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Abstract

Recently, different studies have demonstrated the use of co-clustering, a data

mining technique which simultaneously produces row-clusters of observations

and column-clusters of features. The present work introduces a novel co-clustering

model to easily summarize textual data in a document-term format. In addi-

tion to highlighting homogeneous co-clusters as other existing algorithms do

we also distinguish noisy co-clusters from significant co-clusters, which is par-

ticularly useful for sparse document-term matrices. Furthermore, our model

proposes a structure among the significant co-clusters, thus providing improved

interpretability to users. The approach proposed contends with state-of-the-

art methods for document and term clustering and offers user-friendly results.

The model relies on the Poisson distribution and on a constrained version of

the Latent Block Model, which is a probabilistic approach for co-clustering. A

Stochastic Expectation-Maximization algorithm is proposed to run the model’s

inference as well as a model selection criterion to choose the number of co-

clusters. Both simulated and real data sets illustrate the efficiency of this model

by its ability to easily identify relevant co-clusters.
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1. Introduction

While textual data has existed for centuries, its occurence, use and ease of

access has exploded in recent years, thanks in particular to the Internet. Social

networks have largely driven this phenomenon: in 2019, Twitter had almost

474,000 tweets per minute and Facebook reported 4.3 billion messages posted5

per day. Access to an infinite number of resources via forums, the digitisation

of newspapers and the creation of websites are also other important factors.

However, since text is an unstructured type of data, its analysis is not trivial

and requires the use of special methods. The representation of text alone is a

challenge, as various recent papers have shown [1, 2]. Most problems related to10

the analysis of textual data are still open issues, and are challenged by strong

technological obstacles. Therefore, when users deal with a large unknown cor-

pus,they often need - as a first step - a global overview of their data set. In

other words, users often need to summarize their data, for example by knowing

which documents share the same topics and the main topics of each cluster. The15

most famous way to do this is probably the Latent Dirichlet Allocation model

(LDA, [3]), which proposes a probabilistic modelling of the words appearing in

the documents. Many extensions of LDA have been proposed over the years.

For instance, recently, [4] combines LDA and clustering algorithms to highlight

the main topics of their clusters. In [5], the authors analyse scientific literature20

related to the field of e-Health.In [6], the authors describe the Biterm Topic

Model (BTM). It outperforms LDA on short texts (such as instant messages

and tweets) for which LDA performs poorly, due to the sparsity of the data. In

[7], the authors propose another version of the BTM: they represent the biterms

(word-pairs) as graphs and use a deep convolutional network to encode word25

co-relationships.

This work presents the Self-Organised Co-Clustering model (SOCC). It aims

at providing a tool to summarize large document-term matrices, whose rows

correspond to documents and columns correspond to terms. The clustering ap-
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proach, which forms homogeneous groups of observations (documents in this30

case), is a useful unsupervised technique with proven efficiency in several do-

mains. However, in high-dimensional and sparse contexts, they are sometimes

less adapted and difficult to interpret. When considering such data sets, co-

clustering, which groups observations and features simultaneously, turns out to

be more efficient. It exploits the dualism between rows and columns and the35

data set is summarized in blocks (the crossing of a row-cluster and a column-

cluster). The clusters of documents help in finding similar documents while

the clusters of terms tell us what the clusters of documents are about. In this

context, our work helps in finding similar documents and their interaction with

term clusters.40

The co-clustering task can be done in several ways. For example, in [8],

the authors describe an original approach that uses optimal transport theory

to co-cluster continuous data. However, we mostly distinguish between two

kinds of co-clustering approaches. Matrix factorization based methods, e.g.

[9, 10], consist of factorizing the N × J data matrix x into three matrices a (of45

size N × G), b (size G × H) and c (size H × J), with the condition that all

three matrices are non-negative. More specifically, the approximation of x by

x ≈ abc is achieved by minimizing the error function min
(a,b,c)

||x−abc||, with the

constraints (a ≥ 0, b ≥ 0, c ≥ 0), and ||.|| denoting a suitable norm (such as

the Frobenius norm, spectral norm etc.). The matrices a and c define the row50

and column cluster memberships respectively. Each value of the matrix a (or c)

corresponds to the degree in which a row (or a column) belongs to a row-cluster

(or a column-cluster). The matrix b represents the block matrix: an element

bgh of b is a scalar that summarizes the observations belonging to row-cluster g

and column-cluster h. This kind of method was successfully used to co-cluster55

textual data sets in [11] and [12]. However, it requires choosing the metric ||.||

that best fits the structure of the underlying latent blocks based on available

data, which can be difficult. Furthermore, to the best of our knowledge, these

methods do not propose a way to select the correct number of blocks.

Probabilistic approaches, such as the Latent Block Model [13], take a differ-60
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ent approach. They usually assume that the data was generated from a mixture

of probability distributions with each associated component corresponding to a

block. The parameters of the related distributions and the posterior probabil-

ities of the blocks from the data provided are then estimated. This approach

models the elements of a block with a parametric distribution and provides65

more information than the previous methods, that model the blocks with a

simple scalar. In addition, each block is interpretable from its distribution pa-

rameters. Moreover, criterion such as the Integrated Classification Likelihood

(or ICL) [14] can be used for model selection purposes, including the choice of

number of blocks.70

However, when dealing with high-dimensional sparse data, several blocks

may be mainly sparse (composed of zeros) and cause inference issues. In addi-

tion, highlighting homogeneous blocks is not always sufficient to obtain easy-to-

interpret results. Indeed, despite being homogeneous, these sparse blocks are

not relevant from an interpretation perspective, and we need a new step to select75

the pertinent blocks. In other words, it is left to the user to choose the most use-

ful co-clusters and to determine which term clusters (column-clusters) are more

specific to which document clusters (row-clusters). This task is not straightfor-

ward even with a reasonable number of row and column-clusters. Therefore, it

is necessary to work on a co-clustering technique that offers ready-to-use results.80

We can address this problem by imposing a pattern on the co-clustering

structure. Such an approach directly produces the most meaningful co-clusters,

and significantly simplifies the results and their analysis. In the present work,

we propose a co-clustering approach based on the Latent Block Model [15], in

which we impose a structure wherein column-clusters (clusters of terms) are85

separated into three parts. In the first part, each cluster of terms is specific to

one cluster of documents. In the second part, each cluster of terms is specific

to two clusters of documents. The third part contains only one column-cluster

and gathers terms that are common to all clusters of documents. The main

motivation of this paper is to provide a tool with high comprehensibility: having90

three sections offers explicable results, with a reasonable number of co-clusters.
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The choice to constrain our model to pairwise interactions between clusters

is essentially motivated by the classical ANOVA modelling, which is usually

limited to the two-way analysis. Furthermore, pairwise interactions are more

interpretable than higher order interactions, and interactions between more than95

three factors are expected to be infrequent. Figure 1 illustrates the proposed

structure. On the left, we present a usual co-clustering with the Poisson Latent

Block Model. On the right, we show a co-clustering with the SOCC structure:

thin separations between the three parts of column-clusters were added, with

the noisy blocks as the lighter ones.100

Other works have introduced a structure in their related co-clustering. In

[16] the authors propose a co-clustering using a double k-means, and impose

that the meaningful blocks are on the diagonal. In [17] and [18], the authors

propose block diagonal co-clustering techniques, with binary and counting data

respectively. Firstly, this consists of constraining the co-clustering such that105

the number of row-clusters is equal to the number of column-clusters. Secondly,

the blocks out of the diagonal are considered to be noisy and share the same

parameter. In fact, these models are particular cases of the model we propose:

they constrain the structure to only the first part of column-clusters mentioned

above. While these methods proved their efficiency in the case of document-110

term matrices, they assume that a cluster of terms is specific to only one cluster

of documents. However, a group of terms could be specific to several groups of

documents. Let us assume for instance that the documents are research papers,

with one cluster related to computer science and another one related to math-

ematics. Each cluster has its own specific terms but many terms (for instance115

those related to probability distributions) will appear in both communities. In

this work, we address this issue by defining a more complete structure among

blocks without losing interpretability.

The rest of this paper is organized as follows: Section 2 presents the La-

tent Block Model and its application in counting data with the Poisson dis-120

tribution. Section 3 describes the novel method referred to as ‘Self-Organized

Co-Clustering’ (SOCC). In Section 4, we assess the efficiency of our solution in
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Figure 1: On the left, the usual Poisson Latent Block Model: we see that some blocks are

not easily classifiable into noisy or significant blocks. On the right, the SOCC approach: we

can easily distinguish betwenn the noisy blocks (shown in a lighter shade) and the significant

blocks.

three ways. Firstly, we use simulated data, to evaluate the partition estimation

of the SOCC model and state-of-the-art competing models. Secondly, we use

real textual data sets to compare the proposed approach with these models,125

regarding both document clustering and term clustering. Thirdly, we describe a

use case of the SOCC model on a real labelled data set. In Section 5, we detail

an example for using the SOCC model in a truly unsupervised context. The last

section concludes the paper and discusses topics for possible future research.

2. Background and notation130

2.1. The Latent Block Model

The Latent Block Model (LBM) is a widely used model to carry out co-

clustering [19]. It assumes that by knowing the row and column partitions, the

elements of a block are independent and identically distributed. In this section,

the hypotheses for the LBM are defined, and the mathematical details are given.135

Let us consider the data matrix x = (xij)i,j with 1 ≤ i ≤ N and 1 ≤ j ≤ J .

It is assumed that G row-clusters and H column-clusters exist, and that they

correspond to a partition v = (vi)i of the rows and a partition w = (wj)j of

the columns. We have vi = (vig)g with vig equal to 1 if row i belongs to cluster
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g (where 1 ≤ g ≤ G), and 0 otherwise. Similarly, we have wj = (wjh)h with140

wjh equal to 1 when column j belongs to cluster h (where 1 ≤ h ≤ H), and 0

otherwise. Thereafter, we no longer specify the ranges of i, j, g and h.

The first LBM hypothesis is that the univariate random variables xij (for all i

and for all j) are conditionally independent given the row and column partitions

v and w. Therefore, the conditional probability density function (p.d.f) of x145

given v and w can be written:

p(x|v,w;α) =
∏
ijgh

f(xij ;αgh)vigwjh ,

where α = (αgh)g,h is the distribution’s parameters of block (g, h).

The second LBM hypothesis is that the latent variables v and w are inde-

pendent, so p(v,w;γ,ρ) = p(v;γ)p(w;ρ) with:150

p(v;γ) =
∏
ig

γ
vig
g and p(w;ρ) =

∏
jh

ρ
wjh

h ,

where γg = p(vig = 1) and ρh = p(wjh = 1). This means that, for all i,

the distribution of vi is the multinomial distribution M(γ1, . . . , γG) and is not

dependent on i. Similarly, for all j, the distribution of wj is the Multinomial

distribution M(ρ1, . . . , ρH) is not dependent on j.155

Based on these considerations, the LBM parameter is defined as θ = (γ,ρ,α),

with γ = (γ1, . . . , γG) and ρ = (ρ1, . . . , ρH) being the rows and columns mixing

proportions. Therefore, if V and W are the sets of all possible labels v and w,

the probability density function of x is written:

p(x;θ) =
∑
(v,w)
∈V×W

∏
ig

γvigg
∏
jh

ρ
wjh

h

∏
ijgh

f(xij ;αgh)vigwjh . (1)

2.2. The Poisson Latent Block Model (PLBM)160

Counting data, such as those present in document-term matrices, can be

modelled using the Poisson distribution. For a xij belonging to block (g, h) the

Poisson distribution is parameterized with λij such that λij = ni.n.jδgh. Here,

the values ni., n.j correspond to a ‘row effect’ and a ‘column effect’ respectively,
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and are computed as follows:

ni. =
∑
j

xij and n.j =
∑
i

xij .

They are independent of the co-clustering and are computed from the document

term matrix beforehand. Consequently, the LBM parameter αgh of Section2.1

corresponds to δgh, and is referred to as ‘the effect of block (g, h)’ [13]. The

probability density function is therefore given by:

f(xij ; δgh) = P(ni.n.jδgh) =
1

xij !
e−ni.n.jδgh(ni.n.jδgh)xij . (2)

2.3. Inference165

The EM-algorithm [20] is a well-known method to perform parameter es-

timation with latent variables. It iterates two steps. The first step, referred

to as the ‘E-step’, computes the expected complete log-likelihood conditionally

to the observed data. The second step, referred to as the ‘M-step’ consists in

maximizing the expected complete log-likelihood over the parameters θ. Given170

equations (1) and (2), the complete log-likelihood is written as:

Lc(θ;x,v,w) =
∑
ig

vig log γg +
∑
jh

wjh log ρh

+
∑
ijgh

vigwjh
(
xij log(ni.n.jδgh)− ni.n.jδgh − xij !

)
.

(3)

Thus, the E-step requires the computation of the probability p(vigwjh = 1|x).

In this case, it is not computationally tractable since the row and column par-

titions are not independent conditionally to x. In such a situation, several

alternatives to the EM algorithm exist, as the variational EM algorithm, the175

SEM-Gibbs algorithm or other algorithm linked to Bayesian inference [21]. In

this work, we use the SEM-Gibbs version for its simplicity of implementation,

its low sensitivity to initialization and its good performance. Instead of com-

puting the probability p(vigwjh = 1|x), we sample (v,w) through a Gibbs

sampler. It requires the computation of the probabilities p(vig = 1|x,w;θ) and180

p(wjh = 1|x,v;θ), which are tractable. Algorithm 1 presents the SEM-Gibbs

algorithm for the PLBM inference.
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Input: x, G, H

Initialization: randomly choose v and w, deduced γg = 1
N

∑
i

vig,

ρh = 1
J

∑
j

wjh

for i in 1:nbSEM do
Step 1: Sample v such that:

p(vig = 1|x,w;θ) ∝ γg ×
∏
jh

f(xij ; δgh)wjh

Step 2: γg = 1
N

∑
i

vig,

δgh =
1

ng.n.h

∑
ij

vigwjhxij ,

with ng. =
∑
ij

vigxij and n.h =
∑
ij

wjhxij .

Step 3: Sample w such that:

p(wjh = 1|x,v;θ) ∝ ρh ×
∏
ig

f(xij ; δgh)vig

Step 4: ρh = 1
J

∑
j

wjh and δgh as in Step 2.

end

Algorithm 1: Poisson SEM-Gibbs algorithm

3. Self-Organized Co-Clustering

3.1. An easy-to-read structure

In the latter section, all the δgh are unrelated, and consequently, each block185

should be interpreted separately from each other. In the model we propose,

this independence does not hold true anymore: a structure is forced among the

blocks so that the result is easier to read. Thus, for a given block (g, h), the

corresponding block effect δgh will either be specific to column-cluster h with

δgh = δh, or non-specific, with δgh = δ. In the case of non-specific block effect190

δgh = δ, the block (g, h) is considered as a noisy block. We refer to it as a ‘non-

meaningful’ block, and it shares the same δ with all the other non-meaningful

blocks. In the case of δgh = δh, the block (g, h) is ‘meaningful’, and shares the

same δh with all the meaningful blocks of the same column-cluster h. In this

case, the terms of the hth column-cluster are considered to be specific to the195
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Figure 2: Co-clustering structure of the Self-Organized Co-Clustering model, with block

effect parameters, in the case G = 3.

documents of one or several row-clusters.

To organize these meaningful and non-meaningful blocks, several rules are

given. First of all, after choosing the number of row-clusters G, the co-clustering

necessarily has H = G+
(
G
2

)
+1 column-clusters. Moreover, the column-clusters

are divided into three sections called main, second and common. The purpose200

of these sections is explained here.

The main section concerns the first G column-clusters, for h ∈ {1, ..., G}.

In each column-cluster h of this section, only one block is meaningful and pa-

rameterized by δh. All the other blocks are non-meaningful and parameterized

by δ. Consequently, for each cluster of documents (row-cluster), the meaningful205

block indicates the terms that are specific to these documents. As a result, in

the main section, the meaningful blocks are located on the diagonal, and the

other ones are the non-meaningful ones.

The second section concerns the following
(
G
2

)
column-clusters (h ∈ {G +

1, ..., G+
(
G
2

)
}). In each column-cluster h of this section, two blocks are mean-210

ingful. Consequently, each column-cluster contains terms that are specific to

two clusters of documents (row-clusters).

Finally, the common section consists of only one column-cluster and gathers

the terms that are common to all documents.
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This structure, as well as the corresponding block effect δ, are illustrated215

by Figure 2, in which we clearly see the meaningful blocks with δgh = δh and

non-meaningful blocks with δgh = δ. We also discern the organization among

these blocks and the three different sections main, second and common. For

instance, in the main section, the first column cluster is considered to be specific

to first row-cluster, thus only the column cluster’s first block has its own specific220

distribution with δ1. On the other hand, the other blocks of this column-cluster

are considered to be non-meaningful, and have a block effect parameter δ, which

is common to all non-meaningful blocks. In the second section, we note, for

example, that for h = 4 blocks (1, 4) and (2, 4) are meaningful, and share the

same block effect δ4. This means that terms from column-cluster 4 are specific to225

documents from row-clusters 1 and 2. Moreover, block (4, 3) is non-meaningful

and has the same effect δ as the other non-meaningful blocks. The common

section is a bit particular insofar that it contains only one column-cluster, so

h = 7. This column-cluster contains the terms that are specific to all groups of

documents and its corresponding blocks all share the same δ7.230

3.2. The SOCC model and its inference

From Section 3.1, knowing the column-cluster h we can write: g ∈ Ch ∪ Ch,

such that Ch are the meaningful blocks of column-cluster h and Ch are the non-

meaningful blocks of column-cluster h. In this case, the probability of the SOCC

model is written as:235

p(x;θ) =
∑
(v,w)
∈V×W

∏
ig

γvigg
∏
jh

ρ
wjh

h

∏
ijh

∏
g∈Ch

f(xij ; δh)vigwjh

∏
g∈Ch

f(xij ; δ)
vigwjh .

(4)
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The complete log-likelihood is given by:

Lc(θ;x,v,w) =∑
ig

vig log γg +
∑
jh

wjh log ρh +
∑
ijh

(
∑
g∈Ch

vigwjh [xij log(ni.n.jδh)− ni.n.jδh − log(xij !)] +

∑
g∈Ch

vigwjh [xij log(ni.n.jδ)− ni.n.jδ − log(xij !)]

)
.

(5)

As in Section 2.2, the SEM-Gibbs algorithm is chosen to estimate the parti-

tions (v,w) and parameters θ = (γ,ρ, δ) with δ = (δ, δ1, . . . , δH). In contrast

with the Poisson LBM, the Poisson distribution f(xij ; δgh) of block (g, h) will

depend on the meaningfulness of block (g, h). For all h ∈ H if g ∈ Ch, then240

f(xij ; δgh) = f(xij ; δh), and if g ∈ Ch, then f(xij ; δgh) = f(xij ; δ), where f is

the Poisson p.d.f. given by Equation (2).

The SEM-Gibbs algorithm proposed for the Self-Organized Co-Clustering

model inference is summarized in Algorithm 2. It iterates the partitions sam-

pling and the maximization of the parameters (steps 1 to 4) during a given245

number of iterations (nbSEM). The final parameter estimation, now denoted by

θ̂, is obtained by averaging the model parameters over the sample distribution

(after a burn-in period). Lastly, the final partitions v̂ and ŵ are estimated with

θ = θ̂, using another Gibbs sampler.

Choice of number of iterations. For the SEM-Gibbs algorithm, two numbers250

must be chosen: the total number of SEM-Gibbs iterations (nbSEM) and the

number of iterations for the burn-in period. These numbers are graphically cho-

sen by visualizing the values of the model’s parameters along the SEM-Gibbs

iterations. The parameters must reach their stationary state after the burn-in

period, and the remaining number of iterations until the end must be sufficient to255

compute their respective means. Less subjective ways exist to assess the distri-

bution’s stationarity. In [22], the authors propose a general approach to monitor

the convergence of MCMC outputs in which parallel chains are run with start-

12



Input: x, G, H

Initialization: v, w, γg = 1
N

∑
i

vig, ρh = 1
J

∑
j

wjh

for i in 1:nbSEM do
Step 1: Sample v such that:

p(vig = 1|x,w;θ) ∝ γg ×
∏
jh

f(xij ; δgh)wjh

Step 2: γg = 1
N

∑
i

vig,

δ =

∑
ijhg∈Ch

vigwjhxij∑
ijhg∈Ch

vigwjhni.n.j
,

δh =

∑
ijg∈Ch

vigwjhxij∑
ijg∈Ch

vigwjhni.n.j
.

Step 3: Sample w such that:

p(wjh = 1|x,v;θ) ∝ ρh ×
∏
ig

f(xij ; δgh)vig

Step 4: ρh = 1
J

∑
j

wjh, δ and δh as in Step 2.

end

Algorithm 2: SEM-Gibbs algorithm for the SOCC model.

ing values that are spread relative to the posterior distribution. Convergence is

confirmed when the output from all chains is indistinguishable. Although this260

method is relevant here, we did not use it for two reasons. Firstly, we did not

use it to avoid increasing the overall execution time of the algorithm. Secondly,

this method is not necessarily useful in the SOCC model’s case. Indeed, since

this model is very constrained, the number of iterations required to reach con-

vergence is limited. We can see in Figure 3, which represents the change in the265

SOCC parameters for simulated data that these parameters stabilize after very

few iterations.

3.3. Model selection

The definition of a model selection criterion has two purposes. Firstly, in

the context of unsupervised methods, choosing the number of row-clusters G is270
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an issue. One of the great advantages of the SOCC model is that the number

of column-clusters H is directly fixed by the number of row-clusters G. Indeed,

as explained before, H = G +
(
G
2

)
+ 1. However, the choice for the number of

row-clusters G is still a problem. Secondly, as described in Algorithm 2, the

SEM-Gibbs algorithm starts with a random initialization of partitions (v,w).275

However, this initialization has an impact on the convergence of the algorithm

and on the resulting estimations. It is therefore recommended to execute the

algorithm several times with different initializations and to have a criterion to

choose the best solution.

The classical criteria, such as BIC [23], rely on penalizing the maximum log-280

likelihood value L(θ̂;x). However, due to the dependency structure on the row

and column partitions conditionally to x, the log-likelihood is not tractable.

Alternatively, an approximation of the ICL information criterion [14], re-

ferred to as ‘ICL-BIC’, can be used to overcome this problem. The key point is

that this latter vanishes since ICL relies on the complete latent block informa-285

tion (v,w), instead of integrating on it as in the case with BIC. In particular,

[21] detailed how to express ICL-BIC for the general case of categorical data.

It is possible to use the ICL-BIC expression given by these authors by following

their work in a stepwise manner. The resulting ICL-BIC is expressed by:

ICL-BIC(G) = log p(θ̂;x, v̂, ŵ)

− 1

2
(G− 1) logN − 1

2
(H − 1) log J − 1

2
(H + 1) log(NJ).

(6)

The number G of row-clusters maximizing this criterion must be retained.290

4. Numerical Experiments

In this section, we assess the quality of the SOCC model. First of all, we

chose seven clustering, co-clustering and topic-modelling methods to compare

the results: we list them in Section 4.1 and refer to them as ‘baselines’. In

Section 4.2, we simulate data through the SOCC model’s process generation. We295
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run the baselines algorithms and compare their results with those of the SOCC

model, in terms of partition estimation. We also evaluate the behaviour of the

ICL criterion for choosing the number of row-clusters. In Section 4.3, we used

real textual data sets whose documents are known to belong to some predefined

classes and compared the row-clustering (or column-clustering) quality with the300

baseline methods. We conclude this section by illustrating with a use case how

the SOCC model can be helpful for interpreting the co-clustering results.

4.1. Baselines

Seven clustering, co-clustering and topic-modelling methods were selected as

baselines to compare our results. Two of them are based on the Latent Block305

Model. The Poisson Latent Block Model (PLBM,[13]), as detailed in Section 2,

is a co-clustering algorithm that uses the direct application of the Latent Block

Model. The Sparse Poisson Latent Block Model [18], referred to as ‘SPLBM’, is

a constrained version of the Poisson Latent Block Model, which was also devel-

oped to co-cluster document-term matrices. This model, already described in310

the introduction, constrains its structure to the main structure of our model.

Both models were implemented in C++ from the pseudo-code of their respective

papers. The Information Theory Co-Clustering method, referred to as ‘ITCC’

[24], is a co-clustering technique that uses information theory and the mutual in-

formation to discover the blocks. We used the C++ implementation provided by315

their authors. The Orthogonal Non-negative Matrix Tri-Factorization method,

referred to as ‘ONMTF’ [9], is a co-clustering algorithm based on matrix fac-

torization. We implemented the pseudo-code provided in R. The Non-negative

Matrix Factorization NMF [25] is a clustering algorithm based on matrix factor-

ization. The R Package NMF [26] was used for the experiments. The Spherical320

Kmeans clustering method (‘Skmeans’) is the implementation of the kmeans

algorithm, but with embedding of the Cosine similarity (and not the Euclidean

distance). The R Package skmeans [27] was used for the experiments. Latent

Dirichlet Allocation (LDA) [3] is a generative statistical model for topic mod-

elling. The R package textmineR implementation was used to use it on the data325
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Table 1: Simulated parameters δgh × 10−7. For each cell xij the Poisson parameter is equal

to ni.n.jδgh, with row margins ni. equal to 2455 on average, and columns margins n.j equal

to 249 on average.

Cluster 1 2 3 4 5 6 7

1 8.6 2.9 2.9 49.8 47.8 2.9 34.0

2 2.9 9.0 2.9 49.8 2.9 52.9 34.0

3 2.9 2.9 9.4 2.9 47.8 52.9 34.0

sets. To assess the quality of the row-clusters, all of these seven methods were

used. To assess the quality of the column-clusters, we obviously only selected

the four co-clustering methods.

4.2. Simulated data set

4.2.1. Simulation setting330

A data set with N = 120, J = 1 200, G = 3 and H = 7 was simu-

lated. The parameters were chosen arbitrarily: the row mixing proportions

γ are equal to (.33, .33, .33) and the column mixing proportions ρ are equal to

(.08, .08, .17, .17, .17, .08, .25). The block effects are given in Table 1.

For the SOCC inference, the total number of iterations of the SEM-Gibbs335

algortihm was fixed to 50 with a burn-in period of size 35. In Figure 3, the

evolution of parameters δ and δh for the main section is plotted. We see that the

parameters stabilize in less than ten iterations. The numbers of fixed iterations

are therefore enough to reach the stationary state.

4.2.2. Results340

The SOCC model was run on 100 simulations, and the Adjusted Rand Index,

referred to as ‘ARI’ [28] between the true partitions and the estimated partitions

were computed. The ARI for row-clusters was always equal to 1. Regarding the

column-clusters, the mean ARI was equal to .99. It shows that the inference

algorithm for SOCC functions appropriately. It is worth noting that 25% of345
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Figure 3: From left to right, and from top to bottom: change in parameters δ, δ1, δ2, δ3 when

executing the algorithm on the simulated data set. The parameters reach their stationary

state in less than 10 iterations.

runs failed to reach a valid solution, systematically leading to empty clusters

solutions. Such behaviour is a well-known drawback of co-clustering procedures

[29, 30]. Nevertheless, this relative frequency of failures is not too high and not

detrimental for the use of the SOCC model. When we obtain a solution with

some empty clusters, we just have to restart the algorithm with another random350

initialization.

Furthermore, we executed the competitors’ algorithms on this data set: the

ARI boxplots for all methods are available in Figure 4. We see that on this

simple data set, most of the methods perform well in terms of row clustering.

This is the reason why we challenge the methods using real and more difficult355

data sets in Section 4.3.

4.2.3. Selection for the number of row clusters

For each of the 100 simulations, the co-clustering was run for G = {2, 3, 4, 5}

and the ICL criterion was computed. Table 2 presents the number of times each
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Figure 4: ARI for SOCC model and competitors models on simulated data set.

Table 2: Number of row and column-clusters (G,H) selected by ICL-BIC on the 100 simulated

data sets, the right one being (3, 7).

(G,H) (2,6) (3,7) (4,11) (5,16)

# chosen 25 75 0 0

G was selected: the right number was selected in 75% of the cases. For the360

remaining 25% executions, G = 2 was selected.

4.3. Real data sets experiments

In this section, real labelled data sets are used to assess the quality of the

proposed method. We describe the data sets that were used, the methods the

SOCC was compared to and the results.365
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4.3.1. Real data sets

Eight data sets were retained for this Section. The classic3 data set (di-

mensions 3, 891×5, 236) and the classic4 data set1 (dimensions 7, 094×5, 896)

consist respectively of 3 different document collections (CISI, CRANFIELD, and

MEDLINE) and 4 different document collections (CACM, CISI, CRANFIELD,370

and MEDLINE). Pubmed5 (12, 648×8, 863), Pubmed4 (11, 131×8, 257) and

Pubmed3 (9, 582× 7, 454) were built from the collection Pubmed10 [31], with

approximately 15, 500 medical abstracts from the Medline database, partitioned

across 10 different diseases and published between 2000 and 2008. Pubmed3

contains the three largest classes, while Pubmed4 (and Pubmed5) contains the375

four (and five) largest classes. The classes, ranked from the largest to the small-

est, include documents about otitis, migraine, age-related macular degeneration,

kidney calculi and hay fever. Pubmed4min (2, 121×3, 660) was also extracted

from the Pubmed10 data set. However, only the four smallest classes were ex-

tracted. The documents are about jaundice, Raynaud disease, chickenpox and380

gout. The sports (8, 580× 14, 870) and yahoo (2, 340× 10, 431) data sets were

obtained from the CLUTO toolkit [32]. The yahoo data set contains 6 different

document categories with each document corresponding to a web page listed in

the subject hierarchy of Yahoo!. The sports data set contains documents regard-

ing 7 different sports including baseball, basketball, bicycling, boxing, football,385

golfing and hockey.

Discussion on the number of clusters. The baselines data sets never have more

than 7 known clusters in line, when other methods such as [18] execute their

algorithm on data sets with up to 50 row-clusters. A limitation of the SOCC390

model is its difficulty in using it when the number of classes G is greater than

10. When G = 10, we have G = G +
(
G
3

)
+ 1 = 56. With 56 column-clusters,

the resulting co-clustering loses its interpretability, which is supposed to be a

1http://www.dataminingresearch.com/index.php/2010/09/classic3-classic4-datasets/
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strength of the model. Therefore, it is recommended not to use the model when

G is superior to 7.395

4.3.2. Assessing the quality of row-clusters

To assess the document clustering quality, the ARI between the known par-

titions and those estimated were computed. For each data set, each method

was executed 30 times. Figure 5 plots the ARIs boxplots for all data sets and

methods. We can see on these boxplots that the SOCC approach obtains the400

highest median ARIs for the classic3, pubmed4min and sports data sets. On

the classic3 data set, the SOCC model obtains a median ARI of 0.96, and so

does the NMF method. The model with the second highest median ARI (0.95)

is the SPLBM model. On the pubmed4min data set, the median ARI for the

SOCC model is equal to 0.55. The PLBM method yields the second highest405

ARI value with 0.46. Finally, on the sports data set, the SOCC obtains the

highest median ARI value (0.44), and the NMF methods ranks second with an

ARI value equal to 0.43.

On the other data sets, the SOCC model obtains satisfactory results and

ranks as the second-best method in terms of ARI after Skmeans. This latter410

clustering method yields better results on data sets pubmed3, pubmed4, and

pubmed5 but it presents one of the worst performances for classic4, pubmed4min

and sports. Therefore, even if it obtains good results on some data sets, its in-

consistency on the other data sets makes it an unreliable method. For this

reason, SOCC seems to be the best method from a document clustering stand-415

point. The reason for this success is probably due to the model’s parsimony.

4.3.3. Assessing the quality of column-clusters

In most studies, the evaluation of co-clustering algorithms is only based on

resulting row-clusters. This is due to the lack of public data sets providing

the true partitions for both observations and features. In document clustering,420

for example, popular benchmarks provide the true document labels, while the

term clusters remain unknown. To overcome this problem and improve over
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Figure 5: ARIs for document clustering. From left to right and top to bottom: classic3,

classic4, pubmed3, pubmed4, pubmed4min, pubmed5, sports, yahoo.
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currently used evaluation methods, we propose the following strategy. For a

given column-cluster, the ten most frequents terms are extracted. We compute

the average Jaccard similarity between these terms on all the documents: this425

value is considered as a proximity measure between terms of the column-cluster.

We average this proximity measure over all the column-clusters. In terms of

interpretation, this criterion based on Jaccard similarities is used to assess how

a co-clustering gathers terms that often occur in the same document. We report

the scores obtained by the methods on the data sets in Table 3. From these430

results, it can be seen that for the classic4, pubmed3, pubmed4, pubmed4min,

pubmed5, sports and yahoo data sets, all algorithms perform equally well but

the SOCC model has the highest averaged score. Regarding the classic3 data

set, ONMTF yields a better result (.89), but is closely followed by the SOCC

model (.88).435

Table 3: Average similarity measurements between the top 10 terms of each column-cluster.

Data set SOCC PLBM SPLBM ITCC ONTMF

Classic3 .88 (.07) .86 (.08) .86 (.08) .86 (.08) .89 (.07)

Classic4 .91 (.06) .88 (.07) .88 (.07) .87 (.07) .87 (.07)

Pubmed3 .85 (.13) .77 (.13) .79 (.12) .76 (.13) .80 (.08)

Pubmed4 .88 (.12) .80 (.15) .80 (.13) .80 (.14) .81 (.09)

Pubmed4min .87 (.11) .79 (.13) .81 (.09) .80 (.13) .84 (.08)

Pubmed5 .90 (.12) .78 (.13) .81 (.13) .83 (.13) .85 (.08)

Sports .88 (.11) .79 (.11) .79 (.11) .77 (.11) .78 (.10)

YahooKB1 .85 (.20) .67 (.31) .70 (.33) .69 (.31) .69 (.31)
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4.3.4. pubmed4min use case

In this section, we demonstrate using the Pubmed4min data set that the

SOCC results are easy-to-interpret. Regarding the main section, when we seek

the 10 most frequent terms of the first column-cluster, we get ‘varicella’, ‘vaccin’,

‘ag’, ‘children’, ‘year’, ‘immun’, ‘zoster’, ‘hospit’, ‘chickenpox’ and ‘adult’. These440

terms are closely related to chickenpox (or varicella), so we can easily guess that

the first row-cluster’s documents are about chickenpox. When we seek the 10

most frequent terms of the second column-cluster, we get ‘jaundic’, ‘obstruct’,

‘liver’, ‘bile’, ‘biliari’, ‘hepat’, ‘duct’, ‘rat’, ‘stent’ and ‘bilirubin’. Again, we

can easily assert that the second row-cluster’s documents are about jaundice.445

Regarding the second section, if we look at column-cluster 5, which corresponds

to the terms specific to row-clusters 1 and 2, we get: ‘rate’, ‘complic’, ‘neg’,

‘mortal’, ‘morbid’, ‘infant’, ‘neonat’, ‘bacteri’, ‘safe’, ‘inva’. These terms are

mostly related to children, which seems consistent since jaundice and chickenpox

are very common in toddlers and newborns. Furthermore, jaundice can occur450

as a complication of chickenpox, justifying the presence of ‘complic’ in the list.

5. Harry Potter use case

In this section, we use the SOCC model on the Harry Potter data set. For

each stage of performing a co-clustering, we show the difficulties encountered by455

the classical co-clustering methods and how the SOCC model overcomes them.

The Harry Potter data set contains the first three volumes of the famous series

([33, 34, 35]), entitled ‘Harry Potter and the Philosopher’s Stone’, ‘Harry Potter

and the Chamber of Secrets’ and ‘Harry Potter and the Prisoner of Azkaban’.

In the resulting Document-Term matrix, each line represents a chapter, and460

each column represents a term.

5.1. Co-clustering set up

Data set pre-processing. The original text was changed. Firstly, the punctuation
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and numbers were removed. Secondly, the terms that appeared only once were465

removed because they do not often add useful information. The whole was

then transformed to a classic Document-Term frequency matrix. The resulting

matrix is of dimensions N = 57 and J = 6, 884.

Setting the number of iterations. When dealing with a new data set, the user470

must choose the total number of iterations and the number of burn-in iterations.

For this, they must execute the SEM-Gibbs algorithm with the different num-

bers of clusters they want to test (see paragraph ‘Finding the right numbers

of clusters’ below) with an arbitrary number of iterations. Then, they must

check that the parameters reached their stationary state before the number of475

burn-in iterations. For the Harry Potter data set, and with G = 7, we see in

Figure 6 that the parameters reached their stationary state before the 75th iter-

ation. The total number of iterations can then be fixed to 100 and the number

of burn-in iterations to 75.

480

Finding the right number of clusters. For the baselines PLBM, ONMTF and

ITCC, the user has to define two numbers of clusters G and H at this stage.

Furthermore, the ONMTF and ITCC methods have no criteria to define these

numbers. The SOCC model induces H from G so the user only has to choose G.

Furthermore, the ICL criterion defines the best number of clusters once the algo-485

rithm is run on the different possibilities. On the Harry Potter data set, we ran

the SEM-Gibbs algorithm for G = {2, 3, 4, 5, 6, 7, 8}, and got the corresponding

ICL values. The largest ICL value was obtained with G = 7. Table 4 presents

the maximum ICL values for each number of row-clusters tested. Figure 7 plots

the Document-Term matrix sorted by row-clusters and column-clusters.490
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Figure 6: Changes in parameters for the Harry Potter data set for δ, δ1, δ2, δ3, δ4, δ5, δ6, δ7.

Table 4: Maximum ICL values for each G tested.

number of row clusters G 2 3 4 5 6 7 8

max ICL value -231774.9 -228133.4 -226650.7 -225895.4 -226709.2 -225072.6 -226035.7
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Figure 7: Co-clustering of the Harry Potter data set with the SOCC method. From left to

right: the main, the second and the common sections. The graphic was produced using the

Python function spy() with argument markersize set to 1.2.

5.2. Interpretation of the results

At this stage, the user has a co-clustered Document-Term matrix. Using the

methods ONMTF, ITCC and PLBM, they are able to obtain the chapters of

the books that are gathered into the same group. However, they cannot easily495

know the main topic of each group. For example, for the PLBM method, they

should find the highest block effect and observe the corresponding row-cluster

and column-cluster to obtain the relevant chapters and terms. With the SOCC

model, the user can directly know which blocks are of interest. In this section, we

studied the terms belonging to column-clusters and found the main underlying500

topic. We do not list every term but chose the ones that are most related to

the topic concerned. Here, we develop an interpretation of the column-clusters

that are related to the first row-cluster. The entire interpretation of the results

is available as an appendix.

Interpretation of column-clusters for the main section. Seven clusters in line505

were detected by the SOCC model. There are, therefore, also seven column-

clusters in the main section. The first contains the terms specific to the chapters

of the first row-cluster, the second contains the terms specific to the chapters

of the second row-cluster, and so on. We highlight below that this specific

co-clustering structure is easily readable by users. Some terms specific to the510

chapters of the first row-cluster are ‘agony’, ‘hewhomustnotbenamed’, ‘pain’,
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‘quirrell’ and ‘serpent’. These terms refer to Harry Potter’s enemy, called Lord

Voldemort. People are so afraid of him that they never say his name aloud

and thus refer to him as ‘he-who-must-not-be-named’. He loves serpents and

torturing his opponents. Quirrell is his servant in Volume 1. We proposed515

the label Voldemort for this cluster. We did the same work on the six other

row-clusters (see the appendix for the full interpretation). The topics of the

other clusters of chapters are related to: animagus, Quidditch, the Dursleys,

the Weasleys, classmates and magical creatures .

520

A note on the main section compared to the SPLBM model. Until now, most of

the other co-clustering techniques have shown weaknesses in the overall process:

ONMTF and ITCC do not have a criterion to choose the number of blocks.

For PLBM, the two numbers G and H have to be chosen and interpretation is

difficult once the co-clustering is performed. The SPLBM model does not have525

these problems. In fact, the SPLBM is similar to the main section in the sense

that it considers the meaningful blocks as being on the diagonal of the matrix.

However, the main section is more selective and interpretable. Indeed, when

running the SPLBM on the Harry Potter data set with G = 7, there will be 983

terms per column-clusters on average. It is therefore difficult to read them all530

and grasp what each row-cluster is about. In our case, the second and common

sections get a large majority of the terms. In the same example, on the Harry

Potter data set, the main section has 78 terms on average. Therefore, it is

easier to read them quickly and get the topic of each row-cluster, as we just

demonstrated above.535

Interpretation of column-clusters for the second section. With regard to the

second section, as mentioned before, its corresponding column-clusters have

terms that are related to two row-clusters. Now that we know what each row-

cluster is about individually, due to the main section, we can see the terms that540

link them. The SOCC model looks for common words for every row-cluster pair.
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This can be a limitation: for example, the chapters related to the Dursleys and

the chapters related to Quidditch do not have a lot in common and the column-

cluster related to these two groups of chapters only contains the word ‘card’,

which is unrelated to both. However, most of the column-clusters that relates545

to two clusters of chapters are of interest to the user. Here are some examples

for the column-clusters related to row-cluster 1 (see the appendix for the full

interpretation):

• Row clusters 1 and 4, which are about Voldemort and the Dursleys share

meaningful blocks in column-cluster 10. The corresponding terms include550

‘mother’, ‘nephew’, ‘petunias’ and ‘scar’. Petunia Dursley is Harry’s aunt.

She is connected to Voldemort because he killed her sister. He also at-

tempted to kill Harry as a young boy but he survived, and he was left

with a scar on his forehead. Petunia then adopted her nephew.

• Row-clusters 1 and 5, which are about Voldemort and the Weasleys share555

meaningful blocks in column-cluster 11. This column-cluster has terms

such as ‘basilisks’, ‘tom’, ‘riddle’ and ‘ginny’. This makes sense because

Ginny is Mr. and Ms. Weasley’s daughter. She is closely connected to

Voldemort in Volume 2. The wizard finds a way to bring Tom Riddle to

life. Tom is the past version of himself, when he was a normal teenager560

in the school. Tom casts a spell on Ginny so that she wakes the giant

basilisk serpent up in the Chamber of Secrets. The snake then attacks the

school’s students.

• Row-clusters 1 and 6, which are about Voldemort and Harry’s classmates

share meaningful blocks in column-cluster 12. The corresponding terms565

include ‘ernie’, ‘petrified’ and ‘serpents’. In Volume 2, Ernie is Harry’s

classmate. In duelling class, Harry speaks to a serpent, an ability both

he and Voldemort hold. Ernie thinks that he is ordering the snake to

attack Justin Finch-Fletchey. His suspicions grow when Justin is found

petrified in the corridor. He spreads the rumour that Harry’s destiny was570
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to become a powerful dark wizard and that is why Voldemort wanted to

kill him.

A note on the common section. The common section is composed by a unique

column-cluster. However, this cluster contains the majority of the terms, with575

ρ29 = 0.63 (thus, 63% of terms). The corresponding terms include ‘harry’,

‘potter’, ‘ron’, ‘hermiones’, ‘granger’ and ‘hogwarts’. These terms are very im-

portant for the Harry Potter story, and at first, it seems odd that they are not in

the main section. However, this phenomenon is explained by considering that

the common section includes the terms that are frequent to all row-clusters.580

Furthermore, if the term ‘harry’ appeared in a column-cluster of the main sec-

tion, it would not bring any valuable information about the chapters of this

row-cluster, since Harry is present in all chapters.

5.3. Conclusions on the study of the Harry Potter data set585

This section brought an insight on how to use the SOCC model on a com-

pletely unsupervised data set. Furthermore, for each stage of the process of

co-clustering, we indicated how the tasks left to the user are easier with the

SOCC model in comparison with the other co-clustering methods.

6. Conclusion and future work590

In this paper, we propose the SOCC model, a novel approach to easily co-

cluster textual data sets. The model offers easy-to-read results, and quickly

shows the terms that are specific to one group of documents, the terms that

are specific to two groups of documents, the terms that are common to all

documents. The resulting algorithm is not only more accurate than other state-595

of-the-art methods but it is also able to detect the number of co-clusters, as a

result of the ICL-BIC criterion. An R package SOCC is available upon request

to perform these functionalities.
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Figure 8: Co-clustering of pubmed4min data set with the SOCC method. From left to right:

the main, the second and the common sections. The graphic was produced using the Python

function spy() with the argument markersize set to 1.3.

In future work, we could define other structures, for example with clusters

of terms specific to 3 or more groups of documents. The first concern here is the600

increasing number of column-clusters (which would require at least
(
G
3

)
more

column-clusters). Also, it would be interesting to investigate a more developed

model selection: we can allow the structure to not have all G+
(
G
2

)
+ 1 column

clusters. For example, in Figure 8, we see the pubmed4min SOCC co-clustering

with G = 4. We know that the second part comprises
(
4
2

)
= 6 column-clusters.605

We can easily notice five of them, but the sixth one is very small: is this column-

cluster necessary? We could use the ICL criterion to dispose of the irrelevant

column-clusters. However, loosening the strict structure assumption would re-

sult in other issues arising: testing all solutions could significantly increase the

overall execution time.610
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Appendix710

We detail the interpretation of the co-clustering performed by the SOCC

model on the Harry Potter data set.

Interpretation of column-clusters for the main section. Seven clusters in line

were detected by the SOCC model. Therefore, there are also seven column-

clusters in the main section. The first contains the terms specific to the chapters715

of the first row-cluster, the second contains the terms specific to the chapters

of the second row-cluster, and so on. We highlight below that this specific

co-clustering structure is easily readable for to users.

• Cluster 1: Some terms specific to the chapters of this row-cluster are

‘agony’, ‘hewhomustnotbenamed’, ‘pain’, ‘quirrell’ and ‘serpent’. These720

terms refer to Harry Potter’s enemy, called Lord Voldemort. People are

so afraid of him that they never say his name aloud and refer to him as ‘he-

who-must-not-be-named’. He loves serpents and torturing his opponents.

Quirrell is his servant in Volume 1. We propose for this cluster the label

‘Voldemort’ for this cluster.725

• Cluster 2: Some terms specific to the chapters of this row-cluster are ‘an-

imagus’, ‘black’, ‘dementors’, ‘godfather’,‘james’,‘lupin’, ‘murderer’, ‘pe-

ter’, ‘pettigrew’, ‘remus’, ‘scabbers’,‘sirius’, ‘transform’ and ‘werewolf’.

These terms relate to friendships of Harry’s father. James Potter, Sirius

Black, Remus Lupin and Peter Pettigrew were friends in Hogwart. Remus730

was a werewolf so his friends learnt how to transform into animals to be

able to handle his strength when he turned into a a werewolf. Wizards

with this capacity are called animagus. Finally, Pettigrew betrayed their

friends and delivered James to Voldemort. Proposed label: Animagus.

• Cluster 3: Specific related terms here are ‘alicia’, ‘angelina’, ‘beater’,735

‘broom’, ‘captain’, ‘championship’, ‘chaser’, ‘cheers’, ‘commentary’, ‘game’,

‘goalposts’, ‘johnson’, ‘jordan’, ‘katie’, ‘lee’, ‘locker’, ‘match’, ‘quaffle’,



‘refereeing’, ‘scores’, ‘spinnet’, ‘teams’ and ‘win’. These terms relate to

Quidditch, a sport where wizard must score points while flying on magic

brooms. Alicia Spinnet, Angelina Johnson and Katie Bell are players on740

Harry’s team. Lee Jordan is the match commentator of the school. Pro-

posed label: Quidditch.

• Cluster 4: Here, specific related terms are ‘birthday’, ‘cousin’, ‘drive’,

‘dudley’, ‘dursley’, ‘figg’, ‘moustache’, ‘petunia’, ‘privet’, ‘relative’, ‘tele-

vision’, ‘uncle’, ‘vernon’. These terms refer to Harry’s family. When his745

parents died, his aunt and uncle (Petunia and Vernon Dursley) adopted

him. They have a child named Dudley, and the family lives in the Privet

Drive street. Proposed label: the Dursleys.

• Cluster 5: Some terms specific to the chapters of this row-cluster are

‘arthur’, ‘booklist’, ‘bookshop’, ‘burrow’, ‘molly’, ‘mum’, ‘supplies’, ‘shop’750

and ‘weasley’. These terms relate to the Weasleys. They are members

of the family of Ron Weasley, Harry’s best friend. They live in a house

called the Burrow. Arthur and Molly Weasley are Ron’s parents. Every

summer, Harry spends a part of summer with them, and they go to shop

for the supplies for the following year. Proposed label: the Weasleys.755

• Cluster 6: Some terms specific to the chapters of this row-cluster are ‘bul-

strode’, ‘crabbes’, ‘dueling’, ‘finchfletchey’, ‘goyles’, ‘greenhouse’, ‘justin’,

‘longbottoms’, ‘mandrakes’, ‘millicent’ and ‘sprout’. These terms are re-

lated to Harry’s courses, and in particular his classmates. Crabbes, Goyles,

Justin Finch-Fletchey, Milicent Bulstrode and Longbottom are all Harry’s760

classmates. Ms. Sprout is the botany teacher, and the mandrakes are a

special kind of magical plants. Proposed label: classmates.

• Cluster 7: Some terms specific to the chapters of this row-cluster are ‘ar-

agog’, ‘bane’, ‘centaurs’, ‘dragon’, ‘firenze’, ‘fluffy’, ‘forest’, ‘giant’, ‘gob-

lins’, ‘hagrid’, ‘norbert’, ‘spider’ and ‘unicorn’. These terms refer to mag-765

ical creatures that live in Harry’ world. His friend Hagrid (a half giant
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wizard) has a passion about them. He owns a three-headed dog called

Fluffy. In his childhood, he also raised Aragog, a giant spider. Firenze

and Bane are centaurs living in the forest near Harry’s school. Proposed

label: magic creatures.770

Therefore, the main section highlights seven main clusters of chapters that

are related to: Voldemort, animagus, Quidditch, the Dursleys, the Weasleys,

classmates and magical creatures.

Interpretation of column-clusters for the second section. With regard to the775

second section, as mentioned before, its corresponding column-clusters have

terms that are related to two row-clusters. Since we now know what each row-

cluster is about individually, from the main section, we can see the terms that

link them. The SOCC model looks for common words for every row-cluster pair.

This can be a limitation: for example, the chapters related to the Dursleys and780

the chapters related to Quidditch do not have a lot in common and the column-

cluster related to these two groups of chapters contains only the word ‘card’,

which is unrelated to both. However, most of the column-clusters that relates

to two clusters of chapters are of interest to users. Here are some examples:

• Row clusters 1 and 4, which are about Voldemort and the Dursleys, share785

meaningful blocks in column-cluster 10. The corresponding terms include

‘mother’, ‘nephew’, ‘petunias’ and ‘scar’. Petunia Dursley is Harry’s aunt.

She is connected to Voldemort because he killed her sister. He also at-

tempted to kill Harry as a young boy, but he survived, and he was left

with a scar on his forehead. Petunia then adopted her nephew.790

• Row-clusters 1 and 5, which are about Voldemort and the Weasleys share

meaningful blocks in column-cluster 11. This column-cluster has terms

such as ‘basilisks’, ‘tom’, ‘riddle’ and ‘ginny’. This makes sense because

Ginny is Mr. and Ms. Weasley’s daughter. She is closely connected to

Voldemort in Volume 2. The wizard finds a way to bring Tom Riddle to795
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life. Tom is the past version of himself, when he was a normal teenager

in the school. Tom casts a spell on Ginny so that she wakes the giant

basilisk serpent up in the Chamber of Secrets. Then, this snake attacks

the school’s students.

• Row-clusters 1 and 6, which are about Voldemort and Harry’s classmates800

share meaningful blocks in column-cluster 12. The correspond terms in-

clude ‘ernie’, ‘petrified’ and ‘serpents’. In Volume 2, Ernie is Harry’s

classmate. In duelling class, Harry speaks to a serpent, an ability both

he and Voldemort hold. Ernie thinks that he is ordering the snake to

attack Justin Finch-Fletchey. His suspicions grow when Justin is found805

petrified in the corridor. He spreads the rumour that Harry’s destiny was

to become a powerful dark wizard and that is why Voldemort wanted to

kill him.

• Row-clusters 3 and 5, which are about quidditch and the Weasleys share

meaningful blocks in column-cluster 20. It contains only three words, for810

which the two most frequent are ‘fred’ and ‘george’. Fred and George are

twins and they are also members of the Weasley family. Both of them are

‘beaters’ on Harry’s Quidditch team.

• Row-clusters 3 and 6, which are about Quidditch and the Harry’s class-

mates share meaningful blocks in column-cluster 21. The column-cluster815

contains the terms ‘crabbe’, ‘goyle’, ‘malefoy’ and ‘slytherins’. Crabbe,

Goyle and Malefoy belong to the Slytherin house at the school. They are

Harry’s classmates and hate him. In Volume 3, Harry and his classmates

discover that he faints in the presence of dementors (a creature that can

absorb your soul). Later on in the year, Harry fainted while playing in a820

Quidditch match, when Crabbe, Goyle and Malefoy arrived on the field

disguised as dementors.

• Row-clusters 4 and 5, which are about the Dursleys and the Weasleys

share meaningful blocks in column-cluster 23. The corresponding terms
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include ‘auntie’, ‘bedroom’, ‘brothers’, ‘errol’, ‘ink’, ‘letters’, ‘september’,825

‘sons’, ‘summer’ and ‘written’. The vocabulary related to a family context

connects the two row-clusters because both of them relate to families.

The terms ‘summer’ and ‘september’ relate to the fact that Harry spends

part of his summer vacations at his aunt’s place and the other part at

the Weasley’s. The terms ‘errol’, ‘ink’ and ‘letters’ refers to Errol, Ron830

Weasley’s owl, which he uses to write to Harry when he is at his aunt’s.
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