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Robust Newton solver based on variable switch
for a finite volume discretization of Richards
equation

Sabrina Bassetto, Clément Cancès, Guillaume Enchéry and Quang Huy Tran

Abstract We propose an efficient nonlinear solver for the resolution of the Richards
equation. It is based on variable switching and is easily implemented thanks to a fic-
titious variable allowing to describe both the saturation and the pressure. Numerical
experiments show that our method enables to use Newton’s method with large time
steps, reasonable number of iterations and in regions where the pressure-saturation
relationship is given by a graph.
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1 Finite volume approximation of the Richards equation
The Richards equation is often used to model unsaturated flows in a porous medium
Ω ⊂Rd (1≤ d ≤ 3). The fluid occupying the pore space is described by the pressure
p ∈ R of the water phase and the water saturation s ∈ [0,1], which represents the
volume ratio of water in the pore space. The conservation law for the water volume
then writes

∂t(φ s)−div
(

λ

µ
kr(s)(∇p−ρg)

)
= 0 in Ω ×R+, (1)

where φ ∈ (0,1) is the porosity of Ω , λ its intrinsic permeability, µ the water vis-
cosity, ρ the water density and g the gravitational acceleration. The relative perme-
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ability function kr : [0,1]→R+ is continuous and nondecreasing, and we denote by
srw = max{s | kr(s) = 0} the residual water saturation. The saturation s and pressure
p are linked pointwise by the relation

s = S (p) in Ω ×R+, (2)

where S : R→ [0,1] is nondecreasing and satisfies S (p) = 1− srn if p ≥ pb, srn
denoting the residual saturation of air, pb the entry pressure and S (p)→ srw as
p→−∞. We assume that S is C1 and convex on (−∞, ps), and C1 and concave on
(ps,+∞) for some ps ≤ 0. We denote by ss = S (ps). The above assumptions on
kr and S are satisfied by the classical Brooks-Corey and van Genuchten-Mualem
models respectively given by

krBC(s) = s
3+ 2

n
eff , SBC(p) =

 srw +(1− srn− srw)
(

p
pb

)−n
if p≤ pb,

1− srn if p > pb,
(3)

krvGM(s) = s
1
2
eff{1− [1− s

1
m
eff]

m}2, SvGM(p) =

 srw + 1−srn−srw[
1+
∣∣∣ α

ρg p
∣∣∣n]m if p≤ pb,

1− srn if p > pb,
(4)

where seff =
s−srw

1−srn−srw
and, for the van Genuchten-Mualem model, m = 1− 1

n and
pb = 0 Pa. Dirichlet boundary conditions are imposed on a part Γ D of ∂Ω , while
inflow Neumann boundary conditions are imposed on the complement Γ N = ∂Ω \
Γ D:

p = pD on Γ
D×R+, −λ

µ
kr(s)(∇p−ρg) ·n = qN on Γ

N×R+, (5)

with qN ≤ 0. Finally, the system is closed by prescribing an initial saturation profile

s(·,0) = s0 in Ω , with 0≤ s0 ≤ 1. (6)

We refer to [2] for further details on the modeling and to [1] for the well-posedness
of the problem.
The problem (1), (2), (5), and (6) is discretized by means of a finite-volume scheme:
an upstream mobility is used for convection and a two-point flux approximation
(TPFA) for the capillary diffusion. Let (T ,E ,(xK)K∈T ) be a finite volume mesh
of Ω fulfilling the classical orthogonality condition required for the consistency of
TPFA. Since this notion is classical, we remain sloppy here on the definition and
refer to [6, Definition 9.1] for details. Let us just mention that T denotes the set
of the cells, while the set of the edges E is partitioned into the set of the internal
edges Eint = {σ ∈ E | σ = K|L = ∂K∩∂L}, the set of the Dirichlet boundary edges
E D

ext = {σ ∈ E | σ ⊂ Γ D}, and the set of the Neumann boundary edges E N
ext = {σ ∈

E | σ ⊂ Γ N}. We denote by EK = {σ ∈ E | σ ⊂ ∂K}. For the time discretization,
we allow for non-uniform time steps τn = tn− tn−1, n≥ 1. At initial time t = 0, s0 is
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discretized into s0
K = 1

|K|
∫

K s0. For σ ∈ Eint∪E D
ext, σ ∈ EK , we define the mirror value

un
K,σ of un

K across σ by un
K,σ = un

L if σ = K|L∈ Eint and un
K,σ = un

σ = 1
τn|σ |

∫
σ

∫ tn

tn−1 uD

if σ ∈ E D
ext. The conservation of the water phase is discretized into

φK
sn

K− sn−1
K

τn
|K|+ ∑

σ∈EK

Fn
Kσ = 0, K ∈T , n≥ 1. (7)

The expression of the fluxes relies on a unique upwinding for capillary diffusion and
for gravitationally induced convection, that is

Fn
Kσ =

{
Aσ{

kr
n
σ ,up
µ

[ (pn
K− pn

K,σ ) + ρg (zK− zK,σ ) ]} if σ ∈ Eint∪E D
ext,

1
τn

∫ tn

tn−1
∫

σ
qN if σ ∈ E N

ext,
(8)

where

kr
n
σ ,up =

{
kr(sn

K) for (pn
K− pn

K,σ ) + ρg (zK− zK,σ )≥ 0,
kr(sn

K,σ ) otherwise,
(9)

Aσ =

{
mσ

λKλL
λLdK,σ+λKdL,σ

if σ = K∩L,

mσ
λK

dK,σ
if σ ∈ E D

ext,
(10)

with λK = λ (xK), dK,σ = |xK−xL| if σ = K|L ∈ Eint, dK,σ = dist(xK ,σ) if σ ∈ E D
ext

and mσ is the Lebesgue measure of the edge σ . The discrete water saturation and
pressure are related cellwise by the relation

sn
K = S (pn

K), K ∈T , n≥ 1. (11)

The scheme (7)–(11) admits a unique discrete solution (sn
K , pn

K)K∈T for all n ≥ 1
and converges as the mesh size and the time step tend to 0 (this will be proved in
a forthcoming work). In this contribution, we rather focus on the practical resolu-
tion of the nonlinear system (7)–(11) via an iterative method. For our works, we
choose to use Newton’s method. Notice that the physical models presented above,
both feature two difficulties for Newton’s method: the function SBC is Lipschitz
continuous but not C1 and the mobility function krvGM is singular at s = 1− srn
where the derivative blows up.

2 Fictitious variable and Newton’s method
A natural approach to solve the nonlinear system (7)–(11) is to choose (pK)K∈T
as a primary unknown and to solve the corresponding nonlinear system thanks to
Newton’s method (or alternatively some modified Picard’s method, see e.g. [9]).
However, the choice of the pressure as the primary variable is known to be ineffi-
cient for dry soils s� 1 where they are outperformed by schemes using s as primary
variable. On the other hand, the knowledge of the saturation is not sufficient to de-
scribe the pressure in saturated regions where s = 1. This motivated the introduction
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of schemes based on variable switching between s and p, see [7, 5]. Our approach is
based on [3] and can be seen as a reformulation of the variable switch which makes
its implementation much easier. Unlike in [3], we do not use the Kirchhoff trans-
form which cannot be easily computed for the van Genuchten-Mualem model. The
idea is to choose a parametrization of the graph {p,S (p)}, i.e. to choose two func-
tions s : I→ [srw,1− srn] and p : I→ R such that s(u) = S (p(u)) for all u ∈ I ⊂R.
Such a parametrization is not unique: one can for instance choose I =R, p= Id and
s = S , or p = (Id+S )−1 and s = (Id+S −1)−1 so that s′(u)+ p′(u) = 1 for all
u ∈ R. Here, we rather set I = (srw,+∞) and

s(u) =

u if u≤ us,

S

(
ps +

u−us

S ′(p−s )

)
if u≥ us,

p(u) =

S −1(u) if u≤ us,

ps +
u−us

S ′(p−s )
if u≥ us.

(12)
where S ′(p−s ) denotes the limit of S ′(p) as p tends to ps from below. Since (ps,us)
is the inflexion point of S , both s and p are C1 and concave, and even C2 if S is
given by (4). Moreover, for all p ∈ R, there exists a unique u ∈ (srw,+∞) such that
(p,S (p)) = (p(u),s(u)).
Choosing u as a primary variable in the scheme (7)–(11) amounts to search for un =
(un

K)K∈T such that sn
K = s(un

K) and pn
K = p(un

K) for all K ∈T . Equation (11) is then
automatically satisfied. The resulting system Fn(un) = 0 made of NT = Card(T )
nonlinear equations admits a unique solution un since it is fully equivalent to (7)–
(11). However, the nonlinear change of variable to pass from pn = (pn

K)K∈T to un

as primary variable strongly impacts the nonlinear solver. Our approach is based
on Newton’s method, that is detailed in Algorithm 1 and that include the following
procedures in order to handle difficulties which are inherent to the chosen petro-
physical models.

• check() and update()
The law of the relative permeability kr, in the van Genuchten-Mualem case (4),
has very large derivative values, which can be equal to ∞ for s→ 1. In order to
overcome this difficulty, we approximate krvGM, during Newton’s iterations, for
s∈N = [slim,1], with a polynomial k̃rvGM(s) of second degree which satisfies the
following conditions: kr(slim) = k̃rvGM(slim), k′r(slim) = k̃r

′
vGM(slim), k′′r (slim) =

k̃r
′′
vGM(slim). The idea is to progressively increase the value of slim in order to re-

cover the real law at convergence. The function check() verifies the error we com-
mit in the approximation. If this error is smaller than a fixed tolerance, namely
|krvGM(1)− k̃rvGM(1)|< εkvGM

r
, it returns true, false otherwise. At each Newton’s

iteration, we increase the value of slim thanks to the function update(). The incre-
ment speed depends on the norm of the residual. Let us call δsw,max = 1−srn−slim.
If
∥∥Fn(un,i)

∥∥
∞
> εFvGM we set δsw,max = δsw,max ·ω and δsw,max = δ 2

sw,max otherwise,
with ω < 1.

• truncation()
Since Fn is not necessarily C1 (SBC is not C1 in the Brooks and Corey case),
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following [8, 10], the Newton increment is truncated near the inflection point ss,
as described in Algorithm 2.

• decreaseDeltaTime() and increaseDeltaTime()
In our numerical tests, we increase the time step in such a way that ∆ tn+1 =
min(∆ tmax,α

+
∆ t · ∆ tn) and decrease it in such a way that ∆ tn+1 = max(α−

∆ t ·
∆ tn,∆ tmin) with α

+
∆ t > 1 and α

−
∆ t < 1. If ∆ tmin is reached, the simulation stops.

Initialization:
i = 0;
un,0 = un−1;

while[(∥∥Fn(un,i)
∥∥

∞
≥ ε ∧ i≤ imax

)
∨¬ check()

]
do

solve J(un,i−1)δ n,i +Fn(un,i−1) = 0 ;
for K ∈T do

truncation();
un,i

K = max(srw,u
n,i−1
K +δ

n,i
K );

end
i = i+1;
update();

end
if i > imax then

decreaseDeltaTime();
restart while loop ;

else
un = un,i;
n = n+1;
increaseDeltaTime();

end
Algorithm 1: Practical resolution of the sys-
tem Fn(un) = 0, where J is the Jacobian ma-
trix.

for K ∈T do
if ss−δ

n,i
K < un,i−1

K ≤ ss then
δ

n,i
K = ss−un,i−1

K + εδ ;
else if ss ≤ un,i−1

K < ss−δ
n,i
K

then
δ

n,i
K = ss−un,i−1

K − εδ ;
end

end
Algorithm 2: Detail of the function
truncation(), where εδ � 1.

3 Numerical results
For the numerical validation of our scheme, we consider two tests inspired from
those proposed in [4]. These two tests make use of the classical Brooks and Corey
and Van Genuchten-Mualem models. For the simulations we take the following pa-
rameters: ε = 10−12, imax = 500, εkvGM

r
= 10−3, εFvGM = 10−9, εδ = 10−6, α

−
∆ t =

0.5, ω = 0.07. As in [4], our aim is here just to improve the robustness of the New-
ton’s algorithm when used with the TPFA scheme. Therefore, our study here focuses
on the corresponding nonlinear system even if more accurate schemes could be used
to better take into account the heterogeneities, in particular the ones related to the
capillary pressures.
Test 1 with the Brooks and Corey model
In this test we simulate a vertical drainage through a layered soil Ω = [0m, 2m]
from initially saturated conditions during a time interval [0,T ] with T = 105 ·104 s.
At the initial time the pressure varies with respect to the height of the column, that
is p0(z) = −ρg(z− 2), where ρ = 103 kg ·m−3 and g = 9.81m · s−2. During the
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simulation, we impose a Dirichlet boundary condition pD = 0 Pa on the bottom of
the column and a no-flow boundary condition on the top. The soil is made of two
rock types: RT1 for 0m < z < 0.6m and 1.2m < z < 2m, and RT2 for 0.6m < z <
1.2m. Their hydraulic properties are given in Table 1. Simulations are performed
on a mesh with 1000 cells and an initial time step ∆ tini = 2000 s which increases
after the first time iteration up to ∆ tmax = 2 ·∆ tini using α

+
∆ t = 1.2. The truncation

procedure, detailed in Algorithm 2, is activated during Newton’s iterations.

Table 1: Hydraulic properties for Test 1

1− srn srw pb[Pa] n λ [m2] φ

RT1 1.0 0.2 −3.4301 ·103 1.5 10−13 0.35
RT2 1.0 0.1 −1.4708 ·103 3.0 10−11 0.35

Table 2 gives the average number of iterations of the nonlinear solvers used here
and in [4] along with the number of time steps.

Table 2: Performances of the nonlinear (nl) solvers for Test 1

] total nl iterations ] time iterations

Our method 1118 265
Method proposed in [4] (coarser mesh) 4469 (inner iterations) 300

Note that a coarser mesh has been used in [4] for this test. Solutions obtained at
the final time are shown in Figure 1. In some areas, pressures are higher than the
entry pressure and the saturation-pressure relationship is there no more a function.
The problem can still be solved thanks to the use of the parametrization technique.
Figure 2 shows the evolution of the average Newton’s convergence rate given, for a

time step n, by CV n
rate =

1
Nn

iter
∑

Nn
iter

i=1
log10‖Fn(un,i)‖

∞

log10‖Fn(un,i−1)‖
∞

. The rate is on the whole equal

to 2. Negative rates are due to residual norms which are greater than one at some
iterations.

0 1 2

0.2

0.4

0.6

0.8

1

z-Axes

0 1 2

−5

0

·103

z-Axes
10 ·∆ t 50 ·∆ t 100 ·∆ t 150 ·∆ t 200 ·∆ t 265 ·∆ t

Fig. 1: Evolution in time of the saturation on the left and of the pressure on the right
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Fig. 2: Test 1: Evolution of the average Newton’s convergence rate during time iterations.

Test 2 with the Van Genuchten-Mualem model
In this test, starting from an initially very dry layered domain, Ω = [0m,1m]×
[−3m,0m], made of sand and clay, water flows from the top of the structure as
shown in Figure 3. The hydraulic properties of the rock types are given in Table
3. The initial pressure is set to −47.088 · 105 Pa. A no-flow boundary condition is
applied everywhere except on the top sand surface where the water flux rate is equal
to 0.5 m/day. The simulation is performed on a mesh composed of a 100×60 cells
during a time interval [0,T ] with T equal to one day. We use an initial time step
∆ tini = 25 ·102 s which increases after the first time iteration up to ∆ tmax = 3 ·∆ tini
using α

+
∆ t = 2.

Table 3: Hydraulic properties for Test 2

RT1 (Sand) RT2 (Clay)

1− srn 1.0 1.0
srw 0.0782 0.2262
n 2.239 1.3954
λ [m2] 6.3812 ·10−12 1.5461 ·10−13

α [m−1] 2.8 1.04
slim 0.985 0.985
φ 0.3658 0.4686

Fig. 3: Configuration of the domain for Test 2.

During this simulation, the relative permeability is approximated following the strat-
egy which has been previously described and activating the check() and update()
procedures. The truncation method is not required here because SvGM is C2. Table
4 gives the average number of iterations of the nonlinear solvers used here and in [4]
along with the number of time steps. Solutions obtained at the final time are shown
in Figure 4. Figure 5 shows the evolution of the average Newton’s convergence rate
which is slightly bigger than 1. The loss of the quadratic convergence may be due
to the low regularity of the laws and to the use of the approximation k̃rvGM .
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Table 4: Performances of the nonlinear (nl) solvers for Test 2
] total nl iterations ] time iterations

Our method 151 13
Method proposed in [4] 482 (inner iterations) 24

Fig. 4: At the final time for Test 2: s obtained in [4] (left) and with our solution (right).

0 2 4 6 8 10 12
1.15

1.2

1.25

1.3

1.35

Time iterations

Fig. 5: Test 2: Evolution of the average Newton’s convergence rate during time iterations.
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