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ABSTRACT

The Deep Image Prior has been recently introduced to solve
inverse problems in image processing with no need for train-
ing data other than the image itself. However, the original
training algorithm of the Deep Image Prior constrains the re-
constructed image to be on a manifold described by a con-
volutional neural network. For some problems, this neglects
prior knowledge and can render certain regularizers ineffec-
tive. This work proposes an alternative approach that relaxes
this constraint and fully exploits all prior knowledge. We
evaluate our algorithm on the problem of reconstructing a
high-resolution image from a downsampled version and ob-
serve a significant improvement over the original Deep Image
Prior algorithm.

Index Terms— Image reconstruction, Image restoration,
Inverse problems, Neural networks

1. INTRODUCTION

Inverse problems appear in a variety of image processing ap-
plications, e.g., image denoising, inpainting or superresolu-
tion. A common strategy for dealing with ill-posed inverse
problems consists in introducing some prior knowledge on
the kind of typical images we try to restore, which helps re-
stricting the class of admissible solutions.

In their simplest form, priors are handcrafted regulariz-
ers that promote certain properties assumed about the data
at hand. A prominent example is Total Variation (TV) reg-
ularization [1] that favors piecewise smooth solutions. More
sophisticated priors require some form of learning procedure
applied to the input image in order to infer additional struc-
tural information. For instance, it is common to assume that
localized patches of a natural image have a sparse representa-
tion w.r.t. a learned dictionary [2].

Nowadays, deep learning based approaches are consid-
ered state of the art at solving inverse image processing prob-
lems, including superresolution [3] and inpainting [4]. How-

Alexander Sagel carried out the research at Inria in Rennes, France. This
work was supported by the EU H2020 Research and Innovation Programme
under grant agreement No 694122 (ERC advanced grant CLIM).

ever, unlike the traditional ”shallow” algorithms mentioned
above, they entirely rely on very large data sets.

The Deep Image Prior (DIP) [5] has recently demon-
strated that a deep convolutional neural network (CNN) can
still provide superior performance on different kinds of in-
verse problems, even though it is trained exclusively on the
input image itself, thus leveraging the advantages of tradi-
tional and deep learning algorithms.

In the original formulation, DIP searches for a CNN-
generated image that fulfills best the constraint posed by the
inverse problem. Thus, it models the set of possible solutions
as the manifold described by the CNN and the constraints
posed by the inverse problem as a real-valued energy func-
tion to be minimized. Our work proposes the opposite point
of view. The feasible set is defined by the inverse problem,
while DIP is merely a regularizing energy function to be
minimized. We show that this inversion of perspective can
improve DIP performance on superresolution problems.

2. DIP: BACKGROUND AND PRIOR WORK

Many inverse problems consist of reconstructing an image
x ∈ Rn from a measurement y ∈ Rd, d < n, i.e.

y = Ax+ η, (1)

where A represents a linear degradation operator. The term
η corresponds to an optional Gaussian noise.

DIP approximates the solution of the underdetermined
linear Eq. (1) by employing a CNN. Specifically, given a
CNN

Tθ : Rñ → Rn (2)

parameterized by its trainable weights θ ∈ Rp, and a fixed
input z ∈ Rñ, DIP estimates the minimizer θ∗ of the objective

fDIP(θ) = ‖ATθ(z)− y‖2, (3)

and returns

x∗DIP = Tθ∗(z), s.t. θ
∗ = argmin

θ∈Rp
fDIP(θ) (4)

as the approximated solution of Eq. (1).
Even though the DIP model was introduced only recently,

some important research focusing on the formulation of its



optimization has been already carried out. Several interpreta-
tions of its training objective in Eq. (3) have been discussed
and theoretically analyzed in [6]. Of interest is the question if
DIP can be further improved by adjusting the training objec-
tive. For instance, regularization of DIP has been discussed in
[7] for TV and in [8] for learned regularization. Similarly, the
work [9] proposes to combine DIP with the concept of reg-
ularization by denoising introduced in [10]. A peculiarity of
this work is its optimization algorithm. Instead of optimizing
the defined objective directly via some variation of gradient
descent, as is common for deep neural networks, an alternat-
ing direction method of multipliers (ADMM) is chosen.

Like the aforementioned works, our work also discusses
the DIP objective and proposes a way to improve it. However,
aside from additional regularization terms, the discussed prior
works stick to the original (or an equivalent) DIP formulation
of the optimization objective, while the contribution of our
work is to rephrase this objective.

3. A SUBSPACE INDUCED DIP OBJECTIVE

We can interpret the DIP objective in Eq. (3) in terms of the
involved sets. If we neglect the noise term in Eq. (1), then the
solution set is an affine space. Let us denote this space by V
and let

T = {Tθ(z)|θ ∈ Rp} (5)

denote the manifold described by the CNN. We define theA-
weighted distance dA of a point x to a set S as

dA(x,S) = min
s∈S
‖A(x− s)‖2.

Hence, DIP essentially returns the point x∗ ∈ T that mini-
mizes theA-weighted distance to V, i.e.

x∗DIP = argmin
x∈T

dA(x,V). (6)

However, constraining the solution to T has disadvan-
tages. To begin with, V and T are usually disjoint, meaning
that the result will never exactly fulfill the constraints posed
by the inverse problem. For instance, a superresolved im-
age x∗ obtained from a downscaled version y via Eq. (6),
will not result in y when downscaled again. While this may
be desirable in problems involving noise, in cases like noise-
less superresolution or inpainting, it is not. But even in cases,
where noise is involved, it is unlikely that T is the ideal model
of a natural image manifold. Another problem with Eq. (6)
can arise when used in combination with regularizers to pro-
mote certain features of x that are not captured by T . To
illustrate this problem, consider the extreme case, where the
employed regularizer R(x) is such that T is a level set, i.e.
R(x) = const. ∀x ∈ T . Then, adding R(x) to Eq. (6) has
no effect on the optimization. A naive remedy to these prob-
lems is to search for an xbtwn somewhere between T and V

T

V

dB(x, T )

x∗

x∗DIP

dA(x,V)

Fig. 1: Optimization procedures of DIP and SUB-DIP.

by means of the objective

min
xbtwn∈Rn,θ∈Rp

‖Tθ(z)− xbtwn‖2 + λ‖Axbtwn − y‖2, (7)

where λ > 0 is a tuning parameter. Unfortunately, we ob-
served that this approach rarely has success due to local min-
ima. Specifically, xbtwn tends to quickly converge to early
estimations of Tθ(z) and not evolve any further.

As an alternative, we propose an approach based on an
inverted perspective of Eq. (6). Specifically, we aim to search
for a point in V that minimizes some distance to T , i.e., for an
appropriate choice of some full rank matrixB ∈ Rm×n,m ≤
n, we formulate the objective

x∗ = argmin
x∈V

dB(x, T ). (8)

The matrixB can be seen as an additional degree of freedom
in the objective that allows us to measure the distance in a way
such that the algorithm does not get stuck at early estimations
of x. Fig. 1 visualizes the optimization procedures of DIP and
our subspace induced modification, that we refer to as SUB-
DIP in the following. DIP is performing its optimization (blue
curve) by searching for the point on T that minimizes the dis-
tance (red dashed line) to V. In our approach, the optimiza-
tion (red curve) is performed by searching for the point on V
that minimizes the distance to T . In principle, Eq. (8) could
be solved by combining the classical DIP algorithm with ap-
propriate projection operations. However, such an approach
would not allow for an additional regularization of x, which
is why we prefer to optimize Eq. (8) directly. Eq. (8) does
not exhibit the regularizer problem of DIP, since a regularizer
with V as a level set contradicts the very definition of Eq. (1).

By construction, the solution in Eq. (8) exactly fulfills the
constraint in Eq. (1) for η = 0. This noiseless case is the main
focus of our work. However, when only noisy observations
are available, the solution x must depart from the subspace V
To do so, we can modify Eq. (8) by incorporating a relaxation
term ξ ∈ V⊥, where V⊥ is the row space of A, i.e. the
orthogonal complement to the vector space that is parallel to
V. A relaxed version of Eq. (8) can be thus formulated as

x∗, ξ∗ = argmin
x∈V,ξ∈V⊥

dB(x+ ξ, T ) + λ‖ξ‖2, (9)



where λ > 0 is a tuning parameter that should be chosen
inversely proportional to the noise variance.

The formulations in Eq. (8) and Eq. (9) allow us to better
exploit the constraints in Eq. (1), either by limiting the solu-
tion set entirely to V or by penalizing the distance to V.

Additionally to not having the disadvantages of the origi-
nal DIP formulation as discussed in the beginning of this sec-
tion, we observed that the formulations in Eq. (8) and Eq. (9)
are less prone to numerical failures, when used in combina-
tion with intricate regularizers. This is due to the fact that
unlike Eq. (6), x is not a function of θ and thus the gradient
does not need to be backpropagated through several layers of
the CNN. Finally, by choosing the weighting matrix B ap-
propriately, we can avoid getting stuck in local minima as it
is the case for Eq. (7).

4. APPLICATION TO SUPERRESOLUTION

In the following, we describe an algorithm that applies SUB-
DIP to the problem of superresolution. For the sake of clarity,
we derive the procedure on 1D signals but emphasize that the
generalization to 2D signals is straightforward. Indeed, ex-
periments are carried out for 2D images.

4.1. Superresolution Algorithm

Superresolution refers to the problem of reconstructing a
high-resolution signal x ∈ Rτd from a low-resolution version
y ∈ Rd with τ ∈ N being the magnification factor. It is
generally assumed that y results from subsequent filtering of
x ∈ Rτd with a filter h ∈ RL, and downsampling by the
factor τ i.e.

y = DSτ [h ∗ x], (10)

where DSτ [·] is a subsampling operator and ∗ denotes convo-
lution1. Eq. (10) can be written in the form of Eq. (1). Without
loss of generality, we assume that L = kτ, k ∈ N. The vector
h can thus be split into k subvectors hi ∈ Rτ as follows.

h> =
[
h>1 h>2 · · · h>k−1 h>k

]
. (11)

Let us definite the matrixH ∈ Rd×τd as

H =



h>1 · · · h>k
h>1 · · · h>k

. . .
. . .

h>1 · · · h>k
h>1 · · · h>k−1

. . .
...

h>1 h>2
h>1


. (12)

Then, Eq. (10) is equivalent to y = Hx. With x0 = H†y,
the solution set can be written as

V = {x0 +G
>s|s ∈ R(τ−1)d}, (13)

1Mathematically, the operation is actually a cross-correlation

where G is a matrix with columns that span the kernel
ker(H) of H . We can now rewrite Eq. (8) to fit our su-
perresolution problem, as follows.

min
x∈V

dB(x, T ) = min
s∈R(τ−1)d,

θ∈Rp

‖B(x0 +G
>s− Tθ(z))‖2. (14)

Similarly to Eq. (9), we can include noise into Eq. (14) via2

min
s∈R(τ−1)d

ξ∈Rd,θ∈Rp

‖B(x0 +G
>s+H>ξ − Tθ(z))‖2 + λξ‖ξ‖2. (15)

Equations (14) and (15) can be optimized by applying any
common variation of gradient descent to θ and s. The opti-
mization procedure of SUB-DIP is almost identical to the one
of DIP, but includes a gradient step for s in each iteration.

The matrices B and G are extremely large for real-world
signals and the backpropagation of the gradient is compu-
tationally only feasible, if they exhibit a convolutional or
transpose-convolutional structure. In other words, we need
to find a set of filters that can replace the respective matrix
multiplications by convolutions.

For G, we need to make sure, that the chosen filters
g1, . . . , gτ−1 span ker(H). Candidates for g1, . . . , gτ−1 can
be generated in the following way. We consider the submatrix
H:,τ(d−k)+1:τd of H that contains only its last L columns.
Note that only the last 2k−1 rows of the matrix are non-zero.
We can then generate an orthogonal basis γ1, . . . ,γL+1−2k of
ker(H:,τ(d−k)+1:τd)). Then, for any matrix Γi ∈ Rd×τd that
is constructed from a basis element γi in the same manner as
H is constructed from h, the rows lie in ker(H).

The matrixB is chosen to fulfill two properties. It should
be easily realizable by convolutional operations and allows us
to decompose Eq. (14) and Eq. (15) into its components on V
and V⊥. We thus fix

B =
[
H>

√
λGG

>]> , (16)

where λG > 0 is a parameter. SinceHG> = 0, we get

‖B(x0 +G
>s− Tθ(z))‖2 = ‖H(x0 − Tθ(z))‖2

+λG‖G(G>s− Tθ(z))‖2,
(17)

for the Eq. (14) and a similar decomposition for Eq. (15). The
two terms correspond to the known, and interpolated parts of
x, respectively. Choosing an appropriate weighting factor λG
permits us to avoid running into early local minima, as men-
tioned before. By putting less emphasis on the second term,
we can ensure that Tθ(z) does not get optimized to approach
meaningless early estimations of the unknown parts of x.

4.2. TV Regularization

Our new formulation, allows to easily introduce new regular-
izers. We illustrate this by considering TV. It was shown [7]

2H>ξ is in V⊥, because V⊥ is the row space ofH .



that TV regularization can further improve the performance
of DIP. For a 2D image I , a TV regularizer is formulated as

rTV(I) =
∑
i,j

√
(Ii,j − Ii−1,j)2 + (Ii,j − Ii,j−1)2. (18)

With TV regularization Eq. (8) becomes

x∗ = argmin
x∈V

dB(x, T ) + λTVrTV(x). (19)

5. EXPERIMENTS

We evaluate our algorithm on the 4x superresolution of the
Set5 [11] dataset. To this end, we calculate the PSNR val-
ues for the superresolved images reconstructed by our algo-
rithm. The emphasis of this section is to perform an ablation
study that compares the original DIP to SUB-DIP. We reuse
the official DIP implementation that was made publicly avail-
able [12]. We directly optimize the objectives in Eq. (14) and
Eq. (15) by means of the Adam optimizer and fix λG = 0.1.
The same parameters for DIP as for SUB-DIP are used. In
particular, a Lanczos filter is used as h, even though the actual
filter that was used to perform the downsampling is unknown
to us. Since many superresolution algorithms operate on gray-
scale images only, it is common to calculate the PSNR exclu-
sively on the luminance channel of an image. Here, we are
more interested in how SUB-DIP compares to other RGB al-
gorithms, in particular the original DIP formulation, which is
why we compute the PSNR on all three RGB channels. This
explains why the values reported in [5], are slightly higher.
DIP performs some cropping in order to create images with
dimensions divisible by 32. For the sake of comparability, we
thus crop the ground truth images accordingly, as well as the
images generated by all other baseline algorithms, obtained
from [12].

5.1. Noiseless Superresolution

Often, superresolution does not involve any noise. This is for
instance the case when the downsampling was done digitally.
In that case, we can search for the solution directly on V by
means of Eq. (14). We evaluate DIP and SUB-DIP both with-
out any regularization as well as with an additional TV term
as described in Section 4.2, with λTV = 10−3/n. Table 1
shows the reconstruction results.

SUB-DIP consistently outperforms DIP without TV regu-
larization. With an added TV term, DIP is also outperformed
by SUB-DIP, except for the ”Woman” image. The advan-
tage of our formulation of the DIP objective can be observed
in Fig. 2. The manifold T tends not to capture certain di-
rectional stuctures at very high frequencies. Restricting the
solution to T thus causes a blurring out of such structures.
This is why, for instance, the DIP struggles to reproduce fine
details such as eyelashes, while SUB-DIP does not have this

Baby Bird Butterfly Head Woman Avg.

Bicubic 30.43 28.09 20.90 28.72 25.39 26.71
LapSRN 32.02 30.42 25.52 29.62 29.24 29.36

DIP 29.85 29.62 24.83 28.49 27.00 27.96
DIP+TV 29.87 29.52 24.60 28.62 27.20 27.96

Ours 31.38 29.99 24.84 28.74 27.01 28.39
Ours+TV 31.47 29.98 24.81 28.67 26.85 28.35

Table 1: PSNR values for Set5. Best and second-best results
are written in red, and blue respectively.

Ground truth Bicubic DIP Ours

Fig. 2: Reconstruction results for ”Baby”

problem to that extent. State-of-the-art deep learning methods
[13, 14, 15] such as LapSRN [3] achieve generally better per-
formance than DIP or SUB-DIP, but require training on large
datasets, which is not always feasible.

5.2. Noisy Superresolution

We test the approach in Eq. (15) by adding Gaussion noise
with σnoise = 0.02 ∗ Imax to the downsampled image y,
where Imax corresponds to the maximal pixel value. The
noise regulization weight is set to λξ = 3∗10−4/(d∗σ2

noise).
Even though our method can no longer exploit the subspace
assumption, it still achieves a slight improvement over classi-
cal DIP, as can be seen in Table 2.

Baby Bird Butterfly Head Woman Avg.

DIP 29.24 27.70 23.81 26.95 26.17 26.78
Ours 29.74 28.22 23.89 27.47 26.40 27.15

Table 2: PSNR values for Set 5 with noise

6. CONCLUSION

In this work, we presented a novel approach to leverage the
Deep Image Prior by formulating an optimization procedure
on the solution set of an inverse problem. We have described
how to apply this approach on the problem of superresolu-
tion and have demonstrated a significant improvement of the
reconstruction results.
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