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Abstract

Background: Phlebotomy is the mainstay of treatment for Hereditary Hemochromatosis (HH)
associated with mutations in the Hereditary Hemochromatosis Protein (HFE), a genetic disorder
that leads to an iron accumulation in the tissues. However, the duration of the initial iron
depletion phase of the treatment, commonly referred as Depletion Phase (DP), is highly variable
among individuals. In this study, by analyzing data related to 384 patients with HFE HH, we
aim at understanding the underlying factors affecting the duration of the DP and, subsequently,
predict the personalized duration of this treatment phase for newly diagnosed patients with
HFE-related HH.

Results: This study confirmed that the serum ferritin (SF) levels at diagnosis and the
homozygous genotype (C282Y/C282Y) are associated with longer durations of the DP. Moreover,
exponential and linear approximations of the rates of depletion of SF and the frequency of
phlebotomy therapy also seemed to influence the duration of this treatment phase. Homozygous
patients were more associated with higher initial SF concentrations, as well as male individuals
and older patients. As patient specific values of exponential and linear approximations of the
decay of SF during the DP are unknown at the time of the diagnosis, median values of these
parameters, based on statistically significant differences between groups of other patients’ factors,
were calculated. The approach here presented relies on assigning these values to newly diagnosed
patients and building regression models with these parameters as explanatory variables separately.
Ultimately, the model with the best predictive accuracy for newly diagnosed patients with
HFE-related HH was a Linear Regression with Box-Cox transformation, using data without
influential data points and using the exponential approximation of the decay of SF as a predictor
(MAPE = 46.8%, with 10-fold CV).

Conclusion: In sum, this thesis helped identifying factors affecting the duration of the DP,
such as the initial SF level, the genotype, the frequency of phlebotomy therapy and the rate of
depletion of SF. Although the regression models may not give, at this point, sufficiently accurate
personalized predictions of the duration of the DP, the models assessed provide prediction
intervals that may aid on the physicians’ decision making, by at least giving an estimate of the
minimum and maximum duration of the DP. Indeed, this study seemed to be a helpful first
attempt to predict the duration of the DP for HFE-related HH patients.

Keywords: HFE-related Hereditary Hemochromatosis, phlebotomy, depletion phase, serum
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ferritin decay, nonlinear least squares, Linear Regression, Generalized Linear Models, K-fold
Cross Validation.
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Resumo

Contexto e objetivo: A flebotomia é amplamente utilizada como tratamento para a Hemo-
cromatose Hereditária (HH) associada a mutações na Proteína da Hemocromatose Hereditária
(HFE), um distúrbio genético que leva à acumulação de ferro nos tecidos. No entanto, a duração
da fase inicial de depleção de ferro do tratamento, usualmente designada de Fase de Depleção
(DP), é consideravalmente variável entre indivíduos. Neste estudo, analisando dados de 384
pacientes com HFE HH, tentámos compreender os fatores subjacentes que afetam a duração da
DP e, posteriormente, prever a duração personalizada dessa fase de tratamento para pacientes
recém-diagnosticados com HH relacionada com a HFE.

Resultados: Este estudo confirmou que os níveis séricos de ferritina (SF) no diagnóstico e o
genótipo homozigótico (C282Y/C282Y) estão associados a durações mais longas da DP. Além
disso, aproximações exponenciais e lineares das taxas de depleção de SF e a frequência da
terapia de flebotomia também parecem influenciar a duração dessa fase de tratamento. Pacientes
homozigóticos pareceram mais associados a concentrações iniciais de SF superiores, bem como
indivíduos do sexo masculino e pacientes mais velhos. Como os valores específicos dos pacientes
das aproximações exponenciais e lineares do decaimento do SF durante a DP são desconhecidos
no momento do diagnóstico, foram calculados valores medianos desses parâmetros, com base em
diferenças estatisticamente significativas entre grupos de outros fatores ou características dos
pacientes. A abordagem aqui apresentada baseia-se na atribuição desses valores a pacientes recém-
diagnosticados e na construção de modelos de regressão com esses parâmetros como variáveis
explicativas separadamente. Por fim, o modelo com a melhor precisão preditiva para pacientes
recém-diagnosticados com HH associada à HFE foi uma regressão linear com transformação
Box-Cox, utilizando dados sem observações influentes e usando a aproximação exponencial do
decaimento da SF como preditor (MAPE = 46,8%, com 10-fold Cross Validation).

Conclusão: Resumidamente, esta dissertação ajudou a identificar fatores que afetam a duração
da DP, como o nível inicial de SF, o genótipo, a frequência da terapia de flebotomia e a taxa de
depleção de SF. Embora os modelos de regressão possam não fornecer, neste momento, previsões
personalizadas suficientemente precisas da duração da DP, os modelos avaliados providenciam
intervalos de previsão que podem auxiliar a tomada de decisão dos médicos, dando pelo menos
uma estimativa da duração mínima e máxima da DP. De facto, este estudo apresenta uma
tentativa preliminar útil para prever a duração da DP de pacientes com HFE HH.
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Chapter 1

Introduction

In this work, data from patients with a disease that deregulates the iron metabolism is analyzed.
As such, the following sections serve as a contextualization of the disorder, its mechanism of
action, diagnosis and treatment. The motivation and aims of this study are briefly explained on
this Chapter. Furthermore, an outline of the thesis is presented on the last section.

1.1 Iron-overload disease

Iron is a crucial metal for hemoglobin (HB) synthesis of erythrocytes, cellular proliferation and
oxidation-reduction reactions [58]. Most of the iron in the body is distributed between the
hemoglobin of red cells, the liver, muscles and macrophages of the reticuloendothelial system
[101]. However, excessive iron accumulation may lead to the production of reactive oxygen species
(ROS), damaging tissues and organs [34, 58]. As such, iron homeostasis is fundamental in most
organisms to guarantee a balance of iron for vital biological processes while avoiding its toxicity
related to its excess [7, 58]. Indeed, iron-overload diseases can cause progressive and irreversible
end-organ damage and are generally categorized in two different forms, primary or secondary
[34, 83]. Secondary iron-overload disorders may be related to multiple transfusions, thalassemia
major, cirrhosis or other factors [83, 101]. On the other hand, primary iron-overload is associated
with Hereditary Hemochromatosis (HH) [58, 83, 101]. The majority of the cases of HH arise from
alterations in genes that regulate hepcidin synthesis, including the most common mutation in the
gene responsible for encoding hereditary hemochromatosis protein (HFE), comprising 80% of the
cases, the transferrin receptor 2 (TfR2), the hemojuvelin protein (HJV), the hepcidin precursor
(HAMP) or the ferroportin (FPN) [78, 79, 83]. The types of HH are presented in Figure 1.1. On
the next sections, a comprehensive review of the HFE-related HH, also recognized as type-1 HH,
will be performed, as this is the type of HH studied on this thesis.

1
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Figure 1.1: Types of HH. Adapted from Kris V. Kowdley et al. [60]

1.2 HFE-related Hereditary Hemochromatosis

The most frequent form of HH is associated with mutations in the HFE gene, resulting in
decreased production of hepcidin [60, 83, 105]. Also, the most common mutation is a G to A
transition at nucleotide 845 of the HFE gene, resulting in a cysteine to tyrosine substitution at
amino acid 282, referred as p.C282Y (type 1a) [60, 83]. This mutation is found almost exclusively
on white individuals [20]. HFE-associated HH leads to hepcidin deficiency and consequently
elevated release of iron from splenic macrophages and cells of the small intestine into the plasma.
This increase in iron plasma levels results in increased iron transport into parenchymal cells,
especially hepatocytes, pancreatic cells and cardiomyocytes, and thus, hepatic, pancreatic and
cardiac iron-overload [6, 20]. Ultimately, increased plasma iron and transferrin saturation (TS)
are two phenotype features associated with HFE HH [6, 20, 60, 89]. TS can be defined as the
ratio of the number of occupied iron binding sites to the total number of iron binding sites on
plasma transferrin, while serum ferritin (SF) is the principal iron storage protein [20, 89]. Both
TS and SF values are used for diagnosis and treatment monitoring [89]. While a large number
of C282Y homozygous do not develop clinically significant iron overload, and consequently no
symptoms, those who do have an inappropriate iron accumulation may have tissue complications,
resulting in organ damage, diabetes mellitus, osteoporosis, hepatocellular carcinoma (HCC) or
cirrhosis [20, 60]. Other symptomatic manifestations may include chronic fatigue, hepatic fibrosis,
skin pigmentation and joint problems [20]. Also, patients diagnosed with HFE-associated HH
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may be asymptomatic for many years [20].

Besides the most prevalent homozygous genotype (C282Y/C282Y), HFE HH can be related to
H63D mutations (type 1b) or S65C mutations (type 1c) [60]. Also called compound heterozygote,
the C282Y/H63D is a genetic subtype associated with HFE HH much rarer than the homozygous
type 1a. Even if prone to increased TS and SF levels, patients with the compound heterozygote
genotype, or the H63D/H63D genotype, rarely develop clinically significant iron-overload, unless
cofactors such as alcohol, liver disease or hepatitis C virus (HCV) are involved [20, 60]. Similarly,
type 1c HH, related with the S65C mutation, does not substantially affect the phenotype [20, 60].
These genetic subtypes, type 1b and type 1c, are less prevalent than the type 1a and may not
be sufficient to result in clinical manifestations related to hemochromatosis and have uncertain
pathogenic relevance, according to recent studies [6, 20, 60, 78].

1.2.1 Epidemiology

The C282Y mutation is highly related to white individuals, especially northern European
descendants, as they have a carrier frequency of 1 in 10 individuals and a prevalence of
homozygosity of approximately 5 of every 1000 individuals [20]. Indeed, the frequency of this
mutation decreases from the northwest to southwest Europe, in accordance with the settlements
of ancient Celts [60, 105]. Some studies suggest that this mutation provided survival advantage as
these populations had poor iron diet [105]. About 80%-90% of the northern European individuals
clinically diagnosed with HH are homozygous for the C282Y mutation [6]. Moreover, studies
have demonstrated an average prevalence of 0.4% for C282Y homozygosity and 9.2% for C282Y
heterozygosity while assessing samples from European countries and similar prevalences in North
America [20]. In Asian, African and Middle Eastern populations, C282Y heterozygosity was
detected with prevalences between 0% and 0.5%, albeit no C282Y homozygosity was detected [20].
According to the same studies, the C282Y/H63D compound heterozygote and the H63D/H63D
homozygote genotypes had prevalences of 2% in the European population and 2.5% and 2.1% in
the Americas, respectively [20, 79].

The penetrance of the disease is relatively low. Only 1%-33% of the homozygotes develop clinical
manifestations related to iron-overload and the penetrance of the disorder seems associated
with gender - 28,4% of males and only 1,2% of females showed iron-related disease [6, 20, 89].
Although, 81.8% of male individuals and 55.4% of female individuals had increased SF levels,
which suggests that biochemical penetrance is higher than clinical penetrance [20]. Also, genetic
modifiers, environmental factors and lifestyle factors seem to influence somehow the penetrance of
HFE-related HH [20]. Indeed, excess alcohol consumption, blood loss either due to menstruation
or routine blood donations, or increased dietary iron intake may be cofactors that may increase
the phenotypic expression of HH [20].
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1.2.2 Iron metabolism

The human body contains approximately 3-5 g of iron, of which between 60%-70% is used
within HB in circulating red blood cells [75]. Approximately 20%-30% of body iron is stored
in hepatocytes and in reticuloendothelial macrophages, mainly within ferritin [75, 101]. The
duodenum plays an important role on the absorption of dietary iron [75, 115]. A healthy
individual absorbs, daily, between 1-2 mg of iron compensating for iron losses related to skin and
intestine cells desquamation, menstruation or sporadic blood losses [75]. The absorbed iron can
be stored in ferritin, in the duodenal enterocytes, or bound to plasma transferrin in circulation,
forming holotransferrin, which may transport the iron for subsequent tissue intake [75, 115].
Thereafter, iron is used for many biological processes like erythropoiesis in the bone marrow,
myoglobin synthesis in muscle and oxidative metabolism in respiring cells [115].

Maintaining normal levels of TS (between 20% and 45%) is a fundamental part of iron homeostasis
to avoid disorders of iron metabolism, either its deficiency or excess accumulation [20]. Besides
the dietary iron absorbed, the macrophages responsible for erythrophagocytosis, a process in
which senescent erythrocytes are degraded and their iron recycled, are also a source of plasma
iron [20, 115]. The transport of iron from enterocytes and macrophages into the plasma occurs
through the FPN, expressed on the membranes of these two cells [20]. FPN is mainly regulated by
hepcidin, an iron-regulated peptide secreted by hepatocytes [20]. When hepcidin binds to FPN,
it induces its internalization and degradation and, hence, plasma hepcidin levels strongly affect
plasma iron concentration [20, 101]. So, low hepcidin levels trigger increased iron absorption from
the duodedum and iron release from enterocytes and macrophages, leading to increased plasma
iron concentration and TS [101]. Conversely, elevated secretion of hepcidin by hepatocytes leads
to decreased iron absorption and iron retention in reticuloendothelial macrophages [101]. Indeed,
elevated holotransferrin levels lead to the secretion of hepcidin to plasma to control the iron
export [20].

The main regulator of hepcidin expression is the HAMP, in which its transcription promotes
increased expression of hepcidin (Figure 1.2) [20, 115]. Several proteins found on the hepatocellular
membrane act as sensors of iron levels and regulate the hepcidin synthesis [115]. One of the
pathways that controls the HAMP transcription involves the HJV and the bone morphogenetic
protein receptor (BMPR), which forms a protein complex (HJV-BMPR), that is reactive to bone
morphogenetic protein 6 (BMP6) and to bone morphogenetic protein 2 (BMP2) [20]. When
BMP6 or BMP2, produced in sinusoidal cells, hepatic stellate cells and hepatocytes when cell
iron stores are increased, bind to the HJV-BMPR complex, they activate it and induce the
phosphorylation of cytosolic small-mothers-against-decapentaplegic proteins (SMADs) 1, 5 and 8
[115, 117]. Thereafter, these SMADs bind to SMAD4, forming a protein complex that enters the
nucleus and binds to the HAMP promoter, resulting in its transcription and subsequent hepcidin
synthesis [20, 21, 115]. Additionally, TS is also involved in hepcidin regulation [20]. Increased TS
may induce a shift of the interaction between HFE, transferrin receptor 1 (TfR1) and TfR2 on
the hepatocellular membrane, which leads to signalling to increase HAMP transcription via the
extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK), resulting
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in hepcidin expression [20, 115]. Also, studies suggest that the HFE-TfR1-TfR2 complex may
interact with the HJV-BMPR complex, hinting at a key role of the HFE on the regulation of
hepcidin synthesis [38, 115].

Figure 1.2: Hepcidin regulation. Adapted from Pierre Brissot et al. [20]

1.2.3 Pathophysiology

As previously mentioned, type 1 HH is associated with mutations in the HFE gene. HFE, a
human leukocyte antigen (HLA) class I molecule, is expressed on cell membranes associated with
β2-microglobulin [20, 78]. The C282Y mutation, the most common pathogenic mutation of HFE,
is associated with the disruption of a disulfide bond in HFE, affecting its conformation and its
ability to bind to β2-microglobulin [20, 30, 78]. Thus, interactions with TfR2, TfR1 and the
HJV-BMPR complex are also affected, ultimately leading to decreased hepcidin synthesis [20].
Hepcidin deficiency is responsible for excessive expression of FPN at the cell surface, resulting in
increased intestinal iron absorption and iron egress, which increase the plasma iron concentration
and the TS, leading to the occurrence of non-transferrin bound iron (NTBI) [20, 115]. Indeed, the
NTBI can form when TS is > 45%, which is a common phenotypic manifestation in HFE-related
HH, and is involved in the production of reactive oxygen species [20]. NTBI is taken up by
hepatic, pancreatic, endocrine and cardiac cells, causing parenchymal iron excess, which may
result in organ damage and other complications associated with HH [20, 84, 115].
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1.2.4 Clinical manifestations

Manifestations of HFE HH usually occur in middle-aged patients and are diverse because the
iron accumulation can occur in multiple tissues [20, 89]. In fact, manifestations may vary from
only the genetic abnormalities (genotype), biochemical abnormalities related to increased TS
and SF levels (biochemical phenotype) or organ damage (clinical phenotype) [20, 79, 89]. Classic
features of HH, like cirrhosis, bronze-colored skin, diabetes, joint inflammation, heart disease
or arthropathy are rarely found nowadays, as diagnosis for HH is possible at early stages due
to enhanced screening techniques and a greater awareness of the disease among clinicians [20].
Common symptoms are now associated with chronic fatigue, joint and abdominal pain, malaise
and hepatomegaly [20, 79, 89].

The TS is consistently increased among patients with HFE HH, along with increased SF levels,
which indicate accumulation of iron in tissues [20, 79]. Studies have shown that 32% of male
patients and 26% of female patients who were homozygous for HFE (C282Y/C282Y) had increased
SF levels at diagnosis (> 300 µg/L for males and > 200 µg/L for females) [79]. Moreover, other
studies suggested that 18% of man and 5% of women may have hepatic iron-overload, even
if no clinical symptoms are present [60]. Indeed, symptoms seem to appear earlier for men,
as clinical symptoms in women usually occur after postmenopause, due to iron loss during
menstruation, pregnancy and lactation delaying the iron accumulation during this time [60, 79].
Other longitudinal studies, in which patients were followed up for more than 30 years, shown that
38% to 50% of C282Y homozygotes may develop iron-overload, while only between 10% to 33%
may develop HH-associated morbidity [79, 108]. As stated before, according to another study,
around 28% of males and only 1% of females develop iron-overload disease, suggesting that male
C282Y homozygous are more prone to clinical manifestations related to iron-overload [6, 79].

The most commonly affected organ in type 1 HH is the liver, as iron is initially stored in this organ
[60, 89]. However, the clinical presentation tends to vary, as it may be related to asymptomatic
increases on serum aminotransferases, alanine transaminase (ALT) and aspartate transaminase
(AST), or to liver disease [60, 79, 89]. In patients with HFE-related HH, SF levels > 1000
µg/L may indicate liver fibrosis and increases the risk of developing cirrhosis [60, 79]. After the
development of cirrhosis, patients with HH are at increased risk of developing HCC [60]. Also,
SF levels > 2000 µg/L seem to increase the risk of developing HCC [60]. Cirrhosis and HCC
are the major causes of death among patients with HFE HH [89]. Indeed, HCC accounts for
45% of deaths in this population [60]. Studies demonstrated that elevated alcohol consumption
and tobacco smoking may worsen iron-overload, in which alcohol intake > 60 g/d increases the
risk of developing cirrhosis and > 80 g/d reduces survival, whereas the reduction of alcohol
consumption over time led to a reduction in phenotypic expression of the disease [3, 35]. Although
the concentration of iron stored in the liver can be used to predict the onset of cirrhosis, studies
have shown that some HH patients develop this condition even at lower levels of iron-overload,
whilst other patients with severe iron-overload do not have cirrhosis, suggesting that other factors
besides iron-overload influence the development of cirrhosis and HCC [89].
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Besides liver complications, iron-overload may affect other organs like the pancreas, heart or
pituitary glands [60, 89]. As such, diabetes, cardiomyopathy and arrhythmias, hypogonadotropic
hypogonadism, arthopathy and arthritis are clinical complications that may occur in HFE-
associated HH patients [89]. Studies have shown that the prevalence of diabetes in type 1 HH
patients is between 13% and 23% [76], while others shown that the prevalence of cardiomyopathy
was 0.9%, in one study, and 3.1% on another [12, 29]. While conditions like cirrhosis, diabetes
and cardiomyopathy are irreversible, others like weakness, fatigue, skin pigmentation and hepatic
fibrosis may regress with appropriate treatment [60, 89]. Thus, screening, early diagnosis and
treatment are essential to reduce the morbidity and mortality of type 1 HH patients [60, 79, 89].

1.2.5 Diagnosis and screening

Diagnosis of HH involves a sequential approach based on biochemical, clinical and imaging data
assessment (Figure 1.3) [20, 57]. Common clinical manifestations should be taken into account
to determine the possibility of iron-overload disease, although, as discussed before, symptoms
can either be absent or very variable, which burdens the diagnosis of HFE-HH based solely
on this analysis [20, 82]. As such, the main initial approach to diagnosis is through markers
of iron stores, specifically TS and SF levels [10, 20, 60]. Increased TS (> 45%) is usually the
earliest biochemical manifestation observed in HFE HH, as it identifies 97.9%-100% of C282Y
homozygotes [20, 60, 82]. Although, even if the cut-off TS value of 45% is often chosen, in some
cases individuals with minor secondary iron-overload or C282Y/wild heterozygotes are identified
as C282Y homozygotes, and, as such, further evaluation is needed [10]. Additionally, normal
or low TS can be found even if iron-overload is present [20]. Furthermore, SF levels > 200
µg/L in premenopausal women and > 300 µg/L in men are also used to assess iron-overload, as
they provide a valuable correlation with the degree of body iron stores [10, 60, 64]. Moreover,
studies have shown the potential of SF as a marker to predict advanced fibrosis or cirrhosis
in HFE-associated HH patients, in which SF levels > 1000 µg/L, along with increased ALT
and ALT levels and reduced platelet count predicted the presence of cirrhosis in 80% of C282Y
homozygotes [10, 60]. Nonetheless, SF suffers from low specificity as increased values can be due
to other factors not related to iron-overload like inflammation, metabolic syndrome, diabetes
mellitus, alcohol consumption or hepatocellular necrosis [20, 60, 102]. However, SF is a widely
used biochemical parameter to unveil iron-overload related to HH and normal values of SF can be
used to rule out iron-overload [64]. Actually, combined normal SF and TS values have a negative
predictive value of 97% for excluding iron-overload occurrence [60]. Notably, a joint evaluation of
SF levels and TS is usually necessary and is suggestive of HH [10, 89, 102]. A common strategy
in HFE-related screening and diagnosis is to take into account serum iron markers (TS and SF)
to target high-risk groups, including individuals with clinical manifestations associated with HH
and/or with a family history of this genetic disorder [10].

Patients with consistently increased TS and SF, in the absence of hematological or inflammatory
diseases, are suspected to have HH and should be referred for molecular genetic testing [60, 82, 89].
Indeed, to identify the genetic cause of the disease, testing for C282Y homozygosity is a suitable



8 Chapter 1. Introduction

analysis and should be performed especially in white individuals of north European origin [20, 89].
If C282Y homozygosity is confirmed through genetic tests, first degree relatives should also be
tested for the mutation and for biochemical phenotypic expression (TS and SF levels) [10, 89]. On
the other hand, detecting C282Y heterozygosity in patients with iron-overload should prompt to
investigate other genetic and/or acquired causes of iron accumulation, as compound heterozygotes
do not usually develop iron-overload disease and only present mild iron-overload when other
cofactors like alcoholism or metabolic syndrome are involved [20, 60].

Moreover, liver biopsy can be important to assess hepatic complications of HH, especially the
stage of fibrosis in C282Y homozygous patients with SF levels > 1000 µg/L [20, 60, 89]. However,
liver biopsy is no longer required to confirm the diagnosis of HH or to quantify iron accumulation,
as it has been replaced by the evaluation of biological data and genetic testing [20, 64]. Also,
magnetic resonance imaging (MRI) may aid visualizing and quantifying hepatic, pancreatic and
splenic excess iron and differentiate between HH related to hepcidin deficiency , like the HFE
HH, from FPN disease [20, 60]. Recent studies suggest that the measurement of hepcidin may be
relevant to the diagnosis strategy of HFE-associated HH and that, in the future, hepcidin-sensitive
tests might be available [20].

Figure 1.3: Algorithm for HFE HH diagnosis and screening. Adapted from Kris V. Kowdley et
al. [60]
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1.2.6 Treatment and management

Phlebotomy is the mainstay of treatment for HFE-related HH [20, 60, 84]. The goal of phlebotomy
is to remove excess iron to prevent further tissue damage and complications related to iron-
overload [20, 79]. Repeated removal of red blood cells reduces the iron in HB, subsequently
stimulating erythropoiesis and thereby mobilising iron stored in organs, eliminating excess
stored iron [89]. As no randomised controlled trials were assessed yet, venesection therapy is
recommended based on clinical evidence that blood withdrawal and, consequently, iron removal
before the development of cirrhosis and diabetes is associated with reduced morbidity and
mortality [84]. In fact, most experts believe that this form of iron depletion can improve chronic
fatigue, cardiac function, hepatic fibrosis and reduce skin pigmentation in patients with HH,
although life-threatening conditions like cirrhosis or HCC continue to be a threat to survival
even after adequate phlebotomy [10, 20, 84]. Life expectancy of HH patients on phlebotomy
therapy is equal to that of the non-HH individuals when the disease is diagnosed before the
onset of cirrhosis and diabetes [89]. Also, studies have shown the benefits of phlebotomy through
the comparison of the iron depleted between groups of patients treated with phlebotomy, not
treated with phlebotomy or inadequately treated with phlebotomy [64]. Yet, adverse effects
of venesection therapy may occur in 37%-50% of the patients and include phlebitis, malaise
and fatigue [20]. Systematic studies have never been endured to determine the starting point,
frequency and ending point of therapeutic phlebotomy [64, 79, 84]. As such, there are no evidence
based protocols for phlebotomy treatment [64]. Thus, treatment planning is established based
on empirical recommendations for the timing and frequency of venesections, as well as to the
level of iron burden at which therapy should be proposed [64, 84].

Still, current guidelines suggest that the treatment should be initiated in C282Y homozygotes with
increased TS (> 45%) and SF levels (> 200 µg/L for women and > 300 µg/L for men) [60, 84, 89].
Homozygous patients with SF within normal limits at diagnosis should be monitored by assessing
their SF, ALT and AST values [60]. For compound heterozygotes or H63D homozygotes, in
case of liver disease and SF > 1000 µg/L, iron depletion therapy may be considered [60]. The
treatment consists of two phases, often called depletion phase (DP) and maintenance phase (MP)
[89, 90]. While the DP has the goal of lowering SF to target values (50-100 µg/L), the MP aims
at maintaining stable target SF values (≈ 50 µg/L) [60, 79, 89].

The initial stage of therapy, the DP, usually consists of weekly removal of 400-500 ml of blood,
which contains approximately between 200 and 250 mg of iron and reflects an average of 30
µg/L of depleted SF per phlebotomy [60]. Although, therapy frequency and volume of blood
extracted may vary depending on patients tolerability [60, 89]. Also, the periodicity or volume
of venesections should be adapted to maintain HB concentrations above 11–12 g/dL [84]. The
number of venesection procedures is highly variable and dependent on iron reserve status [89].
Hence, the duration of the DP can differ between patients, ranging from months to years [20, 89].
Indeed, studies have shown mean durations of 1.4 years, with durations ranging from 0.44 to 3.6
years [44, 89].
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In the MP, the phlebotomy frequency is reduced to 2-6/year [60, 89]. Although, the periodicity
of venesections is highly dependent on the rate of reaccumulation of iron, which varies among
individuals [20, 89]. The SF levels should be maintained at ≈ 50 µg/L, albeit the TS may still
be elevated for several patients and consequently NTBI may be present as well [20, 84].

More recently, erythrocytapheresis has been used on some patients [20, 89]. Erythrocytapheresis
selectively removes red blood cells and returns the remaining components, such as plasma proteins,
clotting factors, and platlets, to the patient [60, 89]. This alternative method allows to remove
more red blood cells than phlebotomy (1000 ml vs 200-250 ml) and, also, studies have shown
reductions in the number of procedures needed and in the duration of treatment when compared
to phlebotomy therapy [89]. Furthermore, this technique can be individualized based on gender,
weight, hematocrit and total blood volume [60]. Notwithstanding, erythrocytapheresis is more
expensive, less available and a more complex technique than phlebotomy based therapeutics
[19, 20].

1.3 Motivation

Starting point, frequency and end point of the first phlebotomy therapy phase, the DP, is
recommended based on current guidelines and empirical expertise, as there are not any evidence-
based data to support an established protocol [79, 84]. Consequently, the duration of this
treatment stage is highly variable among HFE-associated HH patients [20, 89]. Also, the duration
of the DP may be greatly related to the degree of iron-overload [20]. Moreover, side effects related
to the DP seem to be present for several individuals, which may be another factor adding to the
degree of variability of this treatment phase duration. Actually, a study shown that 52% of the
patients reported negative experiences related to the treatment, whilst on another study, only
33% of the patients complied with weekly schedules and 43% with every two weeks venesections,
during the DP [47, 90]. The same study referred that thirteen patients, out of 118, required
more than the average number of phlebotomies to achieve iron depletion and took more than
one year to end the DP, opposed to the other patients that took one year or less and a reduced
number of venesections [47]. Therefore, having a better understanding of the underlying factors
affecting the duration of the DP may be clinically relevant.

In this work, we propose a comprehensive study of some patients characteristics and their influence
on the duration of the first stage of therapy of HFE-related patients (statistical inference) and,
thereafter, attempt at estimating the duration of the DP for newly diagnosed HFE HH patients,
based on previous found insights (prediction). Conceivably, this study may aid HFE-associated
HH patients, medical practitioners and medical facilities. Indeed, patients may benefit from an
estimation of the duration of the DP, allowing them to have a better perspective of the time and
frequency of the phlebotomy therapies and, perhaps, adapt better to the treatment schedule and
thus, increase treatment compliance rates overall. Furthermore, treating physicians may gain
new insights regarding the factors affecting the duration of the DP, allowing for an enhanced and
more personalized treatment planning. Besides, hospitals and medical facilities may indirectly
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benefit by reducing costs associated with the therapy, given that a more patient-specific treatment
planning is possible. In reality, we believe that this study may be a relevant first step on the
development of a model based tool to understand the influence of external factors on the initial
treatment phase of HH and predict the duration of the DP of HFE-related HH patients.

1.4 Aims

The main goal of this work was to predict the duration of the initial phase of phlebotomy
treatment, the DP, of patients newly diagnosed with HFE-related HH. As such, a sequential
statistical study was performed to understand the underlying factors affecting the duration of
the phlebotomy therapy during this iron depletion phase. Thereafter, by taking advantage of this
statistical analysis, predictive models were built, evaluated and compared, aiming at obtaining a
regression model to grant HFE-associated HH patients and their treating physicians a reasonably
accurate estimation interval for the duration of the DP.

1.5 Thesis outline

A brief explanation of each Chapter of this thesis is provided in this section.

Introduction: Provides a general introduction of the disease studied on this thesis, its
pathophysiology, epidemiology, diagnostic and treatment strategies. Besides, the main motivation
and the aims of this study are explained.

Materials and Methods: Presents a brief description of the data used throughout the thesis
and indicates the software used.

Modeling the Depletion Phase: Addresses the core results of this work, while concomitantly
discussing them. Altogether, the topics discussed involve data pre-processing, statistical data
analysis and correlation studies, subsequent data processing and finally, regression models
building, evaluation and comparison.

Discussion: Serves as a wrap-up after presenting the results, where the main findings are
highlighted and discussed. Future perspectives, recommendations and alternative approaches are
also suggested.

Conclusion: Summarizes the major findings, providing the final remarks for this work.
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Materials and Methods

2.1 Data description

Data related to 384 HFE-related HH patients was provided by the Department of Metabolic
Diseases of the Leuven University Hospital (UZ Leuven, Campus Gasthuisberg) in Belgium.
Although patient data is anonymized, as each individual is identified by an arbitrary number,
approval from the hospital’s Ethical Committee had to be granted due to the data’s personal and
clinically sensitive information. Professor Dr. David Cassiman, from the referred department of
the Leuven University Hospital, and his colleague Dr. Annick Vanclooster were involved in this
project, supervising it and giving clinically relevant insights when needed.

The Department of Metabolic Diseases of the Leuven University Hospital supplied, for this
master thesis, three data sets. Two of these data sets contain information regarding biochemical
parameters over a certain period of time, depending on the individual. While some patients have
data from the mid-90’s until 2019, others only have data from this millennium. One of these
data sets includes time-stamped values of SF (µg/L), TS (%) and AST (U/L), among others
(Table A.2). The other data set contains time-stamped values for HB (g/dL) and ALT (U/L)
(Table A.3). Every time-stamped observation corresponds to a phlebotomy performed by the
patient. The two data sets with time-stamped values have 18 variables related to biochemical
parameters. The third data set contains 177 variables that are time-invariant, contrary to the
data set with time-stamped biochemical information (Table A.4). While the data sets seem very
information-rich, some variables have numerous missing values. This data set has information
regarding patients’ gender, age when diagnosed, SF levels at diagnosis, body mass index (BMI),
smoking habits, alcohol habits, HH genotype, HH-derived complications and other variables. On
the data set with static variables, approximately 75% of the values are missing. In addition,
time-stamped biochemical data is highly irregularly spaced in time.

13



14 Chapter 2. Materials and Methods

2.2 R Programming Language

The R programming language was used on this thesis, as it is widely used for statistical
programming (R version 3.5.3) [85]. The integrated development environment used was the R
Studio version 1.1.463 [93]. The R packages used on this study are listed below.

• readxl [111]

• ggplot2 [110]

• knitr [114]

• dplyr [112]

• plyr [109]

• magrittr [9]

• rlist [87]

• janitor [33]

• xts [95]

• zoo [116]

• flextable [42]

• xtable [26]

• corrplot [107]

• GGally [97]

• ggsci [113]

• stargazer [49]

• VIM [59]

• car [36]

• FSA [73]

• userfriendlyscience [77]

• onewaytests [25]

• interactions [65]

• MASS [104]

• olsrr [45]

• caret [37]

• scorer [46]
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Modeling the Depletion Phase

This Chapter presents the core results of this dissertation. Key procedures of this study include:
i) data processing, in which the data is prepared for further analysis, ii) Exploratory Data
Analysis (EDA), with emphasis on correlations between variables and differences between groups,
iii) data processing after EDA, to prepare the data for modeling according to gained insights
from the previous analysis and iv) predictive models building, comparison and evaluation.

3.1 Data processing

Some data pre-processing steps had to be performed before EDA and modeling. The data sets
provided did not include a clear indication of the time the DP took for each patient. As this
information is fundamental to the main goal of this work, some processing techniques were
performed to create a variable for this effect. Further, understanding and characterizing the
behavior of the SF concentration over time allowed to extract some knowledge regarding the DP.

3.1.1 Grouping of patients based on initial SF value

HFE-related HH patients were grouped based on the initial SF value, creating a new variable
named Group. Three groups were created: Group 0 includes patients with initial SF value <
500 µg/L, Group 500 includes patients with initial SF value ≥ 500 µg/L and ≤ 1000 µg/L and
Group 1000 includes patients with initial SF value > 1000 µg/L. As the SF is used as a marker
to assess treatment planning and is directly associated with the duration of the treatment phases,
this variable seemed relevant to characterize the patients.

3.1.2 Selection of SF time-stamped values from the DP

The data sets provided did not have information dictating the duration of the DP, its starting
and ending date, or whether a time-stamped SF value is associated with that treatment phase or

15
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with the MP. So, the SF values that belong to the DP were selected under some assumptions:
i) patients with initial SF values < 100 µg/L do not have data regarding the DP and have to
be disregarded, ii) patients with initial SF values > 100 µg/L have data regarding the DP, iii)
the next time-stamped SF values were assessed iteratively and were assumed as part of the DP
if their concentration was > 100 µg/L and iv) the cut-off point to identify the end of the DP
is when the SF value being checked is < 100 µg/L, so all the previous time-stamped SF values
are included on the DP. Similar assumptions were considered on a previous study [91]. Also,
dates (YY/MM/DD) were converted to number of days, being the day 1 the first day of the DP.
Figures 3.1, 3.2 and 3.3 show plots with the time-stamped SF values for three arbitrary patients,
one of each group of initial SF level, for both the DP and the MP, before any processing, and for
the DP only, after the processing explained before. A table with SF values and respective day for
one of these patients (from Group 0) can be seen in the Appendix, as illustration (Table A.1).

(a) (b)

Figure 3.1: Plot depicting the SF values for a patient from Group 0 (initial SF value < 500
µg/L) before removing data points associated with the MP (a) and after (b). On plot (a), black
vertical line indicates approximate end point of the DP. On both plots, blue horizontal dashed
line indicates threshold of SF concentration (100 µg/L)
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(a) (b)

Figure 3.2: Plot depicting the SF values for a patient from Group 500 (initial SF value ≥ 500
µg/L and ≤ 1000 µg/L) before removing data points associated with the MP (a) and after (b).
On plot (a), black vertical line indicates approximate end point of the DP. On both plots, blue
horizontal dashed line indicates threshold of SF concentration (100 µg/L)

(a) (b)

Figure 3.3: Plot depicting the SF values for a patient from Group 1000 (initial SF value > 1000
µg/L) before removing data points associated with the MP (a) and after (b). On plot (a), black
vertical line indicates approximate end point of the DP. On both plots, blue horizontal dashed
line indicates threshold of SF concentration (100 µg/L)

3.1.3 Retrieval of the initial SF values

The initial SF values were retrieved using a pre-existing static variable originally called Ferritine
(diagnosis) and renamed to Ferritin for simplification. Indeed, Ferritin as a static variable
representing the initial SF value at diagnosis seemed relevant for further analysis. As this variable
has 5 missing values, the data set now contains information regarding 379 patients. Also, patients
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with SF < 100 µg/L are discarded under the assumption explained before. Eleven patients did
not have data concerning the DP according to this assumption, which reduced the data set to
368 patients. Besides, to estimate the duration of the DP, two time-stamped SF values are
needed to define a starting and end point. Hence, patients with < 2 time-stamped SF values
were removed. This processing step resulted in a major data loss as 77 patients did not have at
least two time-stamped observations. At this point, the data set included information regarding
294 patients.

3.1.4 Treatment interruptions during the DP

Large treatment interruptions during the DP may be an indicator that during that time period,
a patient did not endure the treatment as planned by the physician. So, to try to approximate
the SF time-stamped data to a more ideal behavior in which the patients followed treatment
more according to the recommendations given by the physician, treatment interruptions > 100
days were excluded. To achieve this, each patient’s time-stamped SF values were checked and
if the difference between one observation and the next was > 100 days, all the previous data
points were disregarded. Also, the initial SF values (Ferritin variable) were updated accordingly.
Plots before and after interruptions > 100 days removal, for the same patients as before, can be
observed on Figures 3.4, 3.5 and 3.6. After this procedure, patients with < 2 time-stamped SF
values were removed. 33 patients had less than 2 observations, which lead to a data set with 261
patients.

(a) (b)

Figure 3.4: Plot depicting the SF values during the DP for a patient from Group 0 (initial SF
value < 500 µg/L) before treatment interruptions > 100 days removal (a) and after (b). Red
vertical line indicates cut-off point.
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(a) (b)

Figure 3.5: Plot depicting the SF values during the DP for a patient from Group 500 (initial SF
value ≥ 500 µg/L and ≤ 1000 µg/L) before treatment interruptions > 100 days removal (a) and
after (b). Red vertical line indicates cut-off point.

(a) (b)

Figure 3.6: Plot depicting the SF values during the DP for a patient from Group 1000 (initial SF
value > 1000 µg/L) before treatment interruptions > 100 days removal (a) and after (b). Red
vertical line indicates cut-off point.

3.1.5 The behavior of the decay of SF over time

Considering that the duration of the DP depends on the SF concentration over time, under
the assumption explained above, characterizing its behavior may be important to discover any
patterns on the data at hand. As the data set has time-stamped values of SF for a considerable
number of patients (n = 261), it was not possible to plot and study every single patient individually.
Although, by observing plots of SF values during the DP for several random patients, it seemed
that: i) the SF decay over time is not linear, ii) the SF decay over time resembles an exponential
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decay, iii) there is some degree of variability from patient to patient, iv) the phlebotomies do not
seem evenly spaced in time, meaning that the treatment plans are not performed as recommended
by the medical practitioners and v) there are some fluctuations on the SF values over time,
as there are cases where the SF concentration increases after the last phlebotomy (previous
observation). In fact, the SF values during the DP seem to have a stochastic behavior in which
physiological indeterminacy may play a major role, as other biological processes may influence
the measurement of interest. Figure 3.7 shows the curves of SF values during the DP for six
randomly chosen patients. On this section, the SF concentration time-series is handled and
analyzed as an exponential decay curve.

Figure 3.7: Plots depicting the SF values during the DP for 6 patients
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3.1.6 Nonlinear Least Squares analysis

To further explore the hypothesis that the SF values over time, during the DP, have an exponential
decay, a method called Nonlinear Least Squares (NLS) was used to fit curves to each patient
time-series. Characterizing the underlying patterns behind the depletion of SF during the DP
may enhance the understanding of this first phase of treatment of HFE-related HH [27]. The NLS
method tries to find the optimal parameters for an equation that describes a set of data points,
Xi and Yi. The algorithm is based on iteratively finding the best guess for the parameters, given
initial guesses [51]. As stated above, the NLS method requires the specification of an equation.
The formula chosen is based on First Order Kinetics, which describe a monoexponential decay
[11, 94]. So, the equation specified on this NLS analysis is:

SF = A · ek·Days + T

where:

• SF refers to the SF concentration at a specified day

• A refers to the initial SF value

• k refers to a parameter to be estimated by NLS

• Days refers to the number of days

• T refers to the last SF value, approximated to 100 µg/L for all the patients

On the proposed equation, A and Days are known parameters specific to each patient and T is
constant to all the individuals, taking into account the assumption that the DP ends when the
SF concentration is close to 100 µg/L. The parameter k is the only value to be estimated by
the NLS method and may help characterize and differentiate each patient’s SF curve behavior
during the DP. As the k parameter is closer to zero, the decay speed is slower and more negative
values are associated with higher speed decays. Three exponential decays with this equation,
each with a different k parameter value, are illustrated in Figure 3.8. Also, on Figure 3.9, it is
possible to observe the result of the NLS method on three patients from each group of initial SF
value. The plots with fixed scales allow to visually conclude that more negative k parameters
are associated with higher speed decays.
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Figure 3.8: Examples of monoexponential decays with the equation specified on the NLS analysis
varying only the k parameter value. For all the lines, A = 1000 and Days = 1000
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Figure 3.9: Plots with NLS fitted curves for three patients, one of each initial SF group. Patient
number 154 is from Group 0 (k = -0.0202), patient number 177 is from Group 500 (k = -0.00216)
and patient number 1 is from Group 1000 (k = -0.0102). Plots on the left are scale-free. Plots
on the right have the same scale.

3.1.7 Retrieval of k parameters

After assessing the k parameter potential to characterize the speed of decay of SF for a given
patient, it seemed relevant to retrieve these parameters for all the patients on the data set. Thus,
a variable was created with the values of these parameters for all the patients. Although, to fit an
exponential curve and estimate the k parameter, a patient needs at least three time-stamped SF
values. Hence, patients with less than three observations during the DP were excluded (n = 15),
which reduced the data set to 246 patients. Figure 3.10 shows a flowchart with the pre-processing
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steps discussed until now and the number of patients discarded in each step.

Figure 3.10: Flowchart of pre-processing steps until the retrieval of the k parameters

3.1.8 The outcome variable: duration of the DP in weeks

Recommended frequencies to perform phlebotomies during the DP are usually weekly, every two
weeks or monthly depending on the physicians’ decision [1, 60, 79]. Therefore, the duration of the
DP of all the patients was converted from number of days to number of weeks. This new variable,
named DurationWeeks, is considered the outcome variable in the ensuing analysis. Table 3.1
shows the appearance of the data set after the pre-processing steps carried until this point, where
Number refers to the patient number, Ferritin refers to the initial SF level, Group refers to
the group of initial SF value, DurationWeeks corresponds to the duration of the DP in weeks
and kParameter to the parameter k estimated with the NLS analysis.
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Table 3.1: Appearance of the data set after pre-processing related to the retrieval of initial SF
values, the duration of the DP and the k parameters from NLS analysis

Number Ferritin Group DurationWeeks kParameter
1 2085 Group 1000 71 -0.0102
2 1125 Group 1000 31 -0.0088
3 956 Group 500 18 -0.0097

3.1.9 Variables selection

The three data sets have, combined, a large number of variables. Thus, two main criteria were
established to identify and select the variables of interest for further analysis: i) variables with
clinical relevance and ii) variables with few missing values. Also, as the main goal is to predict the
duration of the DP for patients recently diagnosed with HFE-related HH, variables with values
known before the start of the treatment were prioritized. Moreover, biochemical parameters
have time-stamped data which difficult the analysis of these values either to: i) not knowing the
behaviour of these values during the DP and ii) having a large number of missing values unlike
the SF values. In fact, to fully understand the potential relevance of these variables to the study
at hand, a similar analysis to the one performed to the SF levels over time had to be assessed.
This section covers some preliminary analysis done on variables that seemed clinically relevant.
Although, some were not taken into account for the main analysis of this work as they do not
satisfy some of the criteria mentioned before. Chosen variables were added to the current data
set (Table 3.1).

3.1.9.1 Liver Disease and Alcohol Intake

Fibrosis and cirrhosis are two potential complications associated with HFE-related HH patients,
especially the ones with higher SF levels of more than 1000 µg/L at diagnosis [60]. Besides,
alcohol consumption seems to be associated with an increasing risk of developing cirrhosis [15].
In addition, alcohol may worsen iron overload [60, 92]. Both these factors may contribute to a
prolonged DP as they seem associated with more elevated SF levels. So, these variables were
selected for a preliminary analysis to verify if they fulfill the requirements discussed previously.
The LiverDisease variable was created from two pre-existing variables called Fibrosis and
Cirrhosis. Patients that do not have neither Fibrosis or Cirrhosis were given the level 0,
patients with Fibrosis were encoded to 1 and patients with Cirrhosis to 2 (Table 3.2). The
number of missing values (n = 80) and the sample size inequality were two decisive factors to
dismiss this variable for further analysis. In reality, the number of patients with cirrhosis (n =
14) seemed too low to assess potential associations with either higher initial SF levels or longer
DP durations.
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Table 3.2: Number of missing values and number of patients of each level of the LiverDisease
variable. Level 0 refers to patients with no known liver condition, level 1 refers to patients with
Fibrosis and level 2 refers to patients with Cirrhosis

LiverDisease n
NA 80
0 110
1 42
2 14

The Alcohol intake variable had, initially, thirteen different levels. Besides having a large
number of factors, most of them were represented by few patients. This excessive categorization
may be associated with wrongfully collected data and is an obstacle for future analysis. As such,
a simplification was made where the patients were encoded either to the value 0 if they do not
drink or drink sporadically or 1 if they drink frequently (at least weekly). Although the two
encoded levels have similar sample sizes, they already endured a processing step that may bias
the analysis negatively (Table 3.3). Furthermore, the number of missing values (n = 117) seemed
excessively high to consider including this variable on the data set for the next analysis.

Table 3.3: Number of missing values and number of patients of each level of the Alcohol intake
variable. Level 0 refers to patients that do not consume alcohol or consume only sporadically
and level 1 refers to patients that consume alcohol frequently

Alcohol n
NA 117
0 53
1 76

3.1.9.2 BMI and Age at diagnosis

Previous research has shown that the BMI is associated with increased SF levels in adolescents,
especially among obese individuals [99]. Moreover, higher BMI seems to be associated with
increased risk of diabetes in individuals with HFE HH [13] and higher SF levels seem to be a
reliable marker of inflammation among obese individuals [53]. Although the BMI seems clinically
relevant, it was not included at this point on the data set due to the number of missing values
(n = 64). Age at diagnosis, encoded as AgeDiagnosis, was another variable considered for a
preliminary analysis as it seemed clinically pertinent. Studies have shown that greater age at
diagnosis is associated with increased risk of developing cirrhosis and HCC [15, 71]. Additionally,
higher age at diagnosis seems to be an indicator for the duration of exposure to iron overload
as the progressive accumulation of iron is not counteracted by iron depletion therapies during
longer periods compared to inferior ages at diagnosis [71]. Indeed, age seems to be positively
associated with increased SF levels [61]. This variable was added to the data set for further
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analysis as it does not have any missing values and has an apparent clinical importance.

3.1.9.3 Sex

The sex of a patient was another factor assessed. Past research has shown that male p.C282Y
homozygous HH patients seem to be more associated with increased SF levels [61]. For female
p.C282Y homozygous HH patients, a study suggested that they have higher SF levels after
menopause when compared to pre-menopausal females [106]. The Sex variable was incorporated
on the data set at hand due to its possible influence on the SF levels of HFE-related HH patients
and due to the fact that it does not have any missing value.

3.1.9.4 Genotype

SF levels were found to be more associated with the C282Y homozygous genotype in recent
studies [5, 80]. Also, a meta-analysis based study identified that homozygous C282Y/C282Y
genotype was 60-times stronger associated with TS values greater than 55% and elevated SF
levels than compound heterozygous genotype and 100-times stronger than H63D/H63D genotype
[70]. Thus, understanding the influence of the genotype on iron overload and the duration of the
DP may be of utmost relevance to the present study. The initial Genotype variable contained
three levels when accounting for the data set after the pre-processing explained on the previous
section (n = 246): i) C282Y/C282Y (n = 195), ii) C282Y/H63D (n = 45) and iii) C282Y/S65C
(n = 6). As the homozygous C282Y genotype is highly overrepresented and the heterozygous
C282/S65C has few cases, this variables was encoded to either being Homozygous (n = 195)
or Heterozygous (n = 51). Even after this encoding, the homozygous genotype is highly more
represented than the heterozygous group. Nevertheless, the variable Genotype was included on
the data set due to its clinical relevance and the fact that it does not contain missing values.

3.1.9.5 Time-stamped biochemical parameters

Besides the SF levels studied before, some time-stamped biochemical parameters were taken
into account as a first preliminary analysis. The TS levels were deemed of interest as they are a
marker, along with the SF concentration, to assess iron stores and disease severity. Indeed, TS
greater than 45% identifies more than 97.9% of C282Y homozygotes and may be used as a metric
to determine the start of the treatment [60]. AST and ALT were also considered at first since
they are traditional markers for liver disease or excessive alcohol consumption [23, 72, 98]. In
fact, serum levels of these two biomarkers are increased, to some extent, in case of liver disease
[43]. Additionally, the HB variable was also recognized as a potential candidate to include in
the data set as it is regularly used to assess anemia in patients undergoing frequent phlebotomy
therapy [18, 60]. Regardless, these variables were not included on the data set for the main
analysis due to: i) having missing values which would reduce the number of patients and ii) the
added complexity of using time-stamped variables.
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As the main goal of this work is to study which parameters may be associated with the duration
of the DP from data available when a HFE-related HH patient is diagnosed, the inclusion of these
four variables was attempted by creating variables that contain the initial value, at diagnosis, of
each biochemical parameter, similarly to what was done with the initial SF value. Adding these 4
variables reduced the data set from 246 to 175 patients, meaning that 71 patients have at least one
missing value on the initial values for these parameters (at diagnosis). Individually, AST had 51
missing values, ALT had 49, HB had 39 and TS had 17 missing values. Plus, these parameters’
time-stamped values during the DP were not studied like the SF values over time. Identifying
and characterizing the behavior of these time-stamped values could be essential to understand
their impact on the duration of the therapy. For these two reasons, these time-stamped values
were not incorporated on the main analysis of this work.

3.1.10 Feature extraction

This subsection covers some feature extraction techniques regarding two newly created variables
named Gradient and MonthlyPhlebomoties. While Gradient is a variable associated with
the SF values over time, like the k parameter discussed before, the MonthlyPhlebotomies is
a variable related to the number of phlebotomies performed by each patient per month.

3.1.10.1 Gradient

Opposed to the k parameter extracted before, that tries to characterize a monoexponential decay,
the Gradient is a linear approximation of the same phenomenon. The idea behind this variable
was to model the decay of SF during the DP in a linear and thus, simplified way. The equation
used to derive this linear approximation is given by:

Gradient = T −A

DurationWeeks

Where:

• Gradient refers to the gradient of a given patient

• A refers to the initial SF value

• T refers to the last SF value, approximated to 100 µg/L for all the patients

• DurationWeeks refers to the number of weeks of the DP

This equation was used to retrieve the Gradient values for all the patients currently included
on the data set (n = 246). The output of this equation, Gradient, can be considered an
approximation of the mean rate of depletion of SF per week for a given patient. As an example,
an arbitrary patient with A = 1100 µg/L and DurationWeeks = 20 would deplete, on average,
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per week, approximately 50 µg/L of SF. More negative Gradient values reflect higher speeds of
decay of SF. Differentiating patients based on their ability to deplete greater SF per week during
the DP may bring relevant insights when trying to predict the duration of this treatment phase.

3.1.10.2 Monthly phlebotomies

Another variable created, and named MonthlyPhlebotomies, is related to the frequency of
phlebotomies performed. The duration of DP may be directly associated with the number of
phlebotomies performed by a patient, under the assumption that more phlebotomies are related
to more iron expelled. As such, the variable created refers to the average number of phlebotomies
performed by a patient per month. The formula used to extract this information for all the
patients is presented below:

MonthlyPhlebotomies = NumberCases · 30
Duration

where:

• MonthlyPhlebotomies refers to the number of phlebotomies performed per month

• NumberCases refers to the total number of phlebotomies performed

• Duration refers to the number of days of the DP

Initially, the rounded results of the equation above separated the patients in four groups based on
the number of phlebotomies done per month: i) one phlebotomy (n = 135), ii) two phlebotomies
(n = 90), iii) three phlebotomies (n = 18) and iv) four phlebotomies (n = 3). As the sample sizes
were very distinct and could burden future analysis, this variable was encoded in two levels: i)
patients that performed approximately one phlebotomy (n = 135) and ii) patients that performed
two or more phlebotomies (n = 114). This simplification may bias further analysis but has the
advantage of dividing the patients in two samples of approximate sizes.



30 Chapter 3. Modeling the Depletion Phase

3.2 Exploratory Data Analysis

After the pre-processing steps endured and the selection of variables of interest, the data set
has information regarding 246 patients and its appearance is shown in Table 3.4. This section
focuses on studying the distributions and correlations of the variables considered on this data set,
with an increased emphasis on the target variable, DurationWeeks. Variables were studied,
one by one, in case they were deemed as relevant after initially assessing correlations between
the variables. Note that a confidence of 95% (α = 0.05) was chosen for all the statistical tests
performed.

Table 3.4: Appearance of the data set after pre-processing steps and variable selection

Number Ferritin Group kParameter Sex AgeDiagnosis Genotype MonthlyPhlebotomies DurationWeeks Gradient
1 2085 Group 1000 -0.0102 m 39 Homozygous 1 71 -27.90
2 1125 Group 1000 -0.0088 m 46 Homozygous >1 31 -32.91
3 956 Group 500 -0.0097 m 52 Homozygous >1 18 -47.18

3.2.1 Variables’ Correlations

Correlation plots were built to study possible associations between variables. A correlation plot
with a color gradient scale is presented in Figure 3.11 and Figure A.1, in the Appendix, shows
scatter plots and associated correlation values. Categorical variables were encoded to numerical
to be able to plot these correlograms. Sex values were encoded to 0 for male patients and 1
for females. Group of initial SF level was encoded to 0 if the patient is from Group 0, 1 if the
patient is from Group 500 and 2 if the patient is from Group 1000. For the Genotype variable,
Homozygous patients were encoded to the value 0 and Heterozygous to the value 1. Further,
the MonthlyPhlebotomies values were encoded to 0 if the patients did one phlebotomy per
month or encoded to 1 if the patients performed more than one monthly phlebotomy.

The correlation values between each variable and the target variable, DurationWeeks, are
summarized in Table 3.5. It is possible to observe that the kParameter variable seems to be
the one more positively associated with the outcome variable (r = 0.533), meaning that values of
k closer to zero may be more associated with longer durations of the DP. This correlation value
seems to be in line with what was expected taking into account that more negative k values
describe higher speeds of decay of SF. The Gradient, as it is another approximation of the decay
of SF over time, has also a positive correlation value (r = 0.325) but does not seem as strongly
correlated. Similarly to the k parameter exponential approximation, closer to zero Gradient
values seem to be more associated with longer durations of the DP. The Ferritin variable, that
has the initial SF level (at diagnosis), and the Group of initial SF value variable, also seem
positively correlated with DurationWeeks (r = 0.497 and r = 0.417 respectively), meaning that
more elevated SF concentrations at diagnosis may be more associated with longer DP’s durations.
Also, a mild positive correlation was found between the AgeDiagnosis variable and the target
variable (r = 0.169). MonthlyPhlebotomies is negatively associated with the duration in
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weeks of the DP (r = -0.348), which may mean that patients that only perform one phlebotomy
per month are more associated with longer treatment periods. Regarding the Genotype variable,
Homozygous HH patients seem to be more associated with longer durations of the DP due to the
negative correlation value found between the variables (r = -0.268). Essentially, no associations
were detected for the Sex variable in respect to the duration of the DP (r = -0.0123).

Figure 3.11: Correlation plot with coloured scale where red implies negative correlation and blue
colors imply positive correlations.
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Table 3.5: Table depicting correlation values between the target variable, DurationWeeks, and
all the other variables included on the data set

Positive Negative
kParameter (0.533) MonthlyPhlebotomies (-0.348)

Ferritin (0.497) Genotype (-0.268)
Group (0.417) Sex (-0.0123)

Gradient (0.325) -
AgeDiagnosis (0.169) -

Other correlations were found between the other variables. Ferritin seems to have a negative
correlation with Gradient (r = -0.474), but only a slight correlation with the kParameter (r
= 0.0935). Ferritin and Genotype were also found to be negatively correlated (r = -0.218).
Correlations between Ferritin and the other variables seem very mild or non-existent, given
their correlation values. As expected, the Group variable has a similar pattern of correlations
to the ones found with Ferritin. For the case of Sex, the major correlation found was with
AgeDiagnosis (r = 0.302) followed by a slightly weaker correlation with Gradient (0.201).
So, female patients seem to be associated with greater ages at diagnosis and with closer to 0
Gradient values. No other significant correlations seem to be found for Sex and AgeDiagnosis.
Furthermore, a negative correlation was found between Genotype and kParameter (r = -0.301),
meaning that Homozygous patients may be more associated with more closer to 0 k values and
consequently slower speed decays of SF. On the other hand, no correlation was found between
Genotype and Gradient. Negative correlations were found between MonthlyPhlebotomies
and Gradient (r = -0.453) and between MonthlyPhlebotomies and kParamater (r = -
0.436), which may imply that patients that only do one monthly phlebotomy are more associated
with slower decays of SF. Finally, the variables Gradient and kParameter have a positive
correlation (r = 0.561), which was expected as both try to approximate the same physical
phenomenon. Whilst the majority of the correlations found do not seem to be very strong, they
may serve as a starting point to understand the underlying associations of these variables.

3.2.2 DurationWeeks variable

Firstly, it was essential to study the distribution, calculate basic statistics and determine
associations with other variables of the outcome variable. Table 3.6 provides some statistics
regarding this variable. The range of the values (204) seems to be very high when compared to
the mean (44.17) and median values (36.50), which may lead to suspect that the distribution has
a positive tail. In addition, the skew (1.58) and kurtosis (4.09) values, which measure the degree
of asymmetry of probability distribution, seem to indicate some degree of positive skewness (right
tail). At this point, these may be indicators that the distribution of the DurationWeeks is
deviated from a normal one, to some extent.
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Table 3.6: Basic statistics for the DurationWeeks variable

vars n mean sd median trimmed mad min max range skew kurtosis se
DurationWeeks 1.00 246.00 44.17 30.05 36.50 40.33 25.20 6.00 210.00 204.00 1.58 4.09 1.92

Likewise, the histogram presented on Figure 3.12 seems to corroborate the idea that the
DurationWeeks has a non-normal distribution with a right tail (positive skewness). A Shapiro-
Wilk normality test, in which the null hypothesis rejection indicates that the data may derive
from a non-Gaussian distribution, was also used to help confirm data non-normality [86]. This
test also seems to prove that the data is not normally distributed (p-value = 5.47 × 10−13).

Figure 3.12: Histogram of DurationWeeks values

3.2.2.1 Association with Group of initial SF level

After initial correlation studies where a positive association between DurationWeeks, Ferritin
and Group of initial SF value was found, further analysis were performed to check this association.
The Group categorical variable was used to test associations with initial SF levels. Table A.5
shows the median values for all the numerical variables based on the Group of initial SF level.
The histogram of the DurationWeeks values based on Group, on Figure 3.13, seem to show
slightly different distributions of the duration of the DP depending on the initial SF concentration.
Also, the histogram seems to show that each Group has different sizes. Table 3.7 displays the
sample sizes, where it is possible to observe that Group 500 has almost twice the number
of patients of Group 0. The box plot on Figure 3.14 also seems to show differences on the
distribution depending on the Group, with increasing medians for increasing initial SF value
and more extreme values, associated with the tail of the distribution, with the same pattern.

Data heteroscedasticity was also assessed using the Levene’s test for variance homogeneity.
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Heteroscedasticity occurs when sub-groups of the data have different variances depending on one
or more exploratory variables, time or spacial ordering [24]. The Levene’s test is appropriate
to check data’s variance homogeneity as its null hypothesis is that every sample assessed has
the same variance [41]. Results from this test seem to show that some degree of data variance
heterogeneity is present (p-value = 5.12 × 10−4).

Figure 3.13: Histogram of DurationWeeks values based on Group of initial SF level



3.2. Exploratory Data Analysis 35

Figure 3.14: Box plot of DurationWeeks values based on Group of initial SF level

Table 3.7: Sample sizes for each Group of initial SF level

Group n
Group 0 53
Group 500 104
Group 1000 89

Common statistical tests to compare differences between groups assume data normality, variance
homogeneity and similar samples size [63, 67]. As the data at hand seems to violate, to some
degree, these assumptions, non-parametric (distribution-free) tests were taken into account. As
such, the Kruskal-Wallis non-parametric test was favored [31, 63]. Generally, this test’ null
hypothesis stipulates that there are no differences among the samples [22]. These differences
are assessed by comparing each sample curve to the form of the population curve [22]. After
using the Kruskal-Wallis test on DurationWeeks values based on Group, the null hypothesis
was rejected at the chosen significance level of 5 % (p-value = 7.36 × 10−12) and thus, it seems
that there are differences on the distribution of the duration of the DP depending on the Group
of initial SF concentration. To further verify if all the groups were different from each other, a
post-hoc test was performed. The Games-Howell test was preferred as it seems to be robust to
unequal sample sizes and variance and that data non-normality is not problematic [50, 100]. This
test’s results support the idea that differences between each Group are statistically significant
(Table 3.8).
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Table 3.8: Games-Howell test for comparisons of DurationWeeks values between groups of initial
SF level

Comparison p-value
Group 500-Group 0 4.73 × 10−3

Group 1000-Group 0 4.27 × 10−10

Group 1000-Group 500 9.75 × 10−6

3.2.2.2 Association with Genotype

As previously discussed, DurationWeeks and Genotype seem to be negatively correlated. To
understand and confirm this association, further analysis involving these two variables were
performed. Sample sizes are presented in Table 3.9 and seem unbalanced, being the Homozygous
group overrepresented. Medians of the numerical variables grouped by Genotype can be seen
in Table A.6. The medians of DurationWeeks depending on Genotype seem different.

Table 3.9: Sample sizes for each Genotype

Genotype n
Heterozygous 51
Homozygous 195

The histogram on Figure 3.15 seems to show that there are some differences on the distribution
of the DurationWeeks depending on the Genotype of the HH patients. Additionally, the box
plot on Figure 3.16 seems to support the same rationale. It seems that greater durations, of
above (at least) 75 weeks, are all associated with the Homozygous genotype.
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Figure 3.15: Histogram of DurationWeeks values based on Genotype

Figure 3.16: Box plot of DurationWeeks values based on Genotype
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Hence, a similar statistical analysis was performed to verify differences between Homozygous and
Heterozygous patients on the duration of the DP. Levene’s test’ null hypothesis was rejected with
the confidence established earlier (p-value = 1.6 × 10−3), leading to believe that the variance
of the data is not homogeneous. The Kruskall-Wallis test allowed to indulge that there are
significant differences between the two genotypes, as the null hypothesis was rejected (p-value =
7.5 × 10−6). The initial correlation value between the two variables, the visual analysis through
the histogram and box plot and the statistical tests performed allowed to prove the hypothesis
that the Genotype is associated with the DurationWeeks, specifically that the Homozygous
patients are associated with longer durations of the DP.

3.2.2.3 Association with Sex

Albeit only a mild correlation was found between DurationWeeks and Sex, this relationship
was still studied on a similar fashion to confirm this earlier assessment. In the Appendix, Table
A.7 shows the medians for the numerical variables depending on the Sex of the patients, Table
A.8 shows the sample size for each group, Figure A.2 shows an histogram of the values of
DurationWeeks per Sex and Figure A.3 a box plot involving the same variables. It seems that
the medians of the duration of the DP in weeks are very similar for each patient Sex and that
the male patients are overrepresented on the data. Visually, from the histogram and box plot, it
is not clear that there are any differences in the distribution of the values of DurationWeeks
depending on Sex. Results from the Kruskall-Wallis test corroborate this idea (p-value =
0.95). These results do not allow to infer any difference between the Sex of a patient and the
DurationWeeks, meaning that the gender of a patient does not seem to influence the duration
of the DP of type-1 HH patients.

3.2.2.4 Association with Monthly Phlebotomies

On the correlation analysis endured previously, DurationWeeks and MonthlyPhlebotomies
seemed to be negatively correlated, which seemed to indicate that patients that perform only
one phlebotomy per month are more associated with longer treatment periods. Again, sample
sizes seem similar and can be seen in Table 3.10. Medians of DurationWeeks are different
depending on the MonthlyPhlebotomies (Table A.9).

Table 3.10: Sample sizes for each level of MonthlyPhlebotomies

MonthlyPhlebotomies n
>1 114
1 132

Both the histogram (Figure 3.17) and the box plot (Figure 3.18) of DurationWeeks based on
the number of phlebotomies performed per month seem to confirm that the distributions are
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different, whereas a single monthly phlebotomy seems responsible for longer durations of the DP
on the right tail of the data distribution.

Figure 3.17: Histogram of DurationWeeks values based on MonthlyPhlebotomies

Figure 3.18: Box plot of DurationWeeks values based on MonthlyPhlebotomies
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The Levene’s test confirmed some degree of data heteroscedasticity (p-value = 4.9 × 10−4).
Differences between groups were also confirmed with the Kruskall-Wallis test, where it was
possible to reject the null hypothesis (p-value = 1.4 × 10−8). This analysis seems to confirm
that the frequency of phlebotomies influences the duration of the DP. Indeed, patients that only
perform phlebotomies on a monthly basis seem to be more associated with longer durations of
this phase of treatment.

3.2.3 Ferritin variable

The Ferritin variable, that contains initial SF levels, was another numerical variable chosen to
further investigate relationships with other categorical variables. Actually, at this point, this
variable seems very relevant for this study as: i) SF values are taken into account when planning
patient-specific therapy, ii) SF concentration at diagnosis is an upfront available biochemical
marker and iii) previous analysis demonstrated that higher SF values at diagnosis seem associated
with longer DPs. Similarly to what was found with DurationWeeks, the range of Ferritin
values (4767) seems high compared to the mean (1012) and median (840). Moreover, elevated
skew (2.39) and kurtosis (7.37) values seem to display positive data skewness.

Table 3.11: Basic statistics for the Ferritin variable

vars n mean sd median trimmed mad min max range skew kurtosis se
Ferritin 1.00 246.00 1012.02 765.01 840.00 890.41 480.36 110.00 4877.00 4767.00 2.39 7.37 48.78

Visual analysis of the histogram presented on Figure 3.19 seems to go along with previous
findings that the data is right-tailed and consequently deviates from normality. The Shapiro-Wilk
normality test also confirms this theory (p-value = 2.2 × 10−16).
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Figure 3.19: Histogram of Ferritin values

3.2.3.1 Association with Genotype

Previous correlation studies showed a mild negative correlation between Ferritin and Genotype,
indicating a possible slight association between Homozygous patients and higher SF concentrations
at diagnosis. Medians of Ferritin values are presented on Table A.6 and seem to differ depending
on the Genotype. Besides, both the histogram (Figure 3.20) and the box plot (Figure 3.21)
of Ferritin values based on the Genotype seem to reveal some level of discrepancy between
the distributions of SF values depending on the Genotype. Higher SF levels, located on the
tail of the distribution, seem associated with the Homozygous genotype. Some data variance
heterogeneity was found while performing the Levene’s test (p-value = 1.1 × 10−3) and the
Kruskal-Wallis unveiled differences between groups (p-value = 1.7 × 10−4). Accordingly, it seems
that Homozygous patients are more prone to have higher SF levels at diagnosis than Heterozygous
HFE-related HH patients.
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Figure 3.20: Histogram of Ferritin values based on Genotype

Figure 3.21: Box plot of Ferritin values based on Genotype
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3.2.3.2 Association with Sex

While no major correlation was found between Ferritin and Sex, it seemed important to confirm
whether the gender of a patient has influence on the initial SF value. A small difference seem to
exist on the medians of Ferritin for male and female patients (Table A.7). Also, by looking at
the histogram (Figure 3.22) and box plot (Figure 3.23) of Ferritin values by Sex, it seems that
more extreme (higher) SF values are more associated with male patients, but visual analysis seems
inconclusive as of now. Thus, after confirming data variance homoscedasticity with the Levene’s
test (p-value = 0.60), the Kruskal-Wallis test was still selected to assess differences between
the genders, as the data seems to violate the assumption of normality. The null hypothesis of
this test was rejected with 95% of confidence (p-value = 3.2 × 10−3). These findings hint at a
possible association between Sex and Ferritin, in which male type-1 HH patients seem more
related to higher SF levels at diagnosis.

Figure 3.22: Histogram of Ferritin values based on Sex
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Figure 3.23: Box plot of Ferritin values based on Sex

3.2.4 kParameter variable

Exponential curves found with NLS, for each patient, try to describe the behavior of the SF
levels in the course of this treatment stage. The k parameters, estimated with NLS, give insights
regarding the speed of decay of SF over time during the DP. As seen before, the kParameter
variable seems to be positively correlated with DurationWeeks. This preliminary discovery
means that more negative k values are more related to shorter durations of the DP and values
closer to zero to longer therapy phases. Hereby, this variable seems to add value to this study
and it becomes essential to perform a comprehensive analysis of these estimated parameters.
Table 3.12 depicts some statistics regarding this variable. The skew value (-1.74) leads to believe
that, to some extent, the data is negatively skewed (left tail).

Table 3.12: Basic statistics for the kParameter variable

vars n mean sd median trimmed mad min max range skew kurtosis se
kParamater 1 246 -0.0089 0.0062 -0.0071 -0.0079 0.0041 -0.0361 0.0003 0.0363 -1.74 3.39 0.0004

The histogram on Figure 3.24 also seems to reflect that the data is left skewed. Additionally,
results from the Shapiro-Wilk test suggest that the data is not normally distributed (p-value =
2.2 × 10−15).
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Figure 3.24: Histogram of kParameter values

3.2.4.1 Association with Group of initial SF level

Even if the correlation found between kParameter and Group of initial SF value seemed weak,
further analysis was performed as these two variables seem highly associated with the duration
of the DP. At a first glance at Table A.5, medians between each group seem very similar. The
histogram plotted (Figure 3.25) and the box plot (Figure 3.26) do not seem to show noticeable
differences on the k parameters distribution based on Group. The Levene’s test results seem to
indicate some degree of data variance heterogeneity with 95% of confidence (p-value = 0.043).
The null hypothesis of the Kruskal-Wallis test was not rejected (p-value = 0.22), meaning that
there are no differences on the k parameters depending on the Group of SF levels at diagnosis.
As this test’ null hypothesis was not rejected, no post-hoc test for assessing differences of groups
was done. Thereafter, the verdict from this statistical test was that the grouping of initial SF
concentration does not seem to have influence on the speed decay of SF during the DP.
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Figure 3.25: Histogram of kParameter values based on Group

Figure 3.26: Box plot of kParameter values based on Group
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3.2.4.2 Association with Genotype

Further, possible associations between the kParameter and Genotype were assessed. A
negative correlation was previously found between these two variables. Medians of the k values
seem to vary depending on the Genotype, as Heterozygous patients have a higher median (Table
A.6). More than that, both the histogram (Figure 3.27) and box plot (Figure 3.28) seem to
show slightly different distributions, where Heterozygous patients seem more spread along more
negative values. Data heteroscedasticity was assessed with the Levene’s test and seems to be
present (p-value = 3.4 × 10−4). Statistically significant difference between groups was checked
with the Kruskal-Wallis and the null hypothesis was rejected for the selected significance level
(p-value = 2.1 × 10−5). Consequently, it seems that the kParameter values are associated with
the Genotype, in that Heterozygous HH patients tend to be related to more negative k values
and the Homozygous individuals to closer to zero values of this parameter.

Figure 3.27: Histogram of kParameter values based on Genotype
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Figure 3.28: Box plot of kParameter values based on Genotype

3.2.4.3 Association with Sex

No relationship was discovered from the previous correlation analysis involving kParameter
and Sex. Also, this was confirmed visually with a histogram (Figure A.4) and a box plot (Figure
A.5) and through the Kruskal-Wallis test, in which the null hypothesis was not rejected (p-value
= 0.74). In sum, there does not seem to exist any association between the speed of decay of the
SF concentration, k parameters, with the Sex of a type-1 HH patient.

3.2.4.4 Association with Monthly Phlebotomies

In line with the negative correlation found between kParameter and MonthlyPhlebotomies,
an extended analysis was performed to validate this relationship. Disparity of the medians of the
k values depending on the number of phlebotomies done per month was a first identified sign that
corroborates this preceding correlation study (Table A.9). On top of that, a histogram (Figure
3.29) and box plot (Figure 3.30) drawn seem to show varying distributions of k parameters values
based on MonthlyPhlebotomies, in which patients that do more than one phlebotomy per
month seem more related to more negative values of this exponential decay parameter. This data
seems to possess variance heterogeneity, according to the Levene’s test (p-value = 7.8 × 10−7).
Finally, the Kruskal-Wallis test assisted on establishing differences between groups (p-value =
1.84 × 10−13). Indeed, it seems that patients that only perform one phlebotomy per month are
related to slower decays of SF while the patients that do more than one therapeutic session per
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month are more likely to have higher speeds of decays of SF levels.

Figure 3.29: Histogram of kParameter values based on MonthlyPhlebotomies

Figure 3.30: Box plot of kParameter values based on MonthlyPhlebotomies
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3.2.5 Gradient variable

Contrary to the kParameter estimated with NLS that describes a monoexponential curve,
the Gradient variable describes a linear approximation of the SF decay during the DP. It
can be interpreted as an approximation of the average rate of depletion of SF per week. Past
correlation analysis pointed to a positive association between Gradient and the target variable
DurationWeeks, meaning that patients with more negative Gradient values are more related
to shorter durations of the DP. As such, this variable was taken as greatly informative and
other possible relationships were assessed. Analogously to the k parameter values, the Gradient
comprises negative values. The negative skewness value obtained (-1.49) suggests non-normal
data with a left tail (Table 3.13).

Table 3.13: Basic statistics for the Gradient variable

vars n mean sd median trimmed mad min max range skew kurtosis se
Gradient 1.00 246.00 -24.62 18.05 -18.92 -22.05 13.33 -100.58 -0.21 100.37 -1.49 2.38 1.15

By examining the histogram on Figure 3.31, it was possible to visually identify a left tail, associated
with negative skewness. Lastly, data non-normality was validated with the Shapiro-Wilk test,
where the null hypothesis was rejected (p-value = 1.3 × 10−13).

Figure 3.31: Histogram of Gradient values
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3.2.5.1 Association with Group of initial SF level

While no differences between kParameter and Group of SF at diagnosis seemed to occur,
initial correlation studies indicated some degree of positive relatedness between Gradient and
Group of initial SF levels. First, medians of Gradient values between each Group seem to
differ (Table A.5). Furthermore, by analyzing the histogram in Figure 3.32 and box plot in
Figure 3.33, it seems that the distributions of Gradient values diverge depending on the Group
of SF concentration at diagnosis. Indeed, increases on the threshold of initial SF level (Group
0 < Group 500 < Group 1000 ) seem to be associated with extreme, more negative, Gradient
values, related to the left tail of the distribution of all the patients. Next, data heteroscedasticity
was tested and confirmed with the Levene’s test (p-value = 1.3 × 10−4) and difference between
groups was also verified with the Kruskal-Wallis test (p-value = 3.8 × 10−14). To compare each
Group with each other, the Games-Howell post-hoc test was used. It was possible to confirm
that the Gradient values are statistically different between each Group of SF at diagnosis
(Table 3.14). These insights suggest that: i) HFE-related HH patients with SF values at diagnosis
> 1000 µg/L are more associated with more rapid depletion rates than patients with initial SF
≤ 1000 µg/L and ii) patients with SF at diagnosis ≤ 1000 µg/L and ≥ 500 µg/L are related to
higher depletion rates of SF than patients with initial SF concentration < 500 µg/L.

Figure 3.32: Histogram of Gradient values based on Group
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Figure 3.33: Box plot of Gradient values based on Group

Table 3.14: Games-Howell test for comparisons of Gradient values between groups of initial SF
level

Comparison p-value
Group 500-Group 0 2.2 × 10−5

Group 1000-Group 0 1.5 × 10−12

Group 1000-Group 500 4.1 × 10−5

3.2.5.2 Association with Genotype

No clear correlation was found between Gradient and Genotype on initial correlation analysis.
This was also confirmed by: i) inspecting the medians of Gradient between each Genotype,
which seemed very similar (Table A.6), ii) observing the histogram (Figure A.6) and box plot
(Figure A.7), which did not seemed to show noteworthy differences on the distribution of each
Genotype and iii) performing the Kruskal-Wallis test, in which the null hypothesis was not
rejected (p-value = 0.26). In fact, it seems that Genotype does not have any apparent influence
on the rate of depletion of SF per week of a type-1 HH patient.
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3.2.5.3 Association with Sex

After some slight positive correlation found between Gradient and Sex, extended analysis was
needed to confirm this hypothesis. A minor median difference seems to exist between male
and female patients regarding their Gradient values (Table A.7). Moreover, by observing the
histogram in Figure 3.34 and the box plot in Figure 3.35, it seems that more male patients are
associated with more negative Gradient values. The null hypothesis of the Levene’s test was
rejected, suggesting data variance heterogeneity (p-value = 0.027). The Kruskal-Wallis test’
null hypothesis was also rejected (p-value = 5.3 × 10−4), indicating possible different rate of
depletions of SF during the DP for male and female HH patients. This analysis suggests that
male patients may be more likely to have higher weekly rates of depletion of SF during the DP.

Figure 3.34: Histogram of Gradient values based on Sex
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Figure 3.35: Box plot of Gradient values based on Sex

3.2.5.4 Association with Monthly Phlebotomies

Finally, the relationship between the Gradient variable and MonthlyPhlebotomies was
assessed. The negative correlation found between these two variables earlier on this study
suggests that patients that endure only one phlebotomy per month are more related to slower
rates of depletion of SF during this treatment stage. To further investigate this hypothesis, an
histogram and a box plot were drawn to examine the Gradient values based on the number
of phlebotomies performed per month. Besides the median Gradient values appearing to
be different depending on MonthlyPhlebotomies (Table A.9), the plots mentioned suggest
varying distributions based on the frequency of therapeutic sessions (see Figures 3.36 and 3.37).
Again, as data seems to violate the assumption of normality and variance homogeneity (Levene’s
test p-value = 3.2 × 10−5), the Kruskal-Wallis test was taken into account for group comparison.
This test’ null hypothesis was rejected (p-value = 2.0 × 10−15), implying differences of Gradient
values depending on MonthlyPhlebotomies. Actually, this analysis suggests that: i) type-1
HH patients that perform one phlebotomy on a monthly basis are more associated with slower
rates of depletion of SF during the DP and ii) the patients that endure more than one phlebotomy
per month are more related to higher rates of depletion of SF on the same stage of therapy.
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Figure 3.36: Histogram of Gradient values based on MonthlyPhlebotomies

Figure 3.37: Box plot of Gradient values based on MonthlyPhlebotomies
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3.2.6 AgeDiagnosis variable

Regarding the AgeDiagnosis variable, a more succinct analysis was performed as this variable
does not seemed to be highly correlated to any other variable on the initial correlation assay.
Correlation with the outcome variable, DurationWeeks, also seemed weak. Whilst a closer
to zero skewness value was found this time (-0.21) (Table 3.15), the Shapiro-Wilk test’ null
hypothesis was rejected (p-value = 0.018) suggesting some degree of deviation from normality.
The histogram in Figure 3.38 suggests a closer approximation to a normal distribution when
compared to previously studied numerical variables. Although, the Kruskal-Wallis was still
chosen: i) because the Shapiro-Wilk null hypothesis was rejected and ii) to coherently use the
same test for comparisons between groups.

Table 3.15: Basic statistics for the AgeDiagnosis variable

vars n mean sd median trimmed mad min max range skew kurtosis se
AgeDiagnosis 1.00 246.00 49.65 13.53 50.00 49.96 14.83 17.00 80.00 63.00 -0.21 -0.64 0.86

Figure 3.38: Histogram of AgeDiagnosis values

Kruskal-Wallis test’ p-values are presented in Table 3.16, where the AgeDiagnosis variable
was grouped based on the categorical variables. Results from this tests suggest differences in
AgeDiagnosis values between groups for Group of SF at diagnosis and Sex. A Games-Howell
post-hoc test is presented in the Appendix (Table A.10) and suggests differences between Group
0 with the other two groups, but not between Group 500 and Group 1000. In sum, these tests
suggest: i) no association between AgeDiagnosis and Genotype, ii) no association between
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AgeDiagnosis and MonthlyPhlebotomies, iii) an association between AgeDiagnosis and
Group, in which patients with SF at diagnosis < 500 µg/L seem more associated with younger
ages at diagnosis than patients with SF levels ≥ 500 µg/L (See Figure A.8 and Figure A.9) and
iv) an association between AgeDiagnosis and Sex, in which female patients tend to be more
associated with greater ages at diagnosis (See Figure A.10 and Figure A.11).

Table 3.16: Kruskal-Wallis tests for comparisons between groups, where AgeDiagnosis is grouped
based on the categorical variables

Relationship p-value
AgeDiagnosis and Group 1.9 × 10−2

AgeDiagnosis and Genotype 9.8 × 10−1

AgeDiagnosis and Sex 7.2 × 10−7

AgeDiagnosis and MonthlyPhlebotomies 7.1 × 10−1

3.2.7 Variables not included in the main analysis

Although some variables were not included on the data set for the main analysis of this thesis,
some minor data analysis techniques were attempted. Indeed, unveiling their associations may be
fruitful for further enhanced data collection and future work. Essentially, this subsection focuses
on assessing correlations between previously disregarded variables due to their missing values or
due to their not studied time-series behavior during the DP, for the case of biochemical parameters.
The variables incorporated on the data set for this secondary analysis were: LiverDisease,
Alcohol, BMI, Transferrin, HB, ALT and AST. The addition of these variables resulted in
a large reduction on the number of patients available on the data set, due to missing values: 246
to 52 patients.

A correlation plot was drawn and can be found in the Appendix (Table A.12). Regarding the
LiverDisease and Alcohol variables, their major correlations are with ALT and AST variables.
These positive correlations suggest that patients with worse liver conditions are more associated
with increased values of these two biochemical markers. Also, patients that consume alcohol
more regularly seem to be more related to higher values of these parameters. These correlations
seem to be in agreement with previous studies where these two biomarkers are identified as
possible indicators for high alcohol consumption and liver disease [23, 43, 72, 98]. Besides the
LiverDisease and Alcohol variables, the BMI also seems to be positively correlated to ALT
and AST. Also, minor negative correlations between BMI and the two variables that try to
describe the decay of SF over time, kParameter and Gradient, were found.

Further, the Transferrin variable, with TS values at diagnosis, seems to be positively correlated
with Ferritin and Group of initial SF values, the kParamater and the Gradient and the
target variable DurationWeeks. Contrarily, negative correlations are found with Genotype
and MonthlyPhlebotomies. Summarizing, these findings suggest that patients with higher
TS levels at diagnosis: i) are associated with higher initial SF values, ii) are associated with
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slower decays of SF during the DP, iii) are associated with larger durations of the DP, iv) are
more associated with the Homozygous genotype and v) tend to perform only one phlebotomy
per month.

The HB concentration at diagnosis seems to have a high negative correlation with Sex, suggesting
that male patients are more associated with higher values of this parameter at diagnosis. In
addition, less strong negative correlations could be found between HB and kParamater,
Gradient and DurationWeeks. ALT and AST are highly correlated with each other and
seem to have a similar pattern of correlations with the other variables. Both seem to be positively
correlated with Ferritin, especially AST. Also, these markers seem to be negatively correlated
to the two variables associated with the decay of SF, being the correlations with Gradient
stronger than the ones found with kParameter. However, no noticeable correlations were found
between ALT and AST with the outcome variable DurationWeeks. As a future approach,
ALT and AST could be transformed in a another variable that has values regarding their ratio
(ALT/AST) as they seem to be highly correlated, suggesting collinearity. Also, this ratio is a
widely used biomarker to asses liver fibrosis, cirrhosis and heavy alcohol consumption [40, 72].

Of all of these variables, Transferrin seems to be the one more strongly correlated with the
variable of interest, DurationWeeks, evidencing the relevance of this variable. These findings,
along with the fact that TS is commonly used as a marker to initiate treatment [1, 60] and that
it seems positively correlated with SF levels at diagnosis, suggest that further studies should be
endured to assess whether this variable is pertinent to the aims of this work. Despite the fact
that this correlation study is an initial exploratory analysis and the number of patients available
is very restricted (n = 52), it seems that it unveiled some possibly insightful associations between
some of these variables. Indeed, better data collection to reduce the number of lost patients due
to missing values and performing a careful study of the behavior of the time-stamped biochemical
parameters during the DP may allow to take these variables into account for an exhaustive
statistical analysis and eventually consider them as potential explanatory variables to predict
the duration of the DP of type-1 HH patients.

3.3 Data processing after EDA: dealing with unknown variables
at diagnosis

This section precedes the actual modeling of the DP of HH patients and focuses on preparing
the data for the model building, comparison and evaluation. Two key topics are discussed: i) the
purpose of the MonthlyPhlebotomies for following models building and ii) the grouping of
the kParameter and Gradient values according to other variables.

As established before, the main goal of this work is to build a model to predict the duration of
the DP of newly diagnosed HFE-related HH patients. Hence, it is of utmost importance that
all the explanatory variables’ values are known at the time an individual is diagnosed with this
genetic disorder. While Ferritin, Genotype, AgeDiagnosis, Sex are well known variables
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at the time of a patient’s diagnosis, the kParameter, Gradient and MonthlyPhlebotomies
values can only be obtained a posteriori as they depend on the value of the outcome variable
DurationWeeks.

3.3.1 The MonthlyPhlebotomies variable

The categorical variable MonthlyPhlebotomies has two factors: i) patients that do one
phlebotomy per month (1 ) and ii) patients that do more than one phlebotomy per month (>1 ).
As this variable’s values were retrieved using information from the end of this treatment stage
like the duration and the number of phlebotomies performed during this period, no data would
be available for a newly diagnosed patient. The phlebotomies’ frequency is usually based on
medical advice given by the patients’ physician or nurse, as there are not any evidence based
studies with protocols establishing starting points, frequency and endpoints of the treatment
[64]. Also, it seems that the frequency of phlebotomies during the DP may vary from patient
to patient, depending on their tolerance to the therapeutic [103]. For instance, the frequency
may be altered if the patient is in risk of anemic state [16, 18]. Thus, the proposal of this work
is to treat this variable as a recommendation, whereas, in the case of it being included as a
predictor on a reasonably accurate predictive model, the patient’s physician or nurse would
attribute one of the possible factors. Specifically, if the medical practitioner were to advise an
arbitrary patient weekly procedures, the correspondent MonthlyPhlebotomies factor would
be >1, while a recommendation of only one phlebotomy per month would be associated with
the factor 1. This would enable the physician to understand the impact of recommending one
frequency plan over the other on the predicted duration of the DP.

3.3.2 The kParameter and Gradient variables

Although both the kParameter and the Gradient variables seem to add value to the analysis
and may be useful as explanatory variables for predictive model building, their values are not
known at the time of type-1 HH diagnosis. Thereafter, it is proposed to take advantage of
previously found insights regarding these variables correlations to characterize a newly diagnosed
patient k and Gradient values. The basic idea was to attribute a k and Gradient value
to a recently diagnosed patient based on other characteristics and values known at diagnosis.
Statistically significant differences between groups were taken into account to perform this
task. Indeed, it was found before that the kParameter values seem to be influenced by the
Genotype of the patient and the number of phlebotomies performed per month. As such,
a newly diagnosed HH patient k values would be defined based on these two values. This is
achieved by grouping the available patients based on their values for these two variables and
attributing a final k value to each group, that corresponds to the median k values of the patients
with those specific characteristics. The median is the metric used due to the previously verified
skewness of the data, as the mean is usually more deviated towards the tail of the distribution
[32]. On the same fashion, Gradient would be characterized based on variables found to have
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statistically significant Gradient values between their groups: Group of SF at diagnosis, Sex
and MonthlyPhlebotomies.

In the Appendix, Figure A.13 depicts a decision tree for the process of attributing a kParameter
value for a newly diagnosed patient and Figure A.14 shows a decision tree with the same purpose
for the Gradient values. These decision trees may aid on specifying kParameter and Gradient
values for a recently diagnosed patient. Also, Table 3.17 shows the assigned kParameter values
for a new HH patient and Table 3.18 shows the attributed Gradient values. Exponential and
linear SF decays were plotted with these assigned values and can be seen in Figure 3.39 and 3.40
respectively. Although the patient specific kParameter and Gradient values were used later
on the models training, two new variables, called kParameter2 and Gradient2, were created
with the assigned values to emulate newly diagnosed type-1 patients data. Hence, these new
variables would correspond to the data available for a recently diagnosed patient and serve to
test the predictive models built on the next section of this thesis.

Table 3.17: kParameter values assigned to a newly diagnosed patient based on Genotype and
MonthlyPhlebotomies. The attributed value corresponds to the median of each group

Patient characteristics k parameter value assigned
Homozygous, 1 -0.0055

Homozygous, >1 -0.0087
Heterozygous, 1 -0.0071

Heterozygous, >1 -0.017

Table 3.18: Gradient values assigned to a newly diagnosed patient based on Group of initial SF,
Sex and MonthlyPhlebotomies. The attributed value corresponds to the median of each group

Patient characteristics Gradient value assigned
Group 0, male, 1 -7.13

Group 0, male, >1 -18.37
Group 500, male, 1 -13.10

Group 500, male, >1 -25.25
Group 1000, male, 1 -20.22

Group 1000, male, >1 -40.34
Group 0, female, 1 -5.15

Group 0, female, >1 -17.99
Group 500, female, 1 -13.66

Group 500, female, >1 -22.71
Group 1000, female, 1 -15.27

Group 1000, female, >1 -28.19
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Figure 3.39: Plot of decays of SF with the assigned kParameter2 values

Figure 3.40: Plot of decays of SF with the assigned Gradient2 values
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While the Gradient values were grouped according to three variables, resulting in twelve different
Gradient medians, the kParameter values were only sub-grouped with two variables and thus,
only four medians were obtained. This may result in oversimplified values’ assignments, especially
for the kParameter variable. In fact, the minimum kParameter value on the data set is
-0.0361 and the maximum is 0.0003 (3.12) while on the kParameter2 the minimum is -0.017
and the maximum is -0.0055. As for the Gradient variable, its minimum is -100.58 and the
maximum is -0.21, while the minimum for Gradient2 is -40.32 and the maximum is -5.15. This
may mean that these new variables values do not cover the full range of values of the original
ones, kParameter and Gradient. So, further correlations with these variables have to be found
to test group differences and consequently group these variables more efficiently.

As an early analysis, the Transferrin variable was taken into account to assess differences of
kParameter and Gradient values based on the TS level at diagnosis. As discussed before,
even if this variable is not included on this study’s main analysis, it was considered relevant due
to its’ found correlations with DurationWeeks, Ferritin, kParameter and Gradient and its’
apparent clinical importance as a biomarker. Also, this variable does not have a large number of
missing values (n = 17), only reducing the data set from 246 to 229 patients. This numerical
variable was then encoded to categorical with two factors: i) patients with TS level at diagnosis
<45 or ii) patients with TS level at diagnosis >=45. These two factors’ values were saved on a
new variable called TransfGroup. This threshold was used as it is a common TS level used
to establish the need to initiate iron-depletion treatment [1, 60]. Differences between groups of
initial TS level on the kParameter and Gradient values were assessed with the Kruskal-Wallis
test. While the null hypothesis of this test was not rejected for the Gradient values (p-value
= 0.44), the rejection of the null hypothesis was possible when comparing kParameter values
based on the TransfGroup (p-value = 4.1 × 10−3). These findings suggest that the TS level at
diagnosis influences the exponential decay of SF over time, where patients with TS >=45% tend
to be more associated with slower speeds of decay (see Figure A.15). Using the TransfGroup
variable to group the kParameter values, along with Genotype and MonthlyPhlebotomies,
resulted in eight different medians of kParameter values (Table A.11). While this analysis was
not taken into account for the next chapters of this thesis, as the data set without Transferrin
and TransfGroup with 246 patients was the one used for model building, it seems that further
studies are needed to confirm the hypothesis of using this variable to group the kParameter
values.

Moreover, a profound study of other variables is needed and may unveil more potential grouping
candidates. For example, ALT and AST were found to be negatively correlated with both
kParameter and Gradient, which hints at two possible variables for grouping these variables,
or at least one if the ratio between the two is considered instead of their individual values.
Additionally, as differences of kParameter and Gradient values depending on the number of
phlebotomies performed per month seemed to be high, dividing the MonthlyPhlebotomies in
more categories may aid enhancing the grouping of these variables and perhaps obtain a better
cover of the range of these values. However, more data related to patients that endure weekly
phlebotomies is needed to have balanced sample sizes.
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3.4 Predictive models

This section comprises some procedures before building, evaluating and comparing models to
predict the duration of the DP. First, the target variable was transformed to approximate the
data to a normal distribution and to a more homogeneous variance for ensuing Linear Regressions.
After, an approach was established for the use of kParameter and Gradient as explanatory
variables for all the regressions built. Finally, an analysis to discover interactions between
variables was conveyed. The following sections cover the actual model building, using Linear
Regressions (section 3.5) and Generalized Linear Models (GLMs) (section 3.6).

3.4.1 Transformation of the outcome variable

Previous analysis suggested that the outcome variable, DurationWeeks, had an asymmetric
distribution with a right tail (positive skewness) and, as such, deviates from normality. Data
non-normality was also confirmed with the Shapiro-Wilk test. Moreover, data heteroscedasticity
seemed to be present by using the Levene’s test with other categorical variables. Data non-
normality and heteroscedasticity are common obstacles when performing Linear Regressions
as data normality and homoscedasticity are two assumptions of this method [81]. Data
transformation techniques are widely used to improve the normality of a distribution and
to equalize the variance to meet the assumptions of Linear Regression models [74]. Specifically,
power transformations can be used for this purpose, in which a number is raised to a given
exponent [74]. Box-Cox transformations are broadly used data transformations that try to
estimate the ideal exponent, also called Lambda on this method, for the specific data at hand
[74, 96]. As such, the Box-Cox transformation was used to tackle this problem, where a Lambda
of 0.19 was obtained. Note that the exponent found to transform the data was calculated
for a simple Linear Regression with only the Ferritin variable as a predictor. This variable
was chosen as the only explanatory variable due to being the variable more correlated with
DurationWeeks with known patient-specific values at diagnosis. Figure A.16 shows a plot with
the interval of best Lambda values with 95% of confidence. The Lambda value was rounded to
0.2 for simplicity reasons. Figure 3.41 shows the DurationWeeks plotted against the Ferritin
values with regression lines before and after the Box-Cox transformation of the target variable.
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(a) (b)

Figure 3.41: DurationWeeks values and associated Ferritin values with a regression line before
(a) and after Box-Cox transformation (b)

3.4.2 kParameter vs Gradient

Even though both the kParameter and Gradient variables seem to add statistical value to
model the duration of the DP, based on previous correlation studies, they describe the same
physical phenomenon. The approach of this work is to try to infer which approximation of the
decay of SF during this treatment stage is more statistically significant to model and predict
the duration of the DP. Thus, alternate models were built in which these variables were not
included simultaneously. Gaining insights regarding which variable describes more accurately
the behavior of the time-stamped SF levels may aid on: i) further characterizing the behavior of
the iron depletion on this treatment stage and ii) establish recommendations for future work or
better data collection. The following sections follow this approach in which the kParameter
and Gradient are studied separately.

3.4.2.1 Interactions

Prior to model building and comparison, an exploratory analysis of interactions between variables
was conducted. Various combinations of possible interactions were carried out. Yet, two
of them seemed to require a special attention for the following regressions: i) interaction
between kParameter and MonthlyPhlebotomies and ii) interaction between Gradient and
MonthlyPhlebotomies. Interaction plots were drawn as a preliminary tool to assess possible
interactions and seemed to suggest the presence of interactions between the variables mentioned,
as the fitted lines are not parallel (Figure 3.42).
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(a) (b)

Figure 3.42: Interaction plots in which (a) depicts an interaction between kParameter and
MonthlyPhlebotomies and (b) depicts an interaction between Gradient and MonthlyPhlebotomies

3.5 Linear Regressions

Several Linear Regressions were attempted with the DurationWeeks as the target variable.
Patient specific kParameter and Gradient were used for the model building. The approach to
assess variables relevance and therefore selection of statistically significant explanatory variables
and model comparison was based on a stepwise addition of the variables. Also, six main criteria
were established for the same purpose: i) R-squared value, ii) Analysis of Variance (ANOVA)
tables and variables’ statistical significance, iii) Variance Inflation Factor (VIF), iv) Akaike
Information Criterion (AIC), v) clinical reasoning and vi) model simplicity and interpretability.
The R-squared is a widely used metric to assess the goodness of fit of a regression, as it is an
estimate of the proportion of variance explained in the outcome variable [68]. ANOVA tables
were used to compare models and determine if a more complex model is significantly better
than a simpler one [69] and VIFs were inspected to ascertain variables multicollinearity [66].
Further, the AIC balances the trade-off between model complexity and goodness of fit, allowing
to compare models for the same sample, in which a lower AIC suggests a better trade-off [17].
Additionally, diagnostic plots like the Residuals vs Fitted and Scale-Location were reviewed to
visually examine possible issues regarding data heteroscedasticity.

As stated, the first variable added was Ferritin. This simple model had an R-squared = 0.23
and the Ferritin was found to be statistically significant to the model. The second variable
additions are summarized in Table A.12. All the variables were statistically significant except Sex.
Yet, the two variables that are related to the SF decay seemed to increase more the R-squared
compared to AgeDiagnosis, Genotype and MonthlyPhlebotomies. Indeed, AgeDiagnosis
and Genotype only incremented the R-squared by decimals and MonthlyPhlebotomies
doubled this metric’s value, while the others at least tripled (Gradient) or almost tripled
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(kParameter) the R-squared value. From here, two paths were followed where the third variable
addition was done to a model with Ferritin and kParameter and another with Ferritin and
Gradient.

Starting with the model with Ferritin and kParameter, the addition of Genotype and
Sex were not significant and the inclusion of AgeDiagnosis, MonthlyPhlebotomies and
an interaction between kParameter and MonthlyPhletomies seemed statistically significant
(Table A.13). Raises on the R-squared value were mild for all the additions mentioned, but adding
AgeDiagnosis resulted in the slightest increment. Although the addition of the interaction
increased slightly more the R-squared, the VIFs of the stated interaction seemed to be higher
than the linear addition of MonthlyPhlebotomies (see Table A.14 and A.15). For this reason
and the fact that the R-squared is similar on both additions, the model considered was with
Ferritin, kParameter and MonthlyPhlebotomies without interaction. Next, the addition
of AgeDiagnosis seemed to be statistically significant to the model mentioned, while only
increasing slightly the R-squared value (Table A.16). Also, the AIC values decreased when adding
these variables (Table A.17). Equation 3.1 shows the final regression including the kParameter.

(DurationWeeksi)0.2 = 1.914 + 0.0002 · Ferritini + 23.34 · kParameteri

+ 0.109 ·MonthlyPhlebotomiesi + 0.003 ·AgeDiagnosisi + εi (3.1)
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The results of the ANOVA for the addition of the variables discussed before are shown in
Table 3.19. These results also seemed to corroborate the idea that the successive addition of
the variables mentioned were significant to the model, implying that each variable addition
statistically compensates its underlying error addition.

Table 3.19: ANOVA table where: model 1) Ferritin, model 2) Ferritin + kParameter, model
3) Ferritin + kParameter + MonthlyPhlebotomies and model 4) Ferritin + kParameter +
MonthlyPhlebotomies + AgeDiagnosis

Res.Df RSS Df Sum of Sq F Pr(>F)
1 244 14.76
2 243 7.76 1 7.00 245.08 0.0000
3 242 7.21 1 0.55 19.42 0.0000
4 241 6.88 1 0.33 11.51 0.0008

Additionally, Figure 3.43 depicts diagnostic plots for this last regression model. By observing
the Residuals vs Fitted plot, it seemed that increased fitted values are associated with negative
residuals, while reduced fitted values tend to be associated with positive residuals. Indeed, the
Residuals vs Fitted and the Scale-Location plots seemed to present a pattern, to some extent,
which is a sign of heteroscedasticity. Nonetheless, these patterns do not seemed to be very
clear to the point of suggesting high variance heterogeneity. The Normal Q-Q plot suggested a
reasonable approximation to a normal distribution of the residuals. The Residuals vs Leverage
may aid identifying influential points, albeit the analysis of these points was assessed later on
this thesis.



68 Chapter 3. Modeling the Depletion Phase

Figure 3.43: Diagnostic plots of final linear regression model considered including the kParameter
variable

Similarly, a model with the Gradient variable was considered. Table A.18 shows the addition
of a third variable to this model and suggests that all variables except Genotype are statist-
ically significant. Although, MonthlyPhlebotomies linear addition and its’ interaction with
Gradient seemed to be the more significant, akin to what was found with the model with
kParameter. This time, the interaction was selected to incorporate the model as the R-squared
value increased more than the other additions and the VIFs did not seem excessively elevated
(A.19). The next variable addition summary can be seen in Table A.20. Again, AgeDiagnosis
seemed to be the most statistically significant variable and thus, was the one selected to include
on the final model. Furthermore, even if the subsequent addition of Genotype and Sex seemed
significant to the model according to the ANOVA results (see Table 3.20), these two variables
were not included in order to keep the model simpler and easily interpretable and due to the
fact that the R-squared did not increase much when adding these variables. Nevertheless, these
findings seemed to suggest that these variables are, to some extent, statistically significant. Also,
the AIC values seemed to decrease in each model (Table A.21). The equation regression of the
final model selected is presented in Equation 3.2.
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(DurationWeeksi)0.2 = 1.834 + 0.0003 · Ferritini + 0.009 ·Gradienti
+ 0.191 ·MonthlyPhlebotomiesi + 0.005 ·Gradienti ·MonthlyPhlebotomies

+ 0.002 ·AgeDiagnosisi + εi (3.2)

Table 3.20: ANOVA table where: model 1) Ferritin, model 2) Ferritin + Gradient, model 3)
Ferritin + Gradient * MonthlyPhlebotomies, model 4) Ferritin + Gradient * MonthlyPhlebotomies
+ AgeDiagnosis, model 5) Ferritin + Gradient * MonthlyPhlebotomies + AgeDiagnosis +
Genotype and model 6) Ferritin + Gradient * MonthlyPhlebotomies + AgeDiagnosis + Genotype
+ Sex

Res.Df RSS Df Sum of Sq F Pr(>F)
1 244 14.76
2 243 5.75 1 9.02 466.65 0.0000
3 241 5.10 2 0.65 16.70 0.0000
4 240 4.95 1 0.15 7.53 0.0065
5 239 4.86 1 0.09 4.87 0.0282
6 238 4.60 1 0.26 13.54 0.0003

The Residuals vs Fitted and Scale-Location plots in Figure 3.44 suggest a similar but more
accentuated pattern to the one found with the model with the kParameter variable. Once more,
on the Residuals vs Fitted plot, it seemed that greater fitted values were associated with negative
residuals. The normal Q-Q plot suggested that the residuals were not as much approximated to
a normal distribution compared to the previous model with the kParameter variable.
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Figure 3.44: Diagnostic plots of final linear regression model considered including the Gradient
variable
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The approach described here consisted on building two linear regression models, each with one
variable that tries to explain the behavior of the SF decay, the kParameter and Gradient
variables. At this point, some insights could be formulated while inspecting the two models
built: i) the predictors selected were the same on both regressions, while on the model with
Gradient the interaction between this variable and MonthlyPhlebotomies was considered
and seemed more statistically significant, ii) the R-squared value was higher for the model with
Gradient (0.742) than the model with kParameter (0.642) by one unit, iii) after the addition
of AgeDiagnosis to the model with Gradient, both Sex and Genotype additions seemed
significant, albeit not raising much the R-squared, but were not considered to keep the model
simpler and interpretable and iv) the model with Gradient seemed to have more issues regarding
data homoscedasticity and residuals’ normality.

3.5.1 Outlier detection

After building the two regression models discussed before, an analysis of influential points was
performed. For this, the Cook’s distance was taken into account to identify possible outliers.
This method is an influence measure based on the difference between the regression estimates and
their value if the ith observation is deleted [55]. These differences are measured for all the data
points and the influential points are identified when their Cook’s distance is sufficiently high to
influence the fitted values of the regression [55]. In this work, the function ols_plot_cooksd_bar()
from the R package olsrr was used for this purpose [45]. Figure 3.45 shows the output of this
function, in which it is possible to visualize the influential points found for both regression models
built previously. Eighteen (18) influential data points were discovered on the model with the
kParameter variable and fifteen (15) on the model with the Gradient variable.

(a) (b)

Figure 3.45: Cook’s distance plots to detect influential data points for (a) linear regression with
the kParameter variable and (b) linear regression with the Gradient variable. Data points above
red threshold line are considered influential points
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The patients regarded as influential points are presented in Table A.22 and A.23. A preliminary
examination of these tables seemed to suggest that: i) patients with extreme Ferritin values
were deemed as influential, ii) patients with extreme DurationWeeks were deemed as influential,
iii) patients with extreme kParameter values were considered influential, especially on the
regression with this variable and iv) patients with extreme Gradient values were regarded as
influential, especially on the regression with this variable. These findings suggest that regressions
without these influential data points may fail on the prediction of the DurationWeeks for
patients with extreme values of Ferritin, DurationWeeks, kParameter and Gradient.

However, the increased R-squared of the two models without these influential points suggest that
these regressions may be more capable of explaining the variability of the outcome variable than
models with all the data points. Indeed, the linear regression with the kParameter without
influential points had an R-squared of 0.715 and with these points the R-squared was 0.642,
while the linear regression with the Gradient variable without the influential points had an
R-squared of 0.834 and with these points the R-squared was 0.742 (Table 3.21). These linear
regression equations with the associated estimates’ changes are presented in Equation 3.3 and
3.4. Although both Residuals vs Fitted and Scale-Location plots seemed to suggest a similar
pattern to the one identified on the regression models with data from all the patients, these plots
regarding the model with Gradient without the influential points seemed to show a slightly
better approximation to data variance homogeneity (Figures A.17 and A.18).

(DurationWeeksi)0.2 = 1.956 + 0.0002 · Ferritini + 28.212 · kParameteri

+ 0.085 ·MonthlyPhlebotomiesi + 0.003 ·AgeDiagnosisi + εi (3.3)

(DurationWeeksi)0.2 = 1.792 + 0.0004 · Ferritini + 0.011 ·Gradienti
+ 0.213 ·MonthlyPhlebotomiesi + 0.007 ·Gradienti ·MonthlyPhlebotomies

+ 0.002 ·AgeDiagnosisi + εi (3.4)
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Table 3.21: Summary of linear regression models, one with kParameter and another with Gradient,
on data without respective influential data points

Dependent variable:

(DurationWeeks)̂ 0.2

(1) (2)

Ferritin 0.0002∗∗∗ 0.0004∗∗∗

(0.00002) (0.00002)

kParameter 28.212∗∗∗

(1.968)

Gradient 0.011∗∗∗

(0.001)

MonthlyPhlebotomies1 0.085∗∗∗ 0.213∗∗∗

(0.022) (0.029)

AgeDiagnosis 0.003∗∗∗ 0.002∗∗∗

(0.001) (0.001)

Gradient:MonthlyPhlebotomies1 0.007∗∗∗

(0.001)

Constant 1.956∗∗∗ 1.792∗∗∗

(0.050) (0.035)

Observations 228 231
R2 0.715 0.834
Adjusted R2 0.709 0.831
Residual Std. Error 0.143 (df = 223) 0.110 (df = 225)
F Statistic 139.538∗∗∗ (df = 4; 223) 226.578∗∗∗ (df = 5; 225)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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3.6 Generalized Linear Models

On this section, GLMs, specifically Poisson Regression and Negative Binomial Regression (NB)
are attempted to model the duration of the DP. GLMs extend the regression models to other
data distributions besides the Gaussian, like the Poisson distribution, allowing to fit skewed
distributions and non-constant variance [62]. A similar approach to the one endured for the
Linear Regressions with data transformation was followed to build Poisson and NB regression
models. However, the analysis performed to select the final Poisson and NB regression models
was not as thoroughly discussed.

3.6.1 Poisson Regressions

The Poisson Regression is a common technique to model count data of objects or events [39, 54].
These models can be used when the outcome variable distribution is entirely positive, as it is the
case for the DurationWeeks. A random simulation of a Poisson distribution and the actual
distribution of the target variable, DurationWeeks, are depicted in Figure 3.46. Indeed, the
distribution of the outcome variable of this study seemed to be relatively approximate to a
Poisson distribution, in which a right tail is present.

(a) (b)

Figure 3.46: Random simulation of a Poisson distribution (a) and the distribution of
DurationWeeks (b)

The same criteria used with Linear Regressions was used to select the exploratory variables
on a stepwise addition fashion. Besides assessing the statistical significance of each variable
addition, the AIC was used for model selection, taking into account decreases on this value for
model comparison. As such, the variable considered in each addition was the one with higher
statistical significance and that lead to an higher decrease on the AIC. Following this procedure
resulted on the Equation 3.5 for a model with the kParameter and Equation 3.6 for a model
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with the Gradient variable. Both models are summarized in Table 3.22. Unlike the final linear
regressions considered previously, the Poisson regression with the kParameter variable has the
Genotype included as a predictor and the Poisson regression with the Gradient variable has
Genotype and Sex as explanatory variables. Some degree of data heteroscedasticity was found
on the Residuals vs Fitted and Scale-Location of these two models, in which higher fitted values
seem to be more associated with more data variance (Figures A.19 and A.20).

logE(DurationWeeksi) = 3.331 + 0.0003 · Ferritini + 64.895 · kParameteri

+ 0.326 ·MonthlyPhlebotomiesi + 0.006 ·AgeDiagnosisi + 0.151 ·GenotypeHomozygousi

(3.5)

logE(DurationWeeksi) = 2.991 + 0.001 · Ferritini + 0.026 ·Gradienti
+ 0.441 ·MonthlyPhlebotomiesi + 0.012 ·Gradienti ·MonthlyPhlebotomies

+ 0.006 ·AgeDiagnosisi + 0.151 ·GenotypeHomozygousi + 0.155 · Sexmi (3.6)

Moreover, these two regression models were assessed with the data without the influential data
points found before. The estimates of these Poisson regressions were updated on Equation
3.7 (model with kParamter) and Equation 3.8 (model with Gradient) and both models are
summarized on Table 3.23. Inspection of the Residuals vs Fitted and Scale-Location plots for
these models suggested that they seem to approximate better the data to homoscedasticity than
the Poisson regressions with all the data points, especially for the case of the regression with the
Gradient variable (Figures A.21 and A.22).

logE(DurationWeeksi) = 3.599 + 0.0003 · Ferritini + 86.473 · kParameteri

+ 0.229 ·MonthlyPhlebotomiesi + 0.006 ·AgeDiagnosisi + 0.091 ·GenotypeHomozygousi

(3.7)

logE(DurationWeeksi) = 3.008 + 0.001 · Ferritini + 0.032 ·Gradienti
+ 0.456 ·MonthlyPhlebotomiesi + 0.014 ·Gradienti ·MonthlyPhlebotomies

+ 0.005 ·AgeDiagnosisi + 0.133 ·GenotypeHomozygousi + 0.099 · Sexmi (3.8)
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Table 3.22: Summary of Poisson regression models, one with kParameter and another with
Gradient, on data with all the patients

Dependent variable:

DurationWeeks

(1) (2)

Ferritin 0.0003∗∗∗ 0.001∗∗∗

(0.00001) (0.00001)

kParameter 64.895∗∗∗

(2.515)

Gradient 0.026∗∗∗

(0.001)

MonthlyPhlebotomies1 0.326∗∗∗ 0.441∗∗∗

(0.022) (0.040)

AgeDiagnosis 0.006∗∗∗ 0.006∗∗∗

(0.001) (0.001)

Sexm 0.155∗∗∗

(0.023)

Gradient:MonthlyPhlebotomies1 0.012∗∗∗

(0.002)

GenotypeHomozygous 0.151∗∗∗ 0.224∗∗∗

(0.030) (0.029)

Constant 3.331∗∗∗ 2.991∗∗∗

(0.058) (0.065)

Observations 246 246
Log Likelihood −1,467.926 −1,183.839
Akaike Inf. Crit. 2,947.852 2,383.678

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3.23: Summary of Poisson regression models, one with kParameter and another with
Gradient, on data without influential data points

Dependent variable:

DurationWeeks

(1) (2)

Ferritin 0.0003∗∗∗ 0.001∗∗∗

(0.00002) (0.00002)

kParameter 86.473∗∗∗

(3.090)

Gradient 0.032∗∗∗

(0.001)

MonthlyPhlebotomies1 0.229∗∗∗ 0.456∗∗∗

(0.024) (0.046)

AgeDiagnosis 0.006∗∗∗ 0.005∗∗∗

(0.001) (0.001)

Sexm 0.099∗∗∗

(0.024)

Gradient:MonthlyPhlebotomies1 0.014∗∗∗

(0.002)

GenotypeHomozygous 0.091∗∗∗ 0.133∗∗∗

(0.030) (0.030)

Constant 3.599∗∗∗ 3.008∗∗∗

(0.064) (0.070)

Observations 228 231
Log Likelihood −1,127.593 −911.608
Akaike Inf. Crit. 2,267.187 1,839.216

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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3.6.2 Negative Binomial Regressions

The NB regression, akin to the Poisson regressions, can be used to model count data [48].
Although, the traditional NB is derived from a Poisson-gamma distribution [48]. Unlike the
Poisson regression, that assumes a Poisson distribution with equidispersion (equal mean and
variance), the NB may be more appropriate for data with overdispersion, in which the variance
is greater than the mean [39, 48]. Indeed, in the NB regression, a random term to reflect
unexplained between-subject differences and thus, account for unexplained variance, is introduced
on the regression models [39]. Regarding the target variable of this study, DurationWeeks, it
seemed that its variance (≈ 903) is much greater than its mean (≈ 44). Hence, NB regressions
were considered as a possible modeling strategy.

Again, a similar stepwise variables’ addition procedure was endured. The final model considered
with the kParameter variable is displayed in Equation 3.9 and the final model with the
Gradient variable is shown in Equation 3.10. These two models are summarized in Table 3.24.
The same predictors as the ones included on the Poisson regression were considered for the
NB model with the Gradient variable, while on the NB regression with the kParameter the
Genotype variable was not found to be statistically significant contrarily to what was discovered
with the Poisson regression with the kParameter. Similar patterns to the ones observed for the
Poisson regressions were found on Residuals vs Fitted and Scale-Location plots of NB regressions
(Figures A.23 and A.24).

logE(DurationWeeksi) = 3.363 + 0.0004 · Ferritini + 63.594 · kParameteri

+ 0.278 ·MonthlyPhlebotomiesi + 0.006 ·AgeDiagnosisi (3.9)

logE(DurationWeeksi) = 2.834 + 0.001 · Ferritini + 0.025 ·Gradienti
+ 0.444 ·MonthlyPhlebotomiesi + 0.012 ·Gradienti ·MonthlyPhlebotomies

+ 0.006 ·AgeDiagnosisi + 0.178 ·GenotypeHomozygousi + 0.169 · Sexmi (3.10)

Further, these two models were assessed with the data without influential data points. The NB
regressions with the new estimates are presented in Equation 3.11 (model with the kParameter
variable) and in Equation 3.12 (model with the Gradient variable). Also, the models are
summarized in Table 3.25 and the diagnostic plots are shown in Figures A.25 and A.26.
Equivalently to what was assessed through the examination of the Residuals vs Fitted and
Scale-Location plots of the Poisson regressions without influential data points, it seems that the
NB regression with the Gradient variable was the one that approximated better the data to
homoscedasticity.
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logE(DurationWeeksi) = 3.495 + 0.0004 · Ferritini + 78.604 · kParameteri

+ 0.206 ·MonthlyPhlebotomiesi + 0.007 ·AgeDiagnosisi (3.11)

logE(DurationWeeksi) = 2.906 + 0.001 · Ferritini + 0.030 ·Gradienti
+ 0.474 ·MonthlyPhlebotomiesi + 0.016 ·Gradienti ·MonthlyPhlebotomies

+ 0.005 ·AgeDiagnosisi + 0.099 ·GenotypeHomozygousi + 0.097 · Sexmi (3.12)

Table 3.24: Summary of NB regression models, one with kParameter and another with Gradient,
on data with all the patients

Dependent variable:

DurationWeeks

(1) (2)

Ferritin 0.0004∗∗∗ 0.001∗∗∗

(0.00003) (0.00003)

kParameter 63.594∗∗∗

(4.957)

Gradient 0.025∗∗∗

(0.002)

MonthlyPhlebotomies1 0.278∗∗∗ 0.444∗∗∗

(0.056) (0.078)

GenotypeHomozygous 0.178∗∗∗

(0.055)

AgeDiagnosis 0.006∗∗∗ 0.006∗∗∗

(0.002) (0.002)

Sexm 0.169∗∗∗

(0.049)

Gradient:MonthlyPhlebotomies1 0.012∗∗∗

(0.003)

Constant 3.363∗∗∗ 2.834∗∗∗

(0.120) (0.127)

Observations 246 246
Log Likelihood −1,001.686 −953.107
θ 8.137∗∗∗ (0.876) 13.772∗∗∗ (1.683)
Akaike Inf. Crit. 2,013.371 1,922.215

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3.25: Summary of NB regression models, one with kParameter and another with Gradient,
on data without influential data points

Dependent variable:

DurationWeeks

(1) (2)

Ferritin 0.0004∗∗∗ 0.001∗∗∗

(0.00004) (0.00004)

kParameter 78.604∗∗∗

(5.195)

Gradient 0.030∗∗∗

(0.002)

MonthlyPhlebotomies1 0.206∗∗∗ 0.474∗∗∗

(0.051) (0.070)

GenotypeHomozygous 0.099∗∗

(0.046)

AgeDiagnosis 0.007∗∗∗ 0.005∗∗∗

(0.002) (0.001)

Sexm 0.097∗∗

(0.040)

Gradient:MonthlyPhlebotomies1 0.016∗∗∗

(0.003)

Constant 3.495∗∗∗ 2.906∗∗∗

(0.119) (0.107)

Observations 228 231
Log Likelihood −890.822 −837.622
θ 12.374∗∗∗ (1.517) 28.590∗∗∗ (4.442)
Akaike Inf. Crit. 1,791.643 1,691.244

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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3.7 Model evaluation and comparison

After establishing the final regression models, it was crucial to evaluate their performance. The
K-fold Cross Validation (CV) technique was used to evaluate the predictive power of the models
considered previously. Indeed, K-fold CV has been widely used for model selection in regression
tasks and works by dividing the data set in random and evenly K parts [52]. Then, the K - 1
parts (training set) are used to train the model, while the remaining part (test set) is used to
evaluate the model, by predicting its values and comparing these predictions to the true values
under a given metric [8, 52]. This method is performed on a iterative fashion, in which each of
the K parts are used as the test set. Finally, the values obtained for the error metric chosen for
each iteration is averaged [8]. The metric used in this analysis to assess models performance is
the Mean Absolute Percentage Error (MAPE). This quality measure is commonly used when the
quantity to predict is known to be above zero and has the advantages of being scale-independent
and relatively easy to interpret [28, 56]. Actually, MAPE is the average of the absolute percentage
errors, meaning that lower percentages are associated with more accurate predictions [56].

So, the models evaluation consisted on performing a 10-fold CV with the MAPE as the quality
measure. This procedure was carried on the linear regression, Poisson regression and NB regression
models, some with the kParameter and some with the Gradient variables as predictors, trained
with the data set with all the data and with the data set without influential data points, and
tested on data of patients with the real kParameter and Gradient values (Table 3.26). This
allows to gain insights regarding the predictive accuracy of these models on an ideal setting
in which the true kParameter and Gradient values are available, allowing to compare with
models tested on simulated newly diagnosed patients. Indeed, the same procedure was endured
to all of the models but the test set values for the kParameter and Gradient variables were
replaced with the corresponding values of kParameter2 and Gradient2, allowing to judge the
models predictive power on newly diagnosed patients (Table 3.27).

Generally, the three regression techniques seemed to achieve similar MAPE values, albeit the
linear regressions with data transformation seemed to have at least slightly lower MAPE values
overall. In fact, Poisson and NB regressions seemed to have more similar results. The models
built with the data set without influential data points seemed to have an increased performance,
especially for models in which the Gradient variable was used, where some had reductions of
≈ 10% in the MAPE. Also, it seemed that reductions in the MAPE on models with these data
sets were more pronounced when the test set had the real kParameter and Gradient values.
Furthermore, MAPE values seemed to duplicate, or almost duplicate, when the kParameter2
and Gradient2 values were considered on the test set for the models with the Gradient as an
explanatory variable. While the models with this predictor seemed to have a better predictive
power when the test set had the true values of this variable, models with the kParameter had
lower MAPE values when the assigned kParameter2 values were considered on the test set. In
reality, these results seem to suggest that, at this point, for a newly diagnosed patient, models
with the kParameter may be preferable. Indeed, the models that may be currently used on
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newly diagnosed patients that had lower MAPE values were the linear regressions with the
kParameter variable as a predictor, on both data sets assessed. Yet, the lowest MAPE values
obtained with test sets with the real kParameter and Gradient values were with regressions
with the Gradient as an explanatory variable, indicating that a better characterization of these
values for newly diagnosed patients may lead to MAPE values in the range of ≈ 20% to ≈ 30%,
depending on the inclusion of influential points on the data set. Thus, even if the Gradient2
values assigned were more varied (twelve) than the ones attributed on kParameter2 (four),
these findings suggest that the characterization of the Gradient values is not as accurate.

Table 3.26: 10-fold cross-validation results using the MAPE metric for all the final models
considered, in which the test set has the real patient specific values for the variables that describe
the decay of SF over time (kParameter and Gradient)

Metric and data Regression type

Linear Poisson NB

Gradient k Gradient k Gradient k

MAPE
all data 30.2% 36.4% 34.2% 39.5% 31.4% 38.6%

no influential points 21.2% 30.5% 24.0% 31.9% 22.3% 31.1%

Table 3.27: 10-fold cross-validation results using the MAPE metric for all the final models
considered, in which the test set has the assigned k and gradient values (kParameter2 and
Gradient2)

Metric and data Regression type

Linear Poisson NB

Gradient2 k2 Gradient2 k2 Gradient2 k2

MAPE
all data 59.6% 49.2% 63.7% 54.5% 64.2% 53.1%

no influential points 54.1% 46.8% 55.8% 50.9% 55.3% 49.3%
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As stated before, the model that seemed to perform better for newly diagnosed patients was the
linear regression with data transformation, with the kParameter as a predictor, built with the
data set without the influential data points (n = 228). Thus, this model was used to simulate
an hypothetical situation in which the model would try to predict the duration of DP of some
newly diagnosed patients, with the assigned kParameter2 values. The regression was trained
with 90% of the patients (n = 205), leaving 10% for the test set (n = 23). The MAPE obtained
was of 34.9%, a reduction of ≈ 12% compared to what was found with the averaging process of
the K-fold CV.

The prediction values and the true values of the duration in weeks of the DP can be found in
Figure 3.47. While in this test set a large number of the predictions seemed to be relatively
close to the real duration, some of them had predictions with an elevated error. Indeed, some
predictions seemed to have a reasonable error of less than ten weeks, but other predictions had
errors of more than fifty weeks, which is excessively high. Generally, the plot seems to suggest
that patients with a real DurationWeeks value close to the mean (≈ 43) or the median (≈ 37)
of the data were associated with the lowest prediction errors, while patients with more extreme
values of durations (≈ 100 weeks) tend to have higher prediction errors.

Furthermore, the prediction intervals (95% confidence) were also determined and are displayed in
Table 3.28, along with the values of the variables on the data set, and seem to be in line with the
previous hypothesis. In fact, patients with large errors seem to be patients whose real durations
are closer to the upper bound of the prediction interval, revealing that the regression model is
predicting relatively lower values for these individuals. Although, there seems to be an exception
in which one of the patients (number 311) had a real duration of 122 weeks and the regression
model predicted 146 weeks. Even if the error is higher than twenty weeks, it does not seem to
compromise the model as much as an error of the same magnitude for an individual like patient
number 37, whose true duration is 42 weeks and the model predicted only 16 weeks. Overall, the
prediction intervals seem to be very large, covering a large period of time, which may reflect that
they may not be helpful enough as a prediction tool to assess a time window for the end of the
DP for the majority of the HH patients.
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Figure 3.47: Plot showing the predicted values (blue circles) and the true values (black circles)
of the duration in weeks, in which arrows link the corresponding predictions to their true values.
The model used was the linear regression with data transformation, with the kParameter as a
predictor, trained on 90% of the data set without influential data points and with the assigned
kParameter2 and Gradient2 values
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Table 3.28: Patients from test set, consisting of 10% of the data set without influential data
points and with assigned kParameter2 and Gradient2 values, with predictions (fit) and prediction
intervals (lower and upper bounds) using the linear regression with data transformation with the
kParameter as an explanatory variable

Number DurationWeeks fit lwr upr Ferritin Group kParameter2 MonthlyPhlebotomies AgeDiagnosis Sex Genotype Gradient2
2 31 35 17 68 1125 Group 1000 -0.0087 >1 46 m Homozygous -40.34

12 102 59 30 107 1014 Group 1000 -0.0055 1 70 m Homozygous -20.23
37 42 16 7 35 748 Group 500 -0.0169 >1 46 m Heterozygous -25.25
70 28 28 13 56 608 Group 500 -0.0087 >1 50 m Homozygous -25.25
74 94 43 21 81 375 Group 0 -0.0055 1 64 f Homozygous -5.15
81 21 56 28 103 1905 Group 1000 -0.0087 >1 63 m Homozygous -40.34
128 75 53 27 99 1887 Group 1000 -0.0087 >1 56 m Homozygous -40.34
130 10 16 6 34 482 Group 0 -0.0169 >1 62 m Heterozygous -18.37
142 97 62 32 112 1441 Group 1000 -0.0055 1 49 m Homozygous -20.23
186 34 47 23 88 1774 Group 1000 -0.0087 >1 45 f Homozygous -28.19
198 44 48 24 89 899 Group 500 -0.0055 1 46 f Homozygous -13.66
248 49 27 12 54 842 Group 500 -0.0087 >1 27 m Homozygous -25.25
250 22 32 15 62 719 Group 500 -0.0087 >1 58 f Homozygous -22.71
255 39 31 14 61 481 Group 0 -0.0071 1 26 m Heterozygous -7.13
276 17 15 6 33 674 Group 500 -0.0169 >1 45 m Heterozygous -25.25
283 24 31 14 61 1214 Group 1000 -0.0087 >1 21 m Homozygous -40.34
289 31 39 19 75 647 Group 500 -0.0071 1 48 m Heterozygous -13.10
310 46 52 26 96 980 Group 500 -0.0055 1 53 m Homozygous -13.10
311 122 146 79 252 4175 Group 1000 -0.0087 >1 75 m Homozygous -40.34
312 34 37 17 71 348 Group 0 -0.0055 1 44 m Homozygous -7.13
326 46 39 19 75 614 Group 500 -0.0071 1 51 m Heterozygous -13.10
343 24 28 12 55 408 Group 0 -0.0087 >1 59 m Homozygous -18.37
358 63 37 17 70 395 Group 0 -0.0055 1 40 m Homozygous -7.13





Chapter 4

Discussion

In this work, we conducted an extensive correlation analysis of some variables related to HFE-
associated HH patients, trying to understand their influence on the duration of the DP. Besides,
regression models were built to estimate the duration of the DP for newly diagnosed patients.
This study seemed to unveil relevant information regarding the DP of HFE-related HH patients.
Initially, the data was processed to obtain the SF levels during the DP of each patient to study
their behavior. Feature extraction allowed to create two variables to model the decay of SF during
this treatment stage (kParameter and Gradient) and one variable reflecting an approximation
of the frequency of phlebotomies per month (MonthlyPhlebotomies). It was found that a
large number of patients did not have enough data to establish an end point of the DP or to
characterize exponentially the SF decay. Also, some patients seemed to have large phlebotomy
interruptions. Dr. Annick Vanclooster, from the Leuven University Hospital, was consulted and
suggested that this lack of usable data may be related to: i) some patients performing some
phlebotomies in the hospital and some with a general practitioner, ii) some patients that did not
start venesection treatment, either due to the decision of the treating physician or own choice, iii)
some patients that may have skipped phlebotomies and did not reschedule and iv) some patients
that were not in regular follow-up. After the data processing procedures assessed in this work,
main recommendations for future data collection include: i) gather at least two time-stamped
SF values to allow to determine the Gradient values, ii) gather at least three time-stamped SF
values to allow to determine the kParameter values and iii) gather data with established dates
of beginning of the DP and end of the DP, as in this work a SF concentration threshold of 100
µg/L had to be assumed to establish an end point for the DP.

Regarding the other variables, the majority has a large number of missing values and others were
not deemed as relevant for this study. Even then, some of the initially investigated variables were
not included in the main analysis. The fact that they have missing values, even if they seemed
clinically relevant, was decisive to disregard them for this work. Also, unbalanced sample sizes,
especially for the variables related to liver disease and alcohol consumption, were another negative
evidence verified. While for the case of liver disease values it may be related to actual biological
findings, as the patients with cirrhosis may be naturally outnumbered, the alcohol consumption

87
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values were too categorized, with very unbalanced categories, which may be associated with poor
data collection. In reality, a better data collection approach may solve these issues and allow
to explore further the relevance of these variables. In fact, studies have shown that cirrhotic
patients may have an elevated rate of iron mobilization during depletion treatment [2].

Moreover, the time-stamped biochemical parameters, besides the SF, considered for an initial
analysis had missing values on their first data point (at diagnosis). A study of their levels as
time-series during the DP was not assessed in this thesis but, eventually, may aid unveiling
insights regarding their behavior during this therapy. Having the values for these parameters over
time, for the corresponding dates associated with the SF values, may be of utmost importance to
perform a similar analysis to the one endured for the SF levels. Nonetheless, an initial correlation
assessment with these variables, on a very limited data set (n = 55), suggested that they may
add value to this study, assuming that an enhanced data collection procedure is performed to
avoid missing values either on static and time-stamped variables. Regarding these discarded
variables, the major correlation found with the target variable was a positive correlation with
the initial TS level (Transferrin variable).

Furthermore, a comprehensive correlation study was performed on the variables considered for
the main analysis. Differences between groups of the initial SF value (Group variable) and
the duration of the DP (DurationWeeks) were found, in which longer treatment periods are
associated with increased threshold of SF at diagnosis (Group 0 < Group 500 < Group 1000 ).
Also, the Homozygous genotype was found to be more associated with longer durations of the DP.
These findings seem to be in line with what is described in the literature. Indeed, studies have
shown that higher SF levels at diagnosis are associated with more treatment procedures during
the DP [14, 91] and with iron-overload liver disease [4] and that the C282Y/C282Y genotype
is more associated with increased SF and TS levels at diagnosis than compound heterozygotic
genotypes [14, 88, 92]. Actually, the present study revealed that Homozygous patients are more
associated with higher initial SF concentrations, as well as male individuals and older patients,
relationships also described in the literature [14, 61]. Also, the number of phlebotomies performed
may be highly related to the duration of this treatment stage, as it is expected that more blood
withdrawals lead to more depletion of SF [4, 84]. This analysis revealed that patients that
perform more than one phlebotomy per month are significantly more associated with shorter
durations of the DP when compared to patients that perform one therapy per month.

Although, the frequency of the venesections may not be the only relevant factor when considering
patient specific treatment plans. The volume of blood removed, which may reflect different
rates of iron depletion, may be an important value to account for. Indeed, the volume of blood
extracted may vary depending on the tolerance of the patient, its BMI, gender, age or risk of
anemia [1, 4, 14]. Despite not having data available regarding the volume of blood removed for
each patient, Dr. Annick Vanclooster, when consulted, stated that in the Leuven University
Hospital the usual amount is 400 ml. Notwithstanding, having the patient specific values of
blood removed in each phlebotomy may allow to, for instance, determine the average volume for
each patient and, eventually, assess differences of iron depletion depending on the patients.
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The kParameter variable and the Gradient variable were two patient specific characteristics
extracted, aiming to obtain approximate values of the speed of decay of SF over time, modeling
it exponentially and linearly, respectively. While the Gradient values can be interpreted as the
average rate of depletion of SF per week, the kParameter values are related to the speed of
decay of the exponential curve that defines each patients’ time-stamped SF levels. Therefore,
more negative values of these two parameters are associated with higher speeds of decay of SF
during the DP and thus greater rates of SF depletion. On newly diagnosed patients, that do
not have these a posteriori values, median values of these parameters were determined based
on grouping the patients according to previously found statistically significant characteristics
(kParameter2 and Gradient2). As a matter of fact, these values were assigned on patients
belonging to the test set, either when evaluating the models with 10-fold CV or a train/test split
(90%/10%), to simulate predictions of newly diagnosed patients.

Beforehand, a variable selection procedure was assessed, on each regression type. The variables
Ferritin, MonthlyPhlebotomies and AgeDiagnosis were statistically significant independ-
ently of the type of regression and of the type of approximation of the decay of SF used
(kParameter and Gradient). In addition, Genotype and Sex were considered on some of
the models. Overall, the three regression approaches tested - Linear, Poisson and NB regressions
- obtained similar MAPE values between each other depending on the use of kParameter or
Gradient and the use of the data set with all the patients or without the influential data points.
Likewise, it seemed that the choice of the variable to approximate the behavior of the decay of
SF (kParameter or Gradient), the data set used to train the models and the choice of values
on the test set (either kParameter or kParameter2 and Gradient or Gradient2) influenced
more the MAPE values than the type of regression used. Regardless, the Linear regressions with
data transformation, with Lambda = 0.20, seemed to have a slightly better performance (inferior
MAPE) on all the different conditions examined. Also, in this study, same type of regressions but
with different predictors were not compared through their predictive accuracy, as the approach
was to establish a final set of predictors for each regression type and then test each one. Although
it could reveal some insights regarding the impact of each variable on the prediction power, the
number of possible combinations was considered extremely high.

Moreover, models built with the data set without the influential points seemed to have higher
reductions on the MAPE value when tested on patients with their real kParameter and
Gradient values (reductions between ≈ 6% and ≈ 10%). However, testing on patients with
the assigned kParameter2 and Gradient2 still resulted, generally, in decreases on the MAPE
between ≈ 2% and ≈ 5%, with two exceptions of ≈ 8% and ≈ 11%, when comparing the use of
the complete data set against the data set without the influential data points.

As expected, the predictive accuracy is superior when assessed on patients with their real
kParameter and Gradient values, in which the MAPE is reduced between ≈ 15% and ≈ 30%
when compared to test sets with the assigned values kParameter2 and Gradient2, meaning
that in some cases the MAPE duplicated. Also, models with the kParameter seemed to have
more accurate predictions than the models with the Gradient when testing on newly diagnosed
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patients with the kParameter2 and Gradient2, in which MAPE decreases between ≈ 5%
and ≈ 10% were found. Altogether, these findings suggest that: i) the kParameter2 may be
more appropriate than the Gradient2 at this point, ii) even if the kParameter2 has only four
different values and the Gradient2 has twelve, it seems that more information was lost when
characterising the Gradient of the patients, iii) characterising further these values for each
patient may aid enhancing the predictive power of the models, perhaps even halve the MAPE.
Notably, finding other significant variables to guarantee a better sub-grouping of these values may
be one of the key tasks to assess in future work. In this thesis secondary analysis, it was found
that Transferrin at diagnosis may be used to sub-group the kParameter values, as patients
with TS >45% were more prone to have slower speeds of decay of SF over time. Furthermore,
the ratio ALT/AST may also be relevant for the same task as both were found to be negatively
correlated with the kParameter and the Gradient variables. Other static variables like the
BMI, AgeDiagnosis, LiverDisease, Alcohol or HB should also be considered. Indeed, as
discussed before, the volume of blood extracted may vary depending on the patients’ BMI,
AgeDiagnosis or possible risk of anemia, which can be assessed through the HB values, and
cirrhotic patients were found to be associated with higher rates of SF depletion in previous
studies [1, 2, 4, 14]. Essentially, to further explore these hypothesis, two key recommendations
can be made: i) enhance data collection procedures to diminish the number of missing values and
increase data quality and ii) perform an extensive study of the time-series levels of the biochemical
parameters. Also, Decision Trees could be considered to predict Gradient and kParameter
values, instead of the approach assessed in this work, or even to predict the duration of the DP,
instead of the regressions tested.

Alternatively, to tackle this problem related to the characterisation of the kParameter and
Gradient values, a predictive model may be taken into account to predict updated durations of
the DP after a given patient has performed more than one phlebotomy. Besides the prediction at
diagnosis, which is the main goal of this work, a patient could benefit from these models if more
predictions were assessed mid-treatment, after some phlebotomies were performed, with updated
kParameter and/or Gradient values instead of the use of the assigned kParameter2 and/or
Gradient2. Markedly, to obtain patient specific kParameter values, patients would need to
have performed at least three phlebotomies and two therapeutic sessions to obtain the Gradient
values. Eventually, this alternative approach could allow to compare the assigned kParameter2
and Gradient2 to real patient values of kParameter and Gradient, after some data collection,
regarding their impact on the predictive models accuracy. Understanding if these regression
models predict better durations of the DP of patients with some time-stamped SF data available
may be of great relevance. Indeed, if proven true, it may mean that patients could have an
enhanced prediction after enduring a given number of phlebotomies and eventually receive regular
updates on the estimated end of the treatment. This could also aid the treating physician decide
if the current treatment plan is appropriate or if the frequency of venesections should be altered.

In addition, the MonthlyPhlebotomies variable may function as a knob that allows to
understand the influence of the frequency of the phlebotomies on the total time of the DP,
aiding the physician on the decision-making. In the future, having more data regarding patients
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that performed more phlebotomies per month, especially weekly, may improve our understanding
of the impact of the frequency of therapy sessions on the duration of the DP.

Ultimately, in this study, the more appropriate model found to predict the duration of the DP
for a newly diagnosed patient was a Linear regression with Box-Cox transformation, using the
kParameter as a predictor and using the data set without influential data points (MAPE =
46.8%, with 10-fold CV). Prediction intervals were also determined for this regression using
90% of the data to train the model and 10% to test it (MAPE = 34.9%). While this regression
model seemed to have a reasonable accuracy prediction for the majority of the patients, in which
fourteen patients had predictions with an error < 15 weeks, it seemed to present great errors for
some of the patients, in which some had errors of ≈ 40 weeks. Also, the real duration values
seemed to be within the prediction intervals on almost all the cases tested, except on three
patients. Yet, these prediction intervals seemed excessively large, as some comprise prediction
windows of approximately seventy weeks or more. Nevertheless, these prediction intervals could
benefit a newly diagnosed patient as they indicate that with 95% of confidence: i) the DP will
not end for at least the number of weeks determined on the lower bound and ii) the DP may
last for the number of weeks determined on the upper bound. Equally, these prediction windows
may aid the physician on the treatment planning. Undoubtedly, being able to determine shorter
prediction intervals would increase these models usefulness for both the HFE-related HH patients
and their treating physicians.

The variability in treatment scheduling recommended by the physician and patients’ degree of
commitment to it are two factors that may have influenced negatively the analysis performed
in this study. Indeed, having data regarding patients to whom were recommended similar
frequencies of phlebotomies and to which they committed without delays or rescheduling, could
allow an improved understanding of the relevance of the variables and, eventually, lead to a
model with enhanced predictive power. For instance, a randomized control trial to gather data
from patients that perform weekly, every two weeks or no phlebotomies, would allow to collect
equally spaced time-stamped data points and consequently remove the influence of the frequency
of the therapeutic sessions and interruptions on the treatment on the total duration of the DP.
Analyzing data from patients that have endured similar treatment plans may allow to understand
better the influence of other static variables on the duration of the DP.
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Conclusion

In sum, this study allowed to unveil some correlations with the duration of the DP of type-1 HH
patients. Indeed, higher SF concentration at diagnosis and the homozygous genotype seemed to
be more associated with longer treatments. Besides the homozygous genotype, male patients
and older individuals, at diagnosis, seemed to be related to higher SF levels at diagnosis. Also,
we were able to characterise the decay of SF over time exponentially and linearly and discover
that both approximations were correlated with the duration of the DP. The frequency of the
therapeutic sessions was also found to influence the total duration of the treatment, in which
patients that performed only one phlebotomy per month were more prone to increased treatment
stages.

While building regression models, the SF values at diagnosis, the speed of decay of SF, either
exponential or linear, the number of phlebotomies per month performed and the age at diagnosis
seemed to be statistically significant characteristics. Some models also included the genotype and
the sex of the patients as explanatory variables. Similar predictive accuracy power was found on
the three types of regressions assessed. When disregarding influential data points, the predictive
accuracy seemed to increased on all the models built. Moreover, the prediction errors seemed to
increase greatly when testing on data from newly diagnosed patients, with assigned values to
describe the speed of decay of SF, instead of the real ones. Nonetheless, the prediction intervals
determined may aid on the physicians’ decision making, by at least giving an estimate of the
minimum and maximum duration of the DP. Thus, this study seemed to be an advantageous
first step to predict the length of the DP for HFE-related HH patients.

Further analysis of other patients characteristics, with enhanced data collection techniques,
may improve our understanding of the underlying factors affecting the duration of the HH iron
depletion treatment. Hence, more accurate regression models could be built. In the future, a
novel tool could be developed, taking advantage of these predictive models, to estimate the
duration of the DP for type-1 HH patients, aiding the physicians on establishing patient specific
treatment plans.
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Appendix

Days Ferritin
1 370

684 319
1026 281
1056 291
1116 254
1119 234
1164 257
1206 194
1234 172
1258 135
1272 107

Table A.1: Time-stamped SF values during the DP for a patient from Group 0 (initial SF value
< 500 µg/L)
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Variables in data set 1 with time-stamped biochemical parameters
Number
Date
Ferritin
Transferrin
Glycohemoglobine (HbA1c) in % (bloed) / %
Glycohemoglobine (HbA1c) in mmol/mol (bloed) / mmol/mol
Hepatitis A As (bloed)
Hepatitis A As (bloed) - % INH / % INH
Hepatitis A IgG (bloed)
Hepatitis A IgG (bloed) - kwantitatief / S/CO
Hepatitis B surface As (bloed) / mIU/mL
Hepatitis B surface As (bloed) - kwalitatief
Testosteron (bloed) / ng/dL
Vrij testosteron (bloed) / ng/dL
SHBG - Roche (bloed) / nmol/L
TSH (bloed) / mIU/L
AST
ID

Table A.2: Variables on the data set 1 that has information regarding time-stamped biochemical
parameters

Variables in data set 2 with time-stamped biochemical parameters
Number
Date
HB
ALT

Table A.3: Variables on the data set 2 that has information regarding time-stamped biochemical
parameters

Variables in data set 3
Number
Sex
birth year
Age Diagnosis
Deceased
Reason of Death
Year
Age...8
Smoking
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number of pack years
Alcohol intake
Alcohol standardized
Weight (diagnosis)
Height(diagnosis)
BMI (diagnosis)
year diagnosis...16
blood donor
Family screening
Genotype
Diagnosis made via
year diagnosis...21
Biopsy
Fibrosis
Stage
made via
year diagnosis...26
Age...27
Cirrosis
Year diagnosis
Age...30
oesophagus varices
Ascites
Geelzucht (Bili >1mg/dl)
Encephalopathy
Protrombine tijd < 40%
HCC
year diagnosis...37
age...38
Diabetes
year diagnosis...40
age...41
transplantation
year...43
age...44
prothesis
year...46
age...47
what
fatigue
joint complaints
sexual dysfunction
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Ferritine (diagnosis)
Tijd tot ferritine < 100 g/L (phlebotomies)
start phlebotomies
maintenance phase
Stop phlebotomy (year)
Aantal jaar AL
Hepatitis A IgG
Hepatitis B AS > 10
Pneumococcen (/5 jaar)
Proton Pump Inhibitors
Jaar start
Jaar stop
Andere
...65
Fibroscan_0-6m
kPa <7:OK_0-6m
Echo lever_0-6m
Echo leverres_0-6m
MRI/CT lever_0-6m
MRI/CT leverres_0-6m
Echo cardiores_0-6m...72
Echo cardiores_0-6m...73
BMC_0-6m
BMCres_0-6m
Hb_0-6m (g/dL)
Ferritine_0-6m (g/L)
Tf sat_0-6m (%)
AST_0-6m (U/L)
ALT_0-6m (U/L)
Glycemie_0-6m (mg/dL)
HbA1C_0-6m (%)
Testosteron_0-6m (ng/dL)
SHBG_0-6m (ng/dL)
SHBG_0-6m (nmol/L)
TSH_0-6 (mIU/L)
Vrij testosteron_0-6m
-FP_0-6m
Fibroscan_6-12m
kPa_6-12m
Echo lever_6-12m
Echo leverres_6-12m
MRI lever_6-12m
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MRI leverres_6-12m
Echo cardio_6-12m
Echo cardiores_6-12m
BMC_6-12m
BMCres_6-12m
Hb_12m (g/dL)
Ferritine_12m (g/L)
Tf sat_6-12m (%)
AST_6-12m (U/L)
ALT_6-12m (U/L)
Glycemie_6-12m (mg/dL)
HbA1C_6-12m (%)
Testosteron_6-12m (ng/dL)
SHBG_6-12m (ng/dL)
SHBG_6-12m (nmol/L)
TSH_6-12m (mIU/L)
Vrij test_6-12m
-Fp_6-12m
Fibroscan_trsf
kPa_trsf
Jaar_trsf...114
Tijd sinds_Trsf diagnose
Echo Lever_trsf
Echo leverres_trsf
Jaar_trsf...118
Tijd sinds diagnose_tsfr...119
MRI lever_tsfr
Jaar_tsfr...121
Tijd sinds diagnose_tsfr...122
Echo cardio_tsfr
Echo cardiores_trsf
Jaar_tsfr...125
Tijd sinds diagnose_tsfr...126
BMC_trsf
BMCres_tsfr
Jaar_tsfr...129
Tijd sinds diagnose_tsfr...130
Hb (g/dL)
Ferritine_tsfr (g/L)
Tf sat_tsfr (%)
AST_tsfr (U/L)
ALT_tsfr (U/L)
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Glycemie_tsfr (mg/dL)
HbA1C_tsfr (%)
Testosteron (ng/dL)_tsfr
SHBG_tsfr (ng/dL)
SHBG_tsfr (nmol/L)
TSH_tsfr (mIU/L)
Vrij test_tsfr
-Fp_tsfr
Fibroscan_dienst
kPa_dienst
Jaar_dienst...146
Tijd sinds diagnose_dienst...147
Echo lever_dienst
Echo leverres_dienst
Jaar_dienst...150
Tijd sinds diagnose_dienst...151
MRI lever_dienst
MRI leverres_dienst
Jaar_dienst...154
Tijd sinds diagnose_dienst...155
Echo cardio_dienst
Echo cardio_dienstres
Jaar_dienst...158
Tijd sinds diagnose_dienst...159
BMC_dienstopv
BMC_dienst
Jaar_dienst...162
Tijd sinds diagnose_dienst...163
Hb_dienst (g/dL)
Ferritine_dienst (g/L)
Tf sat_dienst (%)
AST_dienst (U/L)
ALT_dienst (U/L)
Glycemie_dienst (mg/dL)
HbA1C_dienst (%)
Testosteron_dienst (ng/dL)
SHBG_dienst (ng/dL)
SHBG_dienst (nmol/L)
TSH_dienst (mIU/L)
Vrij test_dienst
-Fp_dienst
jaar
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Table A.4: Variables on the data set 3 that has information regarding static parameters

Figure A.1: Correlation plot showing scatter plots between variables and associated r correlation
values

Group DurationWeeksMedian kMedian FerritinMedian GradientMedian AgeMedian
Group 0 20 -0.0079 357 -9.20 44
Group 500 34 -0.0074 765 -18.30 52
Group 1000 54 -0.0067 1434 -28.36 50

Table A.5: Median values of the numerical variables based on Group of initial SF level
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Genotype DurationWeeksMedian kMedian FerritinMedian GradientMedian AgeMedian
Heterozygous 25 -0.0099 669 -19.19 49
Homozygous 39 -0.0067 907 -18.89 51

Table A.6: Median values of the numerical variables based on Genotype

Sex DurationWeeksMedian kMedian FerritinMedian GradientMedian AgeMedian
f 37 -0.0067 714 -14.46 58
m 36 -0.0072 873 -21.37 48

Table A.7: Median values of the numerical variables based on Sex

Figure A.2: Histogram of DurationWeeks values based on Sex
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Sex n
f 72
m 174

Table A.8: Sample sizes of each Sex

Figure A.3: Box plot of DurationWeeks values based on Sex

MonthlyPhlebotomies DurationWeeksMedian kMedian FerritinMedian GradientMedian AgeMedian
>1 28 -0.0099 900 -27.95 50
1 48 -0.0058 808 -13.21 50

Table A.9: Median values of the numerical variables based on MonthlyPhlebotomies
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Figure A.4: Histogram of kParameter values based on Sex

Figure A.5: Box plot of kParameter values based on Sex
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Figure A.6: Histogram of Gradient values based on Genotype

Figure A.7: Box plot of Gradient values based on Genotype
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Comparison p-value
Group 500-Group 0 2.7 × 10−2

Group 1000-Group 0 3.3 × 10−2

Group 1000-Group 500 1.0

Table A.10: Games-Howell test for comparisons of AgeDiagnosis values between groups of initial
SF level

Figure A.8: Histogram of AgeDiagnosis values based on Group
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Figure A.9: Box plot of AgeDiagnosis values based on Group

Figure A.10: Histogram of AgeDiagnosis values based on Sex
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Figure A.11: Box plot of AgeDiagnosis values based on Sex
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Figure A.12: Correlation plot with coloured scale where red implies negative correlation and blue
colors imply positive correlations. Data set with variables disregarded from the main analysis (n
= 52)

Figure A.13: Decision Tree depicting the grouping of the kParameter values based on Genotype
and MonthlyPhlebotomies. Gradient values correspond to the median of each group
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Figure A.15: Box plot of kParameter values based on TransfGroup

Patient characteristics k parameter value assigned
Homozygous, >=45, 1 -0.0057

Homozygous, >=45, >1 -0.0088
Homozygous, <45, 1 -0.0058

Homozygous, <45, >1 -0.014
Heterozygous, >=45, 1 -0.0062

Heterozygous, >=45, >1 -0.018
Heterozygous, <45, 1 -0.0091

Heterozygous, <45, >1 -0.017

Table A.11: kParameter values assigned to a newly diagnosed patient based on Genotype,
TransfGroup and MonthlyPhlebotomies. The attributed value corresponds to the median of each
group
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Figure A.16: Plot depicting the interval of best Lambdas found with 95% of confidence using the
Box-Cox method

Figure A.17: Diagnostic plots of final linear regression model considered including the kParameter
variable with the data without influential data points
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Predictors VIF
Ferritin 1.12

kParameter 1.81
MonthlyPhlebotomies 4.23

kParameter:MonthlyPhlebotomies 3.35

Table A.14: VIFs of model with Ferritin and an interaction between kParameter and
MonthlyPhlebotomies

Predictors VIF
Ferritin 1.03

kParameter 1.26
MonthlyPhlebotomies 1.27

Table A.15: VIFs of model with Ferritin, kParameter and MonthlyPhlebotomies

Figure A.18: Diagnostic plots of final linear regression model considered including the Gradient
variable with the data without influential data points
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Table A.16: Summary of fourth variable addition, on a linear regression model with Ferritin +
kParameter + MonthlyPhlebotomies as explanatory variables

Dependent variable:

(DurationWeeks)̂ 0.2

(1) (2) (3)

Ferritin 0.0002∗∗∗ 0.0002∗∗∗ 0.0002∗∗∗

(0.00001) (0.00001) (0.00001)

kParameter 23.039∗∗∗ 23.612∗∗∗ 23.340∗∗∗

(2.104) (2.012) (1.966)

MonthlyPhlebotomies1 0.109∗∗∗ 0.106∗∗∗ 0.109∗∗∗

(0.025) (0.025) (0.024)

GenotypeHomozygous 0.025
(0.029)

Sexm −0.010
(0.025)

AgeDiagnosis 0.003∗∗∗

(0.001)

Constant 2.023∗∗∗ 2.054∗∗∗ 1.914∗∗∗

(0.044) (0.039) (0.052)

Observations 246 246 246
R2 0.626 0.625 0.642
Adjusted R2 0.620 0.619 0.636
Residual Std. Error (df = 241) 0.173 0.173 0.169
F Statistic (df = 4; 241) 100.763∗∗∗ 100.375∗∗∗ 107.934∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Model df AIC
1 3 12.069
2 4 -143.990
3 5 -160.214
4 6 -169.695

Table A.17: AIC values where: model 1) Ferritin, model 2) Ferritin + kParameter, model
3) Ferritin + kParameter + MonthlyPhlebotomies and model 4) Ferritin + kParameter +
MonthlyPhlebotomies + AgeDiagnosis
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Predictors VIF
Ferritin 1.37

Gradient 2.07
MonthlyPhlebotomies 3.47

Gradient:MonthlyPhlebotomies 2.86

Table A.19: VIFs of model with Ferritin and an interaction between Gradient and MonthlyPhle-
botomies

Table A.20: Summary of fourth variable addition, on a linear regression model with Ferritin +
Gradient * MonthlyPhlebotomies as explanatory variables

Dependent variable:

(DurationWeeks)̂ 0.2

(1) (2) (3)

Ferritin 0.0003∗∗∗ 0.0003∗∗∗ 0.0003∗∗∗

(0.00001) (0.00001) (0.00001)

Gradient 0.009∗∗∗ 0.010∗∗∗ 0.009∗∗∗

(0.001) (0.001) (0.001)

MonthlyPhlebotomies1 0.195∗∗∗ 0.192∗∗∗ 0.191∗∗∗

(0.035) (0.034) (0.034)

GenotypeHomozygous 0.047∗

(0.024)

Sexm 0.044∗∗

(0.021)

AgeDiagnosis 0.002∗∗∗

(0.001)

Gradient:MonthlyPhlebotomies1 0.005∗∗∗ 0.005∗∗∗ 0.005∗∗∗

(0.001) (0.001) (0.001)

Constant 1.885∗∗∗ 1.897∗∗∗ 1.834∗∗∗

(0.034) (0.030) (0.043)

Observations 246 246 246
R2 0.739 0.739 0.742
Adjusted R2 0.733 0.734 0.737
Residual Std. Error (df = 240) 0.145 0.144 0.144
F Statistic (df = 5; 240) 135.693∗∗∗ 136.150∗∗∗ 138.097∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Model df AIC
1 3 12.069
2 4 -218.072
3 6 -243.390
4 7 -248.509

Table A.21: AIC values where: model 1) Ferritin, model 2) Ferritin + Gradient, model 3) Ferritin
+ Gradient * MonthlyPhlebotomies and model 4) Ferritin + Gradient * MonthlyPhlebotomies +
AgeDiagnosis

Number Ferritin Group kParameter Sex AgeDiagnosis Genotype MonthlyPhlebotomies DurationWeeks Gradient
16 1809 Group 1000 -0.0045 m 76 Homozygous >1 34 -50.48
56 742 Group 500 -0.0247 m 36 Homozygous >1 20 -31.43
57 3634 Group 1000 -0.0082 m 65 Homozygous >1 53 -66.68
62 254 Group 0 -0.0019 m 24 Homozygous 1 80 -1.92
104 1930 Group 1000 -0.0089 m 59 Homozygous 1 23 -79.57
123 4877 Group 1000 -0.0324 f 59 Homozygous 1 88 -54.37
145 146 Group 0 -0.0060 f 52 Homozygous >1 6 -7.16
193 365 Group 0 0.0003 m 22 Homozygous 1 18 -14.72
256 250 Group 0 -0.0043 f 34 Heterozygous 1 12 -12.50
296 692 Group 500 -0.0201 m 25 Homozygous >1 27 -21.58
306 4069 Group 1000 -0.0071 m 48 Homozygous >1 43 -92.92
308 4143 Group 1000 -0.0026 f 53 Homozygous 1 98 -41.26
334 4070 Group 1000 -0.0032 m 44 Homozygous 1 210 -18.89
340 2041 Group 1000 -0.0029 m 38 Homozygous 1 166 -11.67
341 556 Group 500 -0.0361 m 31 Heterozygous >1 6 -74.23
346 172 Group 0 -0.0021 m 28 Homozygous 1 14 -5.14
363 4504 Group 1000 -0.0046 m 62 Homozygous >1 72 -60.92
369 948 Group 500 -0.0024 m 32 Homozygous 1 18 -47.49

Table A.22: Influential data points discovered on linear regression model with the kParameter
variable

Number Ferritin Group kParameter Sex AgeDiagnosis Genotype MonthlyPhlebotomies DurationWeeks Gradient
39 1186 Group 1000 -0.0190 m 30 Homozygous >1 14 -77.57
57 3634 Group 1000 -0.0082 m 65 Homozygous >1 53 -66.68
62 254 Group 0 -0.0019 m 24 Homozygous 1 80 -1.92
104 1930 Group 1000 -0.0089 m 59 Homozygous 1 23 -79.57
113 1192 Group 1000 -0.0235 m 43 Homozygous >1 11 -100.58
123 4877 Group 1000 -0.0324 f 59 Homozygous 1 88 -54.37
145 146 Group 0 -0.0060 f 52 Homozygous >1 6 -7.16
152 153 Group 0 -0.0086 f 49 Homozygous 1 12 -4.52
306 4069 Group 1000 -0.0071 m 48 Homozygous >1 43 -92.92
308 4143 Group 1000 -0.0026 f 53 Homozygous 1 98 -41.26
311 4175 Group 1000 -0.0028 m 75 Homozygous >1 122 -33.44
334 4070 Group 1000 -0.0032 m 44 Homozygous 1 210 -18.89
346 172 Group 0 -0.0021 m 28 Homozygous 1 14 -5.14
363 4504 Group 1000 -0.0046 m 62 Homozygous >1 72 -60.92
366 129 Group 0 -0.0037 m 27 Homozygous 1 17 -1.66

Table A.23: Influential data points discovered on linear regression model with the Gradient
variable
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Figure A.19: Diagnostic plots of final poisson regression model considered including the
kParameter variable with the data from all the patients

Figure A.20: Diagnostic plots of final poisson regression model considered including the Gradient
variable with the data from all the patients
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Figure A.21: Diagnostic plots of final poisson regression model considered including the
kParameter variable with the data without influential data points

Figure A.22: Diagnostic plots of final poisson regression model considered including the Gradient
variable with the data from without influential data points
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Figure A.23: Diagnostic plots of final NB regression model considered including the kParameter
variable with the data from all the patients

Figure A.24: Diagnostic plots of final NB regression model considered including the Gradient
variable with the data from all the patients
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Figure A.25: Diagnostic plots of final NB regression model considered including the kParameter
variable with the data without influential data points

Figure A.26: Diagnostic plots of final NB regression model considered including the Gradient
variable with the data from without influential data points
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