
HAL Id: hal-02457161
https://hal.archives-ouvertes.fr/hal-02457161

Submitted on 2 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Procedural band patterns
Jimmy Etienne, Sylvain Lefebvre

To cite this version:
Jimmy Etienne, Sylvain Lefebvre. Procedural band patterns. Symposium on Interactive 3D Graphics
and Games, Sep 2020, San Francisco, United States. pp.1 - 7, �10.1145/3384382.3384522�. �hal-
02457161�

https://hal.archives-ouvertes.fr/hal-02457161
https://hal.archives-ouvertes.fr

Procedural band patterns
Jimmy Etienne

Université de Lorraine, CNRS, Inria, LORIA
jimmy.etienne@inria.fr

Sylvain Lefebvre
Université de Lorraine, CNRS, Inria, LORIA

sylvain.lefebvre@inria.fr

Figure 1: Our technique generates band patterns following a parametric field, while adapting the density of bands per unit.
Each band is uniquely identified (left) which affords for robust extraction of border trajectories and center lines (middle). The
method is procedural which allows awide range of dynamic shader effects, such as textile patterns that adapts to stretch (right).
Contrary to classical subdivision approaches, our approach introduces new bands with a non power of two factor, allowing a
more progressive gradation.

ABSTRACT
We seek to cover a parametric domain with a set of evenly spaced
bands which number and width varies according to a density field.
We propose an implicit procedural algorithm, that generates the
band pattern from a pixel shader and adapts to changes to the
control fields in real time. Each band is uniquely identified by an
integer. This allows a wide range of texturing effects, including
specifying a different appearance in each individual bands. Our
technique also affords for progressive gradations of scales, avoiding
the abrupt doubling of the number of lines of typical subdivision
approaches. This leads to a general approach for drawing bands,
drawing splitting and merging curves, and drawing evenly spaced
streamlines. Using these base ingredients, we demonstrate a wide
variety of texturing effects.

CCS CONCEPTS
• Computing methodologies→ Texturing.

ACM Reference Format:
Jimmy Etienne and Sylvain Lefebvre. 2020. Procedural band patterns. In
Symposium on Interactive 3D Graphics and Games (I3D ’20), May 5–7, 2020,
San Francisco, CA, USA. ACM, New York, NY, USA, 7 pages. https://doi.org/
10.1145/3384382.3384522

1 INTRODUCTION
We focus on producing patterns of parallel bands along a given
parametric field, while locally adapting the number of bands to an

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
I3D ’20, May 5–7, 2020, San Francisco, CA, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7589-4/20/05. . . $15.00
https://doi.org/10.1145/3384382.3384522

input control field. More precisely, we expect as input a domain
Ω ∈ R2 or Ω ∈ R3, a parameter field u : Ω → R, and a density
field d : Ω → R that defines a target number of bands per unit of
u. These fields may be the direct result of an optimization [Groen
et al. 2019] or may be painted by the user. The field d may be linked
to u (e.g. compensating for a distortion) or may be independent
from it, in which case the actual local density of bands will be a
combination of the intrinsic stretch of u and the density factor of d .
Both u and d are assumed to be continuous, smooth scalar fields.

We denote by p a point in Ω, such that we obtain the parameter
value u(p) and density value d(p) at each point p. The objective is
to produce a set of bands which are flowing along the isovalues
of u and where the local density of bands – or equivalently their
spacing – is changing according to d .

The originality of our approach is to define a lookup function
B (v, s) : R×R→ N that returns the unique integer ID identifying
the band enclosing parameter value v , and where the local density
is controlled by s . In our context the lookup is performed for a point
p ∈ Ω as B (u(p),d(p)). B is procedural [Lagae et al. 2010]: it has
a minimal computational and memory requirement, allowing its
implementation in a pixel shader for fast synthesis and interactive
manipulation and animation of complex patterns. The returned
integers uniquely identify the bands allowing for a wide range of
texturing effects.
Previous work Drawing evenly spaced curves and streamlines is a
long standing problem in Computer Graphics. We identify three
main families: approaches tracing streamlines in a vector field from
starting points [Hertzmann and Zorin 2000; Jobard and Lefer 1997;
Mebarki et al. 2005; Spencer et al. 2009], approaches based on global
periodic parameterizations [Knöppel et al. 2015] and finally ap-
proaches splitting and merging covering curves, as pioneered by
the seminal work of Elber and Cohen [Elber and Cohen 1996]. Our

https://doi.org/10.1145/3384382.3384522
https://doi.org/10.1145/3384382.3384522
https://doi.org/10.1145/3384382.3384522

I3D ’20, May 5–7, 2020, San Francisco, CA, USA J. Etienne, S. Lefebvre, Jimmy Etienne, and Sylvain Lefebvre

approach most closely relates to this later family, and in particular
its image space variants [Groen et al. 2019].
Contributions.Our approach introduces several improvements. First,
by defining numbered bands as opposed to directly curves, we pro-
duce a partition of the domain Ω, enabling a robust (and simple!)
extraction of each region and its boundary. The unique identifier
also affords for direct manipulation of the bands and their bor-
ders, for texturing and patterning effects. For instance, drawing the
center line of fully deployed bands produces evenly spaced stream-
lines. Second, existing subdivision techniques define gradation by
doubling the density. This leads to abrupt jumps in the number of
curves and provides only a crude approximation of the target scale.
Instead, our technique allows a finer control. Finally, our approach
is fully implicit and defined by a procedural lookup function, avoid-
ing global geometric constructions and optimization. We are not
aware of any other technique offering a similar capability.

2 METHOD
Given the fields d andu, we cover the domain Ω with a discrete grid
and synthesize the bands by evaluating B on every node. This is
implemented as a pixel shader (GLSL) applied to a render target. The
code is given in Section 4. The remainder of the text progressively
introduces the principles and elements of the algorithm.

2.1 Overview
Given a spacing s , it is trivial to produce parallel bands in u(p) by
defining the band identifier as ⌊u(p)s ⌋. The principle of our approach
is to cover the domain with many overlapping sets of parallel bands,
using different spacings. The spacings are decreasing powers of a
base value 1 < step ≤ 2. We call bands of level L the set using a
spacing of step−L . The choice of step allows a trade-off between a
doubling split (step = 2) or a more progressive gradation, which
we discuss in Section 3.

We select which set should appear in a given location follow-
ing d(p), and interpolate (deform) the bands, with smaller bands
borders joining or closing onto coarser band borders. This in turn
defines a parent–child relationship which we use to define a global
numbering through the band hierarchy.

2.2 Procedural bands
Given a point p, we seek to compute the global identifier of the
band enclosing p. This is done in two steps. First we identify the
local ID of the band to which p belongs at the density d(p). The
local ID is the rank of the band in its set, it is computed by function
getLocalID (see code Section 4). Second, we produce a global ID
for the band in function getGlobalID.

We now focus on getLocalID (line 5). We first determine from
d(p) the band levels bracketing the target density. This is achieved
by quantizing d(p) based on the value of step, see the quantize
function line 1. This gives the situation illustrated in Figure 2: p
belongs to two bands, one in a set having more bands than the
target d(p), and one in a set having fewer bands.

We then define an interpolation that displaces the band borders,
making the finer bands deform towards their coarser counterparts.
This is illustrated in Figure 3. The interpolation is performed by
pulling each finer band border towards its closest coarser band

Figure 2: Every point p belongs to a band in a finer and a
coarser set enclosing the target density d(p): the finer set has
more bands than desired at d(p) while the coarser set has
fewer bands.

Figure 3: The borders of the finer bands are pulled towards
their closest coarser band border. A point p in a transition
area may end up in a different band after interpolation.

border. The interpolator is given by the position of d(p) within the
density interval of the bracketing levels. Note that as we change the
location of the band boundaries, p may no longer be in the same
initial band. This is tested and adjusted for lines 23 and 24. Through
interpolation, some finer bands are closed: both their borders move
towards the same coarser band border, e.g. band 13 in Figure 3.

After this process, we obtain the ID of the band enclosing p in
the level just finer than d(p). This ID is local to this particular level:
if used directly, it would change arbitrarily where a change of level
occurs in d . Instead, we produce a global ID, valid across levels.
This is achieved in getGlobalID (line 28). Note that since we have
step ≤ 2, we at most double the number of bands from one level to
the next. Thus, our approach is to number the bands in the same
way we number leaves in a binary tree. From the current band level,
we move up the hierarchy (lines 32–52), and insert a bit in the ID
(line 43) each time the band closes (lines 35–41). Finally, the ID of
the top level band is added as the most significant bits of the global
ID (line 54). This is illustrated in Figure 4. In other words, the global
ID is the ID of the top level band, followed by the binary pattern of
opening bands to reach the band enclosing p.

As an added bonus, we can easily detect when a band just appears,
by checking if the first band is closing immediately (lines 44–47).
This is an interesting capability, as such a band is one that is smaller
than the target spacing – there is not yet enough space between
the parents for it to be fully deployed. In particular, we may choose
to remove such a band or draw it in a different style.
Band shifting Using an irregular subdivision pattern (step < 2)
poses an interesting challenge. Around the origin, all band sets
align, producing an undesirable pattern shown in Figure 5, left.

Procedural band patterns I3D ’20, May 5–7, 2020, San Francisco, CA, USA

Figure 4: Band global IDs are computed in a hierarchical
fashion, with parent defining most significant bits while
children use least significant ones. The ID of closing bands
no longer appears in lower levels, leaving a gap between IDs.

Figure 5: Left: Without shifts, the alignment of all band sets
at the origin produce an artificial, peculiar pattern. Right:
The random shifts break the alignment, making the pattern
similar everywhere.

This can be suppressed by translating the band sets by a (pseudo-
)random shift, which is different for each band level. The effect is
shown in Figure 5, right.

For step = 2, we shift the bands at every level by half their
spacing to obtain the traditional balanced subdivision pattern.

3 CONTROLS AND PARAMETERS
Progressive increase in density By changing step, we control the
number of bands opening at every level. For step = 2 our technique
behaves similarly to traditional subdivision approaches, with one
new band opening for each coarser band, effectively doubling the
number of bands at every level.

It is worth outlining that this approach, while very typical, also
gives only a crude approximation of the target density. Indeed,
across an interpolation range the produced density (number of
bands) is wrong by as much as 50% (in the middle).

Using lower values of step, our technique affords for a very
progressive insertion of bands at every new levels. Let us consider
a value step = N

M with M,N ∈ N forming an irreducible fraction,
and M < N ≤ 2M . Such a step will open N − M new bands for
everyM bands in the previous level – this stems from the fact that
each level L corresponds to a density stepL .

N = 2, M = 1 gives the standard case (100% increase every level).
N = 3, M = 2 opens one new band every two coarser bands (50%
increase). N = 17, M = 13 opens four new bands every thirteen
coarser ones (31% increase). These number can be freely chosen as
long as step remains in the]1, 2] interval.

Regularity and periodicity The produced pattern is entirely defined
by the subdivision of the top level bands (for d = step, we have one
band per unit in u). It is intriguing to consider the periodicity of the
split pattern. For the sake of clarity we ignore the random shifts in
this discussion and assume all band sets are aligned on the origin.

Let us again write step as an irreducible fraction N
M . From one

level to the next, a period occurs in the split pattern everyM bands,
as borders across both levels align: this repeats the pattern at the
origin. However, this is the case for two consecutive levels. When
we consider more levels, the period before all borders align grows.
In fact, for k levels the period becomesMk . Indeed, given Q bands

at the base level, the number of bands at level k is Q
(
N
M

)k
. This

number will only be an integer value for Q = Mk , sinceM and N
are coprime (irreducible fraction).
Interpolation profile All our results use a simple linear interpolation.
However, using a different profile (e.g. GLSL smoothstep) leads to
different (smoother) band shapes in the opening region. In addition,
the interpolation profile can control how ’quickly’ new bands open
to their full width.

4 PSEUDO-CODE
The detailed pseudo-code is given next. We also refer the reader to
our shadertoy implementations (see Table 1).

I3D ’20, May 5–7, 2020, San Francisco, CA, USA J. Etienne, S. Lefebvre, Jimmy Etienne, and Sylvain Lefebvre

5 RESULTS
Our technique opens multiple possibilities to produce band and
curve patterns. In this section we first show some basic patterns
obtained directly from our technique, and discuss the effect of
parameters in Section 5.1. We then discuss how to use various prop-
erties to produce more elaborate animated patterns in Section 5.2.
Finally, we discuss how trajectory extraction can be used to produce
graded fill patterns for additive manufacturing in Section 5.3.

5.1 Bands and curves
Figure 6 shows two complex cases of fields u and d with bands pro-
duced for various values of step. The left most is step = 2 while the
others are showing decreasing values (step = 17

13 , step =
79
71). The

parts below the dashed lines are showing the interpolation regions
(discretization of d). Note how as step decreases, the discretization
of d refines, producing a better match to the input field. For small
values of step, the distribution of splits becomes less regular but
the bands are also more ’jaggy’. A suitable tradeoff is easily found
by interactive manipulation.

Figure 1 shows three drawing modes enabled by our approach.
The first is to extract a network of splitting/merging curves from the
boundaries of the band regions. Here, the band ids allow to robustly
decide which pixel edges belong to a curve, and also provide an ID
for each extracted trajectory (the pair of band IDs on either side).
The second is to draw the middle lines of fully deployed bands (see
test lines 44–47) to obtain evenly spaces streamlines. The third is
to draw bands directly, here with a subtle shadowing effect. Much
more is possible in terms of patterning, as we will discuss next.

5.2 Animated patterns
Note: These effects are best seen animated. We provide the shadertoy
links at the end of this section (Table 1).

We provide examples of animated effects, exploiting several
unique possibilities. We generate the effects by having procedural
fields u and d dynamically drive one or multiple band patterns. The
u field is obtained analytically (sum of sines, radial basis functions
and noise), while d is often computed from the gradient of u to
compensate for distortion. We then use band IDs as well as the
ability to compute a local parameterization (distance of lookup
point to enclosing band left border) to achieve various effects.

Simple yet interesting effects are obtained by coloring the bands
in a stretching field with distortion compensation, see for instance
flow bands. Driving the band density also produces interesting
results, such as in scaling bands where the band density is increased
in a moving circular area. The band flag effect combines two sets
of adapting bands, with a coloring that retains consistency along
each direction, producing a typical towel coloring scheme.

We also explored tearing animations, where we discard all lines
appearing in between the main parent lines. This is easily done by
checking the least significant bits of the band IDs. This produces
an effect where the main bands maintain their width, while spaces
appear in between. The parameter step then controls how and
whether the bands form groups under stretch. The shaders tear
twist, lens, light claws, textile and net are obtained in this manner.
Instead of discarding, we can also change the coloring of the bands,
producing effects such as the hairdryer shader. Here, new darker
hair strands appear as the motion expands the textured area.

The combination of two sets of adapting bands and tearing leads
to effect producing squares, for instance in lens and light claws.
The lens effect is a lens where instead of zooming the squares
maintain their size and the bands tear to accommodate for the
distortion. Note the uneven split pattern thanks to a choice of
step < 2. The light claws effect drives a distortion field from sound,
producing dynamically splitting bands along lines in two directions,
disconnecting squares.

Procedural band patterns I3D ’20, May 5–7, 2020, San Francisco, CA, USA

(a) Radial

(b) Swirl

Figure 6: Two results using complex u and d fields, using step = 2, 17
13 ,

79
71 . Left: u field in blue-white, d in shades of gray. Below

dashed line: discretization steps of d overlaid, the more steps the more precise is the fit between the actual and the target
number of bands.

Table 1: Links to anonymized shaders.

Flow bands https://www.shadertoy.com/view/wlt3DM
Scaling bands https://www.shadertoy.com/view/tlt3DM
Tear twist https://www.shadertoy.com/view/WttGD8
Band flag https://www.shadertoy.com/view/3ttGD8
Textile https://www.shadertoy.com/view/wl3GDH
Net https://www.shadertoy.com/view/3ldGD8
Lens https://www.shadertoy.com/view/WltGD8
Light claws https://www.shadertoy.com/view/tt33W7
Hairdryer https://www.shadertoy.com/view/3tdGW8

We can also weave two orthogonal sets of bands to produce
textiles, for instance in net and textile. We determine which band
is front at crossings using binary checks on their IDs. We also
the ability to compute a local parameterization within the bands
width to make then thinner. Note how under distortion the weaving
expands and slides while the bands maintain their width, revealing
the background.

All these shaders are dynamic and real time – thus they would
work in a rendering context, for instance to adapt a texture to
stretch. As our technique only requires a single input coordinate
(u), it can also be applied to solids and implicit surfaces.

5.3 Infill patterns for 3D printing
We use our technique to produce fill patterns inspired from so-
called cubic infills [Lefebvre 2015; Wu et al. 2016]. We extract the
trajectories as the contours between pixels associated with different
band IDs. This process is fast and robust – akin to extracting the
contours of a white region in a binary image. The key advantage
is that our technique allows for spatial grading of density while
producing very continuous paths. This has been implemented (and

Figure 7: 3D printed part revealing an infill pattern obtained
from our technique. Note the very progressive change in
density and the curve network extracted at each layer.

shipping to users) in our slicer [Sylvain Lefebvre 2017] for more
than two years, and was in fact the initial motivation behind this
work.

There are other contexts in additive manufacturing where iso-
lines of equal spacing are desirable, for instance to generate fill
patterns following optimized fields [Steuben et al. 2016] or for
curved 3D printing [Ezair et al. 2018]. We believe our approach to
be especially promising to decompose a 3D shape into solid slabs,
before filling them with curved paths (using contouring and zigzag
fill within the extracted curved slab [Chakraborty et al. 2008]).

6 LIMITATIONS
Our technique has a number of limitations, that can be problematic
depending on the intended use.

In areas where the density field d varies quickly, bands will
appear distorted. This is for instance visible in Figure 6, bottom
right, in areas of high curvature. It would be interesting to apply
filtering to d such as to limit such defects.

Intermediate density levels always exhibit partially deployed
bands. A consequence is that, while the number of bands remains
correct, their spacing may look uneven in areas of constant scale

https://www.shadertoy.com/view/wlt3DM
https://www.shadertoy.com/view/tlt3DM
https://www.shadertoy.com/view/WttGD8
https://www.shadertoy.com/view/3ttGD8
https://www.shadertoy.com/view/wl3GDH
https://www.shadertoy.com/view/3ldGD8
https://www.shadertoy.com/view/WltGD8
https://www.shadertoy.com/view/tt33W7
https://www.shadertoy.com/view/3tdGW8

I3D ’20, May 5–7, 2020, San Francisco, CA, USA J. Etienne, S. Lefebvre, Jimmy Etienne, and Sylvain Lefebvre

(linear u and constant d). This situation may be minimized – albeit
not entirely resolved – by modifying the interpolation profile to
quickly open/close bands (see Section 3).

In general we believe it would be desirable to randomize the
locations where the band splits occur. While our irregular splitting
strategy (step < 2) reduces split alignments, they remain located
along isolines of d and not randomly distributed.

The numbering scheme (getGlobalID) relies on integers and
might run out of numbers, being unable to distinguish between
bands deep in the hierarchy. Using wider integers is not too diffi-
cult in our context as the only operation is to set bits in the IDs.
Nevertheless infinite zooming would require recycling IDs.

7 CONCLUSION
We propose a fully procedural technique to generate band patterns.
It is implemented as a fast pixel shader that interactively reacts to
changes to the control fields. We believe our technique to be useful
for a wide range of applications, such as visualization, texturing,
but also for producing fill patterns in additive manufacturing.

Our technique extends trivially to 3D, for instance allowing to
decompose a shape into solid slabs – the equivalent of our bands
– while retaining all the procedural and adaptive capabilities of
our technique. We envision direct applications in modeling of solid
properties and process planing for additive manufacturing.

8 ACKNOWLEDGEMENTS
The work was partly supported by Région Grand-Est, Lorraine
Université d’Excellence (ANR-15-IDEX-04-LUE) and CNRS. We
thank Cédric Zanni for proof reading.

REFERENCES
Debapriya Chakraborty, B. Aneesh Reddy, and A. Roy Choudhury. 2008. Extruder

Path Generation for Curved Layer Fused Deposition Modeling. Comput. Aided Des.
40, 2 (2008), 235–243.

Gershon Elber and Elaine Cohen. 1996. Adaptive Isocurve-based Rendering for
Freeform Surfaces. ACM Transactions on Graphics 15, 3 (1996), 249–263.

Ben Ezair, Saul Fuhrmann, and Gershon Elber. 2018. Volumetric covering print-paths
for additive manufacturing of 3D models. Computer-Aided Design 100 (2018), 1–13.

Jeroen P Groen, Jun Wu, and Ole Sigmund. 2019. Homogenization-based stiffness opti-
mization and projection of 2D coated structures with orthotropic infill. Computer
Methods in Applied Mechanics and Engineering 349 (2019), 722–742.

Aaron Hertzmann and Denis Zorin. 2000. Illustrating Smooth Surfaces. In Proceedings
of the 27th Annual Conference on Computer Graphics and Interactive Techniques
(ACM SIGGRAPH). 517–526.

Bruno Jobard andWilfrid Lefer. 1997. Creating Evenly-Spaced Streamlines of Arbitrary
Density. In Visualization in Scientific Computing ’97. Springer Vienna, 43–55.

Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2015. Stripe Patterns
on Surfaces. ACM Transactions on Graphics 34 (2015). Issue 4.

A. Lagae, S. Lefebvre, R. Cook, T. DeRose, G. Drettakis, D.S. Ebert, J.P. Lewis, K. Perlin,
and M. Zwicker. 2010. A Survey of Procedural Noise Functions. Computer Graphics
Forum (2010). https://doi.org/10.1111/j.1467-8659.2010.01827.x

Sylvain Lefebvre. 2015. 3d infilling: faster, stronger, simpler. http://sylefeb.blogspot.
fr/2015/07/3dprint-3d-infilling-faster-stronger.html.

A. Mebarki, P. Alliez, and O. Devillers. 2005. Farthest point seeding for efficient
placement of streamlines. In IEEE Visualization, 2005. 479–486.

Benjamin Spencer, Robert S. Laramee, Guoning Chen, and Eugene Zhang. 2009. Evenly
Spaced Streamlines for Surfaces: An Image-Based Approach. Computer Graphics
Forum 28, 6 (2009), 1618–1631.

John C. Steuben, Athanasios P. Iliopoulos, and John G. Michopoulos. 2016. Implicit
slicing for functionally tailored additive manufacturing. Computer-Aided Design 77
(2016), 107 – 119.

MFX Sylvain Lefebvre. 2017. IceSL, a slicing software. (2017).
Jun Wu, Charlie CL Wang, Xiaoting Zhang, and Rüdiger Westermann. 2016. Self-

supporting rhombic infill structures for additive manufacturing. Computer-Aided
Design 80 (2016), 32–42.

https://doi.org/10.1111/j.1467-8659.2010.01827.x
http://sylefeb.blogspot.fr/2015/07/3dprint-3d-infilling-faster-stronger.html
http://sylefeb.blogspot.fr/2015/07/3dprint-3d-infilling-faster-stronger.html

Procedural band patterns I3D ’20, May 5–7, 2020, San Francisco, CA, USA

Figure 8: Various animated effects. Each pair is showing the effect with our technique with and without enabling the field d
(without the bands do not adapt). Please refer to text for details and Table 1 for links to shadertoy implementations.

	Abstract
	1 Introduction
	2 Method
	2.1 Overview
	2.2 Procedural bands

	3 Controls and parameters
	4 Pseudo-code
	5 Results
	5.1 Bands and curves
	5.2 Animated patterns
	5.3 Infill patterns for 3D printing

	6 Limitations
	7 Conclusion
	8 ACKNOWLEDGEMENTS
	References

