup.

To create a private key, one must choose a random integer d in the interval from 1 to n - 1.
Only after, the public key can be obtained, by calculating H = dG, which means, adding the
base point G to itself, d times.

2.2. Communication protocols 9

When both parties have generated their private and public keys, they can share their public
key with each other. This way, using their own private key and the other party’s public key, it is

possible to create a shared secret key S between them.

2.1.5.1 Curve25519

Curve25519 is an elliptic curve defined by the equation:
y? = 23 + 4866622° + =

that was published by Daniel Bernstein in 2005[7], with the intent of being used in an ECDH
protocol. However, the actual function that performs the ECDH key exchange is often referred
as X25519.

Both the private and public keys are only 32 bytes long, as well as the generated shared
secret key. In addition to having 128 bits of security, it has also a very fast computational speed

and it allows any 32 byte string as a valid public key.

2.2 Communication protocols

A communication protocol is a group of rules, regulations and instructions, that makes possible
for devices to communicate and exchange data with each other[5]. A communication protocol
defines how the transmission is achieved, how the error detection is handled, and other properties

like packet size and data rate.

2.2.1 Quick Response Code

QR code is a two-dimensional barcode, that was developed in 1994 by the Denso Wave company.
Comparing with a traditional barcode, the QR Code has a faster readability and a much higher
storage capacity[34].

A QR Code is represented by a black and white matrix, where the information is encoded
through the squares arranged in the matrix. The data can be accessed by taking a picture of the

code and processing it using a QR reader.

The usage of QR Codes have been increasing rapidly over the years, due to its simplicity
and high number of potential use cases, such as product identification and tracking, Uniform

Resource Locator (URL) storing, or simply data sharing.

Each QR Code is capable of storing up to 7089 numerical characters, 4296 alphanumerical
characters and 2953 8-bit characters.

2.2. Communication protocols 10

2.2.2 Bluetooth Low Energy

The Bluetooth Low Energy (BLE) was developed by Bluetooth Special Interest Group (SIG)
and was first introduced in 2010 as a new feature in the Bluetooth 4.0 specification. It was
later updated and improved in Bluetooth 4.1 and 4.2 versions. BLE, which is also know as
“Bluetooth Smart”, is a wireless technology for short to medium range communications. This
protocol is already incorporated into billions of devices, such as smartphones, laptops, beacons,
and a wide variety of Internet of Things sensors. BLE has a range of several tens of meters and it
is mainly used in applications that don’t need to send a huge amount of data. Unlike the classic
Bluetooth, BLE doesn’t stay turned on the entire time[30]. Instead, when there is no data being
transferred, it enters a sleep mode, allowing the device to save battery and to remain on a single
battery power for years. The main differences between BLE and the previous Bluetooth versions,
are the reduction of the power consumption and shorter packet lengths, the reduced memory

requirements, improvement of the efficiency and security in the connection procedures[39].

BLE uses the same frequency band as the previous Bluetooth versions, the unlicensed 2.4 GHz
Industrial Scientific Medical (ISM) band. It contains a total of 40 Radio Frequency (RF) channels
with 2 MHz spacing between them, which are divided in 2 different channel categories|25]. There
are 37 Data Channels, that are used for communication/data exchange between the connected
devices. The 3 remaining channels are the Advertising Channels, that are used for device
discovery and connection, as well as broadcasting transmissions. All the 40 channels use a

Gaussian Frequency Shift Keying modulation (GFSK) and have a maximum data rate of 1 Mbps.

Several new security features were implemented in BLE, such as the low energy private
device addresses and the data signing. The first one uses a cryptographic key called Identity
Resolving Key (IRK) that tries to mitigate the threat of being tracked by an adversary, by using
a periodically-changing random address which is mapped to a device’s Identity Address. The
second feature, uses a cryptographic key called Connection Signature Resolving Key (CSRK),
that is used to sign and verify signatures on a receiving device, providing authentication and

integrity in a Bluetooth connection[47].

BLE uses the AES-CCM cipher mode for both encryption and device authentication. AES-
CCM provides confidentiality, integrity and authentication.

In the versions 4.0 and 4.1 of BLE, it is used the AES-128 cipher as the pairing algorithm.
However, in the BLE version 4.2, the added Secure Connections feature changed the pairing
algorithms to AES-CMAC and P-256 Elliptic Curve[4] implementation of ECC. This lead to the
renaming of the BLE 4.0 and 4.1 low energy pairing to low energy Legacy Pairing. In low energy
Secure Connections, the use of ECDH-based cryptography during the key exchange process, offers
protection against MITM attacks and eavesdropping. Since low energy Legacy Pairing doesn’t
use that type of cryptography, it has no protection against those attacks. From the pairing
procedure it’s generated a key called Long Term Key (LTK), that represents the symmetric key

used in the authentication and encryption processes.

2.2. Communication protocols 11

BLE offers two distinct security modes, where each one contains several levels. Security
Mode 1 has levels related with encryption. In level 1 there is no security, meaning, neither
authentication nor encryption. Level 2 specifies unauthenticated pairing with encryption. Level
3 requires authenticated pairing with encryption. Finally, in BLE 4.2, it was added the Level 4,
that uses authenticated Secure Connections pairing with encryption. Security Mode 2 is more
focused in data signing, so, although it provides data integrity, there is no confidentiality. In Level
1 there is unauthenticated pairing with data signing, while in Level 2 is required authenticated

pairing with data signing.

There are four different pairing methods available in BLE: Out of Band, Passkey Entry,
Just Works and Numeric Comparison. This last method is only available in low energy Secure

Connections[39].

e Out of Band: the devices use a out of band (OOB) technology common to both, like NFC,

to pair with each other;

e Passkey Entry: if one of the devices has input capability and the other device has a display,
then this method can be used. In the device with a display, it’s shown a 6 digit number

that must be inserted in the input capable device;

o Just Works: if one the devices have neither input capability nor a display, the Just Works
is used. It simply sets the temporary key (TK) used in during pairing to all zeros;

o Numeric Comparison: if both the devices have a display and some sort of input capability,
this method can be used. A six digit number is shown in the displays, and the user must
compare the values. If the values are the same, the user responds with a "yes", else, pairing

is aborted.

For applications that require a high level of security, Numeric Comparison is the recommended

method to use, since it provides eavesdropping and MITM protection[9].

2.2.3 Near Field Communication

Near Field Communication (NFC) is a technology for short-range wireless communications
that enables simple and secure two-way interaction between two devices. It was established
as a technology specification in 2002 by Sony and Philips, and in 2004, in conjunction with
Nokia, it was formed the NFC Forum|3]. Like Bluetooth, NFC is integrated in almost every
existing smartphone, and has been rapidly gaining a lot of use in IoT and Smart Environment
sysmtems[16]. NFC is a subset of the Radio Frequency Identification (RFID) technology and it
operates at the 13.56 MHz frequency, the same band as the High Frequency (HF) RFID. One
of NFC’s main characteristics is its low communication range of only 5 centimeters on average.

This small range also acts as a security measure for preventing eavesdropping attacks.

2.2. Communication protocols 12

NFC works by bringing together two NFC-capable devices, in order for an interaction to
occur. There are three different types of NFC devices: NFC tags, NFC readers and smartphones.
The NFC protocol divides the communication modes in active or passive mode. In the active
mode, both devices generate their RF fields to send data. In passive mode, only one device

generate a RF field, while the other device retrieves the power from that field to send his data.

NFC is standardized by ECMA! and by ISO/IEC?. It follows the standards ISO/IEC 18092
/ ECMA-340 - NFCIP-1 and ISO/IEC 21481 / ECMA-352 - NFCIP-2. These standards specify
the modulation schemes, codings and transfer speeds of the RF interface, initialization schemes
and data collision control, transport protocol, as well as the communication modes and their

selection mechanism|[18][19].

There are three different NFC operating modes, that vary accordingly to the devices used. In
the Reader/Writer mode, the smartphone acts as an active device, and is the initiator of the
interaction. It communicates with a NFC tag, that is a passive device, and can read or write to
it. The RF layer in this communication mode is based on the ISO/IEC 14443 - Identification

cards — Contactless integrated circuit cards standard[16].

Another operating mode is the Peer-to-Peer (P2P). This mode involves an interaction between
two active-capable devices. They establish a two-way communication channel, used for exchanging

any type of data.

The third operating mode is the Card Emulation mode. This mode allows a smartphone
to behave as a smart card, enabling a NFC-reader to interact with it. The data that the
NFC-reader reads from the smartphone is stored in a Secure Element (SE). A SE is a secure
and controlled environment where sensitive data can be saved. Secure elements can be found
in the smartphone’s Subscriber Identity Module (SIM) card, or in an chip embedded into the

smartphone’s hardware[35].

NFC only by itself, is not capable of providing protection against eavesdropping and data
manipulation[28]. Thus, each application that uses NFC must implement its own security
measures and cryptograhic protocols. Another option is to use already implemented security
standards for NFC, such as, for example, the ISO/IEC 13157-2 / ECMA-386 - NFC-SEC-01,
that uses ECDH for key agreement and AES for data encryption[20], or the ISO/IEC 13157-4 /
ECMA 410 - NFC-SEC-03 standard, that specifies key agreement and confirmation mechanisms

that provide mutual authentication, using asymmetric cryptography[21].

An important setback with NFC is the Apple restrictive policies about the usage of NFC in

their devices, since they only allows applications to detect and read NFC tags.

Thttps://www.ecma-international.org
Zhttps:/ /www.iso.org/isoiec-jtc-1.html

https://www.ecma-international.org
https://www.iso.org/isoiec-jtc-1.html

2.3. Physical access control systems 13

2.2.4 Wi-Fi Direct

Wi-Fi Direct is a Wi-Fi specification, develop by Wi-fi Alliance, that was first released in 2010.
This protocol allows devices to create a Wi-Fi connection and communicate with each other,
without the need for an Access Point (AP). In a normal Wi-Fi network, the devices connected
to an AP can not communicate directly between them, instead, they interact through the AP.

Wi-Fi Direct enables the devices to establish a direct connection, without requiring an AP[11].

After two devices discover each other, they have to determine who is going to be the group
owner (GO), which will operate as an AP for that connection, and who is going to be the client.
After this group is established, more devices can connect to it, as clients of the GO. Not all the

connected devices need to be Wi-Fi Direct certified.

Wi-Fi Direct acquired several features from the traditional Wi-Fi, such as QoS, power saving,

range of connection and transmission speeds[42].

Wi-Fi Direct also implements the Wi-Fi Protected Setup (WPS) for connections establishment.
However, several flaws in the WPS implementation were found[45], making this protocol vulnerable

to brute-force attacks.

The communications are encrypted by the Wi-Fi Protected Access II (WPA2) security
protocol, that uses the CCM mode Protocol (CCMP).

It is possible to work with the Wi-Fi Direct in the Android mobile operating system, using
the Wi-Fi Peer-to-Peer?® framework. The same is not possible in the iOS operating system, since

the peer-to-peer Wi-Fi implemented by iOS is not compatible with Wi-Fi Direct.

Comm. Protocol Integrated Multi-platform | Range (meters) | Consumption (mA) | Bit rate (Mbps)
Cryptography
BLE 4.0 / 4.1 Yes Yes ~ 1-10 <15 1
BLE 4.2 Yes Yes ~ 1-10 <15 1
Wi-Fi Direct Yes No 100 250
NFC No No 0.05 <15 0.1-0.5

Table 2.1: Communication protocols comparison

Table 2.1 contains several characteristics from the communication protocols that were
presented, with a distinction between the versions 4.0/4.1 and 4.2 of the BLE protocol, due to

some important pairing and security features that were introduced in the version 4.2.

2.3 Physical access control systems

Physical access control systems (PACS) can be defined as a system that controls, manages and
monitors the access to a physical resource, like a door, a room or a machine. A PACS needs to

feature both authentication and authorization procedures. The authentication process verifies

3https://developer.android.com /guide/topics/connectivity /wifip2p.html

https://developer.android.com/guide/topics/connectivity/wifip2p.html

2.3. Physical access control systems 14

the identity of a person trying to get access to a resource, that is, it confirms if that person is
who he is claiming to be. Then, the authorization process ensures that that person can in fact,

access the specific resource.

It is relatively easy to find several recent and well implemented access control systems based
on the NFC technology. However, it is much harder to find implementations that use Bluetooth,
and almost every example is outdated and/or don’t have any regards for the security that the

system offers.

2.3.1 Bluetooth-based access control system

A Bluetooth access control system was implemented by Shadrack Mehlomakulu[36], where the
user needs to enter a Personal Identification Number (PIN) in the smartphone in order to gain
access to a physical space. The system’s architecture consisted in a mobile phone, an access
server, a database and a door controller. Initially, there is the Bluetooth handshake between the
user the access server. After the connection is established, the user has to enter the pre-configured
PIN in the mobile-phone. The PIN is sent to the Access Server, which checks the user’s PIN and
MAC address in the database. If the values match, it is sent a wired signal to the door controller
to open the door. In addition to not being mentioned which Bluetooth version is used, there is

also no discussion about the security of the system, if it even has any, or how it is achieved.

2.3.2 NFC-based access control system

Dominik Gruntz et al. implemented a mobile NFC-based physical access control system|[26]
that is divided in three main modules: a smartphone with NFC support, one or several Access
points and a Central Access server. A key characteristic of this system is that there is no direct
communication between the Access point and the Server. Instead, the Access Point uses the
smartphone as a proxy to send it’s messages and requests to the main Server. It is also allows an
offline access, in the case that the smartphone can’t communicate with the Server due to the

lack of an internet connection.

The developed system is divided in two protocols: the authentication protocol, used to
authenticate the smartphone to the access point, and the authorization protocol, used to send
authorization data from the server to the access point. Prior to the authentication protocol,
it’s created a symmetric key known to both main Server and the Access Point, to symbolize
the trust between them. The Authentication protocol is based on public key cryptography,
and is accomplished with the use of NFC in it’s entirety. The Access Point sends a nonce to
the smartphone, which he signs with its private RSA key and sends back the signature. In
the Authorization protocol, the communications between the Server and the smartphone are
made through the network, using Transport Layer Security (TLS). First, the Access Point sends
another nonce and its ID to the smartphone, via NFC, and then the smartphone sends those

two values and also his certificate (that contains his ID) to the Server. The Server signs the

2.3. Physical access control systems 15

Access Point ID, the nonce, the smartphone’s public key and the information that represents if
the access was granted or not. This data is sent to the smartphone, that relays it to the Access
Point. Now, using the smartphone’s public key sent from the Server, the AP can conclude the

Authentication protocol, and verify if the access was granted.

Although Dominik et al. used several tools and technologies in order to reduce its security risks,
both the Authentication and Authorization protocols are still susceptible to attacks. Regarding
the Authorization attacks, since it’s used a TLS-secured connection, an attacker that controls
the network can still read all the encrypted data sent between the Server and the smartphone.
However, the manipulation of that data would be detected. If an attacker as control over the
smartphone, it can also obtain information about the access rights of that smartphone, by sending
multiple authorization requests to the Server. The main problem of the Authentication protocol
is how it stores the secret key on the smartphone. In a simple software solution, if an attacker
has system-level access, he can easily obtain the private key used to authenticate the smartphone.
However, the introduction of hardware-based key stores in Android version 4.3, lead to some

solutions that mainly resolved that problem.

Chapter 3

Proposed Solution

In this chapter, we will explain what our proposed solution is composed of, how it should work
in a controlled environment, as well as why several decisions regarding its characteristics were

made.

We are sure that using a smartphone is the right choice for our application. The smartphone’s
computational power has been rapidly increasing over the years, which meant that many actions
and objects of our day-to-day life were simply replaced by a smartphone and their innumerable
capabilities. A relevant example of this fact is the usage of a smartphone as the substitute of a

smart card, like for example, a credit card or an access control card.

3.1 Overview

As previously stated in chapter 1, the main objective of this thesis is to design an application
for a PACS, that uses a smartphone as its basis as a replacement of the insecure smart card.
This is one more step of transforming the smartphone in our “smart-wallet”, leading to the

dematerialization of smart cards.

In a PACS, the object one is trying to gain access to, is, in most cases, a physical door. The
same goes for our system, although the system could be applied to any physical object one would

want to get access to, such as a vault, a machine or IoT devices.

We want a system that allows the user to gain access to a physical door, in a truly secure
way but by simply clicking a button in his smartphone. In our case, the different buttons will

represent different doors.

Two important system aspects that are needed to be taken into account are how secure
and how usable the system must be. It is necessary to find a compromise between the two of
them, meaning that we do not want an overly secure system that is hard and unpractical to
use, neither want a very simple and functional system, that does not protect the infrastructure

against attackers.

16

3.1. Overview 17

Our proposed application/system is composed by three distinct components, that communicate
with each other in a specific order. The first component is the server, the second is the controller
of the door we are trying to get access to, and the third is, obviously, the smartphone, the
core component of the system. But even more important than the smartphone, is the mobile
application developed specifically to work with this system. It is through this application that

the user can see the available doors and choose which one he wishes to open.

Each door has a single controller associated with it, and it is that controller that the
smartphone communicates with, and not with the door itself. Depending on whether or not the

smartphone has access to the door, the controller opens the door or simply ignores the request.

Smartphone 1 Smartphone 2

Figure 3.1: System components diagram (example)

Figure 3.1 contains a simple representation of the application’s components, and how they
can interact with each other. Apart from the main server, there are also represented two

doors/controllers, as well as two smartphones.

In this figure, we can also observe an important characteristic that we want the system to
have. Different users have different access privileges to the available doors, meaning that not all

doors can be opened by every smartphone, neither every smartphone can open all the doors.

For example, in Figure 3.1, while the Smartphone 1 has access to both the available doors,
the Smartphone 2 was only given permission to access Door 2. Even if it tries to open the Door

1, the server must detect that attempt and act accordingly, that is, not opening the door.

In order to prevent the attempt of gaining access to an unprivileged door, each smartphone
only displays to the user the doors that it was given the permission to open. So, in the previous
example, Smartphone 1 would display Door 1 and Door 2 to the user, while Smartphone 2 would

only display Door 2.

3.2. System Functioning 18

3.2 System Functioning

The functioning of the system can be divided in two distinct phases: the Enrollment and the

Authentication.

A flowchart of the communication that takes place during the two phases can be seen in
Figure 3.2. In this section it is only explained which values are exchanged between the different
components and how they are used. How the communication itself is achieved will be explained

in the next section.

SERVER USER DOOR

€ ENROLLMENT

PUBLIC KEY(CONTROLLER) +
IDENTIFICATION + MESSAGE

«— PUBLIC KEY({USER)

¥

PUBLIC KEY({USER) + IDENTIFICATION + MESSAGE

ENC{ID + DHpk{U}}—P
> DHp (U]

—ENC({DH(C)}

DHp(C)
’ KEY K = DH{U) + DHg,(C) N

N KEY K = DH,,,(C) + DH_,(U) *
ENC,(MESSAGE|—————»|

Figure 3.2: Communication sequence between components

3.2.1 Enrollment

The first contact the user has with the application is with the enrollment phase, that represents
the registration of a new user in the system. In this phase, several pieces of information are
shared between the server and the smartphone, as well as the controller, information that will
later be used in the authentication process. Due to the importance of the information, the
enrollment phase must be conducted in a secure environment, so that nobody can eavesdrop on
the shared data.

When the application is first launched, but before the enrollment process itself begins, it is
necessary to create a public/private key pair, both in the smartphone and in each door controller.

These keys will be used to encrypt the messages between them, later in the authentication phase.

3.2. System Functioning 19

It is also important to note that each controller sends its public key to the server, meaning

that the server knows the public key associated to each individual controller.

The enrollment process starts with the server generating a random identifier and a random
secret message, that will represent the smartphone that is being registered. These two values
will be used during the authentication phase, and they will serve to identify and authenticate

the smartphone.

After the two values being created, the server then sends them to the smartphone, alongside
with the public keys of the different doors that it will be able to gain access to. Upon receiving

and storing this information, the smartphone shares its public key with the server.

In the last step of the enrollment, the server sends the received smartphone’s public key and
the created identifier and secret message to each one of the controllers that the smartphone will
be able to communicate with. This way, each controller knows the public keys of the smartphones
that are allowed to open their corresponding door, and they also have the identifier and secret

message associated with each smartphone.

3.2.2 Authentication

When the application is opened, after the smartphone registration is already completed, the
various doors for which the user can request access are displayed. The authentication process
itself only starts when a user selects the door he wants to open, from the ones available in his

smartphone.

While the enrollment phase involves mainly the server and the smartphone, the authentication
procedure is performed solely by the smartphone and the controller, without any interaction

with and from the server.

The objective of this phase is to create a secure channel between the two components, so that
the smartphone can privately send the secret message, that it received during the enrollment
phase, to the controller. In order to create the secure channel, we perform an ECDH key
agreement protocol between the smartphone and the controller, thus creating a shared secret key

known only by both these components.

So, before the authentication procedure begins, both the smartphone and the controller must

create an ECDH public/private key pair.

In the first step of this phase, the smartphone takes its identifier and its ECDH public key,
encrypts these two values together using the public key of the desired controller, and finally
sends the encrypted value to said controller. Now the controller knows the ECDH public value
from the smartphone, and since it also has the public key corresponding to the received identifier,
it can encrypt its ECDH public key with the smartphone’s public key and send it. Thus, both
components can derive the same shared secret key K, using their own ECDH private key and
the received ECDH public key.

3.3. Communication methods 20

Using the shared secret key K, the smartphone encrypts its secret message and sends it to the
controller, which uses the same K key, to decrypt the received data. The last step is to confirm
if the received secret message is correct, by comparing it with the secret message associated with
the smartphone requesting the authentication. If so, the controller finally opens the door, thus

ending the authentication procedure.

It is important that the ECDH values are never reused. So, at the end of each authentication
phase, both participating components generate a new ECDH public/private key pair to be used

in the future.

3.3 Communication methods

Another important aspect is how the communication between the different components is achieved.
According to the needs of each one of the two phases, different communication protocols and
technologies are used. The diagram presented in Figure 3.3 illustrates how the various components

interact with each other.

3.3.1 Communication in Enrollment

During the enrollment phase, two different technologies are used for the components to com-
municate with each other, as it can be seen in the two different connections from the server in

Figure 3.3.

The communication between the server and the smartphone uses a QR code as its core. After
creating a new identifier and secret message for the smartphone, the server creates an URL
that contains the data to be sent. Then, it generates a QR code from that URL, and makes it
available for the smartphone to scan it. After the smartphone obtains the URL, it sends a GET
request to it, in order to actually receive the data. Then, it sends a POST request to the same
URL, containing its own public key. This implies that both the server and the smarthphone are

connected to the same network.

Upon receiving this data, the server must distribute it within the different controllers that
the smartphone will be allowed to access. There are two different ways that this communication
could be achieved: via a network cable or by Wi-Fi. The network cable is the best choice, since
it is simpler and safer to use. Using Wi-Fi means that we would have to find a way to make the

communication secure.

As a safety feature, each URL generated by the server can be used once and only once. This
way, any request other than the one from the registering smartphone, will not be accepted neither

will receive any data.

3.3. Communication methods 21

3.3.2 Communication in Authentication

In order for the smartphone to “talk” with the controller during the authentication process, we
must use a wireless communication protocol to establish a channel between those two components.
As previously stated in 1.2, the system must respect a set of properties, meaning that we have to
choose the communication protocol that better suits our needs. First, it is necessary to have a
range of several meters, so that the user can request the access to the door without necessarily
being near the door, or even if he does not have a line of sight to the door. Second, we want the
system to be as generic as possible, so that it can be implemented in various platforms (Android
and i08S). Finally, although not the most important property, the system must also have a low

power consumption.

Modern smartphones are equipped with a wide variety of wireless communication protocols.
The three most known and used communication protocols, which are in turn the possible choices
for our system, are BLE, NFC and Wi-Fi Direct.

The NFC was excluded because of two reasons: it has a very limited range of just 5 to 10
centimeters and, second, it also misses the multi-platform property due to Apple restrictions on
the usage of NFC within their products. As for the Wi-Fi Direct, although it has a fairly large
range of up to 100 meters, it also lacks the compatibility in the Apple environment. This leaves
us with BLE, which is actually our best option, since BLE fullfils all our requirements: it has a
range of around 10 meters, it can be implemented both in Android and in iOS, and it has a low

energy consumption.

Since BLE has several available versions, we needed to choose which one to use. BLE 4.2 was
our final choice, instead of the two other versions, BLE 4.0 and BLE 4.1, because the 4.2 version

has newer and more secure features, as previously stated in 2.2.2.

Despite BLE having a fairly decent range, it is possible that some doors may be too far
from the smartphone for it to detect their signals, meaning that those doors will not appear as
available in the smartphone. However, this situation can be seen as a positive feature, since it
will not allow a smartphone to request access to a door that is relatively far away from it, which

could represent a security problem.

3.3. Communication methods

22

SERVER

#a
[TFI

(=14 =]
i
]

— (@)

|

Figure 3.3: Communication protocols between components

Chapter 4

System Implementation

In addition to designing the application, we also set out to implement a first application prototype,
purely for a proof-of-concept aspect. This chapter describes the implementation details and the

steps taken in order to develop both the system and the Android application.

4.1 Overview

The main focus of this implementation was to develop and work primarily on the authentication
procedure. We wanted to show that it is possible to create a secure channel between the
smartphone and the controller, which can be used to communicate privately and to authenticate

the user.

With that in mind, we assembled and implemented a system, as well as an Android application
that interacts with that system, where the primary function is for a smartphone to select a
specific Light-emitting diode (LED) in order to light it up. As previously stated in 3, a PACS is
usually implemented to interact with physical doors. However, since this is a proof-of-concept
implementation and we are more concerned with the application usability itself rather than with
the actual physical process of opening the door, it is not relevant which physical object we use.
So in our case, an authentication success and door opening is represented by lighting up a green

LED, while an authentication failure is represented by lighting up a red LED.

In addition to this change, our developed application differs from our proposed solution
presented in previous chapter 3, in the sense that some features were modified or simply not
implemented. The most relevant change is related with the enrollment procedure, or the lack
thereof. We decided, in a first phase, not to implement that procedure, and instead to focus only
on the authentication aspect. Therefore, in our application, it is assumed that the smartphone
registration has already been accomplished. However, in this registration, it is only assigned a
single random identifier to each smartphone, instead of the identifier /secret message pair. This
means that each controller only contains a list of various identifiers that are able to gain “access”

to the LED, and during the authentication process it checks to see if the received identifier is

23

4.2. Material Used/System Architecture 24

present in that list.

A final difference from the proposed solution to this prototype is that each smartphone
displays all the available LEDs, regardless of whether it has access to it or not, in order to show

the authentication process detecting a non compliant request.

4.2 Material Used/System Architecture

Our implemented system consists of two main components: a smartphone and a controller.
However, the controller can be divided into two individual elements, them being an Arduino Uno
board and a BLE module.

The BLE module we choose for this project was the RedBear’s BLE Nano 2. This module is
equiped with a Nordic nRF52832 BLE System-On-Chip (SoC), and can be programmed using
the Nordic’s nRF5 SDK, mbed and Arduino[1]. In our case, we programmed it in Arduino, using
an open source library! for the nRF52832 chip, developed by the RedBear team. Besides its very
small size, it is also BLE 4.2 certified, which is precisely the BLE version we previously decided

to use.

The Android application was developed and tested with an Alcatel A7 smartphone, with
version 7.0 (Nougat) of the Android operating system.

The full list of material used to develop this system is summarized in the Table 4.1

Arduino Uno

RedBear BLE Nano 2
Smartphone (Alcatel AT)
Breadboard

LEDs

Jump wires

Resistors

Table 4.1: Material used in the implementation

The Arduino Uno board and the BLE Nano 2 module form a circuit between them, in which
the green and red LEDs associated with that controller are also connected. Figure 4.1 presents the

schematic representation of the circuit with all the connections between the various components.

The authentication process happens between the smartphone and the Arduino. So, as expected,
the smartphone communicates via BLE with the BLE Nano 2, which, in turn, communicates
with the Arduino Uno via its Serial port, and vice-versa. The BLE Nano 2 module simply acts

as a middle-man between those two components.

!This library is available at https://github.com/redbear/nRF5x

https://github.com/redbear/nRF5x

4.3. System Operation 25

ssllassssssssssssnssssasssssncsoss

L I R R T T I O O B I I B O B I T L
- - e
=

BLE Nano 2 pins:
- White: 3.3V DC input
- Black: Ground

- Yellow: RX

- Red: TX

Pins: Arduino -> BLE Nano 2
-D9->TX
-D8 -> RX

Figure 4.1: Schematic representation of the Arduino and BLE Nano 2 circuit

4.3 System Operation

All the three components (smartphone/Android application, Arduino Uno and BLE Nano 2)
operate differently from one another. In this section, it is explained how each one of them was

developed and how they function within the system.

In figure 4.5 it is represented the sequence of steps, functions and communications established
during the authentication process. The content of this diagram will be explained throughout the

next sections.

4.3.1 Android application
4.3.1.1 Features and permissions

Since this application revolves around the usage of BLE, several permissions and features need
to be declared for it to work properly. The BLUETOOTH permission is required, in order to
perform any Bluetooth communication at all, while the BLUETOOTH__ADMIN permission

allows the application to start device discovery.

To ensure that the target Android smartphone is BLE capable, the bluetooth__le feature is

declared with the required attribute set to true.

4.3. System Operation 26

Due to BLE beacons being associated with physical location applications[40], this application
also needs the ACCESS__COARSE__LOCATION permission, otherwise the BLE device
discovery will not return any results. The first time the application is opened, it asks the user
to grant this permission to it. If the user do not accept the request, the application become
unusable until the permission is granted. In the following uses, the application always checks if it

still has the permission.

4.3.1.2 Operation

The application itself starts by verifying if Bluetooth is enabled. If it is not, the application
requests the user to enable it first. Only then the application is able to start the device discovery,
by scanning for nearby devices for about 3 seconds. For each device found, the callback function
represented in Listing 4.1 is triggered. First, it checks if the found device is already present in

the device list. If not, it simply checks if its name is not “null”, before adding it to the list.

If no device is discovered during this process, the application displays a message alerting the

user. Otherwise, it displays the list of devices, as it is possible to see in Figure 4.2.

This procedure can later be executed again, in order to update the device’s list, by clicking

in the Scan Again button, which is also visible in the application screenshot in Figure 4.2.

private final ScanCallback leScanCallback = new ScanCallback () {

@Override
public void onScanResult (int callbackType, final ScanResult device)
{
runOnUiThread (new Runnable () {
@Override

public void run() {
if (! bleDevicesList.contains (device.getDevice())) {

String device _name = device.getDevice () .getName () ;
if (device_name =— null){

return;
}

mLeDeviceListAdapter.add(device . getDevice ()) ;
mLeDeviceListAdapter.notifyDataSetChanged () ;

Listing 4.1: Device scan callback

When an item from that list is clicked, a new authentication request begins. First the

smartphone needs to establish a connection with the selected BLE Nano 2, by sending a

4.3. System Operation 27

BLE LEDs SCAN AGAIN

DOOR 1
DO:C4:FD:8E:D2:D9

DOOR 2
D7:D6:67:34:1C:59

Figure 4.2: Android application’s list of found devices

connection request to it. Again, a callback function, present in Listing 4.2, awaits the response
from the module. If the connection is accepted, and if it currently does not have a bond
established with that device, a pairing/bonding request is sent to it. Otherwise, if it already has
a bond with the device, the application goes directly to the next step. If either the connection or

the bonding request fails, the current user authentication process is canceled.

public void onConnectionStateChange (BluetoothGatt gatt, int status, int
newState) {
String intentAction = ACTION_DISCONNECT;
if (newState = BluetoothProfile .STATE CONNECTED) <{
if (getBondState () = BluetoothDevice .BOND BONDED) {
intentAction = ACTION_GATT CONNECTED BONDED;

}
else {

device . createBond () ;

intentAction = ACTION GATT CONNECTED BONDING;
}

broadcastUpdate (intentAction);
} else if (newState =— BluetoothProfile .STATE DISCONNECTED) {
broadcastUpdate (ACTION_ GATT DISCONNECTED) ;

Listing 4.2: Device connection status callback

The next step, after the connection and bonding requests are established, is to generate the

public and private ECDH keys, by using the Curve25519 elliptic curve/function. So, in order to

4.3. System Operation 28

create the public/private key pair, we used the ecdh-curve25519-mobile library?.

The public key, which is represented in a byte array, is then encoded using Base64 into a new
String object. Without this step, some of the public key’s bytes could represent non-printable
ASCII characters, which would make it difficult to transmit the public key to the Arduino. So,

encoding it using Base64 assures that the Arduino receives all the characters in a readable way.

SecureRandom random = new SecureRandom () ;

byte [|] secretKey = ECDHCurve25519. generate secret key (random) ;

byte [] publicKey = ECDHCurve25519. generate_public_key (secretKey) ;
String publicBase64 = Base64.encodeToString (publicKey , Base64 .DEFAULT) ;

Listing 4.3: Android Curve25519 keys generation

After sending it, the application waits for the Arduino to send its public key. The data
received is then decoded using Base64, in order to actually obtain the Arduino’s public key. With
this value and the smartphone’s private key previously created, it is possible to generate the

shared secret key, again using the ecdh-curve25519-mobile library.

private static void getArduinoPublicKey(String encodedPubKey){
arduinoPubKey = Base64.decode (encodedPubKey. getBytes (),
Base64 .DEFAULT) ;

private static void generateSharedSecret () {
sharedSecretKey = ECDHCurve25519. generate shared secret (secretKey ,
arduinoPubKey) ;

Listing 4.4: Decoding Arduino public key and generating shared secret key

In the final step to complete the user’s authentication request, the smartphone’s identifier
is encrypted. For that, we use the AES-GCM symmetric key cipher, available in Java’s
javax.crypto.Cipher class, that encrypts the identifier with the previously generated shared
secret key. Since the AES-GCM cipher uses a random initialization vector, which is needed
for both the encryption and decryption, it is also necessary to send it to the Arduino. So,
the initialization vector is agglomerated with the encrypted identifier, before they are encoded

together using Base64. This data is then finally sent to the Arduino.

SecureRandom secureRandom = new SecureRandom () ;

byte[] initVector = new byte[12];

secureRandom . nextBytes (initVector);

SecretKey secretKey = new SecretKeySpec(shared secret_key, "AES");
final Cipher cipher = Cipher.getInstance ("AES/gcm/NoPadding") ;

GCMParameterSpec parameterSpec = new GCMParameterSpec (128, initVector);

2This library is available at https://github.com/duerrfk/ecdh-curve25519-mobile

https://github.com/duerrfk/ecdh-curve25519-mobile

4.3. System Operation 29

cipher.init (Cipher . ENCRYPT MODE, secretKey , parameterSpec);

byte[] cipheredMessage = cipher.doFinal(secretMessage.getBytes());

ByteBuffer byteBuffer = ByteBuffer.allocate (initVector.length +
cipheredMessage . length) ;

byteBuffer.put(initVector).put(cipheredMessage) ;

String encodedBuffer = Base64.encodeToString (byteBuffer.array (),
Base64 .DEFAULT) ;

Listing 4.5: Encrypting random identifier with AES-GCM

The connection with the BLE Nano 2 is terminated, thus ending the authentication procedure.

Figure 4.3 represents the application activity diagram, that summarizes the application

operation that was explained during this section.

Rescan
.% Scan for devices
Y
i No% Wait for rescan
devices?
Rescan Yes
List devices

v

End
Wait for event ———» :)

Failed |
Click item

Start connection Done

T
fuccess
Authentication

process

Figure 4.3: Android application activity diagram

4.3.2 BLE Nano 2

Since the code for BLE Nano 2 was implemented using Arduino, its code is divided in two parts:
the initial setup, and the main loop. The initial setup only happens when the BLE Nano 2 is
turned on. After that, only the main loop is executed.

The setup is mainly dedicated to initializing and configuring the BLE settings. Some of the

defined values and characteristics are: the device’s name that will be presented to the smartphones

4.3. System Operation 30

during their scanning process, the power of the radio transmission and a characteristic that states

that it only supports BLE connections and not the “classic” Bluetooth.

At the end of the setup, the module starts advertising itself, meaning that the smartphones

are now able to find the device during their scanning.

The connection and bonding requests sent by the smartphone in the beginning of a new
authentication process are treated directly by the BLE Nano 2 itself, and not by our implemented
code. It is important to note that when a connection is established, the BLE Nano 2 stops its
advertisement, since it can only have one active connection simultaneously. This means that

during an authentication process, the other smartphones will not be able to scan it.

After the setup is done, the BLE Nano 2’s work is fairly simple, since it only needs to
retransmit the received data. Upon receiving the first message from the smartphone, containing
its encoded ECDH public key, the BLE Nano 2 sends this data through its Serial connection
with the Arduino. After that, it waits for the Arduino to send its encoded ECDH public key, to
then relay the data to the smartphone. At this point, the public keys have been shared, and the

two components can generate the shared secret key.

The second message received from the smartphone contains its identifier encrypted with the
shared secret key. Again, the BLE Nano 2 sends this data to the Arduino, thus ending its role as

the middle-man.

The module only needs to wait for the smartphone to disconnect, before waiting again for a

new smartphone’s authentication request.

4.3.3 Arduino Uno

In the same way as the BLE Nano 2, the Arduino code is divided into the initial setup and
the main loop. However, its setup is relatively simpler since it only generates the Curve25519
public/private keys, which will be used in the first authentication request. To create the key
pair, and later generate the shared secret key, it was used the Curve25519 class from the Crypto
library?.

void generateECDHkeyValues () {
Curve25519 :: dhl (arduino_ public_key , arduino_secret_key);

Listing 4.6: Arduino Curve25519 keys generation

As previously stated, in this prototype we are assuming that the enrollment procedure was
already accomplished. For that, each Arduino has a specific list containing the smartphone

identifiers for which authentication requests will be accepted.

3This library is available at https://rweather.github.io/arduinolibs/crypto.html

https://rweather.github.io/arduinolibs/crypto.html

4.3. System Operation 31

After the initial setup, the Arduino simply waits until it receives any data in its Serial port
connected to the BLE Nano 2.

The first received message contains the smartphone’s encoded public key. Before decoding
the data using Base64 to obtain the actual public key, it immediately sends its public key to the
BLE Nano 2, obviously encoded with Base64. Only then, it generates the shared secret key.

void decodeSmartphoneKey (charx sp_pub_key, int sp_ pub_key size){
int decodedLen = base64_ dec_len(sp_pub_key, sp_ pub_key_ size);
char decoded[decodedLen+1];
base64__decode (decoded, sp_pub_key, sp_pub_key_ size);

void generateSharedSecret (){
Curve25519 :: dh2 (smartphone_public_key, arduino_secret_key);

Listing 4.7: Decoding Smartphone public key and generate shared secret key

The second message received by the Arduino includes the smartphone’s encrypted identifier,
together with initialization vector used by it during the encryption. First, the data is decoded
using Base64, and then, using the AES and GCM classes, from the previously mentioned
Crypto library, it is performed an AES-GCM decryption on the received data, using the proper

initialization vector.

uint8 t iv[12];
int decodedLen = base64_dec_len(enc_msg, enc_msg size);
char decoded[decodedLen+1];
base64__decode (decoded, enc_msg, enc_msg_size);
for (int j=0; j<12; j++){
iv[j] = decoded[j];
}
uint8_t decryptedBuffer [20];
GCM<CAES256> gem ;
gem . setKey (smartphone public__key, 32);
gem. setIV (iv, 12);
gem. decrypt (decryptedBuffer , &decoded [12], decodedLen);

Listing 4.8: AES-GCM decryption of smartphone’s identifier

The final step is to verify if the received identifier is present in the Arduino’s list. If, in fact,
it is, the Arduino lights up the green LED connected to it, as it is possible to observe in Figure
4.4, showing the user that the authentication request was accepted. If not, the Arduino instead
lights up the red LED.

At the end of each authentication procedure, the Arduino generates a new pair of Curve25519

keys, to be used in the next request.

4.3. System Operation

32

Figure 4.4: Arduino and BLE Nano 2 with green LED lighted up

[Smartphone]

|Public (SP) and Secret (SS) ECDH keys|

[Arduino]

Public (AP) and Secret (AS) ECDH keys|

Send SP

Y

(>3
Y

Get Public ECDH key AP|

Get ECDH shared secret key (K) using
SS and AP

| Generate Initial Vector (1V) |

| Encrypt ID using AES-GCM with K and IV |

Send AP

Send encrypted ID and IV———>

Get Public ECDH key SP|

Get ECDH shared secret key (K) using
AS and SP

| Get Initial Vector IV |

[Decrypt ID using AES-GCM with K and IV |

| Verify if ID is authorized |

Figure 4.5: Communication sequence between the Arduino and the Smartphone

4.4. Problems found 33

4.4 Problems found

During the implementation of the different components of the system, several problems and

setbacks were found and were necessary to deal with.

The Maximum Transmission Unit (MTU) represents the maximum data size that each
message can carry. The BLE Nano 2 uses a default MTU value of 23 bytes, meaning that
each BLE packet can transmit only 20 bytes of actual data since 3 of those bytes are reserved.
Unfortunately, during this implementation, we could not find a way to increase that value. This
means that each “message” sent between the smartphone and the BLE Nano 2, is actually a set

of messages of 20 bytes each that make up the full data.

Another problem found is related with the Arduino itself. The Arduino Uno has a relatively
limited amount of SRAM memory, of just 2 KB. During our implementation, the Arduino often
reached the SRAM limit, meaning that it would crash and restart itself. However, we were able
to solve this, by simply storing each received message in a predefined size char array, instead of

storing it in a String object.

The Arduino Uno has another drawback, which is its low computational power. The
Curve25519 public/private key pair and shared secret key generation, represented in Listings 4.6
and 4.7, respectively, takes about three seconds each to compute. The AES-GCM decryption,
shown in 4.8, also takes almost one second. All these seconds, together with the time for the
smartphone to connect and bond with the BLE Nano 2, make the authentication process relatively

time consuming.

In the final stage of the implementation, it emerged a problem that changed substantially the
behavior of the system. The Android application started working only once, in the sense that
after a single authentication request, successful or not, it was necessary to restart the smartphone
for the system to work again. We could not find the cause of this problem. The only workaround
that we discovered was for the smartphone to not engage in the bonding process with the BLE
Nano 2. So, after the connection is accepted, the smartphone starts the communication right

away, instead of sending first a bonding request. This way, the application works as intended.

Chapter 5

Conclusion and Future Work

As Cabral stated in his thesis, near all PACS based on smartcards are not secure and can be easily
exploited[10]. With that in mind, we set on to design a PACS based on a smartphone/Android
application, with the intent of creating a secure and reliable alternative to smartcards, that would
authenticate and authorize the user to access a physical door. That system would be composed
by three main components: the server, the controller, and the smartphone. It would allow a user

to enroll himself in the system, before being able to start the authentication process with a door.

Despite not having been possible to implement the designed system in its entirety, mainly
referring to the enrollment phase, we showed that it is possible to implement a PACS, using BLE
as the communication protocol, and using an Arduino Uno as the controller, that successfully
creates a secure channel between the smartphone and the controller, allowing them to privately
share information. Although some obstacles were encountered during this implementation, the
system still complies with the previously defined requirements: multi-platform compatible, secure

cryptographic protocols, reach of multiple meters and a low energy consumption.

Future work includes, obviously, implementing the server component, together with the
enrollment phase, and subjecting the system to an usability test and security analysis, and also

evaluating an implementation in a controlled environment.

We suggest, in a future implementation, changing the Arduino Uno for a more powerful board,
like an Arduino Due or a Raspberry Pi, which would help reducing the time to generate the
Curve25519 public/private key pair and shared secret key, as well as the AES-GCM decryption

time.

34

Bibliography

1]

Bluetooth 5 ready: Ble module, nano 2 & blend 2 [online]. Nov 2016. [Online; accessed
March 22, 2018].

Developer reference for intel®) integrated performance primitives cryptography 2018 [online].
Nov 2017. [Online; accessed August 20, 2018].

Tomi Aarnio. Near field communication using nfc to unlock doors. Master’s thesis, Aalto

University School of Science, Espoo, 2013.

Mehmet Adalier. Efficient and secure elliptic curve cryptography implementation of curve
p-256.

Tarun Agarwal. Overview on electronic communication protocols [online]. n.d. [Online;

accessed January 06, 2018].

aleden. Is the bijection of scaling a point of an elliptic curve, an isomorphism? Mathematics

Stack Exchange.

Daniel J Bernstein. Curve25519: new diffie-hellman speed records. In International Workshop

on Public Key Cryptography, pages 207-228. Springer, 2006.

Alex Biryukov, Orr Dunkelman, Nathan Keller, Dmitry Khovratovich, and Adi Shamir. Key
recovery attacks of practical complexity on aes variants with up to 10 rounds. Cryptology
ePrint Archive, Report 2009/374, 2009. https://eprint.iacr.org/2009/374.

Matthew Bon. A basic introduction to ble security [online]. 2016. [Online; accessed January
14, 2018].

Pedro Cabral. Rfid clone. Master’s thesis, Faculdade de Ciéncias da Universidade do Porto,
Porto, 7 2017.

Daniel Camps-Mur, Andres Garcia-Saavedra, and Pablo Serrano. Device-to-device commu-
nications with wi-fi direct: overview and experimentation. IEEE wireless communications,

20(3):96-104, 2013.

Michael Cobb and Borys Pawliw. Advanced encryption standard (aes) [online]. 2014. [Online;
accessed November 29, 2017].

35

https://www.kickstarter.com/projects/redbearinc/bluetooth-5-ready-ble-module-nano-2-and-blend-2?ref=user
https://software.intel.com/en-us/ipp-crypto-reference-aes-gcm-functions
https://www.elprocus.com/communication-protocols
https://math.stackexchange.com/questions/2524653
https://eprint.iacr.org/2009/374
https://eewiki.net/display/Wireless/A+Basic+Introduction+to+BLE+Security
http://searchsecurity.techtarget.com/definition/Advanced-Encryption-Standard

Bibliography 36

[13]

[14]

[15]

[22]

23]

[24]

Michael Cobb, Fred Hazan, and Frank Rundatz. Rsa algorithm (rivest-shamir-adleman)
[online]. Nov 2014. [Online; accessed November 28, 2017].

Andrea Corbellini. Elliptic curve cryptography: finite fields and discrete logarithms [online].
May 2015. [Online; accessed January 16, 2018].

Andrea Corbellini. Elliptic curve cryptography: Ecdh and ecdsa [online]. May 2015. [Online;
accessed September 14, 2018].

Vedat Coskun, Busra Ozdenizci, and Kerem Ok. The survey on near field communication.

Sensors, 15(6):13348-13405, 2015.

Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE transactions
on Information Theory, 22(6):644-654, 1976.

Standard ecma-340 near field communication interface and protocol (nfcip-1) [online]. June
2013. [Online; accessed January 08, 2018].

Standard ecma-352 near field communication interface and protocol -2 (nfcip-2) [online].
June 2013. [Online; accessed January 08, 2018].

Nfc-sec-01: Nfc-sec cryptography standard using ecdh and aes [online]. June 2015. [Online;
accessed January 08, 2018].

Nfc-sec-03: Nfc-sec entity authentication and key agreement using asymmetric cryptography
[online]. June 2017. [Online; accessed January 08, 2018].

Rupa Ganjewar. Diffie hellman key exchange.

Daniel Genkin, Adi Shamir, and Eran Tromer. Rsa key extraction via low-bandwidth
acoustic cryptanalysis. In International Cryptology Conference, pages 444-461. Springer,
2014.

Henri Gilbert and Thomas Peyrin. Super-sbox cryptanalysis: Improved attacks for aes-like
permutations. Cryptology ePrint Archive, Report 2009/531, 2009. https://eprint.iacr.org/
2009/531.

Carles Gomez, Joaquim Oller, and Josep Paradells. Overview and evaluation of bluetooth

low energy: An emerging low-power wireless technology. Sensors, 12(9):11734-11753, 2012.

Dominik Gruntz, Christof Arnosti, and Marco Hauri. Moonacs: a mobile on-/offline nfc-
based physical access control system. International Journal of Pervasive Computing and
Communications, 12(1):2-22, 2016.

Darrel Hankerson, Alfred J Menezes, and Scott Vanstone. Guide to elliptic curve cryptography.
Springer Science & Business Media, 2006.

Ernst Haselsteiner and Klemens Breitfuf. Security in near field communication (nfc). In
Workshop on RFID security, pages 12-14, 2006.

http://searchsecurity.techtarget.com/definition/RSA
http://andrea.corbellini.name/2015/05/17/elliptic-curve-cryptography-a-gentle-introduction/
http://andrea.corbellini.name/2015/05/30/elliptic-curve-cryptography-ecdh-and-ecdsa/
http://www.ecma-international.org/publications/standards/Ecma-340.htm
http://www.ecma-international.org/publications/standards/Ecma-352.htm
http://www.ecma-international.org/publications/standards/Ecma-386.htm
http://www.ecma-international.org/publications/standards/Ecma-410.htm
https://eprint.iacr.org/2009/531
https://eprint.iacr.org/2009/531

Bibliography 37

[29]

Scott Helme. Perfect forward secrecy - an introduction [online]. May 2014. [Online; accessed
September 18, 2018].

Clinton Francis Hughes. Bluetooth Low Energy. PhD thesis, Arizona State University, 2015.

Thorsten Kleinjung, Kazumaro Aoki, Jens Franke, Arjen Lenstra, Emmanuel Thomé,
Joppe Bos, Pierrick Gaudry, Alexander Kruppa, Peter Montgomery, Dag Arne Osvik, et al.
Factorization of a 768-bit rsa modulus. In CRYPTO 2010, volume 6223, pages 333—-350.
Springer, 2010.

Neal Koblitz. Elliptic curve cryptosystems. Mathematics of computation, 48(177):203-209,
1987.

Stefan Lemsitzer, Johannes Wolkerstorfer, Norbert Felber, and Matthias Braendli. Multi-
gigabit gcm-aes architecture optimized for fpgas. In International Workshop on Cryptographic
Hardware and Embedded Systems, pages 227-238. Springer, 2007.

Yue Liu, Ju Yang, and Mingjun Liu. Recognition of qr code with mobile phones. In Control
and Decision Conference, 2008. CCDC 2008. Chinese, pages 203-206. IEEE, 2008.

Ganeshji Marwaha. Mobile payments: What is a secure element? [online]. September 2014.

[Online; accessed January 08, 2018].

Shadrack Mehlomakulu. Bluetooth Access Control. PhD thesis, University of the Western
Cape, 2010.

Victor S Miller. Use of elliptic curves in cryptography. In Conference on the Theory and
Application of Cryptographic Techniques, pages 417-426. Springer, 1985.

Message authentication codes [online]. Feb 2017. [Online; accessed January 08, 2018].
John Padgette. Guide to bluetooth security. NIST Special Publication, 800:121, 2017.
Bluetooth Low Energy BLE Permissions [online]. [Online; accessed March 28, 2018]. [link].

Bruce Schneier. Applied Cryptography (2Nd Ed.): Protocols, Algorithms, and Source Code
in C. John Wiley & Sons, Inc., New York, NY, USA, 1995. ISBN: 0-471-11709-9.

Wenlong Shen, Bo Yin, Xianghui Cao, Lin X Cai, and Yu Cheng. Secure device-to-device
communications over wifi direct. IEEE Network, 30(5):4-9, 2016.

Gurpreet Singh. A study of encryption algorithms (rsa, des, 3des and aes) for information

security. International Journal of Computer Applications, 67(19), 2013.
Advanced encryption standard [online]. n.d. [Online; accessed January 03, 2018].
Stefan Viehbock. Brute forcing wi-fi protected setup. Wi-Fi Protected Setup, 9, 2011.

Doug Whiting, Niels Ferguson, and Russell Housley. Counter with cbec-mac (cem), 2003.

https://scotthelme.co.uk/perfect-forward-secrecy/
http://www.gmarwaha.com/blog/2014/09/01/mobile-payments-what-is-a-secure-element/
https://csrc.nist.gov/Projects/Message-Authentication-Codes
https://developer.android.com/guide/topics/connectivity/bluetooth-le.html
https://www.tutorialspoint.com/cryptography/advanced_encryption_standard.htm

Bibliography 38

[47] Junfeng Xu, Tao Zhang, Dong Lin, Ye Mao, Xiaonan Liu, Shiwu Chen, Shuai Shao, Bin
Tian, and Shengwei Yi. Pairing and authentication security technologies in low-power
bluetooth. In Green Computing and Communications (GreenCom), 2013 IEEE and Internet
of Things (iThings/CPSCom), IEEE International Conference on and IEEE Cyber, Physical
and Social Computing, pages 1081-1085. IEEE, 2013.

	Abstract
	Resumo
	Contents
	List of Tables
	List of Figures
	Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Proposed objectives
	1.3 Structure

	2 State Of The Art
	2.1 Cryptographic protocols
	2.1.1 Rivest-Shamir-Adleman
	2.1.2 Advanced Encryption Standard
	2.1.2.1 Counter with CBC-MAC / AES-CCM
	2.1.2.2 Galois/Counter Mode / AES-GCM

	2.1.3 Diffie-Hellman
	2.1.4 Elliptic Curve Cryptography
	2.1.5 Elliptic-curve Diffie-Hellman
	2.1.5.1 Curve25519

	2.2 Communication protocols
	2.2.1 Quick Response Code
	2.2.2 Bluetooth Low Energy
	2.2.3 Near Field Communication
	2.2.4 Wi-Fi Direct

	2.3 Physical access control systems
	2.3.1 Bluetooth-based access control system
	2.3.2 NFC-based access control system

	3 Proposed Solution
	3.1 Overview
	3.2 System Functioning
	3.2.1 Enrollment
	3.2.2 Authentication

	3.3 Communication methods
	3.3.1 Communication in Enrollment
	3.3.2 Communication in Authentication

	4 System Implementation
	4.1 Overview
	4.2 Material Used/System Architecture
	4.3 System Operation
	4.3.1 Android application
	4.3.1.1 Features and permissions
	4.3.1.2 Operation

	4.3.2 BLE Nano 2
	4.3.3 Arduino Uno

	4.4 Problems found

	5 Conclusion and Future Work
	Bibliography

