
HAL Id: hal-02464180
https://hal.inria.fr/hal-02464180

Submitted on 3 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Use of Artificial Malicious Patterns for Android
Malware Detection

Manel Jerbi, Zaineb Chelly Dagdia, Slim Bechikh, Mohamed Makhlouf,
Lamjed Said

To cite this version:
Manel Jerbi, Zaineb Chelly Dagdia, Slim Bechikh, Mohamed Makhlouf, Lamjed Said. On the Use of
Artificial Malicious Patterns for Android Malware Detection. Computers and Security, Elsevier, In
press, 92, �10.1016/j.cose.2020.101743�. �hal-02464180�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/362234685?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-02464180
https://hal.archives-ouvertes.fr


On the Use of Artificial Malicious Patterns for
Android Malware Detection

Manel Jerbi1, Zaineb Chelly Dagdia23, Slim Bechikh1, Mohamed Makhlouf4,
and Lamjed Ben Said1

1 SMART Lab, University of Tunis, ISG-Campus, Tunisia,
manel.jerbi@gmail.com, slim.bechikh@fsegn.rnu.tn, lamjed.bensaid@isg.rnu.tn

2 Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France.
3 LARODEC, Institut Supérieur de Gestion de Tunis, Tunis, Tunisia,

zaineb.chelly-dagdia@inria.fr, chelly.zaineb@gmail.com
4 Kedge Business School, Talence, France.

mohamed.makhlouf@kedgebs.com

Abstract. Malware programs currently represent the most serious threat
to computer information systems. Despite the performed efforts of re-
searchers in this field, detection tools still have limitations for one main
reason. Actually, malware developers usually use obfuscation techniques
consisting in a set of transformations that make the code and/or its ex-
ecution difficult to analyze by hindering both manual and automated
inspections. These techniques allow the malware to escape the detection
tools, and hence to be seen as a benign program. To solve the obfuscation
issue, many researchers have proposed to extract frequent Application
Programming Interface (API) call sequences from previously encountered
malware programs using pattern mining techniques and hence, build a
base of fraudulent behaviors. Based on this process, it is worth mention-
ing that the performance of the detection process heavily depends on the
base of examples of malware behaviors; also called malware patterns. In
order to deal with this shortcoming, a dynamic detection method called
Artificial Malware-based Detection (AMD) is proposed in this paper.
AMD makes use of not only extracted malware patterns but also artifi-
cially generated ones. The artificial malware patterns are generated using
an evolutionary (genetic) algorithm. The latter evolves a population of
API call sequences with the aim to find new malware behaviors following
a set of well-defined evolution rules. The artificial fraudulent behaviors
are subsequently inserted into the base of examples in order to enrich it
with unseen malware patterns. The main motivation behind the proposed
AMD approach is to diversify the base of malware examples in order to
maximize the detection rate. AMD has been tested on different Android
malware data sets and compared against recent prominent works using
commonly employed performance metrics. The performance analysis of
the obtained results shows the merits of our AMD novel approach.

Keywords: Malware detection · API call sequences · Articial malicious
patterns · Evolutionary algorithm · Android.



2 Manel Jerbi et al.

1 Introduction

The adoption rate of mobile devices continues to soar, with Android leading the
way. This open-source operating system that is led by Google is now found on
more than half of all smartphones. In fact, it was found that 85.2%, or 1.276
billion of smartphones that are shipped in 2017 were powered by Android5. This
massive user base has caught the attention of cybercriminals who have begun to
double down on their efforts to illegally obtain personal information from An-
droid owners. For instance, it has been witnessed that many Android applications
are found malwares defected in several app stores [58]. These facts and circum-
stances led to the necessity to call for efficient techniques capable of detecting
malwares. In this concern, several malware detection methods were proposed in
literature, and these can be categorized into three main heads; namely the static
approaches, the dynamic approaches, and the hybrid approaches.

Static detection approaches are the most common ones used by antiviruses.
Technically, these techniques examine the binary code of the targeted file, an-
alyze all possible execution paths, and identify the malicious code without any
execution. However, analyzing binary codes turns out to be difficult nowadays
because modern compilers and runtime libraries have introduced significant com-
plexities to these codes. This has negatively affected the capabilities of binary
analysis toolkits to analyze binary codes, and as a consequent inaccurate anal-
ysis can be reported. Indeed, static analysis can be easily bypassed by various
obfuscation techniques such as polymorphism, encryption or packing as these
become more and more sophisticated. In addition, the fact that static analysis
relies on a prebuilt signature database makes it hard to detect new unknown
malwares until the signatures are updated. Besides, some execution paths can
be only explored after execution; a task that static analysis cannot perform.

To cover the mentioned deficiencies, dynamic approaches were introduced
in [54] [41]. In contrast to static approaches, dynamic approaches consider the
behavior of malware during runtime. Such approaches execute the malicious file
and trace its behavior. More precisely, these approaches detect malwares by
analyzing the similarity between the behavior of the new and the known ones
based on Application Programming Interface (API) calls. Those approaches act
almost actively against polymorphic malwares because obfuscation techniques
only change the static signature of these and do not affect their behavior. Despite
of the advantages of these techniques, they suffer from a greedy preprocessing
phase during runtime and monitoring which lowers the system’s performance.

Trying to come up with a better class for malware detection techniques,
hybrid approaches were proposed in [46]. Those approaches mainly combine both
static and dynamic approaches and work on two phases where they use both
dynamic and static features.

This paper mainly focuses on dynamic approaches for malware detection. Ac-
cordingly, in this work, a novel dynamic analysis approach for malware detection—

5 http://www.zdnet.fr/actualites/chiffres-cles-les-os-pour-smartphones-39790245.

htm

http://www.zdnet.fr/actualites/chiffres-cles-les-os-pour-smartphones-39790245.htm
http://www.zdnet.fr/actualites/chiffres-cles-les-os-pour-smartphones-39790245.htm


On the Use of Artificial Malicious Patterns for Android Malware Detection 3

called Artificial Malware-based Detection (AMD)— is proposed. AMD is specif-
ically developed to cope with obfuscation techniques. In this study, malware is
analyzed based on frequency analysis of API call sequences where this infor-
mation is collected dynamically. Then, a malicious pattern set and a benign
pattern set are built both relying on vectors extracted from the collected data.
The idea behind the use of frequent API call sequences is that it represents an
inevitable characteristic of malicious computer programs; especially obfuscated
ones. Technically, the high frequency of API call sequences can be the result
of both conditional iterations and recursive subroutines used by a programmer.
Additionally, repetitive actions on data sequences are used by malware writers,
especially well-known loops performing infection, encryption, and decryption.
Knowing that the frequent API call sequences have a greater potential for hav-
ing useful information and semantics about computer programs, in comparison
to other sequence based substructures, this paper includes experiments on how
they can help to detect obfuscated malwares.

In this research, the proposed AMD approach takes the patterns (i.e., API
call sequences) found in an executable file to create two behavioral models. The
first model reflects the set of malicious applications while the second represents
the benign applications. These patterns that consist of groups of frequent API
call sequences that use to appear together in the same applications are compared
against the list of patterns of a new application, where the most similar behavior
will decide its nature. To overcome the fact that the performance of the detection
process will heavily depend on the base of examples of malware behaviors, a
hybrid detection method that makes use of not only extracted malware patterns
but also artificially generated ones is proposed. The artificial malware patterns
are generated using an evolutionary Genetic Algorithm (GA) [13] which evolves
a population of API call sequences. The main idea behind this is to find new
malicious behaviors in order to insert them into the base of examples. This will
enrich the base of examples with unseen malware patterns. The main motivation
behind the proposed AMD approach is to diversify the base of malware examples,
and subsequently improve the detection rate. The main contributions of the
current research work are the following:

1. The evolutionary generation of artificial malicious patterns, using a GA, and
their use in combination with extracted existing patterns for malware detec-
tion. This is to guarantee a fairly varied database of malicious behaviours.

2. The demonstration of the benefits of using artificial malicious patterns in
maximizing accuracy and minimizing false alarms.

3. The illustration of the outperformance of the proposed AMD approach when
compared against several state-of-the-art detection methods.

The rest of this paper is organized as follows: Section 2 presents a detailed de-
scription of the related work. Section 3 describes the proposed Artificial Malware-
based Detection (AMD) approach. The experimental setup is introduced in Sec-
tion 4. The results of the performance analysis are given in Section 5, and the
conclusion is given in Section 6.



4 Manel Jerbi et al.

2 Related Work on Evolutionary Malware Detection

In this section, some background information is provided about the different
types of evolutionary malware detection techniques. Two major approaches of
malware detection using evolutionary approaches are revised; namely the evolu-
tionary approaches for malware classification and the evolutionary approaches
for pattern generation. Malware classification is the process of classifying mal-
ware into different “known” classes. The main characteristics of these techniques
are their efficiencies in terms of classifying malware into different classes. How-
ever, due to the existence of various intrusion detection techniques such as
code packing, anti-debugging, control-flow and entry point obfuscation, these
approaches can be in some cases inefficient [28]. These limitations led to intro-
duce a system that tries to deal with unknown malware classes. Compared to
the classification techniques, malware generation techniques try to come up with
new variants of malware and this can immunize the analysis process from many
obfuscation techniques and even from self-modifying programs. It can also be
reported that some other previous works revise three major approaches of mal-
ware detection which are proposed in literature; namely the static, the dynamic
and the hybrid analysis techniques. These techniques are discussed in Appendix
A.

2.1 Evolutionary approaches for malware classification

Malware classification approaches can be categorized into two heads. The first
category refers to the non-evolutionary based classification approaches, where
works such as [31], [32], [42], [43], [56] can be mentioned, while the second cate-
gory refers to the branch of the evolutionary based classification approaches like
in [1]. In this paper, our main focus relies on the evolutionary based approaches.
Among the methods proposed within the second category, eXtended Classifier
System (XCS) [55] can be cited and which is a Michigan-style classifier that de-
rives a set of rules based on accuracy. In the XCS’s training phase, the input data
is used to generate the initial rules. Afterwards, these initial rules are evolved
into new rules using a niche genetic algorithm reserved in the population. The
fitness of the individual (or rule) is determined based on the accuracy of each
rule. The predicted payoff values for all actions are saved in a prediction array.
Based on the prediction accuracy of the rules, some of them are also deleted
from the population. The evolution of accurate generalizations and accommo-
dation of real values makes XCS suitable to solve various real-world problems.
The sUpervised Classifier System (UCS) [6] is another Michigan style classi-
fier and is based on accuracy. UCS inherits the same principle and structure of
XCS where an initial population of rules is derived from training data. How-
ever, it differs from XCS in the following aspects: (1) it is based on a supervised
learning scheme that computes fitness instead of reinforcement, (2) the GA is
applied to correct the rule-set for updating its population and (3) it does not
use a prediction array. The on-line learning and evolving abilities of UCS make
it useful in efficiently solving different real-world problems. In another work,



On the Use of Artificial Malicious Patterns for Android Malware Detection 5

Bacardit et al. [5] developed a Genetic clASSIfier SysTem (GAssist) which is a
Pittsburgh style classifier based on the approach where each individual in the
population depicts a complete solution to the classification problem. It uses a
GA to evolve the rule sets of the population and exploits a fitness function to get
a good balance between complexity and accuracy of the generated rules. GAssist
also includes incremental learning with the alternating strata (ILAS) windowing
approach, which is used to improve the generalization of the rule sets, as well
as the adaptive discretization intervals (ADI) rule representation. In the same
category, the work of Gonzblez et al. [19] can be mentioned; which is named
Structural Learning Algorithm in Vague Environment (SLAVE). SLAVE is a
genetic learning algorithm based on the use of fuzzy logic concepts and the ge-
netic iterative approach. The algorithm elects and gains knowledge via a single
fuzzy rule in each iteration. This results in the pruning of the search space for
potential solutions. After that, a class is fixed and the best antecedent for this
class is selected. Finally, a set of repeated iterations generates a full rule-set for
the classification of instances. Here, the fitness of rules is computed by using
completeness and consistency of the rules. The algorithm has been effectively
used in several real-world applications and shows promising results [38].

2.2 Evolutionary approaches for pattern generation

Different works in literature considered using extracted static features to gener-
ate malware. By doing so, several researcher works try to come up with a new
idea to detect malware without being tied to a static base of malware signatures.
In this context, Aydogan et al. [4] evolved new malwares, specifically variants of
known malwares, by using genetic programming (GP) in order to evaluate the
performance of existing static analysis tools. Also, Zolkipli et al. [59] proposed
a technique that combines a signature-based technique and the evolutionary ge-
netic algorithm. The developed technique has three main modules which are:
signature-based detection, genetic algorithm-based detection and signature gen-
erator. The signature generator uses signatures which are defined as the string
patterns which are unique to identify and characterize the malware. In another
work proposed by Edge et al. [15], an artificial immune system genetic algo-
rithm (REALGO) was developed based on the human immune system’s use of
reverse transcription ribonucleic acid (RNA). The REALGO algorithm combines
known information from past viruses with a type of prediction for future viruses.
The authors generate antibodies (new virus signatures) from antigens (string of
known virus signatures). Also, Noreen et al. [33] proposed a framework based on
the notion of evolution in viruses on a well-known virus family, called “Bagle”. In
[33], features are extracted based on the assembly code and evolved using GAs.
The generated virus files are afterwards tested using a commercial antivirus.
Kayacık et al. [26] proposed a static anomaly based approach to detect malware.
This work focuses on the vulnerability testing of host-based anomaly detectors
by generating evasion attacks. In a typical evasion attack, the attacker aims to
alter a generic attack template —the core of an attack— so that the evasion at-
tack mimics normal behavior to evade detection. Authors in [26] mainly focused



6 Manel Jerbi et al.

on generating malware, specifically buffer overflow attacks, and not on detecting
them. Already developed detectors were used to evaluate the generated attacks.

3 Proposed Approach: Artificial Malware-based
Detection

In this section, the proposed Artificial Malware-based Detection (AMD) solution
is presented. First, a general description of the proposed model is given, followed
by a detailed description of the approach by describing its different phases.

3.1 Overview

Previous works in the academic security research community have studied the
malware detection problem extensively. The proposed methods mainly achieve
high reported detection performance on predefined data sets. Some of them also
report reasonably fast prediction times. However, most of them are less suit-
able for real-world deployment because requirements for malware detection need
to be independent from the provided base of examples of malware behaviors.
Several important requirements for deploying malware detection systems in the
real-world need to be taken care of. One such requirement is that deployed ap-
proaches should be tested against a stream of continuously evolving data. Several
state-of-the-art techniques have proposed to extract frequent API call sequences
from encountered malware programs using pattern mining techniques. These
sequences build a base of fraudulent behaviors. Afterwards, API call sequences
can be extracted from any program and based on these, the considered program
behavior can be judged to be more similar to malware behaviors or benign-ware
ones. Figure 1a shows the main steps followed by [47] which is a recent represen-
tative work of the state-of-the-art malware detection methods. These steps are
also almost the same steps used in previous works in literature which are based
on the use of API call sequences to detect malware. The main remark that can
be extracted from such detection techniques is that the efficiency of malware
detection is very dependent on the base of examples of malware behaviors. More
precisely, the provided or collected base of examples is static and therefore lacks
diversity, which may negatively impact the detection rate.

To deal with this issue, in this paper, an evolutionary based solution—called
Artificial Malware-based Detection (AMD)— is proposed and that is capable to
overcome the problem of lack of diversity where the detection ability becomes
less dependent on the base of examples of malware behaviors. Differently to the
works presented in [4], [15], [26], [33], AMD does not evolve static signatures
of malware. It diversifies the base of examples in an automatic way and this is
achieved via the development of an automatic generation technique of malicious
patterns; using a Genetic Algorithm (GA). This presents our main contribution
in comparison to the state-of-the-art methods. The generated patterns will be
injected into the collected malware base. More precisely, after extracting the



On the Use of Artificial Malicious Patterns for Android Malware Detection 7

(a) Tong et al.’s detection procedure structure [47]

(b) AMD worflow structure

Fig. 1: AMD’s added value compared to Tong et al.’s approach [47] (The key
component of our AMD approach is highlighted with the red rectangle)

frequent malicious sequences of API calls from the database of collected exam-
ples of malware behaviors, these will be fed to a GA that will reproduce a final
population of optimized malicious patterns quite similar but different from the
provided sequences. Figure 1b shows the main steps of the proposed AMD ap-



8 Manel Jerbi et al.

proach which allows a comparison to the representative work given in [47]. In
Figure 1b, the dotted red rectangle highlights the key part (in phase 2) reflecting
the main contribution of this research paper. As presented in Figure 1b AMD
is based on three main phases namely: (1) API call sequences extraction, (2)
patterns construction and (3) a detection phase where unknown new apps are
classified. The first phase (Section 3.2) is responsible mainly for extracting the
API call sequences with their corresponding depths from the collection of normal
and malicious applications to transmit them afterwards to the next phase. This
phase requires a preprocessing of the collected data (Android apps) which is
detailed in Appendix B. Through the second phase, the process of the patterns
construction is subdivided into three main sub-steps namely the extraction of
the frequent API call sequences, the generation of the artificial patterns and the
patterns gathering process. In the first sub-step (Section 3.3), the frequent sets
of API call sequences, referred to as frequent item sets (also called patterns),
are extracted with their corresponding depths using the Apriori algorithm [2],
which is one of the most used algorithms for pattern mining. Among these, a
selection is performed to keep a set of the unique patterns, i.e., all the common
patterns between the benign and the malicious are removed. Meanwhile, in the
second sub-step (Section 3.4), a database of artificially generated malware pat-
terns is created using the set of the selected patterns. This is achieved via the
use of a GA, aiming to diversify the base of malware examples with artificial
malicious patterns in order to maximize the detection rate. The third sub-step
(Section 3.5) will mainly gather the results of the two previous sub-steps and
thus, has two outputs: in one hand it generates a collection of benign patterns,
and on the other hand it offers an enriched collection of malicious patterns, i.e.,
the selected malware patterns and the artificially generated ones. The third and
the last phase (Section 3.6) invokes the detection model. Throughout this phase
and by using the collection of the generated patterns, malicious programs will
be detected among the new apps.

3.2 Extraction of API call sequences

In this section, the followed steps to extract API call sequences from the col-
lection of normal and malicious applications are described. The process is also
detailed via the use of a descriptive example.

From a given data collection comprising malware and benign executable sam-
ples, two data sources are filled. The first data source includes the samples of
benign sequences while the second includes the set of malware sequences. Each
data set is in the form of a set of API call sequences described with their iden-
tifiers (IDs) followed by their class labels indicating their nature, i.e., either
malicious or benign, then their different calling depths and finally a set of bi-
nary values indicating if an API call is current or not in the API call sequence.
Such sequence format is named an “item vector” which is related to the ex-
tracted API call sequences. A succession of these API calls induces an API call
sequence characterized by a specific depth referring to the number of API calls
within the sequence. To model the API call, the format of LIBSVM [12] is used



On the Use of Artificial Malicious Patterns for Android Malware Detection 9

generating an identifier (ID) for each API call and its according occurrence in
the API call sequence. Afterward, each API call sequence is assigned a specific
ID. An example on how to extract an API call sequence generating an item
vector is given in Table 1.

Table 1: Process of API call sequence extraction (Inspired by [12])
API call sequence (depth = 25) generateKey,loadClass,loadClass,loadClass,

loadClass,loadClass,loadClass,loadClass,
loadClass,loadClass,loadClass,
getDisplayMessageBody,getInstance,
getInstance,getInstance,getInstance,close,
close,close,close,close,doFinal,doFinal,
exit,doFinal

LIBSVM format:
Number representation (IDs) 4 6 6 6 6 6 6 6 6 6 6 5 8 8 8 8 16 16 16 16

3 3 21 3
Related occurrences 3:3 4:1 5:1 6:10 8:4 16:4 21:14

Class label Label: 1 (M: Malware)

Output of phase 1: Extracted API call
sequence (item vector) of ID: M1

Based on its nature, each of these extracted item vectors is stored in its related
data set; either to a “database of malicious sequences” (DBM) or to a “database
of benign sequences” (DBB).

3.3 Frequent item vectors extraction

In this section, the problem formulation required to apply the Apriori algorithm
is given first. Next, the extraction of the frequent API call sequences followed
by the selection step are detailed.

Problem formulation using the Apriori Algorithm As previously men-
tioned, to extract the sets of frequent item vectors (also referred to as patterns)
the Apriori algorithm [2] is used. However, the application of the algorithm is
not straightforward as some adjustments are needed. Hence, the adopted for-
malization is as follows:

In the Apriori algorithm, an item set is defined as a set of items which
corresponds in the AMD context to the set of the item vectors. Let us recall
that every executable is seen as a set of item vectors. Let B= {i1, . . . , im} be a
set of items; where m is the number of item vectors. B is called the item base



10 Manel Jerbi et al.

referring to the set of all the item vectors in all the executables. Any subset I ⊆ B
is called an item set. An item set may be any set of item vectors that can appear
in the same executable. Let T= {t1, . . . , tm} where ∀k, 1 6 k 6 m: tk ⊆ B. T
is a tuple of transactions over B. This tuple is called the transaction database.
The latter can list the sets of item vectors that appear in an executable. Every
transaction is an item set. The item base B may not be given explicitly, but only
implicitly as:

B =

n⋃
k=1

tk (1)

Let I ⊆ B be an item set and T a transaction database over B. In such a
case, the transaction t ∈ T covers the item set I, i.e., the item set I is contained
in a transaction t ∈ T if and only if I ⊆ t. I is characterized by its support ST (I)
which is defined as the number (or fraction) of transactions that encloses it and
is defined as:

ST (I) = |{t ∈ T ; I ∈ t}|/|T | (2)

In this problem formulation, it is required to specify two threshold values,
Smin = {Sb

min, S
m
min} one for the benign item sets and another one for the

malicious item sets. These threshold values will help to judge if an item set is
frequent or not. In fact, if ST (I) ≥ Smin then the item set I will be considered
as frequent. The set of all the obtained frequent item sets is defined as the set
FT (Smin) = I ⊆ B|ST (I) ≥ Smin.

The extraction process In this step, the frequent item sets are identified,
i.e., the frequent sets of item vectors. Frequent item sets are those that have a
support value greater than a threshold value Smin. Given a set of item sets that
are labeled either as malicious or as benign, frequent item sets are extracted
based on the Apriori algorithm formulization. The output is hence two data sets
of frequent item sets: a data set containing only malicious frequent sets of item
sets (DBMFIV) and a data set containing only benign frequent sets of item sets
(DBBFIV). Formally, these generated databases can be defined as follows:

Given a data set DBMFIV or DBBFIV of item sets, sets of item vectors, the
support of an item set is the number of occurrence of the item set in the whole
set of item sets. An item set is frequent if its support is not less than a given
support threshold Smin. The generated frequent item set is represented in the
form of a set of an identifier followed by a set of binary values where each value
takes 1 if the item set occurs in the frequent item set representation otherwise
0. In Table 2, an example of the frequent item set extraction process is given.



On the Use of Artificial Malicious Patterns for Android Malware Detection 11

Table 2: Example of a frequent item set extraction
API call sequence 1 process

API call sequence 1 (depth = 25) generateKey,loadClass,loadClass,loadClass,
loadClass,loadClass,loadClass,loadClass,
loadClass,loadClass,loadClass,
getDisplayMessageBody,getInstance,
getInstance,getInstance,getInstance,close,
close,close,close,close,doFinal,doFinal,
exit,doFinal

LIBSVM format:
Number representation 1 (IDs) 4 6 6 6 6 6 6 6 6 6 6 5 8 8 8 8 16 16 16 16

3 3 21 3
Related occurrences 3:3 4:1 5:1 6:10 8:4 16:4 21:1

Class label Label: 1(M : Malware)

Item vector 1

API call sequence 2 process

API call sequence 2 (depth = 25) generateKey,loadClass,loadClass,loadClass,
loadClass,loadClass,loadClass,loadClass,
loadClass,loadClass,loadClass,
startRecording,getDisplayMessageBody,
getInstance,getInstance,getInstance,
getInstance,close,lose,close,
cclose,stop,stop,exit,doFinal

LIBSVM format:
Number representation 2 (IDs) 4 6 6 6 6 6 6 6 6 6 6 7 2 16 16 16 16 19 19

21 3
Related occurrences 2:1 3:1 4:1 6:10 7:1 16:4 19:2 21:1

Class label Label: 1 (M : Malware)

Item vector 2

Frequent item set generation

Frequent item set of ID: MF1 Let us assume that ST (M1,M2) ≥ Sminm.
Output format: Hence, the set (M1, M2) is considered as frequent.

Frequent item sets selection In this step, the frequent item sets that are
more discriminative between both of the malicious frequent item sets and the
benign ones are selected. To do so, only the frequent item sets that are not



12 Manel Jerbi et al.

common between the malicious and the benign item sets are kept as indicated
in Equation 3 and Equation 4:

MPDB = DBMFIV −DBMFIV ∩DBBFIV (3)

BPDB = DBBFIV −DBMFIV ∩DBBFIV (4)

More precisely, the filtered malicious frequent item sets (malicious patterns) will
be stored in the Malicious Patterns Database (MPDB) and the Benign Patterns
Database (BPDB) will store the filtered benign patterns.

3.4 Artificial malicious patterns generation using GA

Let us recall that the main originality of this research is to generate a set of
artificial malicious patterns in order to maintain a fairly varied and renewed
database of malicious patterns. To detail this process, first of all, a general
overview highlighting the process of artificially generating the malicious patterns
is given. Then, a detailed description of the pattern’s encoding schema using the
genetic algorithm is presented.

General overview To generate an artificial set of malicious patterns, a ge-
netic algorithm is used. More precisely, the process of artificially generating the
malicious patterns goes through three main steps. These steps are given in Al-
gorithm 1. In the first step (Algorithm 1, line 1), a base of patterns is produced
with compositional characteristics similar to those of the real patterns stored in
the MPDB that comprises the malicious patterns. In the second step (Algorithm
1, line 2), each generated pattern is evaluated according to a fitness function us-
ing the set of the benign patterns stored in BPDB; this is to only keep the best
fitting patterns. The third step described via its sub-steps (Algorithm 1, lines
1-4) consists in replacing the initial set of patterns (i.e., the first generation of
patterns from line 1) with those selected as best fitting ones. The third step will
be repeated until a stopping criterion is reached. At this level, and as a result of
all the previous steps, a set of malicious patterns, called “artificial” set of ma-
licious patterns, is generated. These “artificial” malicious patterns best mimic
the behavior of the “real” malicious ones. Once the artificial set of malicious
patterns is generated, it will be stored in its related Artificial set of Malicious
Patterns DataBase (AMDB).

Pattern encoding using GA A genetic algorithm is a probabilistic search
algorithm that iteratively transforms a population of objects (a set of chromo-
somes), each with an associated fitness value, into a new population of offspring
objects using operations such as crossover and mutation. In AMD, GA begins
with a set of suitable solutions which refers to the set of selected malicious pat-
terns; namely MPDB. Each solution will be represented by a chromosome-like
data structure. Solutions from one population are selected and used to generate
a new population. This is motivated by the possibility that the new population



On the Use of Artificial Malicious Patterns for Android Malware Detection 13

Algorithm 1: Generation of artificial patterns

Input: MPDB: set of malicious patterns, BPDB: set of benign patterns
Output: Set of artificially generated malicious patterns AMDB
1: Generate the initial population of individuals randomly from MPDB (First
generation)

2: Evaluate the fitness of each individual in that population using the sets in
BPDB.

3: Repeat the following generational steps until the termination condition has
been reached:

3.1: Select the parent individuals for reproduction.
3.2: Breed parent individuals through crossover and mutation operations to
give birth to offspring individuals.
3.3: Evaluate fitness of each offspring individual.
3.4: Execute replacement by a competition between parent individuals and
offspring ones.

will be better than the old one. Solutions are selected according to their fitness
to generate a new population; more suitable they are more chances they have to
reproduce. This is repeated until a specific condition is satisfied, i.e., the fixed
number of generations is reached. To achieve the patterns generation task, three
factors will have vital impact on the effectiveness of the used genetic algorithm;
these are the following: (1) the encoding of individuals, (2) the fitness function
and (3) the GA parameters.

The first factor to consider is how to encode the potential solutions to AMD
in a form which can be processed by the GA. Each solution may be represented
in the form of a chromosome. The different positions in a chromosome, referred
to as genes, are changed randomly within a range during the process of evolution.
Solutions are encoded as identifier elements as {M1, . . . , MX} where X repre-
sents the total number of extracted item vectors. In fact, each chromosome is a
sequence within which all the genes are encoded via fixed length item vectors.
Let us recall that, each item vector is assigned a specific ID followed by its class
label indicating its nature, i.e., either malicious or benign, then its calling depth
(length) and finally a set of binary values indicating if an API call is current or
not in the vector. A gene and a chromosome may look as shown in Figure 2.

Fig. 2: The GA chromosome representation: A chromosome is a sequence of genes
each encoding an item vector corresponding to a particular behavior.



14 Manel Jerbi et al.

Algorithmic details

Evaluation of the fitness function Each artificially generated pattern is derived
from the initial population, i.e., the set of malicious patterns MPDB. Using the
fitness function fQual(), defined in Equation 5, each generated malicious pattern
is evaluated using the sets of benign patterns in BPDB. The latter is required to
ensure that the generated malicious patterns are different from the benign ones in
BPDB. Afterwards, those generated malicious patterns have to be inserted into
the base of the generated patterns AMDB. The used fitness function guarantees
the diversity of the generated population by avoiding the insertion of similar
generated malware examples and by falling into an homogeneous population.

fQual(GSi) =
Sim(MS,GSi) + Sim(BS,GSi) + Overlap(GSi)

3
(5)

where i ∈ [1, n]; n indicates the total number of artificially generated patterns.
Based on fQual(), the quality of a solution which refers to an artificially

generated pattern (GSi) is evaluated using the following three criteria:

1. Sim(MS,GSi) refers to the similarity between the generated pattern GSi

and the malicious patterns (MS). This measure of similarity needs to be
maximized.

Sim(MS,GSi) =

∑
MSj∈MSSim(GSi,MSj)

|MS|
(6)

where j ∈ [1,m]; m indicates the total number of malicious patterns.
2. Sim(BS,GSi) refers to the similarity between the generated pattern GSi

and the benign patterns (BS) which has to be the lowest.

Sim(BS,GSi) =

∑
BSk∈BSSim(GSi, BSk)

|BS|
(7)

where k ∈ [1, p]; p indicates the total number of benign patterns.
3. Overlap(GSi) is measured as the average value of the individual Sim(GSi, GSl)

between the generated pattern GSi and all the other generated patterns GSl

in the generated data set AMDB. l refers to the total number of the gener-
ated artificial patterns.

Overlap(GSi) = 1−
∑

GSl,i6=lSim(GSi, GSl)

|GS|
(8)

To calculate the similarity Sim() between two patterns, the Needleman-
Wunsch [30] alignment algorithm in adapted to the AMD context. Formally,
this algorithm creates a matrix of scores Si,j as presented in Equation 9.
When aligning two patterns, called sequences, (a1; . . . ; an) with n represent-
ing the total number of items in the sequence A and (b1; . . . ; bm) with m
representing the total number of items in the sequence B, each position Si,j



On the Use of Artificial Malicious Patterns for Android Malware Detection 15

in the matrix corresponds to the best score of alignment considering the
previously aligned elements of the sequences. Meanwhile, the algorithm can
introduce gaps represented by “–” to improve the matching of subsequences.
In the AMD case, gaps can only appear at the end of a sequence when
aligning two sequences with different depths.

Si,j = MAX

Si−1,j + g insert gap for bj
Si,j−1 + g insert gap for ai
Si−1,j−1 + Simi,j match

(9)

where Si,0 = g ∗ i and S0,j = g ∗ j when aligning two sequences (a1; . . . ; an)
and (b1; . . . ; bm). At any given point, the algorithm considers two possibili-
ties. First, it considers the case when a gap should be inserted or not. When
the algorithm decides that a gap needs to be inserted for either a or b, it
applies a penalty of g. Second, the algorithm tries to match sequences. The
similarity function Si,j returns the reward or cost of matching ai with bj .
The final similarity is contained in Sn,m. The adaptation of the algorithm
is straightforward: The gap penalty g and the similarity function to match
patterns Sim() are defined, and perfect matches in terms of number of items
are sought. A sequence with four items is different from one with six items. A
specific function to measure the similarity is defined. As sequences of items
are being manipulated, Simi,j is defined as a matching function, Si,j . The
latter quantity measures the similarity with respect to the elements of the
sequences associated to ai and bj . This absolute similarity measure, Sn,m, is
normalized by dividing it by the maximum sequence depth to produce the
overall similarity measure Sim(A,B) between the two sequences A and B:

Sim(A,B) =
Sn,m

Max(n,m)
(10)

where A and B represent the two sequences to compare, n is the number of
items in A and m is the number of items in B. Thus, the Sim measure is
used to evaluate the quality of the generated sequences with the objective of
minimizing the distance between the generated sequences and the referenced
ones.

Mating selection The selection of parents for reproduction is done using the
binary tournament method [29]. The latter randomly picks, with replacement,
two individuals from the population and then selects the best among them. In
the case of tie, random selection is performed. This process is repeated until
fulfilling the whole mating pool whose size is equal to the half of the population
size. This choice is justified by the fact that binary tournament selection is less
sensitive to the distribution skew of the fitness function values of population
individuals; thereby it allows avoiding premature convergence by introducing
enough diversity in the population.

Environmental selection The selection of individuals for the next generation is
performed using elitism, which consists in merging both parents and children



16 Manel Jerbi et al.

and then selecting the best individuals among them to survive for the next
population. This strategy allows preserving the good genetic building blocks for
the next generation, which encourages convergence. It is worth noting that pure
elitism may incur a lack of diversity. To avoid such a problem, a high mutation
rate (greater than 0.2) is used to preserve enough diversity in the population.

Mutation The mutation operator is applied to the selected chromosome to main-
tain genetic diversity from one generation of individuals to the next one. By using
the single-point mutation procedure [7], first, a gene is randomly selected from
the chromosome. Then, if the selected gene has a certain class (same nature),
it is replaced by another gene from the same class. The mutation process is
illustrated in Figure 3.

Fig. 3: Example of a mutation operation

Crossover To exploit the best genes of parents, the two-point crossover operator
[48] selects two crossover points to create the offspring. It starts with selecting the
two parents used for crossover and then randomly selects two crossing points.
Two offspring are created by combining the parents at crossover points. An
example in Figure 4 is shown to highlight a two-point crossover.

The crossover operator can only be applied on parents that have the same
labels. Thus, each child combines information from both parents. In any given
generation, a variant will be the parent in at most one crossover operation. For
the second population, the crossover operator allows to create two offspring o1

and o2 from the two selected parents p1 and p2. The crossover process is defined
as follows:

– Two random positions k1 and k2 are selected in the predicate sequences.
– The first k1 elements of p1 become the first k1 elements of o1. Similarly, the

first k1 elements of p2 become the first k1 elements of o2.
– The last k2 elements of p1 become the last k2 elements of o1. Similarly, the

last k2 elements of p2 become the last k2 elements of o2.
– The remaining elements between k1 and k2 of, respectively, p1 and p2 are

added as middle parts of, respectively, o2 and o1.



On the Use of Artificial Malicious Patterns for Android Malware Detection 17

Fig. 4: Example of a crossover operation

3.5 Patterns gathering process

In this step, results generated from the processed steps of the AMD approach will
be gathered in one pool. First, let us recall that at the beginning the sets of the
frequent extracted API call sequences (the patterns), in both DBM and DBB,
were defined. Such information helps in the identification of the executables
behavior and hence is important in the patterns gathering process. To extract the
patterns, the Apriori algorithm was used. This extraction process is performed
twice; first from the database of benign sequences, DBB, and a second time from
the extracted API call sequences related to malicious applications; the DBM.
The output is hence two data sources namely a database of malicious patterns
DBMFIV and a database of benign patterns DBBFIV.

Once achieved, a selection task is performed on the patterns from both DBM-
FIV and DBBFIV. This task consists in keeping only a filtered set of the ma-
licious and benign patterns by removing the common items between DBMFIV
and DBBFIV. As a result, a filtered malicious sets of patterns database (MPDB)
and a filtered benign patterns database (BPDB) are generated.

In the current stage, the pattern’s gathering process, the obtained MPDB
will be enriched by the set of the artificially generated malicious patterns that
are already stored in their specific database. Let us recall that these generated
malicious patterns are obtained after performing an evolutionary algorithm on
the set of the filtered malicious patterns from MPDB. The fed new data source,
comprising both MPDB and AMDB, will be referred to as the final filtered
malicious database (FFMDB).

The outcome of the whole process allows to obtain two sets of patterns. The
first pattern set contains the final filtered frequent malicious sets of patterns
(FFMDB) while the second patterns set comprises the benign filtered patterns
(BPDB). A general workflow description of the patterns gathering process is
presented in Figure 5.



18 Manel Jerbi et al.

Fig. 5: Workflow of the patterns gathering process using AMDB

3.6 Detection model process using real and artificial malware
patterns

Throughout this phase, AMD will perform its classification task where a new
app, the executable, will be classified either as a malware or as a benign. This is
achieved using the set of patterns presented in both of the FFMDB and BPDB
databases. The workflow of this phase is described in Figure 6.

The algorithm for classifying the executable is given in Algorithm 2. Formally,
the first step (Algorithm 2, line 1) aims to extract the patterns of the executable.
Each pattern will be labeled as benign or as malicious by comparing it to the
patterns of the FFMDB and BPDB databases (Algorithm 2, line 2). Then, the
support of each labeled pattern is calculated (Algorithm 2, line 3). To represent
the set of all the malicious patterns together and all the benign patterns together,
a credence value is generated for the malicious (Algorithm 2, line 4) and for
the benign respectively (Algorithm 2, line 5). If the malicious credence value



On the Use of Artificial Malicious Patterns for Android Malware Detection 19

Fig. 6: Detection model process

is greater than the benign credence value, the executable will be classified as
a malware (Algorithm 2, lines 6-7); otherwise, it will be classified as benign
(Algorithm 2, lines 8-9). The credence refers to how many labeled patterns,
MX for malicious patterns or BX for benign patterns, were found among the
total number of patterns of an executable P . The credence value of an executable
P is calculated twice; once for the malicious patterns (MX) referring to CM and
once for the benign patterns (BX) referring to CB. CM and CB are calculated
by summing the supports of all their according labeled patterns and by dividing
the sum by the total number of patterns in the executable P . CM and CB are
highlighted in Equation 11 and Equation 12, respectively, where N indicates the
total number of patterns in the executable P , ST (MXi) refers to the support
of the malicious pattern Xi, and ST (BXi) refers to the support of the benign
pattern Xi.

CM(P ) =

∑N
i=1 ST (MXi))

N
(11)

CB(P ) =

∑N
i=1 ST (BXi))

N
(12)



20 Manel Jerbi et al.

Algorithm 2: The classification task

Inputs: FFMDB, BPDB : Patterns databases, P : executable
Output: P is malicious or benign

1: Extract the patterns of the executable P
2: Give a label to each pattern.
3: Calculate the support for all patterns.
4: Calculate the malicious credence value of all malicious patterns CM(P)
5: Calculate the benign credence value of all benign patterns CB(P)
6: If CM(P) > CB(P) Then
7: P is classified as malicious
8: Else
9: P is classified as benign

10: End if

4 Experimental Setup

4.1 Research questions and benchmark data sets

This research study is conducted to quantitatively assess the performance of the
proposed AMD malware detection approach when applied in real-world settings.
In this concern, a comparative study with a set of well-known state-of-the-art
malware detection approaches is performed. More specifically, the aim is to an-
swer the following research questions (RQs):

– RQ1: To what extent can the AMD approach detect malicious apps?
– RQ2: How does the AMD approach perform when compared against the

state-of-the-art methods?
– RQ3: What are the benefits of using artificial malicious item sets (patterns)?
– RQ4: What is the difference in terms of performance between using artificial

patterns and not using them?

To answer RQ1, the performance of AMD is evaluated using several metrics that
are detailed in Section 4.4. To answer RQ2, a comparison is made between the
AMD obtained results and those generated by recent prominent state-of-the-art
methods as well as to some other antivirus engines. For RQ3, the benefits of using
the artificially generated malicious patterns are demonstrated by comparing the
AMD approach to the existing approaches that are based on using only existing
static sets of malicious apps. We will demonstrate the fact that enriching the
malicious data set by artificial malicious patterns will lead to a diversity of the
pool of malicious patterns; a necessary task to guarantee a better detection. To
answer RQ4, an analysis of the results is made based on the used evaluation
metrics (presented in Section 4.4) in case where the artificial malicious patterns
are not considered (first step), and then when including these in the malicious
pattern database in a second step. Based on these research questions, we will
show that the AMD proposed solution outperforms existing malware detection
approaches. The details of the used methods for comparison are highlighted in
Section 4.5.



On the Use of Artificial Malicious Patterns for Android Malware Detection 21

To conduct the experiments, 3 000 Android apps were gathered where 2 000
apps are malicious. The gathered apps are obtained from the Android Malware
Data set (AMD set) [51], the DROIDCat data set [39] and also from various
portable benign tools such as Google play.

For the experimental setup, two tests are performed. For the first test, a bal-
anced data set consisting of 1 000 malicious executables along with 1 000 benign
executables is created. In this setting, based on the API calls, a total of 15 822 973
distinct malicious item sets (API call sequences) and a total of 11 302 447 distinct
benign item sets were extracted. For the second test, an imbalanced data set is
created where all of the collected apps resulting in 2 000 malicious executables
and 1 000 benign executables were considered. For this test, a total of 29 483 201
distinct malicious item sets and a total of 11 302 447 distinct benign item sets
were extracted. The conducted tests are summarized in Table 3.

Table 3: Number of extracted distinct malicious and benign item sets for each
test

Test Number of apps Number of obtained distinct item sets

Balanced data set 1 000 benign 11 302 447
1 000 malicious 15 822 973

Imbalanced data set 1 000 benign 11 302 447
2 000 malicious 29 483 201

4.2 Parameter settings: Number of obtained frequent item sets
according to different values of Smin

As mentioned in Section 3.4, dealing with the patterns generation task, the
frequent item sets need to be extracted. To achieve this task, two values for
the minimum support Smin have to be set by the user. The minimum support
Sm
min is required to extract the malicious item sets while Sb

min is needed to
extract the benign item sets. For example, for 15 822 973 malicious item sets, a
malicious minimum support (Sm

min) of 10% means that the frequent item sets
(patterns) must be in at least 1 582 298 item sets. If the support is greater than
1 582 298 then the item sets are considered as frequent otherwise the set is not
selected. Several Smin values were considered to study their effect in the pattern
generation process and hence in the evaluation of the overall performance of the
AMD approach. The set of the Smin considered values are presented in Table
4 where NP refers to the total number of patterns. For instance, the value
1 884 651 refers to the total number of malicious patterns as the value is greater
than 1 582 298.



22 Manel Jerbi et al.

Table 4: Number of extracted malicious and benign frequent item sets for the
balanced and imbalanced data sets

Test Number of distinct item sets Minimum support Smin (%) NP

Balanced data set

Malicious 15 822 973 Sm
min

10 1 884 651
20 3 355 876
30 6 145 113
40 7 531 189
50 8 023 987
60 9 495 673
70 12 076 081
80 12 891 870
90 14 775 684

Benign 11 302 447 Sb
min

10 1 205 004
20 2 260 689
30 3 390 744
40 4 521 078
50 5 651 323
60 6 781 668
70 7 911 912
80 9 051 957
90 10 172 203

Imbalanced data set

Malicious 29 483 201 Sm
min

10 3 275 412
20 5 896 652
30 8 845 960
40 11 793 380
50 14 741 700
60 17 689 820
70 20 838 240
80 23 587 560
90 27 534 880

Benign 11 302 447 Sb
min

10 1 205 004
20 2 260 689
30 3 390 744
40 4 521 078
50 5 651 323
60 6 781 668
70 7 911 912
80 9 051 957
90 10 172 203

4.3 Genetic algorithm settings and artificial generated sequences

In this section, the aim is to fix the number of artificially generated malicious
patterns to maintain a fairly varied and renewed database of malicious patterns.

To perform the patterns generation task, the determination of the GA pa-
rameters is essential as it will have a vital impact on the effectiveness of the
overall task. The values of various parameters that are the population size, the



On the Use of Artificial Malicious Patterns for Android Malware Detection 23

individual’s size, the number of evolutions or generations, the selection process,
the mutation rate and the crossover rate, need all to be set. As experiments
are based on the application of the GA, this may provide different results over
multiple repeated runs. For each experiment, an initial population is made using
the DBFFIV data set. Each chromosome in this data set is represented as the
already given description in Section 3.4. The portion of the population, which
is not fitting, is removed. Crossover and mutation are applied in the rest of the
population which becomes the population of a new generation. The process runs
for 1 000 generations. The group of the generated chromosomes will be used as
one of the inputs in the next step: malicious pattern generation (Section 3.4).
For the conducted experiments, 68 000 malicious patterns were gathered with
Eclipse6 (about a quarter of the number of the generated malicious patterns)
with a total number of 4 407 API calls (items). The population size is fixed to 100
and the number of generations to 1 000. In this way, the applied GAm performs
100 000 evaluations. Trial and error method was used to set the population size
and the number of generations for the algorithm. This means that several ex-
periments were made using different values for these parameters. Based on these
experiments, we concluded that when using a population size of 100 for the GA,
the fitness function becomes stabilized around the 1 000th generation. For this
reason, the algorithm did not suffer from premature convergence; thereby the
comparison is fair not only from the stopping criterion viewpoint but also from
the parameter setting one. For the variation operators, a crossover rate of 0.9
and a mutation rate of 0.5 were used.

4.4 Performance indicators

For the evaluation of the AMD approach, proper metrics were used that allow
the comparison of AMD to previous works, and to deepen the analysis of the
obtained results. As imbalanced data sets are dealt with, and to avoid the accu-
racy paradox, the performance of AMD is evaluated in terms of precision, recall,
specificity, F1 score, Area Under the Receiver Operating Characteristics (ROC)
Curve (AUC) and accuracy. Also, to further interpret the obtained results, the
ROC curve analysis is used. All the used measures are defined in Appendix C.

All conducted experiments are run on a Lenovo 4.00 Go 2.7 Ghz machine.
We note that the number of generations of the GA is 1 000 and the obtained
averaged execution time is about 1 hour and 13 minutes.

4.5 Methods and approaches under comparison

To compare the AMD results to other existing works, a set of well-known an-
tivirus engines and two published state-of-the-art approaches that are somehow
similar to AMD were selected. These are the Tong et al.’s approach [47] and the
Kayacık et al.’s approach [26]. The work proposed in [47] is a hybrid approach for
malware detection in Android OS. In [47], a malicious pattern set and a normal

6 https://www.eclipse.org/



24 Manel Jerbi et al.

pattern set were built by comparing the patterns of malware and benign apps
with each other. To do so, Tong et al. use a dynamic method to collect its system
calling data. Then, the collected data is compared to both the malicious and nor-
mal pattern sets offline in order to judge the unknown app. The methodology
behind Kayacık et al.’s approach [26] is to generate evasion attacks (mimicry
attack) in order to detect the vulnerability testing of host-based anomaly detec-
tors. The performance of the proposed AMD approach is compared to Tong et
al.’s approach [47] in terms of the sensitivity, the specificity and the accuracy
criteria. Additionally to these criteria, AMD is compared to Kayacık et al.’s
approach [26] in terms of false positive and false negative rates. Further compar-
isons are made against a set of different antivirus engines. VirusTotal7 is used,
which is a subsidiary of Google and which is a free online service that analyzes
files and URLs by different antivirus engines and website scanners. The used
antivirus engines are Cyren8, Ikarus9, VIPRE10, McAfee11, AVG12, AVware13,
ESET NOD3214, CAT QuickHeal15, AegisLab16 and NANO17.

5 Results and Discussion

5.1 Performance analysis

In this section, results obtained using the AMD approach are discussed and
thereby we respond to RQ1 and RQ2 highlighted in Section 4.1. For this purpose,
two sets of tests (as presented in Table 3) were conducted with several runs: a first
test in which 14 775 684 malicious patterns and 10 173 203 benign patterns were
analyzed and a second test in which 27 534 880 malicious patterns and 10 173 203
benign patterns were analyzed. In each one of these tests, different values of Sm

min

and Sb
min were set and in each case the resultant precision, F1 score, AUC, recall,

specificity and accuracy were calculated and registered as presented in Table 5
and Table 6. Then, the values of Sm

min and Sb
min which will allow to have better

performance results in terms of the evaluated metrics were retained.

7 https://www.virustotal.com
8 https://www.cyren.com
9 https://www.ikarussecurity.com

10 https://www.vipre.com
11 https://www.mcafee.com
12 https://www.avg.com
13 http://www.avware.com.br/comprar.php
14 https://www.eset.com
15 www.quickheal.com
16 www.aegislab.com
17 http://www.nanoav.ru

https://www.virustotal.com
https://www.cyren.com
https://www.ikarussecurity.com
https://www.vipre.com
https://www.mcafee.com
https://www.avg.com
http://www.avware.com.br/comprar.php
https://www.eset.com
www.quickheal.com
www.aegislab.com
http://www.nanoav.ru


On the Use of Artificial Malicious Patterns for Android Malware Detection 25

Table 5: The different obtained measures for both balanced and imbalanced data
sets in terms of TP, FP, TN, FN, precision, F1 score and AUC

Smin Values for balanced data set Values for imbalanced data set

Sm
min Sb

min TP FP TN FN Pre FS AUC TP FP TN FN Pre FS AUC

10

10 98.00 02.00 98.63 01.37 98.01 98.31

57.69

95.02 04.98 92.30 07.70 99.24 99.39

73.04

20 98.39 01.61 98.71 01.29 98.39 98.55 98.58 01.42 96.32 03.68 98.54 97.46
30 97.77 02.23 98.50 01.50 97.78 98.13 99.23 00.77 98.5 01.50 99.22 98.86
40 95.24 04.76 95.32 04.68 96.13 97.15 98.65 01.35 97.03 02.97 98.62 97.84
50 97.29 02.71 98.36 01.64 98.34 97.31 92.80 07.20 31.24 68.76 81.26 67.30
60 89.52 10.48 95.21 04.79 85.74 90.56 98.81 06.19 90.90 09.10 93.62 92.37
70 98.19 01.81 98.71 01.29 98.19 98.49 98.39 01.61 93.25 06.75 98.30 95.88
80 98.50 01.50 98.96 01.04 98.95 98.50 99.54 00.46 98.73 01.27 99.53 99.13
90 99.78 00.22 99.34 00.66 99.77 99.56 98.41 01.59 95.90 04.10 98.36 97.17

20

10 98.50 01.50 96.75 03.25 98.47 97.63

74.59

99.78 00.22 99.58 00.42 99.78 99.68

63.69

20 9.23 00.77 98.63 01.37 99.22 89.93 98.62 01.38 98.81 01.19 98.62 98.71
30 98.61 01.39 97.03 03.00 98.58 97.41 90.25 09.75 97.25 02.75 90.89 93.86
40 95.00 05.00 90.00 10.00 94.73 92.55 78.92 21.08 96.75 03.25 82.11 88.53
50 93.80 06.20 28.61 71.39 82.18 67.16 62.30 37.70 35.04 64.96 48.17 48.56
60 93.81 06.19 89.30 10.70 93.51 91.60 95.23 04.77 98.29 01.71 95.37 96.78
70 98.39 01.61 96.035 03.79 98.35 97.22 93.81 06.19 96.75 03.25 93.17 95.60
80 99.24 00.76 99.78 00.22 99.24 99.51 98.68 01.32 98.55 01.45 98.55 98.55
90 99.20 00.80 98.55 01.45 99.19 98.87 99.04 00.96 98.96 01.04 99.03 99.00

30

10 98.19 01.81 92.89 07.11 94.881 93.67

65.06

78.54 21.46 52.79 47.21 71.10 66.49

64.99

20 98.50 01.50 96.75 03.25 98.47 97.63 98.62 01.38 98.50 01.50 98.62 98.56
30 99.20 00.80 98.55 01.45 99.19 98.87 98.52 01.48 96.32 03.68 96.40 98.49
40 98.61 01.39 97.00 03.00 98.58 97.81 96.05 03.95 98.24 01.76 95.24 95.28
50 95.00 05.00 90.90 09.10 94.68 92.98 98.54 01.46 96.46 03.54 98.49 97.51
60 92.30 07.70 28.41 71.59 92.37 93.62 98.68 01.32 92.18 07.82 90.08 92.43
70 98.39 01.61 96.03 03.97 98.35 97.23 98.99 01.01 98.85 01.15 98.89 98.92
80 99.24 00.76 98.63 01.37 99.23 98.93 98.61 01.39 98.21 01.79 98.60 98.41
90 93.81 06.19 90.00 10.00 93.56 91.93 99.12 00.88 99.85 00.15 98.98 99.92

40

10 99.24 00.76 99.55 00.45 99.24 99.39

80.41

96.23 03.77 90.12 09.88 95.98 93.26

75.51

20 98.50 01.51 97.02 02.98 98.47 97.76 98.30 01.70 97.68 02.32 98.29 97.99
30 99.20 00.80 98.71 01.29 99.19 98.95 98.61 01.39 98.35 01.65 98.61 98.48
40 98.61 01.39 98.06 01.94 98.60 98.33 98.19 01.81 96.75 03.25 98.16 97.47
50 95.21 04.79 96.96 03.04 95.29 96.09 98.50 01.70 97.68 02.32 98.49 98.29
60 92.30 07.70 29.79 70.21 79.46 66.24 99.20 00.80 99.78 00.22 99.20 99.49
70 98.39 01.61 93.25 06.75 93.98 95.30 98.61 01.39 98.63 01.37 98.61 98.62
80 99.54 00.77 98.50 01.50 98.67 98.61 95.00 05.00 89.98 10.02 94.74 92.54
90 99.20 00.80 98.92 01.08 99.19 99.06 92.30 07.70 28.61 71.39 78.79 65.73

50

10 98.39 01.61 97.43 02.75 98.39 97.91

55.58

98.39 01.61 98.07 01.93 98.38 98.23

52.05

20 98.00 02.00 90.25 09.75 97.83 94.26 99.24 00.76 99.52 00.48 99.24 99.38
30 98.14 01.68 95.00 05.00 98.07 96.59 93.81 06.19 89.74 10.26 93.55 91.81
40 86.90 16.10 80.01 19.99 97.38 85.92 98.32 01.68 93.44 06.56 98.23 95.93
50 97.43 02.75 90.00 10.00 97.23 93.84 98.44 01.56 98.32 01.68 98.48 98.38
60 98.68 01.32 97.61 02.39 98.66 98.14 98.32 01.68 96.37 03.63 98.29 97.35
70 98.92 01.08 98.20 10.80 98.91 98.56 95.03 04.97 89.92 10.08 94.76 92.53
80 99.76 00.24 98.63 01.37 99.75 99.19 97.85 02.15 91.92 08.08 97.71 94.96
90 93.96 06.40 85.56 14.44 93.40 89.91 99.62 00.38 99.55 00.45 99.62 99.55

60

10 99.72 00.28 99.50 00.50 99.31 99.40

95.82

95.63 04.37 90.47 09.53 95.39 93.11

68.81

20 99.22 00.69 99.76 00.24 99.22 99.49 98.23 01.77 95.37 04.63 98.18 96.81
30 96.89 03.11 92.45 07.55 96.74 94.61 99.52 00.48 99.45 00.55 99.51 99.48
40 90.35 09.65 90.99 09.01 90.67 90.93 98.32 01.68 95.99 04.01 96.08 98.28
50 99.31 00.69 99.76 00.24 99.31 99.53 89.52 10.48 31.24 68.76 74.88 64.44
60 98.18 01.82 99.25 00.75 98.19 98.71 90.21 09.79 85.23 14.77 89.69 87.77
70 58.49 41.51 83.96 16.04 66.91 72.23 98.52 01.48 96.07 03.93 98.48 97.30
80 99.21 00.79 99.50 00.50 99.21 99.31 99.02 00.98 98.74 01.26 99.01 98.88
90 96.89 03.11 92.45 08.10 92.40 92.17 98.78 01.22 98.20 01.80 98.77 98.49

70

10 99.22 00.78 99.52 00.48 99.22 99.37

65.41

78.97 21.03 83.45 16.55 79.87 81.24

66.94

20 98.52 01.48 96.88 03.12 98.49 97.70 90.23 09.77 93.58 06.42 90.55 91.93
30 99.20 00.80 98.77 01.23 99.19 98.98 98.74 01.26 98.30 01.70 98.73 98.52
40 98.65 01.35 98.72 01.28 87.47 86.01 86.25 13.75 91.98 08.02 87.00 89.18
50 97.43 02.75 90.00 10.00 97.23 93.84 95.21 04.79 96.20 03.80 95.26 95.70
60 98.68 01.32 97.61 02.39 98.66 98.14 94.28 05.72 95.30 04.70 94.34 94.79
70 98.92 01.08 98.20 01.80 98.91 98.56 98.22 01.78 96.97 03.03 98.20 97.59
80 99.76 00.24 98.63 01.37 99.75 99.19 99.70 00.30 98.75 01.25 99.69 99.22
90 93.96 06.40 85.56 14.44 93.40 89.91 95.22 04.78 96.89 03.11 95.30 96.06

80

10 97.02 02.98 90.00 10.00 96.79 93.62

73.70

99.12 00.88 99.52 00.48 99.22 99.49

83.12

20 98.50 01.50 97.00 03.00 98.47 97.75 99.02 00.98 99.45 00.55 99.02 99.23
30 99.23 00.77 98.63 01.37 98.63 99.22 97.52 02.48 93.07 06.93 97.40 95.34
40 98.65 01.35 98.19 01.81 98.19 98.64 91.11 08.89 92.56 07.44 91.24 91.83
50 92.80 07.20 29.42 70.58 80.33 66.54 99.05 00.95 99.23 00.70 99.05 99.14
60 93.81 06.19 87.98 12.02 93.42 90.09 98.65 01.35 93.45 06.55 98.58 96.11
70 98.39 01.61 96.07 03.93 98.35 97.24 99.22 00.78 99.65 00.35 99.43 72.73
80 99.54 00.46 99.78 00.22 99.54 99.66 55.25 44.75 87.00 13.00 80.95 66.03
90 98.41 01.59 96.75 03.25 98.39 97.58 90.31 09.69 92.03 07.97 90.47 91.17

90

10 90.00 10.00 94.14 05.86 99.61 99.38

90.83

99.75 00.25 98.25 01.75 99.75 99.04

84.68

20 99.18 00.82 93.04 06.96 99.12 96.20 99.24 00.76 95.22 04.78 99.21 97.26
30 99.79 00.21 99.52 00.48 99.79 99.51 99.83 00.16 99.24 00.76 93.96 99.51
40 99.45 00.55 95.53 04.47 99.10 96.28 99.20 00.80 93.62 06.38 99.37 97.15
50 99.08 00.92 93.80 06.20 99.65 98.77 99.74 00.26 98.20 01.80 99.13 96.64
60 98.68 01.32 92.18 07.82 98.58 95.53 75.12 24.88 92.38 07.62 78.78 84.36
70 99.41 00.59 95.52 04.48 99.41 97.57 99.78 00.20 99.05 00.95 99.78 99.41
80 99.79 00.21 99.59 00.41 99.80 99.71 99.72 00.28 99.56 00.44 99.72 99.71
90 99.16 00.84 92.65 07.35 99.10 96.00 99.89 00.11 99.35 00.65 99.89 99.62

FS: F1 score; Pre: precision; TP : true positive rate; FP : false positive rate; TN: true negative rate; FN: false
negative rate.



26 Manel Jerbi et al.

False positives and false negatives analysis In this section, the AMD per-
formance is discussed and analyzed with a particular focus on false positives and false
negatives. False negatives (also known as type 2 errors) may be a significant problem.
However, the majority of researchers are more likely inclined to accept an increase in
false positives (type 1 errors) since they are judged as a less significant problem than
the false negatives. In this analysis of the results, the aim is to keep both the type 1
and type 2 errors as low as possible. For both conducted tests, the highest values, as
shown in Table 5, of FP and FN were obtained for Sm

min = 50 and Sb
min = 40 with

FP= 16.10% and FN = 19.99% for the balanced data set, and with FP = 13.75% and
FN = 8.02% for Sm

min = 70 and Sb
min = 40 for the imbalanced data set. In the aim

of reducing the number of FPs and FNs, the base of examples can be increased with
more benign and malicious patterns. But, it is important to not make the detection
model over-fitting, causing detection performance degradation.

Precision interpretation Precision is used to have an idea about how precise and
accurate AMD is. Precision indicates the number of predicted positive instances that
are actual positive. It is a good measure to determine specially when the amount of
false positives is high. For instance, in the current detection model, a false positive
means that a pattern that is benign (actual negative) has been identified as malicious.
Consequently, the detection model might refuse important apps if the precision is not
high. From Table 5, it is noted that the best reached precision value for the balanced
data set is 99.80% for Sm

min = 90 and Sb
min = 80 and 99.89% for the imbalanced

data set for Sm
min = 90 and Sb

min = 90. Based on these results, it is concluded that the
proposed AMD approach is able to classify new instances with a high precision. In fact,
these results can be explained by the inclusion of the generated malicious patterns in
the detection process which is undoubtedly benefiting in keeping the base of examples
varied as much as possible.

Accuracy, recall and specificity interpretation Accuracy is the most intuitive
performance measure and it is the ratio of a correctly predicted observation to the total
observations. Having a high accuracy does not necessarily mean that AMD is the best.
In fact, accuracy is a good measure but only when symmetric data sets are considered
where values of false positives and false negatives are almost the same. Therefore, other
parameters (i.e., precision and recall) were considered to evaluate the performance of
AMD. For instance, from Table 6, an accuracy of 99.69% for the balanced data set for
Sm
min = 90 and Sb

min = 80 and an accuracy of 99.64% for the imbalanced data set for
Sm
min = 90 and Sb

min = 90 were registered. This means that AMD is approximately 100%
accurate which is explained by the large number of correctly predicted observations.
These good results clearly demonstrate the impact of the AMD detection model which
is not dependent on a static base of examples but rather, the base of examples is quite
varied thanks to the artificially generated patterns using the genetic algorithm.

On the other hand, the recall metric calculates how many of the actual positives
AMD captures through labeling them as positive (true positive). Applying the same
understanding, recall shall be the model metric to be used to select our best model when
there is a high cost associated with false negatives. For instance, if a fraudulent behavior
(actual positive) is predicted as non-fraudulent (predicted negative), the consequence



On the Use of Artificial Malicious Patterns for Android Malware Detection 27

can have very bad effects on the operating system and similarly for the user. In the
conducted experiments, a value of 99.54% as recall for the balanced data set for Sm

min

= 80 and Sb
min = 80 and a value of 99.78% as recall for the imbalanced data set for

Sm
min = 40 and Sb

min = 60 can be positively interpreted. In fact, these satisfying values
can be explained by the high number of true positives accurately detected with 99.54%
for the balanced data set and 99.20% for the imbalanced data set for the same values
of Sm

min and Sb
min, respectively.

Based on the fact that the sensitivity (recall) quantifies the avoiding of false nega-
tives, the specificity, then, does the same for false positives. For any prediction, there
is usually a trade-off between these measures. A perfect predictor would be described
as 100% sensitive, meaning all malicious instances are correctly identified as malware,
and 100% specific, meaning no benign instances are incorrectly identified as malicious.
Via the obtained results, a value of 99.75% for the specificity when using the balanced
data set was obtained for Sm

min = 90 and Sb
min = 80 and a value of 99.89% for the

specificity when using the imbalanced data set was obtained for Sm
min = 90 and Sb

min

= 90 can be considered as very promising results. These results can be explained by
the high number of true negatives accurately detected. With a quite varied base of
examples, a better detection of malicious patterns is guaranteed.

Table 6: Accuracy, recall and specificity values for both the balanced and imbal-
anced data set

Smin Values for the balanced data set Values for the imbalanced data set

Sm
min Sb

min Recall Specificity Accuracy Recall Specificity Accuracy

10

10 98.62 98.01 98.31 92.50 94.88 93.66
20 98.71 98.39 98.55 96.40 98.55 97.45
30 98.48 97.78 98.13 98.51 99.22 98.87
40 95.32 95.24 95.28 97.08 98.63 97.84
50 98.34 97.31 97.82 57.44 81.27 62.02
60 94.92 90.08 92.37 91.16 93.62 92.36
70 98.70 98.19 98.45 93.58 98.30 95.82
80 98.95 98.50 98.73 98.74 99.54 99.14
90 99.34 99.77 99.56 96.00 98.37 97.16

20

10 96.80 98.47 97.62 99.58 99.78 99.68
20 98.63 99.22 98.93 98,81 98.62 98.72
30 97.04 98.58 97.80 97.04 90.89 93.75
40 90.47 94.73 92.50 96.04 82.11 87.84
50 89.79 93.51 91.55 48.95 48.17 48.67
60 96.12 98.35 97.21 98.24 95.37 96.76
70 56.78 82.18 61.20 96.65 93.98 95.28
80 99.77 99.24 99.51 98.55 98.67 98.61
90 98.55 99.19 98.87 98.96 99.04 99.00

30

10 93.24 98.08 95.54 62.46 71.10 65.67
20 96.80 98.47 97.62 98.50 98.62 98.56
30 98.56 99.19 98.87 96.40 98.49 97.42
40 97.04 98.58 97.80 98.20 96.13 97.14
50 91.25 94.78 92.95 96.40 98.49 97.42
60 56.31 78.67 60.35 92.65 98.58 95.43
70 96.12 98.35 97.21 98.85 98.99 98.92
80 98.63 99.23 98.93 98.22 98.60 98.41
90 90.36 93.56 91.90 99.85 99.13 99.49

40

10 99.54 99.24 99.39 90.69 95.98 93.18
20 97.06 98.47 97.76 97.69 98.29 97.99
30 98.71 99.19 98.93 98.35 98.61 98.48
40 98.07 98.60 98.35 96.80 98.16 97.47
50 96.90 95.29 96.08 97.69 98.29 97.99
60 56.79 79.46 61.04 99.78 99.20 99.49
70 93.58 98.30 95.82 98.63 98.61 98.62
80 98.51 99.22 98.87 90.46 94.74 92.49
90 98.92 99.19 99.06 56.39 78.79 60.46

50

10 97.45 98.39 97.91 98.08 98.38 98.23
20 90.95 97.83 94.12 99.52 99.24 98.38
30 95.15 98.07 96.57 90.14 93.55 91.78
40 90.69 97.23 93.71 93.75 98.23 95.88
50 97.63 98.66 98.14 98.32 98.44 93.38
60 98.21 98.11 98.56 96.44 98.29 97.35
70 84.59 87.47 85.98 90.41 94.76 92.48
80 98.64 99.75 99.19 92.37 97.71 94.89
90 86.67 93.40 89.76 99.55 99.62 99.59



28 Manel Jerbi et al.

60

10 99.49 99.31 99.40 90.94 95.39 93.05
20 99.75 99.22 99.49 95.50 98.18 96.80
30 92.77 96.74 94.67 99.45 99.52 99.49
40 90.93 90.41 90.67 96.08 98.28 97.16
50 99.75 99.31 99.53 56.56 74.88 60.38
60 78.49 66.91 71.25 85.93 89.70 87.72
70 99.49 99.21 99.35 96.16 98.48 97.03
80 99.24 98.19 98.71 98.74 99.02 98.88
90 91.94 92.40 92.17 98.21 98.77 98.49

70

10 99.51 99.22 99.37 82.67 79.87 81.21
20 96.93 98.49 97.70 93.36 90.55 91.91
30 98.77 99.19 98.98 98.31 98.73 98.52
40 98.71 98.65 98.68 91.49 87.00 98.12
50 96.76 98.27 97.50 96.16 95.26 95.71
60 92.42 96.89 47.37 95.25 94.34 94.79
70 90.42 94.30 92.28 97.01 98.20 97.60
80 92.49 97.23 94.74 98.76 99.70 99.23
90 99.54 99.54 99.54 96.84 95.30 96.06

80

10 90.65 96.79 93.51 99.52 99.12 99.32
20 97.04 98.47 97.75 99.45 99.02 99.24
30 98.63 99.22 98.93 93.37 97.40 95.30
40 98.19 98.64 98.42 92.45 91.24 91.84
50 56.80 80.33 61.11 99.23 99.05 99.14
60 88.64 97.37 94.63 93.77 98.58 96.05
70 96.15 98.35 97.23 99.65 99.22 99.44
80 99.54 99.79 99.66 80.95 66.03 71.13
90 96.80 98.38 97.58 91.89 90.47 91.17

90

10 99.08 99.55 99.27 98.28 99.75 99.00
20 92.99 99.12 96.02 95.40 99.21 97.23
30 99.61 99.41 99.45 99.24 99.84 99.54
40 95.80 99.57 97.30 93.96 99.15 96.41
50 94.27 99.13 96.45 98.23 99.74 98.97
60 92.65 98.48 95.43 90.79 78.78 83.75
70 95.74 99.52 97.56 99.06 99.78 99.42
80 99.65 99.75 99.69 99.56 99.72 99.64
90 93.09 99.10 95.90 99.35 99.89 99.62

F1 score and AUC interpretation F1 score can be defined as the mean of the
precision and the recall. From Table 5, it is noted that for Sm

min = 90 and Sb
min = 80, a

value of 99.71% is reached for F1 score for the balanced data set and a value of 99.71%
is reached for F1 score for the imbalanced data set and this could be explained by the
high values of precision and recall achieved by the AMD model. For the same values
of Sm

min and Sb
min, a value of 99.84% of precision and a value of 99.82% of recall are

registered for the balanced data set and a value of 99.72% of precision and a value of
99.65% of recall are registered for the imbalanced data set.

The area, for its part, measures discrimination, that is, the ability of the pattern
to correctly classify positive and negative instances. When considering the situation in
which instances are already correctly classified into two sets (malicious and benign),
we randomly pick one from the malicious set and one from the benign set and then
run the test on both instances. The instance with the highest test result should be
the one from the malicious set. More precisely, the AUC is the percentage of randomly
drawn pairs for which the test correctly classifies the two instances in this random pair.
This means that the probability that a randomly selected malicious instance has a test
result indicating greater suspicion than that of a randomly chosen benign instance. The
best AUC value is obtained with the following values of Sm

min : Sm
min = 60 when using

the balanced data set and Sm
min = 90 when using the imbalanced data set. In fact,

AUC equals 95.82% for the balanced data set and 84.68% for the imbalanced data set,
which means that the achieved patterns, those retained for the same values of Sm

min

and Sb
min, for both experiments, can be considered efficient in separating malicious and

benign instances. Hence, it is concluded that if a continuous variability is assumed to
the base of examples by injecting the generated malicious patterns, a better detection
of malware is guaranteed.



On the Use of Artificial Malicious Patterns for Android Malware Detection 29

Graphical analysis For further analysis, a graphical based evaluation is performed.
For this aim, the Receiver Operating Characteristics (ROC curve) analysis is used.
Basically, the ROC curve is a graphical representation of detection probability versus
false positive rate, or, true positive rate versus false positive rate. The most motivating
reason behind using this analysis is its ability in summarizing the achieved accuracy
of a detector system.

The obtained results are presented by the mean of twographics/curves for each
test where one curve in drawn in terms of accuracy vs false positive rates and the
other is in terms of true positive rate vs false positive rates. Figure 7a represents the
obtained ROC curves for the first test when using the balanced data set while Figure
7b represents the obtained ROC curves for the second test when using the imbalanced
data set .

The four ROC curves are used to choose the most appropriate cut-offs for the
conducted experiments. The first best cut-off in the first test has the highest accuracy
of a value 99.84%, the highest true positive rate (recall) of a value 99.85%, and the
lowest false positive rate (1-specificity) of 00.15%. In the second test, the best cut-off
has a highest accuracy of 99.84%, the highest true positive rate of 99.72%, and the
lowest false positive rate of 00.28%. All obtained ROC curves follow closely the left-
hand border and also the top border of the ROC space which shows that the obtained
results are accurate. Despite the good shapes obtained by plotting the ROC curves,
this cannot be sufficient to give a real interpretation of the reached results. That is why,
the AUC value is calculated which serves as a quantitative summary to evaluate the
strength of the AMD retained patterns in classifying positive and negative instances.

From Table 6, it is noticed that for high values of Sm
min and Sb

min better accuracy
results are obtained. This observation may be explained by the fact that the obtained
number of malicious and benign patterns are important. Hence, the resulting detection
patterns will be more accurate.

Based on these evaluations, it is important to decide which values of Sm
min and Sb

min

should be kept. As previously analyzed with the different used evaluation metrics, in
each row of Table 6, for each experiment, the best accuracy of each value of Sm

min and
Sb
min for both experiments will be sought. In fact, the results illustrate that the values
Sm
min = 90 and Sb

min = 80 are the best values as they procure the best accuracy results
with 99.69% in experiment 1 and 99.64% in experiment 2. We also notice that, overall,
these two values of Smin are the best values extracted based on the set of metrics
used in previous evaluations. Hence, these two values, i.e., Sm

min = 90 and Sb
min = 80,

are used to extract both of the malicious and benign patterns. Which means that
2 7534 880 malicious patterns and 9 051 957 benign patterns are kept to build the AMD
detection model. It is worth mentioning that in several works such as in [53,11,35],
authors focused mainly on the accuracy criterion among other evaluation metrics to
select the Smin values. However, in this study, the choice of the Smin values was not
only based on the best values registered for the accuracy but it was also endorsed
by the other values for the different evaluation metrics. In Table 7, an example of an
obtained malicious and benign patterns in AMD is given.

5.2 Evaluation of the contribution of the AMD approach

In this section, two experiments are performed as an answer to RQ3 and RQ4 high-
lighted in Section 4.1. The first experiment will evaluate the AMD approach in terms
of sensitivity, specificity and accuracy using only the base of examples provided by [51]



30 Manel Jerbi et al.

0 0.5 1

0.96

0.98

1

False positive rate

A
cc

u
ra

cy

Accuracy versus FPR

0 0.5 1
0.92

0.94

0.96

0.98

1

False positive rate

T
ru

e
p

o
si

ti
v
e

ra
te

TPR versus FPR

(a) AMD’s ROC curvesusing the balanced data set

0 0.5 1

0.85

0.9

0.95

1

False positive rate

A
cc

u
ra

cy

Accuracy versus FPR

0 0.5 1
0.9

0.95

1

False positive rate

T
ru

e
p

o
si

ti
v
e

ra
te

TPR versus FPR

(b) AMD’s ROC curves using the imbalanced data set

Fig. 7: AMD’s obtained ROC curves

Table 7: Examples of obtained malicious and benign patterns
Benign pattern Malicious pattern

read,loadClass,loadClass,loadClass, generateKey,loadClass,loadClass,loadClass,
read,loadClass,loadClass,loadClass, loadClass,loadClass,loadClass,loadClass,
write,loadClass,loadClass,write,open loadClass,loadClass,loadClass,
read,close,close,close,close,doFinal getDisplayMessageBody,getInstance,

exit,doFinal getInstance,getInstance,getInstance,close,
close,close,close,close,doFinal,doFinal,

exit,doFinal

and [39]. In the second conducted experiment, the malicious sequences generated by
the GA are injected in the base of examples and hence, only the best reached values of



On the Use of Artificial Malicious Patterns for Android Malware Detection 31

sensitivity, specificity and accuracy are kept in order to compare them to the previously
obtained values in the first experiment.

When applying the GA, the population size is fixed to 100 item sets and the number
of generations to 1 000. In this way, the algorithm performs 100 000 evaluations and the
obtained population (2 000 patterns) will be added to the previously gathered malicious
patterns (68 000 patterns).

The obtained results in Table 8 clearly show the important gain from including the
artificial malicious generated patterns in the base of examples and how they clearly
improve the accuracy, the sensitivity and the specificity. An improvement of 10.32% in
terms of accuracy is obtained when using the artificial patterns. Also, the recall has
risen from 90.02% in the first experiment to 99.78% in the second one. Furthermore,
the specificity has gone up by 9.59%.

Table 8: Effect of the use of the artificial malware patterns
Results

Measure without artificial malicious patterns with artificial malicious patterns

Accuracy 89.32% 99.64%

Recall 90.02% 99.78%

Specificity 90.30% 99.89%

The generated patterns will keep the base of examples quite varied. Also, this
experiment guarantees that the result of the detection is not dependent on the base of
examples. In this way, it was possible to develop a new malware detection approach
that would be as independent as possible from the base of examples and thus would
be much more effective in detecting different variants of malware.

5.3 Comparison with the antivirus engines and the state-of-the-art
approaches

In this section, the performance of the AMD approach is compared to different antivirus
engines, to Tong et al.’s approach [47] and to Kayacık et al.’s approach [26]. The recall,
specificity and accuracy criteria are used to compare AMD to Tong et al.’s approach.
Addiotionallt to these criteria, the FP and FN values are added in order to compare
AMD to Kayacık et al.’s approach.

Comparison with antivirus engines To compare AMD to the used antivirus en-
gines, a set of 3 000 benign and malicious applications (the same set as the one used in
the first phase, i.e., the API call sequences extraction phase) is analyzed with the differ-
ent antivirus engines provided by VirusTotal. This provides a decision, whether benign
or malicious, for each application uploaded to the website by each of the antiviruses.
This allowed to calculate their accuracies as the percentage of correctly labeled or clas-
sified apps. Table 9 summarizes the accuracy results of the used antivirus engines in
comparison to the AMD approach.



32 Manel Jerbi et al.

Table 9: Accuracy results of our AMD and the top ten commercial engines
applied by Virus-Total

Malware detection engine Accuracy (%)

Our AMD approach 99.75
Cyren 83.03
Ikarus 82.72
VIPRE 82.53
McAfee 82.45

AVG 82.36
AVware 81.95

ESET NOD32 81.81
CAT QuickHeal 81.79

AegisLab 81.74
NANO antivirus 81.15

From Table 9, we can notice that the best antivirus engines accuracy value is set to
83%, which is lower than the accuracy obtained by AMD (99.64%). This gap, which is
higher than 16%, can be explained by the effect and consequences of the obfuscation
techniques that cannot be detected by the antivirus engines. Also, the benefits of
introducing the artificially generated patterns in achieving such high accuracy value
can be seen.

Comparison with state-of-the-art approaches In this section, a comparison
between AMD and two state-of-the-art approach namely Tong et al.[47]’s approach
and Kayacık et al.’s approach [26] is performed. In fact, the same set of 3 000 benign
and malicious applications was analyzed to perform this comparison.

Table 10 shows the comparison results in terms of accuracy, recall and specificity
for both Tong et al.’s approach and AMD. With an accuracy of 99.64%, a recall equals
to 99.78% and a specificity of 99.89%, the best values reached in the second test with
Sm
min = 90 and Sb

min = 80, AMD achieved better results than those achieved by the
other approach. The improvements made by AMD in terms of malware detection and
in comparison to Tong et al.’s approach are also shown in Table 10.

Table 10: Our AMD approach’s improvements compared to Tong et al.’s ap-
proach

Measure Tong et al.’s AMD Improvement
approach approach compared to Tong

et al.’s approach

Accuracy (%) 90.19 99.75 9.56

Recall (%) 91.66 99.65 7.99

Specificity (%) 88.88 99.84 10.96



On the Use of Artificial Malicious Patterns for Android Malware Detection 33

Table 11 shows the comparison results in terms of FP and FN rates for both
Kayacık et al.’s approach and AMD. With an FP rate of 0.11% and an FN rate of
00.65%, the best values reached for the imbalanced data set with Sm

min = 90 and Sb
min

= 90, AMD achieved better results than those achieved by the other approach. In [26],
the authors used an Anomaly rate, which is a combined value of false positive and false
negative rates, to evaluate their work.

Table 11: Our AMD approach’s results compared to Kayacık et al.’s approach
Measure Kayacık et al.’s approach AMD approach

False Positive (%) — 0.11

False negative (%) — 00.65

Anomaly rate (%) 2.70 —

—: No registered value

The improvements made by the AMD approach, from Table 10 and Table 11, show
the importance of setting up a detection system that will be as independent as pos-
sible from the base of examples while at the same time taking into account the rapid
evolution of malware. Furthermore, the more independent the detection model is from
the base of examples, the more we ensure that the detection system will be effective
in detecting different variants of malware. These results show that our AMD approach
outperforms not only the antivirus engines but also the state-of-the-art methods by of-
fering a powerful malware detection system based on the use of the genetic evolutionary
algorithm.

6 Conclusion

In this paper, a new approach for Android malware detection named Artificial Malware-
based Detection approach (AMD) was developed. AMD is based on the use of an
evolutionary algorithm to generate artificial patterns able to detect malware. There
are three major components in the proposed AMD approach, namely the API call
sequences extraction, the patterns construction and the classifier. In the extraction
component, each Android app is unpacked into a readable file (executable) and from
which API call sequences are extracted. Then, API call sequences are formatted as
item vectors. Besides, frequent sets of item vectors (frequent item sets or patterns) are
extracted and selected in order to build two sets of patterns: a malicious pattern set
and a benign pattern set. To keep fairly varied sets of patterns, malicious patterns are
gathered using a genetic algorithm. The generated patterns are then injected into the
set of the selected malicious patterns. Finally, a detection model was developed and
evaluated using different performance metrics. AMD was compared to several antivirus
engines in addition to Tong et al.’s approach [47] that is dedicated to the detection of
malware in the Android operating system and to Kayacık et al.’s approach [26] that
uses a GA to evolve mimcry attack to evaluate existing evasion attack detection sys-
tems. AMD shows promising results. Through generating both the malware pattern



34 Manel Jerbi et al.

set and the benign pattern set, AMD outperforms the state-of-the-art well-known de-
tection approaches with better detection accuracy rates. Its detection accuracy rate
exceeds 98%. Moreover, by analyzing the false positive and false negative values, AMD
was able to achieve better results when including the artificially generated patterns:
with FP = 00.21% and FN = 00.41% for the balanced data set, in which 14 775 684
malicious patterns and 10 172 203 benign patterns were analyzed, and FP = 00.28%
and FN = 00.44% for the imbalanced data set in which 27 534 880 malicious patterns
and 10 172 203 benign patterns were analyzed. Based on the conducted evaluations and
the promising obtained results, our AMD approach can be considered as an interesting
malware detection approach that is indeed able to detect obfuscated malware thanks
to the use of the artificially generated patterns.
Future research will be conducted to investigate the validity of the possible threats.
In the current experimental study, the generated malicious patterns are considered to
have the same level of confidence as the real ones. By doing so and without considering
any semantic evaluation of the generated artificial patterns present a limit for future
investigations. In fact, a genetic algorithm that generates the artificial malicious pat-
terns without any semantic evaluation will eventually consider some benign patterns
as malicious ones, and vice versa. To alleviate the effects of such behaviour, we have
already taken into account that the generated patterns would be as different as possible
from the benign ones provided by the base of examples. Indeed, we made sure to maxi-
mize both similarity to malware patterns and dissimilarity to benign ones in the fitness
function of the used GA. But still, it seems necessary to think of putting a mechanism
that should be able to evaluate the generated patterns and suppresses those that are
deemed inappropriate, i.e., they have a shady structure or an unrealizable behavior.
In this concern, we aim to assign a weighting factor to each generated sequence that
will depend on the semantics of the generated structure and to which extent it can
be considered as a real malicious one. Another perspective would be the use of other
metaheuristics search mechanism for item set extraction. As most population-based
metaheuristics could be seen as modified versions of GA [45], the Ant Colony Opti-
mization (ACO) is probably the only population-based algorithm that has a different
search behavior that is based on the probabilistic construction of fit solutions and
pheromone update. A comparison between GA and ACO within the framework of our
approach could give insights about the best search mechanism for malware patterns
construction. Finally, a very interesting future research path is the consideration of
the adversarial learning problem [8] where the data sets contain adversarial examples
that may fool or misguide the classifier. In this work, we have partially and implicitly
considered this problematic as the used data sets enclose many obfuscated examples.
However, it is very important to enrich our AMD approach with specific adversarial
techniques. On the one hand, adversarial training [18] could be adopted where adver-
sarial examples are injected to the model and labeled as threats. On the other hand,
a defensive distillation mechanism [44] could be developed. Such mechanism aims to
make the classifier model more flexible by having one model predict the outputs of an-
other model that was trained earlier. In such settings, our approach could be hybridized
with generative adversarial neural networks [20]. Based on this, it would be interesting
to investigate the performance of the AMD approach when taking into account more
characteristics concerning malware behaviors and with the ultimate goal of improving
the detection performance.



On the Use of Artificial Malicious Patterns for Android Malware Detection 35

References

1. Adebayo, O.S., AbdulAziz, N.: Android malware classification using static code
analysis and apriori algorithm improved with particle swarm optimization. In:
2014 4th World Congress on Information and Communication Technologies (WICT
2014). pp. 123–128. IEEE (2014)

2. Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules. In:
Proc. 20th int. conf. very large data bases, VLDB. vol. 1215, pp. 487–499 (1994)

3. Au, K.W.Y., Zhou, Y.F., Huang, Z., Lie, D.: Pscout: analyzing the android per-
mission specification. In: Proceedings of the 2012 ACM conference on Computer
and communications security. pp. 217–228. ACM (2012)

4. Aydogan, E., Sen, S.: Automatic generation of mobile malwares using genetic pro-
gramming. In: European conference on the applications of evolutionary computa-
tion. pp. 745–756. Springer (2015)

5. Bacardit, J.: Analysis of the initialization stage of a pittsburgh approach learning
classifier system. In: Proceedings of the 7th annual conference on Genetic and
evolutionary computation. pp. 1843–1850. ACM (2005)

6. Bernadó-Mansilla, E., Garrell-Guiu, J.M.: Accuracy-based learning classifier sys-
tems: models, analysis and applications to classification tasks. Evolutionary com-
putation 11(3), 209–238 (2003)

7. Bhattacharjya, R.K.: Introduction to genetic algorithms. IIT Guwahati 12 (2012)
8. Biggio, B., Roli, F.: Wild patterns: Ten years after the rise of adversarial machine

learning. Pattern Recognition 84, 317–331 (2018)
9. Bradley, A.P.: The use of the area under the roc curve in the evaluation of machine

learning algorithms. Pattern recognition 30(7), 1145–1159 (1997)
10. Burguera, I., Zurutuza, U., Nadjm-Tehrani, S.: Crowdroid: behavior-based malware

detection system for android. In: Proceedings of the 1st ACM workshop on Security
and privacy in smartphones and mobile devices. pp. 15–26. ACM (2011)

11. Chaba, S., Kumar, R., Pant, R., Dave, M.: Malware detection approach for android
systems using system call logs. arXiv preprint arXiv:1709.08805 (2017)

12. Chang, C.C., Lin, C.J.: Libsvm: a library for support vector machines. ACM trans-
actions on intelligent systems and technology (TIST) 2(3), 27 (2011)

13. Davis, L.: Handbook of genetic algorithms (1991)
14. Di Cerbo, F., Girardello, A., Michahelles, F., Voronkova, S.: Detection of mali-

cious applications on android os. In: International Workshop on Computational
Forensics. pp. 138–149. Springer (2010)

15. Edge, K.S., Lamont, G.B., Raines, R.A.: A retrovirus inspired algorithm for virus
detection & optimization. In: Proceedings of the 8th annual conference on Genetic
and evolutionary computation. pp. 103–110. ACM (2006)

16. Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Android permissions demys-
tified. In: Proceedings of the 18th ACM conference on Computer and communica-
tions security. pp. 627–638. ACM (2011)

17. Fredrikson, M., Jha, S., Christodorescu, M., Sailer, R., Yan, X.: Synthesizing near-
optimal malware specifications from suspicious behaviors. In: Security and Privacy
(SP), 2010 IEEE Symposium on. pp. 45–60. IEEE (2010)

18. Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F.,
Marchand, M., Lempitsky, V.: Domain-adversarial training of neural networks. The
Journal of Machine Learning Research 17(1), 2096–2030 (2016)

19. Gonzblez, A., Pérez, R.: Slave: A genetic learning system based on an iterative
approach. IEEE Transactions on Fuzzy Systems 7(2), 176–191 (1999)



36 Manel Jerbi et al.

20. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in neural
information processing systems. pp. 2672–2680 (2014)

21. Griffin, K., Schneider, S., Hu, X., Chiueh, T.C.: Automatic generation of string
signatures for malware detection. In: International workshop on recent advances
in intrusion detection. pp. 101–120. Springer (2009)

22. https://www.pnfsoftware.com/: Jeb ([Accessed on 2017])
23. http://www.javadecompilers.com/jad: Jad ([Accessed on 2017])
24. Jang, J.w., Yun, J., Mohaisen, A., Woo, J., Kim, H.K.: Detecting and classifying

method based on similarity matching of android malware behavior with profile.
SpringerPlus 5(1), 273 (2016)

25. Karbalaie, F., Sami, A., Ahmadi, M.: Semantic malware detection by deploying
graph mining. International Journal of Computer Science Issues 9(1), 373–379
(2012)

26. Kayacık, H.G., Zincir-Heywood, A.N., Heywood, M.I.: Can a good offense be a
good defense? vulnerability testing of anomaly detectors through an artificial arms
race. Applied Soft Computing 11(7), 4366–4383 (2011)

27. Kim, K., Moon, B.R.: Malware detection based on dependency graph using hybrid
genetic algorithm. In: Proceedings of the 12th annual conference on Genetic and
evolutionary computation. pp. 1211–1218. ACM (2010)

28. Linn, C., Debray, S.: Obfuscation of executable code to improve resistance to static
disassembly. In: Proceedings of the 10th ACM conference on Computer and com-
munications security. pp. 290–299. ACM (2003)

29. Miller, B.L., Goldberg, D.E., et al.: Genetic algorithms, tournament selection, and
the effects of noise. Complex systems 9(3), 193–212 (1995)

30. Nanni, L., Lumini, A.: Generalized needleman–wunsch algorithm for the recogni-
tion of t-cell epitopes. Expert Systems with Applications 35(3), 1463–1467 (2008)

31. Narouei, M., Ahmadi, M., Giacinto, G., Takabi, H., Sami, A.: Dllminer: structural
mining for malware detection. Security and Communication Networks 8(18), 3311–
3322 (2015)

32. Nissim, N., Moskovitch, R., Rokach, L., Elovici, Y.: Novel active learning methods
for enhanced pc malware detection in windows os. Expert Systems with Applica-
tions 41(13), 5843–5857 (2014)

33. Noreen, S., Murtaza, S., Shafiq, M.Z., Farooq, M.: Evolvable malware. In: Pro-
ceedings of the 11th Annual conference on Genetic and evolutionary computation.
pp. 1569–1576. ACM (2009)

34. Palahan, S., Babić, D., Chaudhuri, S., Kifer, D.: Extraction of statistically signif-
icant malware behaviors. In: Proceedings of the 29th Annual Computer Security
Applications Conference. pp. 69–78. ACM (2013)

35. Palumbo, P., Sayfullina, L., Komashinskiy, D., Eirola, E., Karhunen, J.: A prag-
matic android malware detection procedure. Computers & Security 70, 689–701
(2017)

36. Perdisci, R., Ariu, D., Giacinto, G.: Scalable fine-grained behavioral clustering of
http-based malware. Computer Networks 57(2), 487–500 (2013)

37. Perdisci, R., Lee, W., Feamster, N.: Behavioral clustering of http-based malware
and signature generation using malicious network traces. In: NSDI. vol. 10, p. 14
(2010)

38. Rafique, M.Z., Alrayes, N., Khan, M.K.: Application of evolutionary algorithms in
detecting sms spam at access layer. In: Proceedings of the 13th annual conference
on Genetic and evolutionary computation. pp. 1787–1794. ACM (2011)



On the Use of Artificial Malicious Patterns for Android Malware Detection 37

39. Rashidi, B., Fung, C.: Xdroid: An android permission control using hidden markov
chain and online learning. In: Communications and Network Security (CNS), 2016
IEEE Conference on. pp. 46–54. IEEE (2016)

40. https://www.hex rays.com/products/ida/: Ida-pro disassembler and debugger
([Accessed on 2017])

41. Rieck, K., Holz, T., Willems, C., Düssel, P., Laskov, P.: Learning and classification
of malware behavior. In: International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment. pp. 108–125. Springer (2008)

42. Sami, A., Yadegari, B., Rahimi, H., Peiravian, N., Hashemi, S., Hamze, A.: Malware
detection based on mining api calls. In: Proceedings of the 2010 ACM symposium
on applied computing. pp. 1020–1025. ACM (2010)

43. Santos, I., Brezo, F., Ugarte-Pedrero, X., Bringas, P.G.: Opcode sequences as rep-
resentation of executables for data-mining-based unknown malware detection. In-
formation Sciences 231, 64–82 (2013)

44. Soll, M., Hinz, T., Magg, S., Wermter, S.: Evaluating defensive distillation for
defending text processing neural networks against adversarial examples. In: Inter-
national Conference on Artificial Neural Networks. pp. 685–696. Springer (2019)

45. Sörensen, K.: Metaheuristicsthe metaphor exposed. International Transactions in
Operational Research 22(1), 3–18 (2015)

46. Spreitzenbarth, M., Freiling, F., Echtler, F., Schreck, T., Hoffmann, J.: Mobile-
sandbox: having a deeper look into android applications. In: Proceedings of the 28th
Annual ACM Symposium on Applied Computing. pp. 1808–1815. ACM (2013)

47. Tong, F., Yan, Z.: A hybrid approach of mobile malware detection in android.
Journal of Parallel and Distributed Computing 103, 22–31 (2017)

48. Umbarkar, A., Sheth, P.: Crossover operators in genetic algorithms: A review.
ICTACT journal on soft computing 6(1) (2015)

49. https://www.microsoft.com/en us/download/details.aspx?id=8002: Windows xp
mode ([Accessed on 2017])

50. Vidas, T., Christin, N.: Sweetening android lemon markets: measuring and com-
bating malware in application marketplaces. In: Proceedings of the third ACM
conference on Data and application security and privacy. pp. 197–208. ACM (2013)

51. Wei, F., Li, Y., Roy, S., Ou, X., Zhou, W.: Deep ground truth analysis of cur-
rent android malware. In: International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment. pp. 252–276. Springer (2017)

52. Weichselbaum, L., Neugschwandtner, M., Lindorfer, M., Fratantonio, Y., van der
Veen, V., Platzer, C.: Andrubis: Android malware under the magnifying glass.
Vienna University of Technology, Tech. Rep. TR-ISECLAB-0414-001 (2014)

53. Wen, L., Yu, H.: An android malware detection system based on machine learning.
In: AIP Conference Proceedings. vol. 1864, p. 020136. AIP Publishing (2017)

54. Willems, C., Holz, T., Freiling, F.: Toward automated dynamic malware analysis
using cwsandbox. IEEE Security & Privacy 5(2) (2007)

55. Wilson, S.W., Wilson, S., Xcs, G., et al.: Generalization in the xcs classifier system
(1998)

56. Yusoff, M.N., Jantan, A.: A framework for optimizing malware classification by
using genetic algorithm. In: International Conference on Software Engineering and
Computer Systems. pp. 58–72. Springer (2011)

57. Zheng, M., Sun, M., Lui, J.C.: Droid analytics: A signature based analytic system
to collect, extract, analyze and associate android malware. In: Trust, Security and
Privacy in Computing and Communications (TrustCom), 2013 12th IEEE Inter-
national Conference on. pp. 163–171. IEEE (2013)



38 Manel Jerbi et al.

58. Zhou, Y., Jiang, X.: Dissecting android malware: Characterization and evolution.
In: Security and Privacy (SP), 2012 IEEE Symposium on. pp. 95–109. IEEE (2012)

59. Zolkipli, M.F., Jantan, A.: A framework for malware detection using combination
technique and signature generation. In: 2010 Second International Conference on
Computer Research and Development. pp. 196–199. IEEE (2010)

A A comparison between malware analysis techniques

In this section, some background information about the different types of malware
detection techniques is given. Three major approaches of malware detection which
are proposed in literature are revised; namely the static, the dynamic and the hybrid
analysis techniques. Also, a detailed comparative study of these techniques is performed
based on their main characteristics. Static analysis is the process of analyzing the
code segments without actually running the application. The main characteristics of
these techniques are their efficiencies in terms of low resource consumption and low
time computation; specifically, when compared to dynamic methods. However, due
to the existence of various intrusion detection techniques such as code packing, anti-
debugging, control-flow and entry point obfuscation, static analysis can be in some cases
inefficient [28]. These limitations led to introduce a dynamic detection system that deals
with these issues. Compared to static techniques, dynamic techniques analyze the code
during runtime and this can immunize the analysis process from many obfuscation
techniques and even self-modifying programs. Meanwhile, hybrid techniques combine
aspects of both static and dynamic analysis to further construct control and data flow
analysis. In Table 12, a comparative study of different analysis techniques is performed.
In this table, the second column “Rep” (i.e., Representation) shows the type of features
used by the systems to represent the input files. The third column shows the programs
or the algorithms used to extract these features. The fourth column cites the classifiers
used in the corresponding method. The “Platform” column shows the used operating
system. The “DR” (i.e., Detection Rate) column gives the detection rate of the related
system where NR means that authors did not perform an evaluation on malware data
sets or did not mention this in their paper. The ”FP” (i.e., False Positive) column shows
the false positive rate of the system where NR means that authors did not present an
evaluation on benign data sets or did not mention this in their paper. The “Freq pat”
(i.e., Frequent patterns) column shows if the system uses frequent patterns such as
frequent sub-graphs, item-sets or subsequences as features for extracting behaviors
and then uses these for detection. The “weakness” column shows the challenge of each
method for detecting malwares and mainly what are the possible evasion techniques
against them. In the third, fourth and eighth columns, NR means that the information
was not given in the paper.

Table 12: A comparison between malware analysis techniques (acronyms are
explained under the table)

Ref Rep Extraction
method

Classifiers Platform DR
(%)

FP
(%)

Freq
pat

Weakness

Static analysis
[21] BYT

SEQ
Kephart
and Arnolds
extraction
work

NR Windows NR <0.1 NR Substitution,
reordering,
injection



On the Use of Artificial Malicious Patterns for Android Malware Detection 39

[27] DG
SRC

NR NR Windows 88.9 NR NR Based on
SRC

[42] API PE analyzer RF Windows 99.7 1.5 ITM Injection
[14] PER Apriori algo-

rithm
NR Android NR NR ITM Injection

[43] OP
SEQ

NewBasic As-
sembler

DT, SVM,
KNN, BN

Windows 95.8 2 NR Substitution,
reordering,
injection

[32] BYT
NG

NG length
sliding win-
dows

SVM Windows 85 0.8 NR Substitution,
reordering,
injection

[31] PE,
DLL,
API,
Depen-
dency
tree

Dependency
Walker

RF Windows 100 0.03 Freq
sub-
tree

Mimicry at-
tacks, Prun-
ing tree

[33] SIG IDA pro[40] Commercial
antiviruses

Windows 98.98 1.02 NR ”Bagle” at-
tacks only

[15] SIG XNR Pattern
matching

Windows NR NR X Encryption,
obfuscation

[59] SIG NR Pattern
matching

Windows NR NR NR virus, worms
and Trojan
horse

[4] Sys call JAD[23],
JEB[22]

Detectors** Android NR NR NR Mimicry at-
tack

Dynamic analysis
[17] API

GRA
HOLMES X Windows 86 0 GRA Graph com-

plexity
[10] SYS

call
Strace K-means Android 100 NR NR Manual

check,Sniffs
attack

[25] API
GRA

gSpan RF Windows 96.6 3.4 GRA Graph com-
plexity

[36] HTTP Behavioral
clustering[37]

Behavioral
clustering
[37]

Windows 68 0 HTTP Specific
malware

[34] API
GRA

Subgraph
mining algo-
rithm

Linear clas-
sifier

Windows 86.77 0 GRA Graph com-
plexity

[56] Extracted
features*

Windows XP
Mode [49]

NB, SVM,
DT, KNN

Windows NR NR NR Worms
and Torjan
horses only

Hybrid analysis
[58] PER,

Behav-
ioral
foot-
prints

DroidRanger NR Android NR FN:
5.04

NR Only per-
mission
based filter-
ing

[46] PER
API

Android SDK NR Android NR NR NR Analyzing
time

[57] PER
API
SEQ
SIG
Genera-
tor

AIS parser SIM mea-
surement

Linux NR NR NR Obfuscation

[50] API Android SDK NR Android NR FN:
4.2

NR Only Pi
calculation
measure-
ment



40 Manel Jerbi et al.

[52] BYT
PER
HTTP
DNS
FTP
SMTP
IRC

Stowaway[16]
PScout [3]

Clustering Android NR NR NR Evasion

[24] Behavior
profile
PE SN
API
SEQ
PER

Android SDK Classification
engine, SIM
metrics

Android 73.18 0.32 NR Packing,
Binary code
encryption

[47] API
SEQ

Sys calls ex-
traction

Pattern
matching

Emulated
environ-
ment

90.19 8.12 API
SEQ

New mal-
wares

PER: permissions; HED: executable header; SYS: system; API: application program-
ming interface; OP: operation code; DG: dependency graph; CFG: control flow graph;
SRC: source code; NG: n-gram; MET: metadata; BYT: byte code; SEQ: sequence;
GRA: graph; ITM: item-set, MD: mobile device; BYT TEMplate: instruction sequences
where variables and symbolic constants are used; CBA: Classification based on associ-
ation; OOA MT: objective oriented association mining technique; SVM: support vector
machines; IBL: instance based learner; NB: naive bayes; KE based on EL: knowledge
extraction based on evolutionary learning; SN: serial number; SIM: similarity; DT: de-
cision tree; BN: bayesian networks; RF: random forest; gSpan: graph-based substruc-
ture patternmining; NR: not reported. *: malware sample, MD5 hash, malware size,
malware specific target,class operation. **: Stide, Process Homeostasis, Process Home-
ostasis with as chemamask, The Markov Model-based detector, Auto-associative neural
network.

B Data preprocessing

In this section, the preprocessing of the gathered Android files is discussed. Indeed,
this step is required in the first phase of the AMD approach (Figure 1b) to enable
extracting the API call sequences from the collected data (apps).

Malicious files, which are Android applications, include all varieties of malwares
that can be in the form of a virus, a backdoor, a worm, a trojan, a spyware or any
other possible form. These malicious Android files are gathered from both AMD set
and DroidCat malicious data sets.

Each Android application is in the form of a single file known as an Android
Application Package (APK) that includes all of the applications code. The structure
of an APK is shown in Figure 8 where it includes:

– Manifest (AndroidManifest.xml): is an Android manifest file, describing the name,
the version, the access rights and the referenced library files for the application;

– META-INF (signatures): is a folder containing the MANIFEST.MF file, which
stores meta data and also the signature of an APK;

– Assets: is a directory containing applications assets;
– Compiled resources (ressources.arsc): this file contains precompiled resources, in

binary XML;
– Native libraries (lib\): is a directory containing the compiled code i.e., native code

libraries.
– Dalvik bytecode (classes.dex): contains the classes compiled in the dex file format;

and
– Ressources (res/): contains resources not compiled into resources.arsc;



On the Use of Artificial Malicious Patterns for Android Malware Detection 41

Fig. 8: The structure of an APK

To extract the API calls, a compilation of the Dalvik Executable (.dex) is required.
This process will make use of several needed functions located in different libraries
(.so) such as in the native library (lib\). As malicious files are dealt with, and in order
to capture the interactions of the application with the operating system, the Android
Studio’s emulator is used allowing to run files in a controlled environment. Under this
environment, to analyze Android apps, first, the APK is unzipped to get the .dex file.
Formally, in a .dex file, five different methods can be detected to invoke an API call.
These are presented in Table 13. To gather these API calls, the Strace module is used.

Table 13: Methods to invoke API calls
Method Role

invoke-static invokes a static method with parameters
invoke-virtual invokes a virtual method with parameters
invoke-direct invokes a method with parameters without the virtual

method resolution
invoke-super invokes the virtual method of the immediate parent class
invoke-interface invokes an interface method

C Performance indicators

The performance of AMD is evaluated in terms of precision, recall, specificity, F1 score,
Area Under the Receiver Operating Characteristics (ROC) Curve (AUC) and accuracy.
These are defined in this section.

– Precision, also referred to as positive predictive value (PPV): It is defined as the
number of true positives divided by the number of true positives plus the number
of false positives as shown in Equation 13.

Precision(orPPV ) =
TN

TN + FP
(13)



42 Manel Jerbi et al.

– Recall, also referred to as sensitivity or as the true positive rate (TPR) measure:
It is able to determine positive instances (i.e., malware files) correctly, as shown in
Equation 14.

Recall(orSensitivityorTPR) =
TP

TP + FN
(14)

To be able to draw our ROC curves of the AMD approach, in Section 5.1, both
the recall and specificity values are needed. In fact, the ROC curve is created by
plotting the true positive rate (TPR) against the (1-specificity) values at various
thresholds of TN , TP , FP and FN . To do so, the definition of the specificity is
added:

– Specificity or the true negative rate (TNR): It determines negative instances (i.e.,
benign files) correctly identified (Equation 15).

TNR(orSpecificity) =
TN

FP + TN
(15)

– Accuracy: measures the number of correctly classified instances, either positive or
negative, divided by the entire number of instances as shown in Equation 16.

Accuracy =
TP + TN

TP + FP + TN + FN
(16)

– F1 score, also referred to as F-score or F-measure: Is a measure of a test’s accuracy
(predicting a pattern’s class). It considers both the precision and the recall. The
F1 score is the harmonic average of the precision and recall, where an F1 score
reaches its best value at 1 (perfect precision and recall) and worst at 0. The F1 score
formula is given in Equation 17:

F1 score = 2 ∗ precision ∗ recall
precision+ recall

(17)

– The area under a ROC curve (AUC): quantifies the overall ability of the test,
the prediction of a pattern’s nature in our case, to discriminate between positive
instances and negative ones18. A useless pattern (unable on identifying true posi-
tives) has an area of 0.5. A perfect test (one that has zero false positives and zero
false negatives) has an area of 1.
The simplest way to calculate the AUC is to use trapezoidal integration [9]. It
consists on a non-parametric method based on constructing trapezoids under the
curve as an approximation of area. In fact, we need to use the points, referred to
as i in the below equations (Equation 18, Equation 19 and Equation 20), on the
ROC curve. To do so, we suppose that the FPR = α and the TPR = 1 - β.

AUC =
∑
i

{(1− βi) ∗∆α+
1

2
[∆(1− β) ∗∆α]} (18)

where
∆(1− β) = (1− βi)− (1− βi−1) (19)

∆α = αi − αi−1 (20)

A rough guide for classifying the accuracy of a detection test is the academic point
system given in [9] and is presented in Table 14. For instance, if the area equals 0.84
this means that the pattern could be considered as “good” at separating positive
and negative instances.

18 http://gim.unmc.edu/dxtests/roc3.htm

http://gim.unmc.edu/dxtests/roc3.htm


On the Use of Artificial Malicious Patterns for Android Malware Detection 43

Table 14: Classification of the detection test
AUC’s value Evaluation

0.90 - 1 Excellent
0.80 - 0.90 Good
0.70 - 0.80 Fair
0.60 - 0.70 Poor
0.50 - 0.60 Fail


