
HAL Id: hal-02058008
https://hal.inria.fr/hal-02058008

Submitted on 15 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Scalable Blockchain Analysis
Santiago Bragagnolo, Matteo Marra, Guillermo Polito, Elisa Gonzalez Boix

To cite this version:
Santiago Bragagnolo, Matteo Marra, Guillermo Polito, Elisa Gonzalez Boix. Towards Scalable
Blockchain Analysis. WETSEB 2019 - 2nd International Workshop on Emerging Trends in Software
Engineering for Blockchain, May 2019, Montréal, Canada. �hal-02058008�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/362234801?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-02058008
https://hal.archives-ouvertes.fr

Towards Scalable Blockchain Analysis
Santiago Bragagnolo
Inria Lille-Nord Europe

Lille, France
santiago.bragagnolo@inria.fr

Matteo Marra
Vrije Universiteit Brussel

Brussels, Belgium
mmarra@vub.be

Guillermo Polito
Univ. Lille, CNRS, Centrale Lille, Inria, UMR 9189

CRIStAL - Centre de Recherche en Informatique Signal et
Automatique de Lille

Lille, France
guillermopolito@gmail.com

Elisa Gonzalez Boix
Vrije Universiteit Brussel

Brussels, Belgium
egonzale@vub.be

ABSTRACT
Analysing the blockchain is becoming more and more relevant
for detecting attacks and frauds on cryptocurrency exchanges and
smart contract activations. However, this is a challenging task due
to the continuous growth of the blockchain. For example, in early
2017 Ethereum was estimated to contain approximately 300GB of
data [4], a number that keeps growing day after day.

In order to analyse such ever-growing amount of data, this paper
argues that blockchain analysis should be treated as a novel type
of application for Big Data platforms. We also explore the appli-
cation of parallelization techniques from the Big Data domain, in
particular Map/Reduce, to extract and analyse information from
the blockchain. We show that our approach significantly improves
the index generation by 7.77 times, with a setup of 20 worker nodes,
1 Ethereum node and 1 Database node. We also share our findings
of our massively parallel setup for querying Ethereum in terms
of architecture and the bottlenecks. This should help researchers
setup similar infrastructures for analysing the blockchain in the
future.

CCS CONCEPTS
•Computingmethodologies→MapReduce algorithms; • In-
formation systems → Query languages; Information retrieval
query processing; Computing platforms; Digital cash.

KEYWORDS
blockchain, smart contracts, big data, Map/Reduce

ACM Reference Format:
Santiago Bragagnolo, Matteo Marra, Guillermo Polito, and Elisa Gonzalez
Boix. 2019. Towards Scalable Blockchain Analysis. In ACM, New York,
NY, USA, 7 pages. https://doi.org/...

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WETSWEB ’19, 2019, Montreal, QC, Canada
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN ...6. . . $15.00
https://doi.org/...

1 INTRODUCTION
Many existing work on blockchain analysis (on the domains of
fraud, security, statistic analysis, etc.), base their algorithms and
analysis strategies on analysing transactions [9, 13, 19]. For gath-
ering transaction information and running their algorithms, they
gather data by sequentially selecting and filtering information from
different blockchain networks. This kind of usage is becoming out-
dated nowadays. Ethereum and other blockchain platforms store
a massive amount of heterogeneous data: transactions, accounts,
smart contracts, etc. In early 2017, Ethereum was estimated to have
approximately 300GB of data [4], and it keeps growing at a high
rate. Extracting information from this massive amount of data is
not an easy task. Currently, there are two options to search for
specific information stored in a block (e.g., account’s data). Either
the unique identifier of the block (or block hash) containing such
information is known, or a sequential search in the blockchain is
required starting from a block (e.g. the most recent one) and search-
ing for every parent block for any related information. Hashes of
the blocks are typically unknown (unless a secondary database is
used to store all hashes of blocks deployed on the blockchain). As a
result, a full scan of the blockchain may be required to be able to
locate and analyse data.

In addition, Ethereum stores information (e.g. contracts, transac-
tions) with a generic representation which does not include meta-
data describing the stored information. While this reduces the data
size improving performance, it complicates the research of infor-
mation once it is deployed in the blockchain.

The goal of our work is to ease the extraction and analysis of data
from blockchain platforms like Ethereum. This is crucial to assist
the process of debugging and fixing bugs in blockchain applications,
particularly in smart contract applications. In prior work, we have
proposed a SQL-like query language for Ethereum to ease the task
of querying data in the blockchain [5]. Such a query language al-
lows developers to quickly scan the blockchain to access individual
elements and aggregate arbitrary values. To perform fast searches
by semantic attributes, the usage of indexes is crucial. However, the
setup and maintenance of indexes on the data stored in Ethereum is
a highly consuming task. Some work has explored the performance
problems to do blockchain analytics [4, 8] but either they work
on early stages of the main cryptocurrency networks (when the

https://doi.org/...
https://doi.org/...

WETSWEB ’19, 2019, Montreal, QC, Canada Bragagnolo, et al.

amount of data was still bearable)[4], or on smaller blockchains
than Ethereum [8].

In this paper, we explore the usage of parallelizing techniques
present in Big Data platforms, in particular Map/Reduce, to extract
and analyse information from the blockchain. We focus on applying
the Map/Reduce model to build indexes of blocks, transactions and
contracts. We show that using our approach significantly improves
the index generation time by 7.77x with a setup of 20 worker nodes
running on a cluster of 10 Intel Xeon CPU E3-1240 @ 3.50GHz
machines. These good results have been achieved with just a single
blockchain data node running in the cluster.

In summary, our contributions are:
• to the best of our knowledge, we are the first using Big Data
techniques to enable blockchain analytics.

• we present a Map/Reduce architecture that can effectively
and efficiently query the blockchain.

• we identify the bottlenecks of such architecture and propose
possible solutions for it.

2 STATE OF THE ART AND MOTIVATION
Prior work has identified the need of blockchain analysis for several
use-cases such as the detection of attacks and security vulnerabil-
ities [3, 7, 12, 13, 16, 18, 19], finantial frauds [14, 15, 19] or just
retrieving statistics or economic indicators [9, 17]. Most of these
works create their custom representation of the blockchain with
all the data required for the desired analysis.

To cope with blockchain analysis in a more general way, several
platforms and frameworks have been proposed in literature [4, 5, 8].
Kalodner et al. [8] propose BlockSci, a BlockChain analysis platform
to analyze crypto currency based Blockchains like Bitcoin, Litecoin
and others. BlockSci’s main trait is its architecture: it imports the
entire BlockChain data into memory, where queries can be executed
fast. This makes BlockSci outperform other tooks by 15x-600x, and
spends only around 60 seconds to setup their memory database
because they access directly the blockchain data of big blockchains
by directly accessing the raw data in disk instead of using the APIs
designed for it. BlockSci, however, suffers two main drawbacks.
First, BlockSci was not designed to work on smart contracts. The
disregard for the smart contracts takes out their possibilities the
contract based analysis. Many of the emerging blockchain tech-
nologies provide smart contract support (Ethereum1, Hyperledger
Fabric 2, NEM 3, Waves 4, etc). Second, it was not designed to
work over a large amount of transactions. At the moment of writ-
ing (August 2017), the largest blockchain they had analysed was
Bitcoin. Bitcoin was at the time 478,559 blocks large representing
130GB of storage, but their analysis were scoped only to the 22GB
of transactions. Ethereum contains, at the moment of writing this
paper (January 30 2019), more than 7 million blocks representing
266GB of storage. It is not clear for us how Ethereum’s constraints
and its smart-contracts can easily fit in such a memory strategy.

Bartoletti et al. [4] propose a general framework to access blockchain
data previously stored in a database. In their approach, they export

1https://www.ethereum.org/
2https://www.hyperledger.org/projects/fabric
3https://nem.io/
4https://wavesplatform.com/

all blockchain data (around 500k blocks, 300GB of Bitcoin) into a
NoSQL (mongoDB) and a relational (MySQL) database. Such im-
ports take around 9 hours in each implementation, and querying
them takes between 50 minutes and 3.5 hours, respectively. While
they claim support for smart contracts and Ethereum, they did not
report any benchmarks on it.

In prior work, we have also proposed the creation of a SQL-like
query language to extract arbitrary data and analyse changes in
user-defined smart contracts [5]. Like other researchers [20], we
have identified how the performance problems of analysing the
blockchain gets worse day after day. To perform fast searches by
semantic attributes in such a query language, the usage of indexes
is crucial. These indexes must be built by doing a full scan of all
blocks, transactions, accounts and smart contracts in the blockchain,
and building from them a smart data structure that can be quickly
accessed. For instance, if we want to be able to access to all blocks
that were created between two dates, an index data structure could
be created to quickly discard all blocks that are outside the desired
range. This kind of index data structure can be used for this and
many other analyses, for example to access all the transactions
that modified a given contract, or all the blocks where a given
user/account received money. To build such indexes, however, a
fast scanning infrastructure needs to be setup. Furthermore, such
infrastructure needs to be kept up-to-date with the status of the
blockchain. In our previous work we lacked such support.

3 BACKGROUND
Hardware advances in storage capacity and CPU processing have
given rise to the concept of Big Data, characterized by the so-called
3 Vs (Volume, Velocity and Variety). As a result, novel software
platforms have emerged to analyze and store such large data sets
in a scalable way. The two most prominent programming models
are Hadoop Map/Reduce [6] and Apache Spark [2], which typi-
cally embrace a batch-oriented data processing to achieve a high
parallelisation of data analysis.

Current trends indicate that the volume, velocity and variety of
data are increasing quickly due to an explosion on diversity and
number of sources of information (as a result of the digitalization
of data, e.g. smart objects and sensors, interconnectivity of data
and popularity of social media data [11]). In this paper we identify
blockchain technology as a new type of sources of information
in the Big Data revolution. Blockchain platforms like Ethereum
contain a high amount of heterogeneous data growing at a high
rate, presenting a clear example of the three Vs of BigData: Volume,
Variety, Velocity. In this paper, we explore the usage of Big Data
technology to enable blockchain analysis. A recent publication on
research directions in blockchain analytics has also suggested the
use of Big Data technology but, to the best of our knowledge, this is
the first approach in realising such a vision [20]. In this section, we
provide some details on the programming model we employed in
this work, namely theMap/Reduce model [6], and the programming
platform in which we conducted this research.

3.1 The Map/Reduce Model
The Map/Reduce model can be used in a variety of different data
analysis, and offers a simple API to developers. In this model, the

Towards Scalable Blockchain Analysis WETSWEB ’19, 2019, Montreal, QC, Canada

developer structures her program in two functions: a map and a
reduce. The map function transforms an initial set of values to an
intermediate result, encoded in key/value pairs. The reduce func-
tion aggregates data to compute a final result. In particular, reduce
transforms the intermediate results generated by map, grouped by
their key, into to a final result for each of the keys. A Map/Reduce
platform will take as input some collection of data, partition it and
run the developer’s map and reduce functions on each partition in
different machines or processes.

As a concrete example, consider a grep which searches the lines
containing a pattern in a file. The code snippet in Listing 1 im-
plements such an operation on the Map/Reduce model. The map
function checks if a particular line includes a pattern, and returns
the line if the pattern is present, or NIL otherwise. The reduce
function filters the mapped lines to remove the values that are NIL,
returning all of the lines that contain the pattern.

Listing 1: Pseudocode of a grep in Map/Reduce.
1 map (fileLine , pattern) {
2 if (fileLine . contains (pattern))
3 then return fileLine
4 else return NIL }
5 reduce (mappedLines) {
6 return mappedLines . filter (line => line != NIL) }

In this paper, we employed a Map/Reduce framework for Pharo
Smalltalk called Port [10]. Port defines a Smalltalk API to define
and execute Map/Reduce programs deployed on top of the Apache
Hadoop platform. In particular, developers need to write the map
and reduce function in Smalltalk and then Port manages the exe-
cution of such a Map/Reduce application using master and worker
nodes deployed on Hadoop Yarn [1], and implements all communi-
cation details between them.

4 APPLYING BIG DATA TECHNOLOGY TO
BLOCKCHAIN ANALYSIS

Master

Worker
#1

Worker
#2

Worker
#3

Worker
#4

Worker
#n…

Ethereum SQL
Database

Map/Reduce

Figure 1: A Map/Reduce Architecture for Blockchain Analy-
sis

In this section we describe how a blockchain analysis application
can be created using the Map/Reduce model. Figure 1 illustrates

Block hash Timestamp ParentBlock
ca896d6 28/01/2019 ... da6b261
da6b261 27/01/2019 ... 7aa96ae
7aa96ae 26/01/2019 ... d6d3614
d6d3614 25/01/2019 ... 402d518

Figure 2: Example of a Block index table. Timestamp and
ParentBlock columns are indexed.

our Map/Reduce architecture which has been adapted to work with
the Ethereum platform. The Map/Reduce framework provides a
master node that splits the data and assigns map and reduce jobs to
different worker nodes.We also setup a single database instance and
a single Ethereum client, accessible by all these nodes in the same
network. Eachmap worker queries the Ethereum platform to access
blockchain data and sends it back to the master node. Then, each
reduce worker receives many map results together, and performs
a bulk insert in the SQL database. Once the data is stored in the
database, we can use the information that was indexed (e.g., the
hash of the block, or a particular property of the block or contract,
...) to query the blockchain and gather the requested information.

We will now illustrate the different parts of our Map/Reduce
architecture to implement an indexation algorithm that scans the
entire blockchain and stores a block index into the centralized SQL
database.

4.1 An Indexation Algorithm
We have developed an indexation algorithm that uses a relational
database to store indexed data. This choicewas based in two reasons:
to benefit from an existing and mature index implementation, and
to focus on the problems of parallelism and high load. However,
our overall architecture does not prevent alternative indexing data
structures like a BST (Binary Search Trees) [5] to be implemented
instead.

Our index has the structure of a relational table with standard
database indexes. For example the table representing the block index
has the block’s hash, but also a timestamp and its parent block’s
hash as shown in Figure 2. The two latter columns are indexed,
so we can do fast queries on blocks by both timestamp and their
parent blocks.

To setup such an index, our core algorithm performs a full scan
of the blockchain inserting all the corresponding values in our
database. With a asynchronous I/O sequential scan approach, our
algorithm takes about 30 milliseconds per indexed entry, meaning
that the expected time for indexing the current load of Ethereum
blocks, would take about 2 days and 11 hours.

To avoid a sequential scan, we decided to parallelize such pro-
cessing using a Map/Reduce model as described below.

4.2 Parallelizing Blockchain Indexation
We now detail how we parallelized the indexation algorithm using
a Map/Reduce model. This basically boils down to expressing the
algorithm in terms of the map and reduce functions of the Map/Re-
duce model previously explained. Listing 2 illustrates our functions
in pseudocode for the sake of clarity. In the next subsection, we
detail the concrete implementation in Port.

WETSWEB ’19, 2019, Montreal, QC, Canada Bragagnolo, et al.

Programming Environment

Blockchain
Data Node

SQL
Database

Master Node Worker Nodes

Big Data Execution Platform

Figure 3: Our Map/Reduce Architecture

The map function queries the blockchain to obtain the data re-
lated to a block index. The reduce function takes the result of the
map on several indexes (i.e. a partition of indexes), and stores them
all in a centralized database with a bulk insert.

Listing 2: Pseudocode of Map/Reduce indexing algorithm.
1 map (blockIndex) {
2 return blockIndex−>hash (blockchain . at (blockIndex))
3 }
4
5 reduce (pair) {
6 storeInDatabase (pair)
7 }

Such an approach allows us to parallelize the mapping of the
indexes and to execute in parallel different database stores, mini-
mizing the calls by executing one for each partition of data (and
not one for each index).

4.3 Implementation
Figure 3 illustrates the main different components of our Map/Re-
duce architecture. The application is programmed in Pharo Smalltalk,
on top on top of the Port Map/Reduce framework, which handles
the management of master and worker nodes. Port provides us
integration with the Map/Reduce environment offering an API to
implement a Map/Reduce by the means ofmap and reduce methods
in Smalltalk. Port uses Hadoop Yarn [1] to manage the allocation
of master and worker nodes in a cluster.

We use Geth 5 as blockchain data node. Internally, the commu-
nication with Geth is managed by the Fog Ethereum driver 6.

Listing 3 illustrates our application implementation in Port. Our
Map/Reduce application functions accept an additional parameter,
an indexBuilder, that provides the database connection and all of
the information about the properties that are being indexed. Such
parameter is identical in all of the parallelized map and reduce
functions. The map:parameter: (lines 1 to 6) obtains a block given
a block index, obtains the indexed property from the given block,
and returns a key value pair in the form (block index, indexed
value). For example, in the case of indexing blocks by timestamp,
the indexed value is the timestamp of the obtained block. The
5https://github.com/ethereum/go-ethereum/wiki/geth
6https://github.com/smartanvil/Fog

reduce:parameter: (lines 8 to 9) receives a collection of pairs
produced by the map:parameter: function and uses the builder to
store those pairs in the corresponding database table.

Listing 3: Pharo implementation of indexing algorithm
1 MRIndexingApp >> map : blockIndex parameter : aBuilder
2 | ethereumBlock mappedProperty |
3 ethereumBlock : = fogBlockChain at : blockIndex .
4 mappedProperty : = ethereumBlock
5 get : aBuilder indexedProperty .
6 ↑ blockIndex −> mappedProperty
7
8 MRIndexingApp >> reduce : pairs parameter : aBuilder
9 aBuilder storeIndexedValues : pairs

Differently from a classical Map/Reduce framework, Port does
not enforce the initial data to be in a key-value store. This allows
us to map directly on simple indexes, generating an intermediate
key-value store where each key has only one value. It also does not
always apply a group-by between map and reduce, as happens in
classical Map/Reduce platforms. In our case this avoids an unneeded
shuffling of data over the network, that would only slow down the
blockchain analysis application.

5 EXPERIMENTS
In this paper, we aim to tackle the difficult process of indexing
the full blockchain by applying a Map/Reduce algorithm on top
of Port, a Map/Reduce framework for Pharo. We conducted dif-
ferent experiments to check whether our Map/Reduce architec-
ture and implementation is a scalable architecture for blockchain
analysis. A first experiment, called architecture, tries to find the
best architecture (in the terms of amount of workers) to index the
full blockchain. A second one, called analyzing the full blockchain,
analyses how our approach scales when trying to analyze the full
Ethereum blockchain.

5.1 Setup
We run our experiments on a cluster of one root node and ten
identical slave nodes. Each slave node presents the following speci-
fications:

- Processor: Intel Xeon CPU E3-1240 @ 3.50GHz (4 cores, 8
threads)

- Ram: 32 GB
- Storage: 200 GB SSD

The root node has the same specification as the slave nodes, but
it has enhanced storage. All the nodes are connected through a 1
GB/s local network.

In our configuration, the root node runs:
- A Postgres server that handles the database.
- An instance of Port to handle the external communication
with the different nodes.

One of the slave nodes runs exclusively Geth, the blockchain data
node. The rest of the slave nodes (9) are used to deploy Pharo
containers through Yarn. There is always one container running
a Yarn application, one running a master, and a global maximum
of 70 containers available to run a worker. The number of actual

https://github.com/ethereum/go-ethereum/wiki/geth
https://github.com/smartanvil/Fog

Towards Scalable Blockchain Analysis WETSWEB ’19, 2019, Montreal, QC, Canada

30

40

50

60

70

80

90

4 8 12 16 20 24 28 32 36 40 44 48

Ex
ec

ut
io

n
tim

e
(s

)

Number of Workers

Execution time increasing amount of workers

Full
Duration

Map Time

Figure 4: Execution time of indexing 10.000 block increasing
the number workers

containers running a worker variates depending on the experiment
that we are running.

5.2 Experiment 1: Architecture
Indexing the whole blockchain, even using a Map/Reduce approach,
is not trivial. Not only does the performance of the indexing de-
pends on the number of workers that can parallelize the work, but
also on how these workers communicate with the blockchain data
node (during the mapping phase) and with the database (during
the reduce phase). While the employed database (i.e. Postgres) is
designed for concurrent access and can scale well, the blockchain
data node (i.e. Geth) allows us to query the blockchain using the
RPC protocol, which can support only a limited amount of concur-
rent calls. Given our setup, Geth runs in a dedicated slave node
with a total of 8 threads.

In this first experiment we test how the execution time changes
when increasing the number of workers, while indexing a fixed
amount of blocks (10.000 blocks). We increased the amount of work-
ers from 4 to 48, 4 by 4. Each iteration is run 10 times, discarding
the worst result.

Figure 4 shows the result of this experiment. The blue curve
represents the average execution time of the full Map/Reduce, while
the orange curve represents only the average time of the map phase.
The black dashed line represents the averaged minimum amount
of execution time (i.e. 43.6 seconds with 20 workers).

Looking at the total execution time, we observe that it quickly
decreases from around 83 seconds (with 4 workers) to around 58 sec-
onds for 8 workers. It then stabilizes between 47.7 seconds and 43.6
seconds when running with 12 to 48 workers, reaching its global
minimum when running with 20 workers. As such, we conclude
that 20 is the best amount of workers for this configuration.

Analyzing the relation between map time and total execution
time, the graph shows that the two lines follow the same trend,
being the map the biggest component of the whole execution time
(between 83% and 92% of the total execution time). It is clear how
the performance of the map is crucial to the performance of the
whole indexation. We discuss more about the implications of this
finding in Section 5.4.

1

10

100

1,000

10,000

100,000

1,000,000

100 1,000 10,000 100,000 1,000,000 10,000,000

E
xe

cu
tio

n
tim

e
(s

)

Number of blocks analyzed

Scalability when increasing number of blocks

Full Duration

Proportional
Duration

Sequential
duration

Sequential
Projection

Figure 5: Execution time of indexing an increasing amount
of blocks with 20 workers.

5.3 Experiment 2: Analyzing the full
blockchain

The results of experiment 1 show that the best amount of workers
to use in our configuration is 20. In this second experiment, we use
such configuration to check how our system scales to index the full
blockchain. To do so, we gradually increase by a factor of 10 the
number of blocks to index from 100 to the full Ethereum blockchain,
that to the moment of our latest experiments (29/01/2019) consisted
of 7.080.006 blocks.

Figure 5 shows how the execution time increases when increas-
ing the number of analyzed blocks. The blue line represents the
execution time, the grey line represents the execution time of the
sequential implementation of the indexing algorithm. The values
of the dashed gray line are proportionally projected, since the ex-
ecution time would have been too high for experimenting it. The
dashed black line represents what the proportional expected du-
ration is, calculated on the result for 10.000 blocks. Both of the
scales are logarithmic (loд10), hence the two axis are proportional.
The graph shows that the execution time grows proportionally, as
the black dashed line, except for 100 and 1.000 blocks, where the
execution time is heavily impacted by the overhead of Port.

Using 20 parallel single threaded workers, we managed to in-
dex the full Ethereum blockchain (to the moment the experiment
was executed) in 7 hours 18 minutes and 47 seconds. While the
experiments on up to 100.000 blocks were repeated at least 10 times,
due to time limitations the experiments over 1 million blocks were
executed only 4 times and the one on the full blockchain only once.

If we compare such results to a sequential approach (that we es-
timated would take more than 2 days), it is clear how the execution
time of the indexation is lower using our Map/Reduce approach.

5.4 Discussion
The first experiment, Architecture aims to give some light on the
limits of the Geth client and, therefore, in our first general archi-
tecture. The second experiment Analyzing the full blockchain,
leverages the results of the first experiment for showing a good

WETSWEB ’19, 2019, Montreal, QC, Canada Bragagnolo, et al.

result on how a map reduce approach can improve the performance
of blockchain analysis.

In the first experiment, we learned that the performance of the
application does not scale to the number of workers, since between
12 and 48 workers the difference of execution time ranges in less
than 10 seconds for 10.000 blocks. In fact, the map operation, which
constitutes at least 83% of the execution time, performs calls to
the blockchain data node (Geth), which does not handle optimally
concurrent requests, since it is not designed to be used for analysis
on the blockchain. This shows how making the analysis of the
blockchain faster and scalable is not a mere question of parallelising,
but also of finding the right configuration.

Since our first experiments we were sceptical about the respon-
siveness of Geth, the blockchain data node. To confirm quickly our
hypothesis, we launched our algorithm with the maximum possible
amount of workers deployed (70 worker nodes), one blockchain
data node and one database node. Profiling the network perfor-
mance exposed the limits of the blockchain data node towards the
processing external requests, congestioning the network and over-
consuming operating system resources. Hence, we conducted our
first experiment starting from a little amount of nodes, to discover
the limits of our architecture.

We believe that increasing the number of blockchain data nodes
could further improve the map execution’s time, heavily impacting
the overall duration of the indexing. In our configuration, we found
that the best ratio worker/blockchain data nodes is 20x, or, if we
count on the physical threads the workers and the blockchain data
nodes were using, around 2.5 workers for threads of the blockchain
data node. However, further experiments are required to verify
that such a ratio remains the same when increasing the number
of blockchain data nodes (or the amount of cores it is using). In
fact increasing such a number can increase the amount of network
usage in the whole cluster, other than change the storage footprint
of the blockchain that would need to be replicated in the different
blockchain data nodes. We are planning to execute different experi-
ments to investigate how such ratio can change, and what can be
the impact on the overall execution time.

Overall, we believe that the experiments conducted on our ap-
proach shows how the use of a Big Data framework for parallelisa-
tion can improve the blockchain analysis.

6 CONCLUSION
In this paper, we explored the application of Big Data techniques to
enable blockchain analytics. In particular, we applied Map/Reduce
for indexing Ethereum blocks. To the best of our knowledge, this
is the first work employing Big Data techniques to enable scalable
blockchain analytics. Our experiments show that Map/Reduce can
efficiently be used to index the blockchain, improving the run-time
performances of the indexing process by 7.7 times with respect to
a sequential implementation.

Our current architecture includes one node running a SQL data-
base (i.e. Postgres), one node running the blockchain data node
(i.e. Geth), one master node coordinating different worker nodes
that run the map and reduce tasks. Our Map/Reduce application is
written using Port, a Map/Reduce framework for Pharo Smalltalk.
In such application, we parallelize the queries to the blockchain

data node in the map function, trying to minimize the impact of
such queries on the run-time. In the reduce function, we then per-
form a bulk insert of the indexed data in the database. By testing
different setups of such architecture, we identified Geth as being a
performance bottleneck, discovering the right ratio of worker nodes
(that are consuming data from the blochckain) and blockchain data
nodes.

Despite of the promising results shown in this paper, we be-
lieve it is too early to say that our architecture reached the limit
of the Map/Reduce efficiency to enable blockchain analytics. Fur-
ther research is needed to explore the best configuration for such
an architecture. In particular, we are interested in exploring the
following research directions:

• Exploring the advantages and limitations of using multiple
data nodes.

• Exploring the utility of Map/Reduce on the resolution of
index based queries.

• Exploring the limits of Map/Reduce as an online algorithm
for continuous indexation.

ACKNOWLEDGMENTS
Matteo Marra is funded by a SB PhD grant at FWO - Research
Foundation - Flanders. Project number: 1S63418N.

We would like to thank UTOCAT for incentivating this work.

REFERENCES
[1] Apache. [n. d.]. Apache Hadoop YARN.

https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-
site/YARN.html. Accessed: 2017-08-24.

[2] Apache. [n. d.]. Apache Spark. http://spark.apache.org/. Accessed: 2017-05-12.
[3] Khaled Baqer, Danny Yuxing Huang, Damon McCoy, and Nicholas Weaver. 2016.

Stressing out: Bitcoin stress testing. In International Conference on Financial
Cryptography and Data Security. Springer, 3–18.

[4] Massimo Bartoletti, Stefano Lande, Livio Pompianu, and Andrea Bracciali. 2017.
A General Framework for Blockchain Analytics. In 1st Workshop on Scalable and
Resilient Infrastructures for Distributed Ledgers (SERIAL ’17). ACM, New York, NY,
USA, 7:1–7:6. https://doi.org/10.1145/3152824.3152831

[5] S. Bragagnolo, H. Rocha, M. Denker, and S. Ducasse. 2018. Ethereum Query Lan-
guage. In 1st International Workshop on Emerging Trends in Software Engineering
for Blockchain (WETSEB). 1–8. https://doi.org/10.1145/3194113.3194114

[6] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified Data Processing
on Large Clusters. Commun. ACM 51, 1 (Jan. 2008), 107–113. https://doi.org/10.
1145/1327452.1327492

[7] Michael Fleder, Michael S Kester, and Sudeep Pillai. 2015. Bitcoin transaction
graph analysis. arXiv preprint arXiv:1502.01657 (2015).

[8] H. Kalodner, S. Goldfeder, A. Chator, M. Möser, and A. Narayanan. 2017. BlockSci:
Design and applications of a blockchain analysis platform. ArXiv e-prints (sep
2017). arXiv:cs.CR/1709.02489

[9] Matthias Lischke and Benjamin Fabian. 2016. Analyzing the bitcoin network:
The first four years. Future Internet 8, 1 (2016), 7.

[10] Matteo Marra, Clèment Bèra, and Elisa Gonzalez Boix. 2018. A debugging ap-
proach for Big Data applications in Pharo. In To Appear in Proceedings of the 13th
Edition of the International Workshop on Smalltalk Technologies (IWST ’18). ACM,
New York, NY, USA.

[11] Cukier K. Mayer-Schönberger, V. 2013. Big Data: A Revolution ThatWill Transform
How We Live, Work, and Think. London: John Murray.

[12] Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill Levchenko, Damon
McCoy, Geoffrey M Voelker, and Stefan Savage. 2013. A fistful of bitcoins:
characterizing payments among men with no names. In Proceedings of the 2013
conference on Internet measurement conference. ACM, 127–140.

[13] Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill Levchenko, Damon
McCoy, Geoffrey M Voelker, and Stefan Savage. 2016. A fistful of bitcoins:
Characterizing payments among men with no names. Commun. ACM 59, 4
(2016), 86–93.

[14] Malte Moser, Rainer Bohme, and Dominic Breuker. 2013. An inquiry into money
laundering tools in the Bitcoin ecosystem. In eCrime Researchers Summit (eCRS),
2013. IEEE, 1–14.

 http://spark.apache.org/
https://doi.org/10.1145/3152824.3152831
https://doi.org/10.1145/3194113.3194114
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
http://arxiv.org/abs/cs.CR/1709.02489

Towards Scalable Blockchain Analysis WETSWEB ’19, 2019, Montreal, QC, Canada

[15] Malte Möser, Rainer Böhme, and Dominic Breuker. 2014. Towards risk scoring
of Bitcoin transactions. In International Conference on Financial Cryptography
and Data Security. Springer, 16–32.

[16] Micha Ober, Stefan Katzenbeisser, and Kay Hamacher. 2013. Structure and
anonymity of the bitcoin transaction graph. Future internet 5, 2 (2013), 237–250.

[17] Dorit Ron and Adi Shamir. 2013. Quantitative analysis of the full bitcoin trans-
action graph. In International Conference on Financial Cryptography and Data
Security. Springer, 6–24.

[18] Michele Spagnuolo, Federico Maggi, and Stefano Zanero. 2014. Bitiodine: Ex-
tracting intelligence from the bitcoin network. In International Conference on
Financial Cryptography and Data Security. Springer, 457–468.

[19] Marie Vasek and Tyler Moore. 2015. There is no free lunch, even using Bitcoin:
Tracking the popularity and profits of virtual currency scams. In International
conference on financial cryptography and data security. Springer, 44–61.

[20] Hoang TamVo, Ashish Kundu, andMukesh KMohania. 2018. Research Directions
in Blockchain Data Management and Analytics.. In EDBT. 445–448.

	Abstract
	1 Introduction
	2 State of the Art and Motivation
	3 Background
	3.1 The Map/Reduce Model

	4 Applying Big Data Technology to Blockchain Analysis
	4.1 An Indexation Algorithm
	4.2 Parallelizing Blockchain Indexation
	4.3 Implementation

	5 Experiments
	5.1 Setup
	5.2 Experiment 1: Architecture
	5.3 Experiment 2: Analyzing the full blockchain
	5.4 Discussion

	6 Conclusion
	Acknowledgments
	References

