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Abstract—In this paper, we present a bill-type document
generator capable of supplying on demand all the mass of
documents that a learning system needs. The lack of ad-
ministrative documents has long been a handicap because of
the confidentiality of this type of document. In addition, this
generator allowed us to solve the problem of annotations since
they are done automatically during the generation and put
directly in XML-GEDI form. Then, to show the interest of the
generator, we proposed a system of invoice recognition based
on graph convolutional neural network. The experiments took
place in excellent conditions since we had all the possibilities
to vary the classes, the samples in the classes, and their
parameters.

Keywords-Invoice generator, GEDI format, Graph Convolu-
tional Neural Network

I. INTRODUCTION

In order to extract named entities from scanned invoice’s
documents, we are using an Artificial Intelligence (AI) sys-
tem that has been trained on annotated invoices taken from
real life. We faced a common problem in AI training due
to the fact that our invoices corpora was not big enough to
produce relevant results using deep learning neural network.
We realized that building a well annotated corpora is very
costly, generates intellectual property problems and is not
easy to customize when you want to add or modify some
annotations. We decided to built a software to automate the
generation of a custom corpora, based on an invoice data
model made of real data. Our methodology could be used for
any other data set that need an automated annotation based
ground truth. The generated data (images and annotations)
can be used solely or mixed with real life data in order to
improve an existing dataset, especially for AI training.

This generation of on-demand documents goes with the
idea of wanting to process streaming data without class
limits. However, most existing systems like Intellix [4],
ITESOFT [5], [6], smartFIX [7] and others [8], [9] create
specific models limited to the data they have. Due to their de-
pendence on seeing the template beforehand, these systems
cannot accurately extract information from unseen layouts
of invoices. CloudScan [10] is perhaps the only model so
far which can handle unseen layout invoices quite well. It
is based on classification of word n-grams into entities of
interest instead of mapping of words to fields.

We propose a generic approach to deal with all the entities
in the invoice in or outside table. We model the whole
invoice document as a document graph of words, then we
classify each word in the document into classes of interest
to extract through a graph convolutional network (GCN) and
finally we group the words of same classes together to obtain
the final entities. The power of our system lies in the graph
modeling and GCN, which takes into account the features of
its neighboring words and their inter-relationships to decide
the class of a word [1].

The paper is organized as follows: Section II presents the
generator and its different possibilities. Section III shows the
invoice analysis approach. Finally, we give some conclusion
remarks in IV.

II. INVOICE GENERATION

By analyzing real invoices, determined that it was nearly
always composed of the same elements, some mandatory
or always present like: a Head zone containing Company
Informations, Client Informations, Invoice Numbers and
Dates; a central zone containing Products, Payment Infos
and some ID Numbers and a Footer zone containing various
informations but at least the Totals. Others elements are
optional or their position can vary a lot like: Company Logo,
some Company Informations like VAT Number, SIRET,
Expedition Type and Shipping Cost, etc.

In order to be able to produce any kind of invoice, we
first defined a model containing all possible invoice data (see
Figure 1). Model structure is critical for the accuracy of the
training and for the final usage. It must be fine grain enough
to ensure good annotation accuracy. We defined classes that
we want to extract or classify using the AI process. We
decided to use an object based model to define all the
components of an invoice. All those objects are organized
in a tree where root node is the invoice itself.

All objects that compose the data tree have to provide a
generator for its own type. This generator can use several
kinds of data source: random generation, data source based
generation, set of values, set of regular expressions. Thus,
generation of an invoice data results in crawling the tree
to generate each node using its own generation implemen-
tation. Container nodes are responsible for propagating the



Figure 1: Invoice Model Schema.

generation to their children.

A. Context generation

For each invoice generation, some definitive choices are
made during tree generation and those choices have impact
on the rest of the generation: for example, the generation
language, currency or date format. As soon as the currency
is chosen it has to be taken into consideration for many
elements of the tree. To enforce this coherency across all
nodes of the invoice, we are using a dedicated structure, the
Generation Context, which is propagated to all nodes during
the tree generation. Some context choices can have impact
where it seems it should not: the choice of the company
logo can be directly linked with the country previously set
in the context avoiding inconsistency on logo slogan that are
not in the same language than the rest of the invoice. Thus,
the generators of some model nodes can be increased with
newly discovered context dependencies by adding heuristics
in this node generator based on context values.

B. Data generation strategies

The first strategy for generation is to use a set of
regular expressions to produce data. This works well
for invoice numbers or invoice dates. Those nodes
are using predefined regular expression based on real
life invoice data observation. Then, we use a library
(https://github.com/mifmif/Generex) that is able to randomly
generate any value in the whole regular expression domain
possibilities. The regular expressions can also be conditioned
with some generation context’s choices, some are dedicated
to specific language or country for example.

A second strategy for generation is to use real life open
databases. For example, addresses are randomly generated
using public base for all countries that we want to support.
This can create more realistic invoice using, for a Belgium
invoice, real Belgium addresses. We also use, for labels or
some textual parts of an invoice, predefined set of all values
that we already observed on real invoices. Those samples
are ordered by language and/or by country.

Another generation strategy is to include some pseudo
random in some heuristic choices, sometimes with a statis-

tical distribution of results. For example, the client’s billing
address is often the same than the client’s shipping address
so we used a generation proportionality of 80% the same
and 20% another adress. In the same way, command date,
shipping date and billing date are generated using some
heuristics that avoid a shipping date prior or too far of
the command date. We also use some heuristics for the
generation of the products included in the invoice: depending
on the product category, the product random quantity is not
the same (it is reasonably possible to buy 10 ink cartridge
but not to buy 10 microwaves).

C. Global generation process

The global generation process consists of fixing or ran-
domizing some context elements (country, language) and of
starting an iterative process to be able to generate as much
as invoice data we need.

The generation strategies as much as the data sources
(products, addresses, companies logos, etc.) and the regular
expressions for elements generation can be easily expended
and included in a new generation cycle by improving node
generators heuristics or data sources.

D. Graphical representation of the invoice model

Once the data model is generated, we can build a
graphical representation of that invoice. We decided to
generate invoices in PDF that we can export in an image
format (TIFF or JPG). The graphical generation consists
in drawing all pieces of invoice data model onto a single
page using a dedicated Layout. The layout is responsible
of placing model data on the sheet but also to produce
the annotations corresponding to the graphical position
and size of all elements; image is generated in a PDF
flow and annotations in an XML flow (in the GEDI for-
mat (https://sourceforge.net/projects/gedigroundtruth/)). As
for the invoice model, layout elements are built in a tree
structure.

E. Graphical elements generation

We created a set of graphical components with basic
behavior of typical graphical toolkits but also with the
annotation process built-in. We started by implementing
the smallest object of our kit: the Text Box. This basic
component consist of a part of text which can be drawn
into the picture. More complexity is added to this simple
behavior like, the desired font, the padding, the box size
(allowing to split text if end of line is reached), color,
background color, line height. More than only graphical
consideration, we give also annotation consideration like the
entity name that corresponds to this text.

F. Annotation generation

The annotation generation consists of creating an XML
element based on GEDI schema. The annotation is included



Figure 2: Annotation generation schema.

in an XML stream and include position and box size of the
text zone but also the text itself and the annotation class
that we want to learn. Layout is also responsible, by using
invoice model data, to fix annotation classes.

G. Layout for invoices

In order to produce invoices with complex layouts, we
have developed graphical objects that acts as containers
for Text Box. Thus, we have Horizontal Container, Vertical
Container, Table Row, etc. We also defined some specific
elements for graphical purpose only like Graphic Lines,
Images, Borders, etc.

H. Fixed based layout

Fixed based layout are a simple static based combination
of existing elements to produce a “clone” of a real invoice
and to use it for the generation of many invoices with various
data. This allows to have a ground truth very close to the
reality but with a bigger number of invoices. Nevertheless,
we need to have many existing samples in order to have a
varied ground truth and layout integration can be costly in
this case.

I. Generic layout

We decided also to work on generic layout by defining
parts of an invoice that could produce random behavior.
We defined Global Zones (Header, Product Table, Product
Footer, Global Footer). Header Zone will be divided in
four regions allowing to place randomly global components:
Company Information, Order information, Billing Address,
Shipping Address. The rendering of all components and
regions will be randomized using specific graphical repre-
sentation (background color, font size, border, etc.). This will
allow to have mixed rendering layout based on a rich graph-
ical library. The Table 3 shows the different element location
and neighbor relationships, while the Table I highlights
the elements appearing in the different blocks, indicating
whether they are mandatory or optional relationships

The Figure 4 shows an example of generated invoices, one
from actual invoice (a) and one generated randomly (b).

Figure 3: Main table elements and their location and inter-
relationships.

Figure 4: Examples of generated invoices: (a) from actual
invoice by varying the information inside the blocks, and (b)
randomly generated.

III. INVOICE ANALYSIS

The global system has been published in [1]. We are going
to just summarize here the main idea of the system. The
image is run through an OCR engine (Tesseract). From this
output, we only take word zones and ignore all other zones
such as graphic line, area, image, etc., because the higher
up zones are composed of word zones and accumulate more
ocr segmentation errors. Then, features are calculated for
each word. These words are used to model the complete
document as a graph with words as nodes and edges depict-
ing neighborhood relationships. This document graph is fed
to a graph node classifier which classifies each word into
classes of interest. Finally words belonging to same classes
are grouped together following left to right ordering to form
entities.

Text feature calculation is basically converting the word
text into a meaningful vector representation. For this task,
we use BPEmb [13]. We obtain a 317 dimensional feature
vector of every word in the document. The last 17 elements
are reserved for the existence of keywords like date, zipcode,
city, etc.

The whole document is modeled as a graph with words



Table I: Intra-element constraints

Type Delivery / Billing Invoice information Order Information Product table Summary table / totals
Last name / First Name Company Name Invoice number Order number Quantity

Mandatory No. and street No. and street Date Name
ZipCode, City name ZipCode, City name Unit Price excl tax

Total Price excl tax
Country Country Location Order date Product reference
Tel number Tel number Client number Client number Unit price incl tax
@mail Fax N° Company Name Payment mode Discount

Optional @mail Payment Total Final unit price incl tax
@site Sending date Eco participation

Sending mode VAT
Parcel number

as nodes and edges denoting nearest neighbors of a word in
4 major directions. This is different from, for example, the
system of ITESOFT [5] using a star graph for each important
word. For modeling, we were inspired by the system of
[14] who used a Graph Convolutional Networks (GCN). We
used more than 3000 images generated by our generator,
by selecting those which seemed to us quite representative
of the sought variations. In current system, we scan each
image in 300 dpi. The invoices are annotated at word level
by providing each word a ground truth class.

IV. CONCLUSION

In this paper, we presented two ways to automatically
generate invoices, inspired by actual invoices to which we
applied random variations of a few elements. The other
is completely free, by simply considering the elements
that must appear in the invoice, but by introducing inter
and intra-element relations. The organization scheme of the
elements in the page was complex because the constraints
are numerous. We opted for reasonable constraints leading to
the production of fairly realistic bills. This work has allowed
us to generate enough well annotated invoice samples to
allow learning and recognition in good conditions.
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