
HAL Id: hal-02478696
https://hal.inria.fr/hal-02478696

Preprint submitted on 14 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On termination of Graph Rewriting Systems through
language theory

Guillaume Bonfante, Miguel Couceiro

To cite this version:
Guillaume Bonfante, Miguel Couceiro. On termination of Graph Rewriting Systems through language
theory. 2020. �hal-02478696�

https://hal.inria.fr/hal-02478696
https://hal.archives-ouvertes.fr

On Termination of Graph Rewriting Systems1

through Language Theory2

Guillaume Bonfante3

University of Lorraine4

LORIA, Nancy, France5

guillaume.bonfante@univ-lorraine.fr.fr6

Miguel Couceiro7

University of Lorraine8

LORIA, Nancy, France9

miguel.couceiro@loria.fr10

Abstract11

The termination issue we tackle is rooted in natural language processing where graph rewriting12

systems (GRS) may contain a large number of rules, often in the order of thousands. Decidable13

concepts thus become mandatory to verify the termination of such systems. The notion of graph14

rewriting consider does not make any assumption on the structure of graphs (they are not “term15

graphs”, “port graphs” nor drags). The lack of algebraic structure in our setting led us to proposing16

two orders on graphs inspired from language theory: the matrix multiset-path order and the rational17

embedding order. We show that both are stable by context, which we then use to obtain the main18

contribution of the paper: under a suitable notion of “interpretation”, a GRS is terminating if and19

only if it is compatible with an interpretation.20

2012 ACM Subject Classification Theory of computation → Rewrite systems21

Keywords and phrases Graph Rewriting, Termination, Orders, Natural Language Processing22

Digital Object Identifier 10.4230/LIPIcs...23

1 Introduction24

Computer linguists rediscovered few years ago that graph rewriting is a good model of25

computation for rule-based systems. They used traditionally terms, see for instance Chomsky’s26

Syntagmatic Structures [3]. But usual phenomena such as anaphora do not fit really well27

within such theories. In such situations, graphs behave much better. For examples of graph28

rewriting in natural language processing, we refer the reader to the parsing procedure by29

Guillaume and Perrier [12] or the word ordering modeling by Kahane and Lareau [14]. The30

first named author with Guillaume and Perrier designed a graph rewriting model called31

grew [2] that is adapted to natural language processing.32

The rewriting systems developed by the linguists often contain a huge number of rules, e.g.,33

those synthesized from lexicons (e.g. some rules only apply to transitive verbs). For instance,34

in [12], several systems are presented, some with more than a thousand of rules. Verifying35

properties such as termination by hand thus becomes intractable. This fact motivates our36

framework for tackling the problem of GRS termination.37

Following the tracks of term rewriting, for which the definition is essentially fixed by the38

algebraic structure of terms, many approaches to graph rewriting emerged in past years. Some39

definitions (here meaning semantics) are based on a categorical framework, e.g., the double40

pushout (DPO) and the single pushout (SPO) models, see [21]. To make use of algebraic41

potential, some authors make some, possibly weak, hypothesis on graph structures, see for42

instance the main contribution by Courcelle and Engelfriet [4] where graph decompositions,43

graph operations and transformations are described in terms of monadic second-order logics44

© Guillaume Bonfante and Miguel Couceiro;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:guillaume.bonfante@univ-lorraine.fr.fr
mailto:miguel.couceiro@loria.fr
https://doi.org/10.4230/LIPIcs...
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2 On Termination of Graph Rewriting Systems through Language Theory

(with the underlying decidability/complexity results). In this spirit, Ogawa describes a graph45

algebra under a limited tree-width condition [18].46

Another line of research follows from the seminal work by Lafont [15] on interaction47

nets. The latter are graphs where nodes have some extra structure: nodes have a label48

related to some arity and co-arity. Moreover, nodes have some "principal gates" (ports) and49

rules are actionned via them. One of the main results by Lafont is that rewriting in this50

setting is (strongly) confluent. This approach has been enriched by Fernandez, Kirchner51

and Pinaud [11], who implemented a fully operational system called PORGY with strategies52

and related semantics. Also, it is worth mentionning the graph rewriting as described by53

Dershowitz and Jouannaud [8]. Here, graphs are seen as a generalization of terms: symbols54

have a (fixed) arity, graphs are connected via some sprouts/variables as terms do. With such55

a setting, a good deal of term rewriting theory also applies to graphs.56

Let us come back to the initial problem: termination of graph rewriting systems in the57

context of natural language processing. We already mentioned that rule sets are large, which58

making manual inspection impossible. Moreover, empirical studies fail to observe some of the59

underlying hypotheses of the previous frameworks. For instance, there is no clear bound on60

tree-width: even if input data such as dependency graphs are almost like trees, the property61

is not preserved along computations. Also, constraints on node degrees are also problematic:62

graphs are usually sparse, but some nodes may be highly connected. To illustrate, consider63

the sentence “The woman, the man, the child and the dog eat together”. The verb “eat” is64

related to four subjects and there is no a priori limit on this phenomenon. Typed versions65

(those with fixed arity) are also problematic: a verb may be transitive or not. Moreover,66

rewriting systems may be intrinsically nondeterministic. For instance, if one computes the67

semantics of a sentence out of its grammatical analysis, it is quite common there are multiple68

solutions. To further illustrate nondeterminism consider the well know phrasal construction69

“He saw a girl with a telescope” with two clear readings.70

Some hypotheses are rather unusual for standard computations, e.g., fixed number of71

nodes. Indeed, nodes are usually related to words or concepts (which are themselves closely72

related to words). A paraphrase may be a little bit longer than its original version, but73

its length can be easily bounded by the length of the original sentence up to some linear74

factor. In grew, node creations are restricted. To take into account the rare cases for which75

one needs extra nodes, a “reserve” is allocated at the beginning of the computation. All76

additional nodes are taken from the reserve. Doing so has some efficiency advantages, but77

that goes beyond the scope of the paper. Also, node and edge labels, despite being large,78

remain finite sets: they are usually related to some lexicons. These facts together have an79

important impact on the termination problem: since there are only finitely many graphs of a80

given size, rewriting only leads to finitely many outcomes. Thus, deciding termination for a81

particular input graph is decidable. However, our problem is to address termination in the82

class of all graphs. The latter problem is often referred to as uniform termination, whereas83

the former is refereed to as non-uniform. For word rewriting, uniform termination of non84

increasing systems constituted a well known problem, and was shown to be undecidable by85

Sénizergues in [24].86

This paper proposes a novel approach for termination of graph rewriting. In a former87

paper [1], we proposed a solution based on label weights. Here, the focus is on the description88

(and the ordering) of paths within graphs. In fact, paths in a graph can be seen as regular89

languages. The question of path ordering thus translates into a question of regular language90

orderings. Accordingly, we define the graph multi-set path ordering that is related to that in91

[6]. Dershowitz and Jouannaud, in the context of drag rewriting, consider a similar notion of92

G. Bonfante and M. Couceiro XX:3

path ordering called GPO (see [7]). Our definitions diverge from theirs in that our graph93

rewriting model is quite different: here, we do not benefit (as they do) from a good algebraic94

structure. Our graphs have no heads, tails nor hierarchical decomposition. In fact, our95

ordering is not even well founded! Relating the two notions is nevertheless interesting and96

left for further work. Plump [20] also defines path orderings for term graphs, but those97

behave like sets of terms.98

One of our graph orderings will involve matrices, and orderings on matrices. Nonetheless,99

as far as we see, there is no relationship with matrix interpretations as defined by Endrullis,100

Waldmann and Zantemma [10].101

The paper is organised as follows. In Section 2 we recall the basic background on graphs102

and graph rewriting systems (GRS) that we will need throughout the paper, and introduce103

an example that motivated our work. In Section 3 we consider a language theory approach104

to the termination of GRSs. In particular, we present the language matrix, and the matrix105

multiset path order (Subsection 3.4) and the rational embedding order (Subsection 3.5).106

We also introduce the notion of stability by context (Subsection 3.6) and show that both107

orderings are stable under this condition (Subsection 3.7). In Section 4 we propose notion of108

graph interpretability and show one of our main results, namely, that a GRS is terminating109

if and only if it is compatible with interpretations.110

Main contributions: The two main contributions of the paper are the following.111

1. We propose two orders on graphs inspired from language theory, and we show that both112

are monotonic and stable by context.113

2. We introduce a notion of graph interpretation, and show that terminating GRSs are114

exactly those compatible with such interpretations.115

2 Notations and Graph Rewriting116

In this section we recall some general definitions and notations. Given an alphabet Σ, the117

set of words (finite sequences) is denoted by Σ∗. The concatenation of two words v and w is118

denoted by v · w. The empty word, being the neutral element for concatenation, is denoted119

by 1Σ or, when clear from the context, simply by 1. Note that 〈Σ∗, 1, ·〉 constitutes a monoid.120

A language on Σ is some subset L ⊆ Σ∗. The set of all languages on Σ is P(Σ∗). The121

addition of two languages L,L′ ⊆ Σ∗ is defined by L+L′ = {w | w ∈ L∨w ∈ L′}. The empty122

language is denoted by 0 and 〈P(Σ∗),+, 0〉 is also a monoid. Given some word w ∈ Σ∗, we123

will also denote by w the language made of the singleton {w} ∈ P(Σ∗). Given two languages124

L,L′ ⊆ Σ∗, their concatenation is defined by L ·L′ = {w ·w′ | w ∈ L∧w′ ∈ L′}. In this way,125

〈P(Σ∗), 1, ·〉 is also a monoid.126

A preorder on a set X is a binary relation �⊆ X2 that is reflexive (x � x, for all x ∈ X)127

and transitive (if x � y and y � z, then x � z, for all x, y, z ∈ X). A preorder � is a partial128

order if it is anti-symmetric (if x � y and y � x, then x = y, for all x, y ∈ X). A preorder is129

an equivalence relation if it is symmetric (x � y ⇒ y � x) . Observe that each preorder �130

induces an equivalence relation ∼: a ∼ b if a � b and b � a. The strict part of � is then131

the relation: x ≺ y iff x � y and ¬(x ∼ y). We also mention the “dual” preorder � of �132

defined by: x � y iff y � x. A preorder � is said to be well-founded if there is no infinite133

chain · · · ≺ x2 ≺ x1 or, equivalently, x1 � x2 � · · · .134

The remainder of this section may be found in [2] and we refer the reader to it for an135

extended presentation. We suppose given a (finite) set ΣN of node labels, a (finite) set ΣE136

of edge labels and we define graphs accordingly. A graph is a triple G = 〈N,E, `〉 with137

XX:4 On Termination of Graph Rewriting Systems through Language Theory

E ⊆ N ×ΣE ×N and ` : N → ΣN is the labeling function of nodes. Note that there may be138

more than one edge between two nodes, but at most one is labeled with some e ∈ ΣE. In the139

sequel, we use the notation m e−→ n for an edge (m, e, n) ∈ E.140

Given a graph G, the sets NG, EG and `G denote respectively the sets of nodes, edges and141

its labeling function. We we will also (abusively) use the notation m ∈ G and m e−→ n ∈ G142

instead of m ∈ NG and m e−→ n ∈ EG when the context is clear. Furthermore, in ♣
a

♥

b

A ,143

a, b are nodes, ♣,♥ are the respective node labels and A is the edge label (here between a144

and b).145

The set of graphs on node labels ΣN and edge labels ΣE is denoted by GΣN,ΣE
or G146

in short. Two graphs G and G′ are said to share their nodes when NG = NG′ . Given two147

graphs G and G′ such that NG ⊆ NG′ , set G J G′ = 〈NG′ , EG ∪ EG′ , `〉 with `(n) = `G(n) if148

n ∈ NG and `(n) = `G′(n), otherwise.149

A graph morphism µ between a source graph G and a target graph H is a function µ :150

NG → NH that preserves edges and labelings, that is, for all m e−→ n ∈ G, µ(m) e−→ µ(n) ∈151

G′ holds, and for any node n ∈ G: `G(n) = `G′(µ(n)). A basic pattern is a graph, and a152

basic pattern matching is an injective morphism from a basic pattern P to some graph G.153

Given such a morphism µ : G → G′, we define µ(G) to be the sub-graph of G′ made of154

the nodes {µ(n) | n ∈ NG}, of the edges {µ(m) e−→ µ(n) | m e−→ n ∈ G} and node labels155

µ(n) 7→ `G(n).156

A pattern is a pair P = 〈P0, ~ν〉 made of a basic pattern P0 and a sequence of injective157

morphisms νi : P0 → Ni, called negative conditions. The basic pattern describes what must158

be present in the target graph G, whereas negative conditions say what must be absent in159

the target graph. Given a pattern P = 〈P0, ~ν〉 and a graph G, a pattern morphism is an160

injective morphism µ : P0 → G for which there is no morphism ξi such that µ = ξi ◦ νi.161

I Example 1. Consider the basic pattern morphism µ : P0 → G (colors define the mapping):162

♣

b0

♥

b1

A µ
♣
g0

♥
g1

♣
g2

A

B

D

C

AE

163

The pattern P = 〈P0, [ν]〉 with ν defined by ♣

b0

♥

b1

A ν ♣

b0

♥

b1

A

B
prevents the application164

of the morphism above. Indeed, ξ = b0 7→ g0, b1 7→ g1 is such that ξ ◦ ν = µ. When there is165

only one negative condition, we represent the pattern by crossing nodes and edges which are166

not within the basic pattern. For instance, the pattern P above looks like ♣

b0

♥

b1

A

B× that we167

hope is self-explanatory.168

In this paper we think of graph transformations as sequences of “basic commands”.169

I Definition 2 (The command language). There are three basic commands: label(p, α) for170

node renaming, del_edge(p, e, q) for edge deletion and add_edge(p, e, q) for edge creation.171

In these basic commands, p and q are nodes, α is some node label and e is some edge label.172

A pattern 〈P0, ~ν〉 is compatible with a command whenever p and q are nodes in P0.173

I Definition 3 (Operational semantics). Given a pattern P = 〈P0, ~ν〉 compatible with some174

command c, and some pattern matching µ : P → G where G is the graph on which the175

transformation is applied, we have the following possible cases: c = label(p, α) turns the176

label of µ(p) into α, c = del_edge(p, e, q) removes µ(p) e−→ µ(q) if it exists, otherwise177

does nothing, and c = add_edge(p, e, q) adds the edge µ(p) e−→ µ(q) if it does not exists,178

otherwise does nothing. The graph obtained after such an application is denoted by G ·µ c.179

G. Bonfante and M. Couceiro XX:5

Given a sequence of commands ~c = (c1, . . . , cn), let G ·µ ~c be the resulting graph, i.e.,180

G ·µ ~c = (· · · ((G ·µ c1) ·µ c2) ·µ · · · cn).181

I Definition 4. A rule is a pair R = 〈P,~c〉 made of a pattern and a (compatible) sequence of182

commands. Such a rule R applies to a graph G when there is a pattern morphism µ : P → G.183

Let G′ = G ·µ ~c, then we write G →R,µ G
′. We define G → G′ whenever there is a rule R184

and a pattern morphism µ such that G→R,µ G
′.185

2.1 The main example186

Let ΣN = {A} and ΣE = {α, β, T}. For the discussion, we suppose that T is a working label,187

that is not present in the initial graphs. We want to add a new edge β between node n188

and node 1 each time we find a maximal chain: A

1

A

2

A

3

· · · A

n

α α α α within a graph189

G. Consider the basic pattern Pinit = A

p
A

q

α together with its two negative conditions190

ν1 = A A

p
A

q

αα× and ν2 = A A

p
A

q

αβ× . We consider three rules:191

Init: 〈〈Pinit, [ν1, ν2]〉, (add_edge(p, T, q))〉 which fires the transitive closure.192

Follow: 〈 A

p
A

q
A

r

T α , (add_edge(p, T, r), del_edge(p, T, q))〉 which follows the chain.193

End: 〈 A

p
A

q
A

T α× , (del_edge(p, T, q), add_edge(q, β, p))〉 which stops the processus.194

To prevent all pathological cases (e.g., when the edge β is misplaced, when two chains195

are crossing, and so on), we could introduce more sophisticated patterns. But, since that196

does not change issues around termination, we avoid obscuring rules with such technicalities.197

I Example 5. Take A

1

A

2

A

3

α α . By applying ’Init’, ’Follow’ and ’End’, it rewrites as:198

A

1

A

2

A

3

α α → A

1

A

2

A

3

α
α

T

→ A

1

A
2

A

3

α
α

T

→ A

1

A
2

A

3

α
α

β

199

2.2 Three technical facts about Graph Rewriting200

It is well known that the main issue with graph rewriting definitions is the way the context201

is related to the pattern image and its rewritten part. We shall tackle this issue with202

Proposition 6.203

Self-application204

Let R = 〈P,~c〉 be the rule made of a pattern P = 〈P0, ~ν〉 and a sequence of commands ~c.205

There is the identity morphism 1P0 : P0 → P0, and thus we can apply rule R on P0 itself,206

that is, P0 →R,1P0
P ′0 = P0 ·1P0

~c. We call this latter graph the self-application of R.207

Rule node renaming208

To avoid heavy notation, we will use the following trick. Suppose that we are given a209

rule R = 〈P,~c〉, a graph G and a pattern morphism µ : P → G. Let P = 〈P0, ~ν〉.210

We define Rµ to be the rule obtained by renaming nodes p in P0 to µ(p) (and their211

references within ~c). For instance, the rule ’Follow’ can be rewritten as Followµ =212

〈 A

1

A

2

A

3

T α , (add_edge(1, T, 3), del_edge(1, T, 2))〉 where µ denotes the pattern morph-213

ism used to apply ’Follow’ in the derivation. Observe that: (i) the basic pattern of Rµ is214

actually µ(P0), which is a subgraph of G, (ii) ι : µ(P0) → G mapping n 7→ n is a pattern215

XX:6 On Termination of Graph Rewriting Systems through Language Theory

matching, and (iii) applying rule Rµ with ι is equivalent to applying rule R with µ. In other216

words, G→R,µ G
′ if (and only if) G→Rµ,ι G

′. To sum up, we can always rewrite a rule so217

that its basic pattern is actually a subgraph of G.218

Uniform rules219

Let us consider rule ’Init’ above. It applies on: A

p
A

q

α

T , and the result is the graph itself:220

A

p
A

q

α

T . Indeed, we cannot add an already present edge (relative to a label) within a221

graph. Thus, depending on the graph, the rule will or will not append an edge. Such an222

unpredictable behavior can be easily avoided by modifying the pattern of ’Init’ to: A

p
A

q

α

T× .223

The same issue may come from edge deletions. A uniform rule is one for which commands224

apply (that is, modify the graph) for each rule application. Since this is not the scope of the225

paper, we refer the reader to [2] for a precise definition of uniformity. We will only observe226

two facts.227

First, any rule can be replaced by a finite set of uniform rules (using negative conditions228

as above) that operate identically. Thus, we can always suppose that rules are uniform.229

Second, the following property holds for uniform rules (see [2]§7 for a proof).230

I Proposition 6. Suppose that G→R,ι G
′ with R = 〈P,~c〉 and P = 〈P0, ~ν〉 (the basic pattern231

P0 being a subgraph of G). Let C be the graph obtained from G by deleting the edges in P0.232

Then G = P0 J C and G′ = P ′0 J C with P ′0 being the self-application of the rule. Moreover,233

EC ∩ EP0 = ∅ and EC ∩ EP ′0 = ∅.234

Throughout the remainder of the paper we assume that all rules are uniform.235

3 Termination of Graph Rewriting Systems236

By a graph rewriting system (GRS) we simply mean a set of graph rewriting rules (see Section237

2). A GRS R is said to be terminating if there is no infinite sequence G1 → G2 → · · · . Such238

sequences, whether finite or not, are called derivations.239

Since there is no node creation (neither node deletion) in our notion of rewriting, any240

derivation starting from a graph G will lead to graphs whose size is the size of G. Since there241

are only finitely many such graphs, we can decide the termination for this particular graph G.242

However, the question we address here is the uniform termination problem (see Section 1).243

I Remark 7. Suppose that we are given a strict partial order �, not necessarily well founded.244

If G→ G′ implies G � G′ for all graphs G and G′, then the system is terminating. Indeed,245

suppose it is not the case, let G1 → G2 → · · · be an infinite reduction sequence. Since there246

are only finitely many graphs of size of G1, it means that there are two indices i and j such247

that Gi → · · · → Gj with Gi = Gj . But then, since Gi � Gi+1 � · · · � Gj , we have that248

Gi � Gj = Gi which is a contradiction.249

A similar argument was exhibited by Dershowitz in [5] in the context of term rewriting.250

For instance, it is possible to embed rewriting within real numbers rather than natural251

numbers to prove termination.252

Let us try to prove the termination of our main example (see Subsection 2.1). Rules such253

as ’Init’ and ’End’ are “simple”: we put a weight on edge labels ω : ΣE → R and we say that254

the weight of a graph is the sum of the weights of its edges labels. Set ω(α) = 0, ω(β) = −2255

and ω(T) = −1. Then, rules ’Init’ and ’End’ decrease the weight by 1 and, since rule ’Follow’256

G. Bonfante and M. Couceiro XX:7

keeps the weight constant, it means the two former rules can be applied only finitely many257

times. Observe that negative weights are no problem with respect to Remark 7.258

But how do we handle rule ’Follow’? No weights as above can work.259

3.1 A language point of view260

Let G→ G′ be a rule application. The set of nodes stays constant. Let us think of graphs261

as automata, and let us forget about node labeling for the time being. Let ΣE be the set of262

edge labels. Consider a pair of states (nodes), choose one to be the initial state and one to263

be the final state. Thus the automaton (graph) defines some regular language on ΣE. In264

fact, the automaton describes n2 languages (one for each pair of states).265

Now, let us consider the effect of graph rewriting in terms of languages. Consider an266

application of the ’Follow’ rule: G → G′. Any word to state r that goes through the267

transitions p T→ q
α→ r can be mapped to a shorter one in G′ via the transition p T→ r. The268

languages corresponding to state r contain shorter words. The remainder of this section is269

devoted to formalizing this intuition into proper orders on graphs. For that, we will need to270

count the number of paths between any two states. Hence, we shall introduce N-rational271

expressions, that is, rational expression with multiplicity. See, e.g., Sakarovitch’s book [23]272

for an introduction and justifications of the upcoming constructions. We introduce here the273

basic ideas.274

3.2 Formal series275

A formal series on Σ (with coefficients in N) is a (total) function s : Σ∗ → N. Given a word276

w, s(w) is the multiplicity of w. The set of words s = {w ∈ Σ∗ | s(w) 6= 0} is the support277

of s. Given n ∈ N, let n be the series defined by n(w) = 0, if w 6= 1, and n(1) = n, where 1278

denotes the empty word. The empty language is 0, the language made of the empty word is279

1. Moreover, for a ∈ Σ, the series a is given by a(w) = 0 if w 6= a and a(a) = 1.280

Given two series s and t, their addition is the series s+ t given by s+ t(w) = s(w) + t(w),281

and their product is s · t defined by s · t(w) =
∑
u·v=w s(u)t(v). The star operation is defined282

by s∗ = 1 + s+ s2 + · · · . The monoïd Σ∗ being graded, the operation is correctly defined283

whenever s(1) = 0.284

Given a series s, let s≤k be its restriction to words of length less or equal to k, i.e.,285

s≤k(w) = 0 whenever |w| > k and s≤k(w) = s(w), otherwise.286

An N-rational expression on an alphabet Σ is built upon the grammar [22]:287

E ::= a ∈ Σ | n ∈ N | (E + E) | (E · E) | (E∗).

Thus, given the constructions mentioned in the previous paragraph, any N-rational288

expression E ∈ E denotes some formal series. To each N-rational expression corresponds an289

N-automaton, which is standard automaton with transitions labeled by a non empty linear290

combination
∑
i≤k niai with ni ∈ N and ai ∈ Σ for all i ≤ k.291

3.3 The language matrix292

Let us suppose given an edge label set ΣE. Let E denote the N-expressions over ΣE. A matrix293

M of dimension P × P for some (finite) set P is an array (Mi,j)i∈P,j∈P whose components294

are in E. Let ME be the set of such matrices. Given a graph G, we define the matrix MG of295

dimension NG ×NG as follows: MGi,j = T1 + · · ·+ T` with T1, . . . , T` the set of labels on296

the transitions between state i and j if such transitions exist, otherwise 0.297

XX:8 On Termination of Graph Rewriting Systems through Language Theory

Let 1P be the unit matrix of dimension P × P , that is (1P)i,j = 0 if i 6= j else 1.298

From now on, we abbreviate the notation from 1P to 1 if the context is clear. Then, let299

M∗G = 1 +MG +M2
G + · · · . Each component of M∗G is actually an N-regular expression (see300

Sakarovitch Ch. III, §4 for instance). The (infinite) sum is correctly defined since for all i, j,301

(MG)i,j = T1 + · · ·+ T`. Thus, 1 6∈ (MG)i,j .302

The question about termination can be reformulated in terms of matrices whose compon-303

ents are languages (with words counted with their multiplicity). To prove the termination304

of the rewriting system, it is then sufficient to prove that for any two graphs G → G′,305

M∗G > M∗G′ . To prove such a property in the infinite class of finite graphs, we will use the306

notion of “stable orders”.307

Recall the ’Follow’ rule and consider the basic pattern L and the self-application R. Then,

ML =

0 T 0
0 0 α

0 0 0

 MR =

0 0 T

0 0 α

0 0 0

 .

Observe that (MR)13 > (ML)13. This matrix deals with edges/transitions. In order to
consider paths, we need to compute M∗L and M∗R that are given by:

M∗L =

1 T T · α
0 1 α

0 0 1

 M∗R =

1 0 T

0 1 α

0 0 1

 .

Any word within M∗R’s components is a sub-word of the corresponding component in M∗L.308

I Example 8. Consider now a variation of ’Follow’: 〈 A

p
A

q
A

r

T α

γ

(add_edge(p, T, r), del_edge(p, T, q))〉.

By setting L′ as the pattern and R′ as the self-application, we get the following matrices:

M∗L′ =

 (Tαγ)∗ T (αγT)∗ Tα(γTα)∗
αγ(Tαγ)∗ (αγT)∗ α(γTα)∗
γ(Tαγ)∗ γT (αγT)∗ (γTα)∗

 M∗R′ =

 (Tγ)∗ 0 T (γT)∗
αγ(Tγ)∗ 1 α(γT)∗
γ(Tγ)∗ 0 (γT)∗

 .

Again, words within M∗R′ are sub-words of the corresponding ones in M∗L′ .309

3.4 The matrix multiset path order310

The order we shall introduce in this section is inspired by the notion of multiset path ordering311

within the context of term rewriting (see for instance [6]). However, in the present context of312

graph rewriting (to be compared with Dershowitz and Jouannaud’s [7] or with Plump’s [20]),313

the definition is a bit more complicated. Here, we do not consider an order on letters as it is314

done for terms.315

Let E be the word embedding on Σ∗, that is, the smallest partial order such that 1 E w,316

and if u E v, then (u · w E v · w and w · u E w · v, for all u, v, w ∈ Σ∗. This order E can be317

extended to formal series, that is, the multiset-path ordering, see Dershowitz and Manna [9]318

or Huet and Oppen [13].319

I Definition 9 (Multiset path order). The multiset path order is the smallest partial order on320

finite series such that321

G. Bonfante and M. Couceiro XX:9

if there is w ∈ t such that for all v ∈ s, v / w, then s E t, and322

if r E s and t E u, then r + t E s+ u.323

We write s / t when s E t and s 6= t.324

I Proposition 10. Addition and product are monotonic with respect to the multiset-path325

order. Moreover, addition is strictly monotonic with respect to E, and if r / s, then r · t / s · t326

and t · r / t · s, whenever t 6= 0 (otherwise, we have equality).327

Proof. It is not difficult to see that addition is monotonic. So suppose that r/s. We prove that328

r+ t/s+ t, by induction (see Definition 9). Suppose that there is w ∈ s such that for all v ∈ r329

we have v / w, then r / s. Since r(w) = 0, then (r+ t)(w) = t(w) < s(w) + t(w) = (s+ t)(w),330

and we are done. Otherwise, r = r0 + r1 and s = s0 + s1 with r0 E s0 and r1 E s1. One of331

the two inequalities must be strict (otherwise r = s). Suppose r0 / s0. By definition, observe332

that r1 + t E s1 + t. But then, r + t = r0 + (r1 + t) and s = s0 + (s1 + t) and we apply333

induction on (r0, s0). As addition is commutative, the result holds.334

For the product, suppose that r E s and let t be some series. We prove r · t E s · t; the335

other inequality t · r E t · s is similar. Again, we proceed by induction on Definition 9:336

Suppose there is w ∈ s such that for all v ∈ r, v / w. By induction on t, if t = 0,337

r·t = 0 E 0 = s·t. Otherwise, t = t0+v0 for a word v0. Observe that r·v0 =
∑
v∈r r(v)v·v0.338

Since for all v ∈ r, v·v0/w·v0, we have r·v0/w·v0 E s·v0. Now, r·t = r·(t0+v0) = r·t0+r·v0339

and s · t = s · t0 + s · v0. By induction, r · t0 E s · t0 and since r · v0 E s · v0, the result340

holds.341

Otherwise, r = r0 + r1. In this case, s · r = s · r0 + s · r1 and t · r = t · r0 + t · r1. The342

result then follows by induction.343

To show strict monotonicity, suppose r / s and again proceed by case analysis. Suppose that344

there is some w ∈ s such that for all v ∈ r, v / w. Since t 6= 0, it contains at least one word345

v0 such that t = t0 + v0. By r / s , r · v0 =
∑
v∈r r(v)v · v0 /

∑
v∈s s(v)v · v0 = s · v0. The346

result then follows by induction on the expansion of t and using the strict monotonicity of347

addition. J348

I Definition 11 (Matrix multiset-path order). Let M and M ′ be two matrices with dimension349

P × P . Write M EM ′ if for all k ≥ |P | and for all (i, j) ∈ P × P , we have M≤ki,j EM ′i,j
≤k.350

I Corollary 12. The addition and the multiplication are monotonic with respect to the matrix351

multiset-path order.352

Proof. It follows from Proposition 10 since addition and product of matrices are defined as353

addition and product of their components. J354

3.5 The Rational Embedding Order355

Let Σ be some fixed alphabet. For a transducer τ , we denote the function it computes by [τ].356

I Definition 13 (Rational Embedding Order). Given two regular languages L and L′ on Σ,357

write L . L′ if:358

there is an injective function [τ] : L′ → L and359

[τ] can be computed by a transducer τ such that |τ(w)| ≤ |w|, for every w ∈ L′. Such360

transducers are said to be decreasing (in [16]).361

XX:10 On Termination of Graph Rewriting Systems through Language Theory

The transducer τ is said to be a witness of L . L′.362

We say that a transition of a transducer is deleting when it is of the form a | 1 for some363

a ∈ Σ. A transducer whose transitions are of the form X | Y , with |Y | ≤ |X|, is itself364

decreasing. If a path corresponding to an input w passes through a deleting transition, then365

|τ(w)| < |w|.366

In the sequel we will make use of the following results that are direct consequences of367

Nivat’s Theorem [17].368

I Proposition 14. Let [τ] : L→ L′ be computed by a transducer τ , and let L′′ be a regular369

language. Then the following assertions hold.370

1. The restriction τ|L′′ : L′′ ∩ L→ L′ mappping w 7→ τ(w) is computable by a transducer.371

2. The co-restriction τ |L
′′ : L → L′ ∩ L′′ mapping w 7→ τ(w) if τ(w) ∈ L′′ and otherwise372

undefined, is computable by a transducer.373

3. The function τ ′ : L→ L′ defined by τ ′(w) = τ(w) if w ∈ L′′ and otherwise undefined, is374

computable by a transducer.375

Observe that the identity on Σ∗ is computed by a transducer (made of a unique ini-376

tial/final state with transitions a | a for all a ∈ Σ). Then, the identity on L is obtained377

by Proposition 14(1,2). Thus we have that . is reflexive. Also, it is well known that both378

transducers and injective functions can be composed. Hence, we also have that . is transitive.379

Thus, . is a preorder.380

However, we do not have anti-reflexivity in general.381

I Example 15. L1 = A · (A+B)∗ . L2 = B · (A+B)∗ . L1. Consider the transducer (in382

the drawing, the initial state is shown with an in-arrow and the final one by an out-arrow):383

q0 q1
A | B

B | A

A | B

. That shows L1 . L2. Swap ’A’ and ’B’, the converse holds.384

However, there is a simple criterion to ensure a strict inequality. Suppose L1 . L2 has385

a witness τ : L2 → L1. If τ contains one (accessible and co-accessible) deleting transition,386

then, the relation is strict.387

As before, set L1 < L2 whenever L1 . L2 but not L2 . L1. Suppose L1 . L2 . L1388

with a transducer θ : L1 → L2 and τ as above. Let w be the smallest input word from the389

initial state to a final state through the transition a | 1. Then θ ◦ τ (the composition of the390

two transducers) defines an injective function. Define the set M<|w| = {u ∈ L2 | |u| < |w|}.391

Generally speaking, for any word u, |θ ◦ τ(u)| ≤ |u|. Thus θ ◦ τ(M<w) ⊆M<w. Since M<w
392

is a finite set and θ ◦ τ is injective, it is actually bijective when restricted to M<w. However,393

|θ ◦ τ(w)| ≤ |τ(w)| < w implies θ ◦ τ(w) ∈M<w. By the Pigeon-hole Principle, there is one394

word in M<w that has two pre-images via θ ◦ τ . Thus, θ ◦ τ cannot be injective, which yields395

a contradiction.396

I Remark 16. Observe that, when two regular languages verify L ⊆ L′, it follows from397

Proposition 14 that L . L′.398

I Definition 17. The rational embedding order extends to matrices by pointwise ordering:399

Let M and N with dimension P × P , and write M . N if for every i, j ∈ P × P , we have400

Mi,j . Ni,j.401

Recall the modified version of ’Follow’ (Example 8). The following transducers show that402

all components strictly decrease.403

G. Bonfante and M. Couceiro XX:11

q0 q1 q2
T | T α | 1

γ | γ

q−1 q0 q1 q2
T | 1 T | 1 α | 1

γ | 1

q−1q−2 q0 q1 q2
T | T α | 1 T | T α | 1

γ | γ

q−1q−2 q0 q1 q2
α | α γ | γ T | T α | 1

γ | γ

q−1

q−2 q−3

q0 q1 q2

T | 1

α | 1

γ | 1 T | T α | 1

γ | γ

q−1 q0 q1 q2
α | α γ | γ T | T

α | 1

q−1 q0 q1 q2
γ | γ T | T α | 1

γ | γ

q−1q−2 q0 q1 q2
γ | 1 T | 1 α | 1 γ | 1

T | 1

q0 q1 q2
γ | γ T | T

α | 1

In the following, to compare two graphs by means of the rational embedding order,404

we transform graphs into matrices as follows. Given a graph G, let M ′G be the matrix of405

dimension NG ×NG such that (M ′G)i,j = T i,j1 + T i,j2 + · · ·T i,j` with T1, . . . , T` the labels of406

the edges from i to j. In other words, we “decorate” the labels with the source and target407

nodes. Then, G . G′ whenever M ′G .M ′G′ .408

3.6 Stable orders on matrices409

A matrix on E is said to be finite whenever all its component are finite. Two matrices M410

and M ′ (of same dimension) on E are said to be disjoint if for every i, j, Mi,j ·M ′i,j = 0.411

I Definition 18. Let M be a matrix of dimension P × P and P ⊆ G. The extension of M
to dimension G×G is the matrix M↑G defined by:

(M↑G)i,j =
{
Mi,j if i, j ∈ P
0 otherwise

The notation M↑G is shortened to M↑ when G is clear from the context.412

I Fact 1. Let M be a matrix of dimension P × P , with P ⊆ G. Then (M↑G)∗ = (M∗)↑G.413

I Definition 19. We say that a partial order � on E is stable by context if for every P ⊆ G,414

all matrices L and R of dimension P × P , and every C of dimension G×G, the following415

assertions hold.416

1. If L,R,C are finite, L being disjoint from C, R being disjoint from C and R∗ ≺ L∗, then417

(R+ C)∗ ≺ (L+ C)∗;418

2. If R ≺ L, then R↑G ≺ L↑G.419

I Lemma 20. Let � be partial order stable by context and consider finite matrices L,R420

of dimension P × P and let C be a finite matrix of dimension G × G with P ⊆ G. Then,421

R∗ ≺ L∗ implies (R↑ + C)∗ ≺ (L↑ + C)∗.422

Proof. If R∗ ≺ L∗, then, (R∗)↑ ≺ (R∗)↑ by Definition 19.2. By Lemma 1, it follows423

that (R↑)∗ ≺ (L↑)∗. Clearly, R↑ and L↑ are finite, and from Definition 19.1, we have424

(R↑ + C)∗ ≺ (L↑ + C)∗ J425

I Theorem 21. Let � be a partial order stable by context. Suppose that for every rule426

R = 〈P,~c〉 with P = 〈P0, ~ν〉 and P ′0 the self-application of R, we have (P ′0)∗ ≺ (P0)∗. Then427

the corresponding GRS is terminating.428

XX:12 On Termination of Graph Rewriting Systems through Language Theory

Proof. Let � be a partial order on graphs and consider the corresponding order on matrices:429

G ≺ G′ iff M∗G ≺M∗G′ . We show that for every rule, we have G→ G′ implies G′ ≺ G. So let430

R be a graph rewriting rule and let µ be a morphism such that G→R,µ G
′. By the discussion431

in the beginning of Section 3, without loss of generality, we can suppose that µ is actually432

the inclusion of pattern P0 in G. Now, let P0andP
′
0 be respectively the basic pattern and the433

self-application of R. Define C to be the graph made of the nodes of G without edges in P0.434

By Proposition 6, MG = M↑P0
+MC and MG′ = M↑P ′0

+MC . Moreover, MP0 ,MP ′0
and MC435

are finite and MP0 is disjoint from MC and MP ′0
is disjoint from MC . Thus, we can apply436

Lemma 20, and we get M∗G′ = (M↑P ′0 +MC)∗ ≺ (M↑P0
+MC)∗ = M∗G. J437

3.7 Stability of the orderings438

We can now prove the two announced stability results.439

I Proposition 22. The multiset path ordering is stable by context.440

Proof. We first verify that condition 2 of Definition 19 holds. Suppose that R / L with441

R,L of dimension P × P . Then, for all (i, j) 6∈ P × P , R↑Gi,j = 0 E 0 = L↑Gi,j . Now, for all442

k ≥ |G| ≥ |P | and for all (i, j) ∈ P × P , we have (R↑G)≤ki,j = R≤ki,j E L≤ki,j = (L↑G)≤ki,j .443

To verify that condition 1 also holds, let G×G be the dimension of L,R and C. Take444

k ≥ |G|. We have on one side (R+ C)∗≤k =
∑

(A1,...,A`)∈{R,C}∗, `≤k
∏
i≤`Ai, and on the445

other side (L+ C)∗≤k =
∑

(A1,...,A`)∈{R,C}∗|`≤k
∏
i≤`Ai{R← L} where Ai{R← L} = L if446

Ai = R, and C otherwise. As the product and the addition are (strictly) monotonic, the447

result follows. J448

I Proposition 23. The rational embedding order is stable by context.449

Proof. Since we use a component-wise ordering, it is easy to verify that condition 2 of450

Definition 19 holds. To verify that condition 1 also holds, let G×G be the shared dimension451

of L,R and C. Since R < L, there are decreasing transducers τi,j : Li,j → Ri,j with at least452

one of them deleting. Let P be the set of nodes corresponding to the pattern L. We build the453

family of transducers (θp,q)p,q∈G×G as follows. The family of transducers will share the major454

part of the construction. First, we make a copy of all transducers (τi,j)i,j . Then, we add as455

states all the nodes of C. Given an edge i T−→ j ∈ C, we set a transition i T
i,j |T i,j−→ j. That is456

the transducer copies the paths within C. For a transition i T−→ j with i 6∈ P, j ∈ P , we set457

the transitions: i T
i,j |T i,j−→ qn for all qn initial state of the transducer τj,n, n ∈ P . Similarly,458

for any transition i
T−→ j with i ∈ P, j 6∈ P , we set the transitions: rn

T i,j |T i,j−→ j for each459

terminal state rn of the transducer τn,i, n ∈ P . This construction can be represented as460

follows:461

ij ij

T i,j | T i,j

U j,i | U j,i
p

q

r

s

V i,k | V i,k

W i,` |W i,`

τk,m

τ`,n

· · ·

· · ·

· · ·
Xm,i | Xm,i

Y n,i | Y n,i

462

G. Bonfante and M. Couceiro XX:13

where U, T,W,X, Y range over the edge labels. Take k, ` 6∈ P . Any path from state k to463

state ` describes a path in C + L on the input side and a path in C +R on the output side.464

Indeed, transitions within C are simply copied and the transducers τi,j transform paths in L465

into paths in R.466

It remains to specify initial and final states. Given some component p, q ∈ G, if i 6∈ P , we467

set the initial state to be p. Otherwise, we introduce a new state ι which is set to be initial,468

and we add a transition ι 1|1−→ i for any state i initial in τp,r for some r. If q 6∈ P , then, q is469

the final state. Otherwise, any state j within some τr,q, r ∈ P , is final.470

Consider some pair p, q ∈ G. We prove that the transducer θp,q is injective. Consider a471

path w in C + L. It can be decomposed as follows: w = w1`1 · · ·wk`k where the `i’s are the472

sub-words within L (that is the wi’s have the shape viai where ai is a transition from C to L).473

Consider a second word w′ = w′1`
′
1 · · ·w′k′`′k′ such that the transducer θp,q(w) = θp,q(w′) = u.474

Given the construction of θp,q, consider the word u = u1r1 · · ·ukrk with r1, . . . , rk some path475

within R. Indeed, only a letter within L can produce a letter within R. Consider the case476

where rk is non empty. When the transducer reaches the first letter in `k, it is in a state477

τk,m for some m. Actually, m = q since only τk,q contains a final state. Thus, the path is478

fixed within τk,p and then, the injection of τk,p applies. So, `′k′ = `k. We can go back within479

wk. On this part of the word, the transitions have the shape T i,j | T i,j . Thus, wk = w′k′ .480

We can continue this process up to the beginning of w and w′. J481

4 Interpretations for Graph Rewriting Termination482

Interpretations methods are well known in the context of term rewriting, see for instance483

Dershowitz and Jouannaud’s survey on rewriting [6]. Their usefulness comes from the fact484

that they belong to the class of simplification orderings, i.e., orderings for which if t E u,485

then t � u. In the context of graphs, we introduce a specific notion of “interpretation”, that486

we will still call interpretation.487

I Definition 24. A graph interpretation is a triple 〈X,≺, φ〉 where 〈X,≺〉 is a partially488

ordered set and φ : G → X is such that given two graphs P and P ′ having the same set of489

nodes and C disjoint of P and P ′, if φ(P) ≺ φ(P ′), then φ(P + C) ≺ φ(P ′ + C).490

An interpretation Ω = 〈X,≺, φ〉 is compatible with a rule R if φ(P ′0) ≺ φ(P0) where P0 is491

the basic pattern of R and P ′0 its self-application. Similarly, an interpretation is compatible492

with a GRS if it is compatible with all of its rules.493

I Theorem 25. Every GRS compatible with an interpretation Ω is terminating.494

The theorem being a more abstract form of Theorem 21, its proof follows exactly the495

same steps.496

Proof. Suppose that G ≺ G′ iff φ(G) ≺ φ(G′). We prove that for each rule R of the GRS,497

G→ G′ implies G′ ≺ G. Indeed, suppose that G→R,µ G
′. Let P0 and P ′0 be respectively the498

basic pattern and the self-application of R. Then, there is a graph C such that G = P0 + C,499

G′ = P ′0 + C, such that P0 and P ′0 are disjoint from C. Since φ(P ′0) ≺ φ(P), we then have500

φ(G′) ≺ φ(G). J501

I Example 26. The triple 〈M,E, (M(−))∗〉 is an interpretation for ’Follow’.502

I Example 27. Let us come back to the weight analysis. Define ω(G) =
∑
p
e−→q∈G ω(e)503

with ω(α) = 0, ω(T) = −1, ω(β) = −1. Then, 〈R, <, ω(−)〉 is an interpretation for ’Init’ and504

’End’.505

XX:14 On Termination of Graph Rewriting Systems through Language Theory

I Example 28. Let 〈X1,≺1, φ1〉 be an interpretation for a set of rulesR1, and let 〈X2,≺2, φ2〉506

be an interpretation for a set of rules R2. Suppose that for every rule R in R2, G→R,µ G
′

507

implies G′ �1 G (that is without strict inequality). Then the lexicographic ordering on508

X1 ×X2 defined by (x1, x2) ≺1,2 (y1, y2) iff x1 ≺1 y1, or x1 �1 y1 and x2 ≺2 y2, constitutes509

an interpretation 〈X1 ×X2,≺1,2, φ1 × φ2〉 for R1 ∪R2.510

Thus, combining Example 26 and Example 27, we have a proof of the termination of our511

main Example.512

I Corollary 29. The GRS given in Subsection 2.1 is terminating.513

I Example 30. Let R be a terminating GRS. Then there is an interpretation that “justifies”514

this fact. Indeed, take 〈G,≺, 1G〉 with ≺ defined to be the transitive closure of the rewriting515

relation →. The termination property ensures that the closure leads to an irreflexive relation.516

The compatibility of ≺ with respect to 1G is immediate.517

Thus the following corollary.518

I Corollary 31. A GRS is terminating iff it is compatible with some interpretation.519

5 Conclusion520

We proposed a new approach based on the theory of regular languages to decide the521

termination of graph rewriting systems, which does not account for node additions but settles522

the uniform termination problem for these GRS. We think that there is room to reconsider523

some old results of this theory under the new light. In particular, we think of profinite524

topology [19], is a powerful tool that could give us some insight on underlying structure of525

the orders. In the two cases, we can extend the orders to take into account orders on the526

edge labels.527

As the next natural step, we intend to consider graph rewriting with node creations528

and that take into account node labels. Moreover, in the experiments mentioned in the529

introduction about natural language processing, in principle, these two orders should still be530

sufficient to ensure termination. However, we need to implement these new results for an531

extensive and complete evaluation.532

References533

1 Guillaume Bonfante and Bruno Guillaume. Non-simplifying graph rewriting termination. In534

Proceedings 7th International Workshop on Computing with Terms and Graphs, TERMGRAPH535

2013, Rome, Italy, 23th March 2013, pages 4–16, 2013.536

2 Guillaume Bonfante, Bruno Guillaume, and Guy Perrier. Application of Graph Rewriting to537

Natural Language Processing. Logic, Linguistic and Computer Science. Wiley, 2018.538

3 N. Chomsky. Syntactic Structures. The Hague: Mouton, 1957.539

4 Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order Logic.540

Cambridge University Press, 2012.541

5 Nachum Dershowitz. A note on simplification orderings. Information Processing Letters, pages542

212–215, 1979.543

6 Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In Handbook of Theoretical544

Computer Science, Volume B: Formal Models and Semantics, pages 243–320. 1990.545

7 Nachum Dershowitz and Jean-Pierre Jouannaud. Graph path orderings. In LPAR-22. 22nd546

International Conference on Logic for Programming, Artificial Intelligence and Reasoning,547

Awassa, Ethiopia, 16-21 November 2018, pages 307–325, 2018.548

G. Bonfante and M. Couceiro XX:15

8 Nachum Dershowitz and Jean-Pierre Jouannaud. Drags: A compositional algebraic framework549

for graph rewriting. Theor. Comput. Sci., 777:204–231, 2019.550

9 Nachum Dershowitz and Zohar Manna. Proving termination with multiset orderings. Commun.551

ACM, 22(8), 1979.552

10 Jörg Endrullis, Johannes Waldmann, and Hans Zantema. Matrix interpretations for proving553

termination of term rewriting. Journal of Automated Reasoning, 40(2):195–220, Mar 2008.554

11 Maribel Fernández, Hélène Kirchner, and Bruno Pinaud. Strategic port graph rewriting: an555

interactive modelling framework. Mathematical Structures in Computer Science, 29(5):615–662,556

2019.557

12 Bruno Guillaume and Guy Perrier. Dependency parsing with graph rewriting. In Proceedings558

of the 14th International Conference on Parsing Technologies, IWPT 2015, Bilbao, Spain, July559

5-7, 2015, pages 30–39, 2015.560

13 Gerard Huet and Derek C. Oppen. Equations and rewrite rules: a survey. In In formal561

language Theory: perspective and open problems. Academic Press, 1980.562

14 Sylvain Kahane and François Lareau. Word ordering as a graph rewriting process. In Formal563

Grammar - 20th and 21st International Conferences, FG 2015, Barcelona, Spain, August 2015,564

Revised Selected Papers. FG 2016, Bozen, Italy, August 2016, Proceedings, volume 9804, pages565

216–239. Springer, 2016.566

15 Yves Lafont. Interaction nets. In Conference Record of the Seventeenth Annual ACM Symposium567

on Principles of Programming Languages, San Francisco, California, USA, January 1990,568

pages 95–108, 1990.569

16 Jeannine Leguy. Transductions rationnelles décroissantes. RAIRO. Informatique théorique,570

15(2):141–148, 1981.571

17 Maurice Nivat. Transducteurs des langages de Chomsky. Ann. Inst. Fourier, Grenoble,572

18:339–455, 1968.573

18 Mizuhito Ogawa. A note on algebraic structure of tree decomposition of graphs. In The First574

Asian Workshop on Programming Languages and Systems, APLAS 2000, National University575

of Singapore, Singapore, December 18-20, 2000, Proceedings, pages 223–229, 2000.576

19 Jean-Eric Pin. Profinite methods in automata theory. In 26th International Symposium577

on Theoretical Aspects of Computer Science, STACS 2009, February 26-28, 2009, Freiburg,578

Germany, Proceedings, volume 3 of LIPIcs, pages 31–50. Schloss Dagstuhl - Leibniz-Zentrum579

fuer Informatik, Germany, 2009.580

20 Detlef Plump. Simplification orders for term graph rewriting. In Igor Prívara and Peter581

Ružička, editors, Mathematical Foundations of Computer Science 1997, pages 458–467, Berlin,582

Heidelberg, 1997. Springer Berlin Heidelberg.583

21 Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph Trans-584

formation: Volume I. Foundations. World Scientific Publishing Co., Inc., River Edge, NJ,585

USA, 1997.586

22 Jan Rutten. Behavioural differential equations: a coinductive calculus of streams, automata,587

and power series. Theoretical Computer Science, 308(1):1 – 53, 2003.588

23 Jacques Sakarovitch. Elements of Automata Theory. Cambridge University Press, 2009.589

24 Géraud Sénizergues. Some undecidable termination problems for semi-thue systems. Theoretical590

Computer Science, 142:257–276, 1995.591

	Introduction
	Notations and Graph Rewriting
	The main example
	Three technical facts about Graph Rewriting

	Termination of Graph Rewriting Systems
	A language point of view
	Formal series
	The language matrix
	The matrix multiset path order
	The Rational Embedding Order
	Stable orders on matrices
	Stability of the orderings

	Interpretations for Graph Rewriting Termination
	Conclusion

