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Abstract

We introduce the exactCover global constraint dedicated to the exact cover problem,
the goal of which is to select subsets such that each element of a given set belongs to exactly
one selected subset. This NP-complete problem occurs in many applications, and we more
particularly focus on a conceptual clustering application.

We introduce three propagation algorithms for exactCover, called Basic, DL, and DL+:
Basic ensures the same level of consistency as arc consistency on a classical decomposition
of exactCover into binary constraints, without using any specific data structure; DL ensures
the same level of consistency as Basic but uses Dancing Links to efficiently maintain the
relation between elements and subsets; and DL+ is a stronger propagator which exploits
an extra property to filter more values than DL.

We also consider the case where the number of selected subsets is constrained to be
equal to a given integer variable k, and we show that this may be achieved either by
combining exactCover with existing constraints, or by designing a specific propagator that
integrates algorithms designed for the NValues constraint.

These different propagators are experimentally evaluated on conceptual clustering prob-
lems, and they are compared with state-of-the-art declarative approaches. In particular,
we show that our global constraint is competitive with recent ILP and CP models for
mono-criterion problems, and it has better scale-up properties for multi-criteria problems.

1. Introduction

The exact cover problem aims at deciding whether it is possible to select some subsets
within a given collection of subsets in such a way that each element of a given set belongs
to exactly one selected subset. This problem is NP-complete (Karp, 1972). It occurs in
many applications, and different approaches have been proposed for solving it. In particular,
Knuth (2000) has introduced the DLX algorithm that uses a specific data structure called
Dancing Links. Also, different declarative exact approaches have been proposed, based on
Constraint Programming (CP), Integer Linear Programming (ILP), or Boolean satisfiability
(SAT). However, none of these declarative approaches is competitive with DLX.

In this paper, we introduce global constraints and propagation algorithms dedicated to
the exact cover problem to improve scale-up properties of CP for solving these problems. We
evaluate the interest of these global constraints for solving conceptual clustering problems.

c©2020 AI Access Foundation. All rights reserved.
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1.1 Contributions and Overview of the Paper

In Section 2, we briefly recall basic principles of Constraint Programming.
In Section 3, we describe the exact cover problem, and we describe existing exact ap-

proaches for solving this problem. In particular, we describe the DLX algorithm of Knuth
(2000). We also describe existing declarative approaches, i.e., the Boolean CP model of
Hjort Blindell (2018), the ILP model of Ouali, Loudni, Lebbah, Boizumault, Zimmermann,
and Loukil (2016), and the SAT models of Junttila and Kaski (2010).

In Section 4, we define the exactCover global constraint, and we introduce three propa-
gation algorithms for this constraint, called Basic, DL, and DL+:

• Basic ensures the same level of consistency as Arc Consistency (AC) on the Boolean
CP model of Hjort Blindell (2018), without using any specific data structure;

• DL ensures the same level of consistency as Basic but uses Dancing Links to efficiently
maintain the data structure that links elements and subsets;

• DL+ also uses Dancing Links, but further propagates a property used by Davies and
Bacchus (2011) to filter more values.

We experimentally compare these three algorithms with DLX and with existing declarative
exact approaches (SAT, ILP, and CP).

In Section 5, we consider the case where the number of selected subsets is constrained
to be equal to a given integer variable k, and we show that this may be achieved either
by combining exactCover with existing constraints, or by extending the DL+ propagator
of exactCover in order to integrate algorithms introduced for the NValues global constraint
(Bessière, Hebrard, Hnich, Kiziltan, & Walsh, 2006).

In Section 6, we introduce conceptual clustering problems and we show how to use our
global constraints to solve these problems. We experimentally compare our approach with
state-of-the-art declarative exact approaches. We first consider mono-criterion problems,
where the goal is to find a clustering that optimizes a single objective function. Finally,
we consider bi-criteria problems, where the goal is to compute the Pareto front of all non-
dominated solutions for two conflicting objective functions.

2. Background on Constraint Programming

In this section, we briefly recall basic principles of Constraint Programming. We refer the
reader to Rossi, Beek, and Walsh (2006) for more details.

A Constraint Satisfaction Problem (CSP) is defined by a triple (X,D,C) such that X is
a finite set of variables, D is a function that associates a finite domain D(xi) ⊂ Z to every
variable xi ∈ X, and C is a finite set of constraints.

A constraint c is a relation defined on a sequence of variables X(c) = (xi1 , . . . , xi#X(c)
),

called the scheme of c, where #X(c) is the arity of c. c is the subset of Z#X(c) that
contains the combinations of values τ ∈ Z#X(c) that satisfy c. The scheme of a constraint
c is a sequence of variables and not a set because the order of values matters for tuples in
c. However, we use set operators on sequences: s1 ⊆ s2 denotes that every element in a
sequence s1 also appears in another sequence s2, and e ∈ s denotes that an element e occurs
in a sequence s. If #X(c) = 2 then c is a binary constraint.
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An instantiation I on Y = (x1, . . . , xk) ⊆ X is an assignment of values v1, . . . , vk to the
variables x1, . . . , xk. Given a subset of variables Z ⊂ Y , I[Z] denotes the tuple of values
associated with the variables in Z. I is valid if for all xi ∈ Y, vi ∈ D(xi). I is partial if
Y ⊂ X and complete if Y = X. I is locally consistent if it is valid and for every c ∈ C such
that X(c) ⊆ Y , I[X(c)] satisfies c. A solution is a complete instantiation on X which is
locally consistent.

An objective function may be added to a CSP, thus defining a Constrained Optimization
Problem (COP). This objective function is defined on some variables of X and the goal is
to find the solution that optimizes (minimizes or maximizes) the objective function.

CSPs and COPs may be solved by generic constraint solvers which are usually based on a
systematic exploration of the search space: Starting from an empty instantiation, variables
are recursively instantiated until either finding a solution or detecting an inconsistency (in
which case the search must backtrack to try other assignments). This exhaustive exploration
of the search space is combined with constraint propagation techniques: At each node of
the search tree, constraints are propagated to filter variable domains, i.e., remove values
that cannot belong to a solution. When constraint propagation removes all values from a
domain, the search must backtrack.

Given a constraint, different propagation algorithms may be considered, and they may
differ on their filtering strength (i.e., the number of values that are removed) and/or on
their time and space complexity. The goal is to find the best trade-off between these criteria.
Many propagation algorithms filter domains to ensure arc consistency. A domain D is AC
on a constraint c for a variable xi ∈ X(c) if for every value v ∈ D(xi) there exists a valid
instantiation I on X(c) such that I satisfies c and I[xi] = v. A CSP is AC if D is AC for
all variables in X on all constraints in C.

3. Exact Cover Problem

In this section, we first introduce the exact cover problem and some of its applications.
Then, we describe an algorithm and a data structure introduced by Knuth (2000) to solve
this problem. Finally, we describe existing declarative models (CP, ILP, and SAT) for this
problem.

3.1 Definitions and Notations

Definition 1. An instance of the Exact Cover Problem (EC) is defined by a couple (S, P )
such that S is a set of elements and P ⊆ P(S) is a set of subsets of S. EC aims at deciding
if there exists a subset E ⊆ P which is a partition of S, i.e., ∀a ∈ S,#{u ∈ E : a ∈ u} = 1.

Elements of S are denoted a, b, c, etc, whereas elements of P (i.e., subsets) are denoted
t, u, v, etc. For each element a ∈ S, we denote cover(a) the set of subsets that contain a,
i.e., cover(a) = {u ∈ P : a ∈ u}. Two subsets u, v ∈ P are compatible if u ∩ v = ∅ and, for
every subset u ∈ P , we denote incompatible(u) the subsets of P that are not compatible
with u, i.e., incompatible(u) = {v ∈ P \ {u} : u ∩ v 6= ∅}.

Example 1. Let us consider the instance (S, P ) displayed in Fig. 1. A solution is: E =
{v, x, z}. We have cover(a) = {t, u, v}, and incompatible(x) = {w, y}.
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S = {a, b, c, d, e, f, g} with t = {a, g} w = {d, e, g} z = {b, g}
P = {t, u, v, w, x, y, z} u = {a, d, g} x = {c, e, f}

v = {a, d} y = {b, c, f}

Figure 1: Example of an instance of EC.

The maximum cardinality of a subset in P is denoted np (i.e., np = maxu∈P #u), the
maximal number of subsets that cover an element is denoted nc (i.e., nc = maxa∈S #cover(a)),
and the maximal number of subsets that are not compatible with another subset is denoted
ni (i.e., ni = maxu∈P #incompatible(u)).

Given a set E ⊆ P of selected subsets which are all pairwise compatible, the set of
elements that are not covered by a subset in E is denoted SE , i.e.,

SE = {a ∈ S : cover(a) ∩ E = ∅}

the set of subsets in P that are compatible with every subset in E is denoted PE , i.e.,

PE = {u ∈ P : ∀v ∈ E, u ∩ v = ∅}

and for every non covered element a ∈ SE , the set of subsets that cover a and are compatible
with every subset in E is denoted coverE(a), i.e.,

coverE(a) = cover(a) ∩ PE .

Example 2. Let us consider the instance displayed in Fig. 1. If E = {x} then SE =
{a, b, d, g}, PE = {t, u, v, z} and coverE(g) = {t, u, z}.

3.2 Applications

A classical example of application of EC is the problem that aims at tiling a rectangle figure
composed of equal squares with a set of polyominoes: the set S contains an element for
each square of the rectangle to tile; each subset of P corresponds to the set of squares that
are covered when placing a polyomino on the rectangle (for every possible position of a
polyomino on the rectangle); the goal is to select a set of polyomino positions such that
each square is covered exactly once (see Knuth 2000 for more details).

Another example of application is the instruction selection problem, that occurs when
compiling a source code to generate an executable code: the set S corresponds to the
instructions of the source code; each subset of P corresponds to a set of source code in-
structions that are covered when selecting a processor instruction; the goal is to select a set
of processor instructions such that each source code instruction is covered exactly once (see
Floch, Wolinski, and Kuchcinsli 2010 and Hjort Blindell 2018 for more details).

Our interest for this problem comes from a conceptual clustering application which is
described in Section 6.1. Other applications are described, for example, by Junttila and
Kaski (2010).

If we add an objective function to the EC in order to minimize the sum of the weights
of the selected subsets, we obtain the set partitioning problem. This problem occurs as
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Algorithm 1: Algorithm X(S, P,E)

Input: An instance (S, P ) of EC and a set E ⊆ P of selected subsets
Precondition : Subsets in E are all pairwise compatible, i.e., ∀{u, v} ⊆ E, u∩ v = ∅
Postcondition: Output every exact cover E′ of (S, P ) such that E ⊆ E′

1 begin
2 if SE = ∅ then Output E;
3 else
4 if ∀a ∈ SE , coverE(a) 6= ∅ then
5 Choose an element a ∈ SE
6 for each subset u ∈ coverE(a) do X(S, P,E ∪ {u}) ;

subproblem in many industrial problems such as, for example, crew scheduling problems
(Mingozzi, Boschetti, Ricciardelli, & Bianco, 1999; Barnhart, Cohn, Johnson, Klabjan,
Nemhauser, & Vance, 2003).

3.3 Dedicated Algorithm DLX

Knuth (2000) has introduced an algorithm called X to recursively enumerate all solutions
of an instance (S, P ) of EC. This algorithm is displayed in Algorithm 1 and has three input
parameters: the sets S and P that define the instance of EC to solve, and a partial cover
E ⊆ P that contains the subsets that have already been selected in the solution (for the
first call to X, we have E = ∅). If the set SE of non covered elements is empty, then E is
a solution and the algorithm outputs it (line 2). If there is an element a ∈ SE such that
coverE(a) = ∅, then a cannot be covered by any subset compatible with E and the search
must backtrack. Otherwise, we choose a non-covered element a ∈ SE (line 5) and, for each
subset u ∈ coverE(a), we recursively try to add u to the partial solution (line 6).

A first key point for an efficient enumeration process is to use an ordering heuristic to
choose the next element a (line 5). Knuth shows that this ordering heuristic has a great
impact on performance, and that much better results are obtained by selecting an element
a ∈ SE for which the number of subsets compatible with E is minimal. Hence, the ordering
heuristic used at line 5 chooses an element a ∈ SE such that #coverE(a) is minimal.

A second key point is to incrementally maintain SE and coverE(a) for each element
a ∈ SE . To this aim, Knuth introduces Dancing Links and the implementation of Algorithm
X with Dancing Links is called DLX. As illustrated in Figure 2, the idea is to use doubly
linked circular lists to represent the sparse matrix that links elements and subsets. Each cell
γ in this matrix has five fields denoted γ.head , γ.left , γ.right , γ.up, and γ.down, respectively.

For each subset u ∈ P , the matrix has a row which contains a cell γua for each element
a ∈ u. This row is a doubly linked circular list, and we can iterate over all elements in u,
starting from any cell in the row, by using left fields until returning back to the initial cell.
If we use right fields instead of left fields, we also iterate over all elements in u, but we visit
them in reverse order.

Besides these #P rows, there is an extra row in the matrix, which is the first row and
which contains a cell ha for each non covered element a ∈ SE . This cell is called the header
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SE ha (3) hb (2) hc (2) hd (3) he (2) hf (2) hg (4)

t γta γtg

u γua γud γug

v γva γvd

w γwd γwe γwg

x γxc γxe γxf

y γyb γyc γyf

z γzb γzg

Figure 2: Representation of the EC instance of Fig. 1 with Dancing Links when E = ∅.
right (resp. left, up, and down) fields are represented by plain black (resp. dotted black,
dotted blue, and plain blue) edges. Header cells are colored in blue, and their size fields are
displayed in brackets. head fields are not displayed: the head field of each gray cell contains
a pointer to the blue cell in the same column.

and it has an extra field, called size, which is equal to the cardinality of coverE(a). Like the
other rows, the first row is a doubly linked circular list and we can iterate over all elements
in SE by using left or right fields.

Each column of the matrix corresponds to an element a ∈ SE and is composed of
#coverE(a) + 1 cells: the header ha plus one cell γua for each subset u ∈ coverE(a). Each
cell γua in the column can access to its header thanks to the head field (i.e., γua.head = ha).
This column is a doubly linked circular list, and we can iterate over all subsets in coverE(a),
starting from the header ha, by using down fields until returning to ha. If we use up fields,
we also iterate over all subsets in coverE(a), but we visit them in reverse order.

A first advantage of using doubly linked circular lists is that a cell may be removed
or restored (when backtracking) very easily. More precisely, to remove a cell γ from a
column, we execute: γ.down.up ← γ.up; γ.up.down ← γ.down. To restore γ, we exe-
cute: γ.down.up ← γ; γ.up.down ← γ. Similarly, to remove γ from a row, we execute:
γ.right .left ← γ.left ; γ.left .right ← γ.right . And to restore γ, we execute: γ.right .left ←
γ; γ.left .right ← γ.
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Algorithm 2: removeCells(u)

1 for each a ∈ u do
2 ha ← getHeader(a)
3 ha.left .right ← ha.right
4 ha.right .left ← ha.left
5 γva ← ha.down
6 while γva 6= ha do
7 γvb ← γva.right
8 while γvb 6= γva do
9 γvb.down.up ← γvb.up

10 γvb.up.down ← γvb.down
11 decrement γvb.head .size
12 γvb ← γvb.right

13 γva ← γva.down

Algorithm 3: restoreCells(u)

1 for each a ∈ u (in reverse order) do
2 ha ← getHeader(a)
3 ha.left .right ← ha
4 ha.right .left ← ha
5 γva ← ha.up
6 while γva 6= ha do
7 γvb ← γva.left
8 while γvb 6= γva do
9 γvb.down.up ← γvb

10 γvb.up.down ← γvb
11 increment γvb.head .size
12 γvb ← γvb.left

13 γva ← γva.up

A second advantage of using doubly linked lists is that they can be traversed in two
directions: This way we can undo a sequence of cell removals by executing the inverse
sequence of cell restorations.

Algorithms 2 and 3 describe how to update the matrix with Dancing Links:

• Algorithm 2 is called just before the recursive call (line 6 of Algorithm 1) to remove
cells which are incompatible with the selected subset u. For each element a ∈ u,
it removes the header ha of the column associated with a (lines 3-4). Then, it it-
erates over all subsets v ∈ coverE(a) by traversing the column list associated with
a, starting from its header and using down fields (lines 6-13). Each cell γva in this
column corresponds to a subset v ∈ coverE(a) which is incompatible with u (since a
is already covered by u). Hence, for each element b ∈ v, subset v must be removed
from coverE(b). To this aim, the row list associated with v is traversed (starting from
γva and using right fields) and, for each element b ∈ v, cell γvb is removed from its
column list (lines 9-10). Each time a cell γvb is removed, γvb.head .size is decremented
(line 11) to ensure that this field is equal to #coverE(b).

• Algorithm 3 is called just after the recursive call (line 6 of Algorithm 1) to restore
the cells removed by Algorithm 2. It performs the same list traversals but in reverse
order and restores cells instead of removing them: The elements in u are visited in
reverse order, the column list associated with each element a in u is traversed using
up fields instead of down fields and row lists are traversed using left fields instead of
right fields.

Example 3. Let us consider the EC instance displayed in Figure 1, and let us assume that
Algorithm 1 first chooses element c (line 5) and recursively calls DLX with E = {x}. Before
this recursive call, Algorithm 2 iterates on elements in x = {c, e, f}:

• For element c, it removes cell hc from the first row and then successively removes cells
γxe, γxf from their columns (to remove subset x), and cells γyf and γyb from their
columns (to remove subset y).
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SC ha (3) hb (1) hc (2) hd (2) he (1) hf (0) hg (2)

t γta γtg

u γua γud γug

v γva γvd

w γwd γwe γwg

x γxc γxe γxf

y γyb γyc γyf

z γzb γzg

Figure 3: Representation of the instance of Fig. 1 with Dancing Links when E = {x}. Links
that have been modified are displayed in red.

• For element e, it removes cell he from the first row and then successively removes cells
γwg and γwd from their columns (to remove subset w).

• For element f , it removes the cell hf from the headers.

The size fields of the headers of the columns in which cells have been removed are updated
consequently. The resulting matrix is displayed in Figure 3.

After the recursive call to DLX, Algorithm 3 iterates on elements in x in reverse order.
For element f , it restores cell hf in the first row. For element e, it restores cell he in the
first row and then successively restores cells γwd and γwg in their columns. For element c,
it restores cell hc in the first row and then successively restores cells γyb, γyf , and γxf and
γxe in their columns.

Property 1. The time complexity of Algorithms 2 and 3 is O(np · ni).

Proof. Let us first study the time complexity of Algorithm 2. The loop lines 1-13 iterates
on every element a ∈ u and the loop lines 6-13 iterates on every cell γva such that v ∈
coverE(a). If there is a subset v such that u ∩ v contains more than one element, then
the cells of the row associated with v are only considered once because they are removed
when treating the first element common to u and v (for example, in Fig. 3, both c and f
belong to x and y but the row associated with y is traversed only once when treating c).
Hence, the number of considered cells γva is equal to the cardinality of ∪a∈ucoverE(a). As
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∪a∈ucoverE(a) ⊆ ∪a∈ucover(a) = {u}∪ incompatible(u), the number of considered cells γva
is upper bounded by ni + 1. Finally, as the loop lines 8-12 is executed #v times for each
cell γva and #v ≤ np, the time complexity of Algorithm 2 is O(np · ni).

Algorithm 3 has the same time complexity as Algorithm 2 because it performs the same
operations in reverse order.

This time complexity is an upper bound of the number of cell removals because the
cardinality of coverE(a) usually decreases when adding subsets to E. In other words, if a
cell is removed at some node of the search tree, then it will not be considered in deeper
nodes in the same branch of the search tree. Hence, if we consider a whole branch of the
search tree explored by Algorithm 2, lines 9-12 are performed at most once per cell in the
initial matrix, i.e., O(

∑
u∈P #u) times

We refer the reader to Knuth (2000) for more details on DLX. An open source imple-
mentation of DLX in C, called libexact, is described by Kaski and Pottonen (2008).

3.4 Existing Declarative Exact Approaches

CP Models. Different CP models have been proposed for solving EC. In particular, a
model that uses Boolean variables is described by Hjort Blindell (2018); a model that uses a
global cardinality constraint (gcc) is described by Floch, Wolinski, and Kuchcinski (2010),
and a model that uses set variables is described by Chabert and Solnon (2017). These
three models are experimentally compared by Chabert (2018), and these experiments show
us that they have rather similar performance. In this paper, we only describe the Boolean
model of Hjort Blindell (2018) (denoted BoolDec), and we refer the reader to Chabert (2018)
for more details on the other models.

BoolDec uses two different kinds of variables:

• For each element a ∈ S, an integer variable coveredBya is used to decide which subset
of P covers a, and its domain is D(coveredBya) = cover(a);

• For each subset u ∈ P , a Boolean variable selectedu indicates if u is selected in the
solution.

These variables are channeled by adding, for each subset u ∈ P and each element a ∈ u,
the constraint Cua defined by: Cua ≡ (coveredBya = u)⇔ (selectedu = true).

Property 2. Enforcing AC on BoolDec ensures the following property for each subset
u ∈ P such that D(selectedu) = {true}:

∀v ∈ incompatible(u), true 6∈ D(selectedv) ∧ ∀a ∈ v, v 6∈ D(coveredBya).

In other words, every subset v incompatible with u cannot be selected and is removed from
the domains of coveredBy variables.

Proof. If D(selectedu) = {true} then, for each element b ∈ u, the propagation of Cub

removes all values but u from D(coveredByb). Then, for each subset v ∈ incompatible(u),
there exists at least one element c ∈ v∩u such that the propagation of Cvc removes true from
D(selectedv) (because D(coveredByc) = {u}). Finally, for each subset v ∈ incompatible(u)
and each element a ∈ v, the propagation of Cva removes v from D(coveredBya) (because
true 6∈ D(selectedv)).
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ILP Models. Ouali et al. (2016) describe an ILP model for solving an exact cover
problem which occurs in a conceptual clustering application. This ILP model associates
a binary variable xu with every subset u ∈ P , such that xu = 1 iff u is selected. The
set of selected subsets is constrained to define a partition of S by posting the constraint:
∀a ∈ S,

∑
u∈cover(a) xu = 1.

ILP has also been widely used to solve the set partitioning problem, the goal of which
is to find an EC that minimizes the sum of the weights of the selected subsets (Rasmussen,
2011). In particular, Rnnberg and Larsson (2014) and Zaghrouti, Soumis, and Hallaoui
(2014) show how to exploit the quasi-integrality property which implies that all integer
extreme points can be reached by making simplex pivots between integer extreme points.
In this case, the challenge is to find an efficient way to quickly reach an optimal integer
solution. Zaghrouti et al. (2014) use a direction-finding subproblem whereas Rnnberg and
Larsson (2014) use an all-integer column generation strategy. Both approaches are dedicated
to the set partitioning problem, and they are very efficient at solving this problem (up to
500000 subsets for the approach of Zaghrouti et al., for example). However, they cannot be
easily extended to the case where the goal is to maximize the minimal weight of a selected
subset (which is the case of our conceptual clustering application).

Babaki, Guns, and Nijssen (2014) consider a clustering problem which aims at parti-
tioning a set of objects into subsets so that the sum of squared distances between objects
within a same subset is minimized. This problem may be formulated as a set partitioning
problem with additional constraints and, as the number of subsets is exponential, they use
column generation to solve it. Again, this approach assumes that the objective function
is a weighted sum and it cannot be easily extended to objective functions that aim at
maximizing a minimal weight.

SAT Models. SAT encodings for the exact cover problem are introduced by Junttila and
Kaski (2010). Given an instance (S, P ) of EC, these models associate a Boolean variable
xu with every subset u ∈ P , such that xu is assigned to true iff subset u is selected in the
exact cover. The conjonctive normal form (CNF) formula associated with (S, P ) is∧

a∈S
exactly-one({xu : u ∈ cover(a)})

where exactly-one(X) is a CNF formula which is satisfied iff exactly one variable in X is
assigned to true. Junttila and Kaski describe three different encodings for exactly-one(X).
The first encoding is straightforward and is defined by:

exactly-one(X) = (
∨

xu∈X
xu) ∧ (

∧
{xu,xv}⊆X

(¬xu ∨ ¬xv))

The two other encodings are less straightforward and use auxiliary variables to reduce the
number of clauses in the encoding.

Theorem 1 of Junttila and Kaski (2010) states that if the size of the search tree explored
by DLX for solving an instance (S, P ) is equal to k, then the CNF formula associated
with (S, P ) (for any of the three SAT encodings) has, subject to an idealized variable
selection heuristic, a DPLL search tree of size at most 2k (where DPLL is the Davis-Putnam-
Logemann-Loveland algorithm without clause learning). A consequence of this theorem
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is that modern SAT solvers (that use clause learning and restarts) may explore smaller
search trees than DLX. To experimentally evaluate this, several state-of-the-art SAT solvers,
especially #SAT solvers, have been compared for enumerating all solutions of EC instances,
for the three encodings. These experiments show that the clasp solver (Gebser, Kaufmann,
& Schaub, 2012) has the best run time behavior among the DPLL-based approaches tested
by Junttila and Kaski (2010), and is also very insensitive to the applied exactly-one encoding
scheme. SAT solvers have also been compared with libexact, the C implementation of
DLX (Kaski & Pottonen, 2008), showing that SAT solvers actually explore smaller search
spaces but do not perform that well in terms of running time: If SAT solvers are faster on
some easy instances, they are often outperformed by libexact on harder instances.

4. Propagation of exactCover

In this section, we introduce a global constraint, called exactCover, for modelling EC, and
three filtering algorithms for propagating it.

Definition 2. Let (S, P ) be an instance of EC and, for each subset u ∈ P , let selectedu be
a Boolean variable. The global constraint exactCoverS,P (selected) is satisfied iff the set of
selected variables assigned to true corresponds to an exact cover of S, i.e.,

∀a ∈ S,
∑

u∈cover(a)

selectedu = 1

assuming that true is encoded by 1 and false by 0.

Notations. To simplify the description of the propagators associated with exactCover,
we denote E the set of subsets associated with selected variables which are assigned to true
(i.e., E = {u ∈ P : D(selectedu) = {true}}), and we use notations introduced in Section 3.1:
SE denotes the set of elements that are not covered by a subset in E, PE denotes the set of
subsets in P that are compatible with every subset in E and, for each a ∈ SE , coverE(a)
denotes the set of subsets in cover(a) that are compatible with every subset in E.

4.1 Basic Propagator

Let us first introduce a basic propagator which ensures the same level of filtering as AC on
BoolDec without using any specific data structure. This propagator called Basic is used as
a baseline to evaluate the interest of using Dancing Links.

For each subset u ∈ P , we compute the set incompatible(u) of all subsets of P that are
not compatible with u. These incompatibility sets are computed before starting the search
process in O(#P 2 · np). They are used to propagate the assignment of a variable selectedu

to true by removing true from the domain of every subset v which is incompatible with u,
as described in Algo. 4.

Also, to ensure that each element a ∈ SE can be covered by at least one subset com-
patible with the selected subsets, we incrementally maintain the cardinality of coverE(a)
(without explicitly maintaining coverE(a)) in a counter denoted counta. At the beginning
of the search, counta is initialized to #cover(a). Then, each time a variable selectedv is
assigned to false, we decrement counta for each element a ∈ v, and we trigger a failure
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Algorithm 4: propagate(selectedu=true)

1 for each v ∈ incompatible(u) do
2 if true ∈ D(selectedv) then
3 remove true from D(selectedv)
4 propagate(selectedv=false)

Algorithm 5: propagate(selectedv=false)

1 for each a ∈ v do
2 decrement counta
3 if counta = 0 then trigger failure;

if counta = 0, as described in Algo. 5. When backtracking, we restore counter values by
performing the inverse operations.

Property 3. The Basic propagation algorithm ensures the following properties:

∀u ∈ P,D(selectedu) = {true} ⇒ ∀v ∈ incompatible(u), true 6∈ D(selectedv) (1)

∀a ∈ SE , counta = #coverE(a) (2)

Proof. (1) is ensured by Algo. 4, and (2) is ensured by Algo. 5.
This filtering is equivalent to enforcing AC on BoolDec, and in both cases a failure is

triggered whenever there exists an element which cannot be covered:

• Enforcing AC on BoolDec removes from the domains of coveredBy variables the subsets
that are incompatible with any selected subset u (Property 2), and a failure is triggered
whenever the domain of a coveredBy variable becomes empty;

• The Basic propagator triggers a failure whenever counta = #coverE(a) = 0.

Property 4. The time complexity of the Basic propagator (Algo. 4) is O(np · ni).
Proof. The loop of Algo. 4 is executed #incompatible(u) times, with #incompatible(u) ≤
ni, and in the worst case (if every v ∈ incompatible(u) is compatible with all subsets in E),
for each v ∈ incompatible(u) the loop of Algo. 5 is executed #v times with #v ≤ np.

4.2 DL Propagator

In the Basic propagator, incompatibility lists are not incrementally maintained during the
search: When true is removed from the domain of a variable selectedv, the subset v is
not removed from incompatibility lists. Therefore, Algo. 4 iterates on every subset v in
incompatible(u) even if D(selectedv) = {false}.

We propose a new propagator called DL that incrementally maintains coverE(a) for
each element a, so that we only consider subsets that can be selected when propagating the
assignment of a variable selectedu to true. To implement this efficiently, we use the Dancing
Links described in Section 3.3.

More precisely, Algo. 2 is called each time a variable selectedu is assigned to true, and
it is modified as follows:

• After line 7, if u 6= v, we remove true from the domain of selectedv, where v is the
subset associated with the row of cell γvb;

• After line 11, if γvb.head .size = 0, we trigger a failure.

When backtracking from the assignment of selectedu to true, we call Algorithm 3.

Property 5. Basic and DL ensure the same level of consistency.
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Proof. This is a direct consequence of the fact that Algo. 2 (modified as explained above)
removes true from the domain of every subset which is incompatible with a selected subset.
Also, for each element a ∈ SE , it maintains in ha.size the value of #coverE(a) and it triggers
a failure whenever ha.size becomes equal to 0.

Property 6. The time complexity of the DL propagation is O(np · ni).

Proof. The propagation algorithm has the same complexity as Algo. 2, i.e., O(np · ni)
(see Property 1).

Comparison of Basic and DL. The propagation of the assignment of selectedu to true
by DL and Basic is very similar when E ∩ incompatible(u) = ∅: Both propagators iterate
on every subset v ∈ incompatible(u), and for every element b ∈ v, they decrement a counter
(corresponding to #coverE(b)). However, when E ∩ incompatible(u) 6= ∅, the two propaga-
tors behave differently: Basic still iterates on every subset v ∈ incompatible(u) whereas DL
only iterates on every subset v ∈ ∪a∈ucoverE(a) (i.e., every subset v ∈ incompatible(u) such
that v is compatible with all subsets in E). As a counterpart, DL performs more operations
than Basic on each element b ∈ v such that v ∈ ∪a∈ucoverE(a): Basic only decrements a
counter whereas DL not only decrements a counter but also removes cell γvb in order to
update coverE(b).

These two propagators are experimentally compared in Section 4.4.

4.3 DL+ Propagator

In this section, we introduce a stronger propagator, that combines DL with an extra-filtering
used by Davies and Bacchus (2011) for solving a hitting set problem. This extra-filtering
exploits the following property.

Property 7. Let (S, P ) be an EC instance, and E ⊆ P a set of selected subsets that are
all pairwise compatible. For each couple of elements (a, b) ∈ SE × SE , we have:

coverE(a) ⊂ coverE(b)⇒ ∀u ∈ coverE(b) \ coverE(a), cover{u}∪E(a) = ∅

Proof. Let a and b be two elements such that coverE(a) ⊂ coverE(b), and let u be a
subset that covers b but not a, i.e., u ∈ coverE(b) \ coverE(a). Every subset v ∈ coverE(a)
is incompatible with u (because b ∈ u∩ v), and must be removed from coverE(a) if we add
u to E. Therefore, cover{u}∪E(a) = ∅.

We propose a new propagator called DL+ that exploits this property: This propagator
performs the same filtering as DL (as described in Section 4.2), but further filters domains
by removing true from D(selectedu) for each subset u such that:

∃(a, b) ∈ SE × SE , coverE(a) ⊂ coverE(b) ∧ u ∈ coverE(b) \ coverE(a)

A key point is to efficiently detect coverE inclusions. To this aim, we exploit the following
property:

coverE(a) ⊆ coverE(b) ⇔ #(coverE(a) ∩ coverE(b)) = #coverE(a).
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Hence, for each pair of uncovered elements {a, b} ⊆ SE , we maintain a counter, denoted
counta∧b, that gives the number of subsets that both belong to coverE(a) and coverE(b),
i.e.,

counta∧b = #(coverE(a) ∩ coverE(b))

These counters are initialized in O(n2
p ·#P ). To incrementally maintain them during the

search, we modify Algorithm 2 by calling a procedure before line 13: This procedure decre-
ments countb∧c for every pair of elements {b, c} ⊆ v, where v is the subset associated with
cell γva. Indeed, as v has been removed from both coverE(b) and coverE(c), it must also
be removed from the intersection of these two sets.

Then, at the end of Algorithm 2 (after the loop lines 1-13), for every pair of elements
{a, b} ⊆ SE such that counta∧b = ha.size, and for every subset v ∈ coverE(b) \ coverE(a),
we remove true from D(selectedv).

We modify similarly Algorithm 3 to restore counta∧b counters when backtracking.

Property 8. DL+ is stronger than DL.

Proof. DL+ is at least as strong as DL since DL is also applied by DL+. Moreover,
the instance displayed in Fig. 3 shows us that DL+ may filter more values than DL: For
example, when E = {x}, at the end of Algorithm 2, we have counta∧d = hd.size = 2 and,
therefore, selected t is assigned to false by DL+ (and not by DL).

Property 9. The time complexity of DL+ is O(n2
p · ni + #S2 · nc).

Proof. The complexity of the procedure called before line 13 to decrement countb∧c for
every pair of elements {b, c} ⊆ v is O(n2

p) because #v ≤ np. As the number of times lines
7-13 of Algorithm 2 are executed is upper bounded by ni + 1, the time complexity of lines
1-13 becomes O(n2

p · ni). The procedure executed at the end of Algorithm 2 to remove
true from D(selectedv) for each subset v such that there exist two element a, b ∈ SE with
counta∧b = ha.size and v ∈ coverE(b) \ coverE(a) is done in O(#S2 ·nc) as #SE ≤ #S and
#(coverE(b) \ coverE(a)) ≤ nc.

4.4 Experimental Comparison

We have implemented our three propagators in Choco 4 (Prud’homme, Fages, & Lorca,
2016), and we denote ECBasic (resp. ECDL and ECDL+) the Choco implementation of
exactCover with the Basic (resp. DL and DL+) propagator.

To evaluate scale-up properties of these propagators and compare them with existing
approaches, we consider the problem of enumerating all solutions of EC instances built
from a same initial instance, called ERP1, which has #S = 50 elements and #P = 1580
subsets (this instance is described in Section 6.3). As ERP1 has a huge number of so-
lutions, we consider instances obtained from it by selecting p% of its subsets in P , with
p ∈ {20, 25, 30, 35, 40}. For each value of p, we have randomly generated ten instances and
we report average results on these ten instances.

All experiments have been done on an Intel(R) Core(TM) i7-6700 and 65GB of RAM.
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Choice points CPU time (in seconds)
p #sol np nc ni BoolDec ECDL+ BoolDec ECBasic ECDL ECDL+ libexact SAT

20 7 · 103 35 130 294 54 · 103 16 · 103 4 1 1 0 0 2

25 3 · 105 35 162 367 14 · 105 6 · 105 100 9 7 4 2 59

30 5 · 106 36 191 445 20 · 106 11 · 106 1,664 122 82 51 18 1,360

35 5 · 107 38 223 524 19 · 107 11 · 107 24,082 1,178 732 461 143 14,507

40 5 · 108 39 254 602 16 · 108 10 · 108 - 10,168 5,501 4,036 1,315 -

Table 1: Comparison of BoolDec, ECBasic, ECDL, ECDL+, libexact, and SAT for enu-
merating all solutions. For each percentage p of selected subsets in ERP1, we display: the
number of solutions (#sol), the maximum size of a subset (np), the maximum number of
subsets that cover an element (nc), the maximum number of subsets that are incompatible
with a subset (ni), the number of choice points of BoolDec and ECDL+, and the CPU time
of BoolDec, ECBasic, ECDL, ECDL+, libexact, and SAT (average values on ten instances
per line). We report ’-’ when time exceeds 50,000 seconds.

Comparison of BoolDec, ECBasic, ECDL, and ECDL+. Let us first compare our
three propagators with the Boolean decomposition BoolDec described in Section 3.4. We
have considered the same search strategy for all models, which corresponds to the ordering
heuristic introduced in Knuth (2000):

• For BoolDec, this is done by branching on coveredBy variables and using the minDom
heuristic to select the next coveredBy variable to assign (as maintaining AC ensures
that D(coveredBy [a]) = coverE(a));

• For ECBasic , ECDL, and ECDL+, at each node of the search tree, we search for an
element a ∈ SE such that #coverE(a) = ha.size is minimal, and we create a branch
for each subset u ∈ coverE(a) where the variable selectedu is assigned to true.

In all cases, we break ties by fixing an order on elements and subsets, and we consider the
same order in all implementations.

Table 1 displays the number of choice points performed by BoolDec to enumerate all
solutions. ECBasic and ECDL explore the same number of choice points as BoolDec since
they achieve the same consistency and they consider the same ordering heuristics.

If BoolDec, ECBasic and ECDL explore the same number of choice points, Table 1
shows us that ECDL is faster than ECBasic which is faster than BoolDec. Also, when
increasing p (i.e., the number of subsets in P ), the difference between ECDL and ECBasic

increases: if they have very similar performance when p = 20%, ECDL is nearly twice as
fast as ECBasic when p = 40%. Average values for the maximum size of incompatibility
lists (ni) are reported in Table 1, and we can see that ni is very close to the number of
subsets in P (when p = 20% (resp. 40%), #P = 316 (resp. #P = 632)). In other words,
some subsets are incompatible with nearly all other subsets. As ECBasic exhaustively
traverses the incompatibility list of every selected subset u (even if some of these subsets
are incompatible with previously selected subsets), it is less efficient than ECDL (which
only considers subsets that belong to ∪a∈ucoverE(a)).

As expected, ECDL+ explores fewer choice points than BoolDec, ECBasic and ECDL.
However, the gap decreases when p increases: The number of choice points explored by
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BoolDec, ECBasic and ECDL is 3.4 times (resp. 2.3, 1.8, 1.7 and 1.6) as large as the
number of choice points explored by ECDL+ when p = 20 (resp. p = 25, 30, 35, and
40). This comes from the fact that inclusions of coverE sets become less frequent when
increasing the number of subsets in P . Even if the time complexity of DL+ is higher than
the time complexity of DL, the reduction of the search space achieved by DL+ pays off.
However, if ECDL+ is twice as fast as ECDL for small instances, the gain becomes smaller
when increasing p.

Experimental Comparison with SAT and libexact. In Table 1, we report results
of SAT (using the clasp solver (Gebser et al., 2012) with the ladder encoding of Junttila
and Kaski (2010) which obtains the best results), and the libexact (Kaski & Pottonen,
2008) implementation of the dedicated DLX algorithm (Knuth, 2000). libexact is always
faster than ECDL+: libexact is 3 times as fast as ECDL+, and this ratio is rather constant
when p increases. The gap between ECDL and libexact is explained (1) by the difference
of support languages (Java for ECDL and C for libexact), and (2) by the cost of using a
generic CP solver instead of a dedicated algorithm.

ECDL+ is faster than SAT , and the gap between the two approaches increases when
increasing p, showing that ECDL+ has better scale-up properties than SAT : ECDL+ is 10
times as fast as SAT when p = 20 and 31 times as fast when p = 35. When p = 40, SAT
is not able to enumerate all solutions within the CPU time limit of 50, 000 seconds whereas
ECDL+ needs 4, 036 seconds on average.

5. Constraining the Number of Selected Subsets

In some applications, we may need to add constraints on the number of selected subsets.
For example, in our conceptual clustering application, the number of selected subsets cor-
responds to the number of clusters and we may need to constrain this number to be equal
to a given value. In this case, we constrain an integer variable k to be equal to the number
of selected subsets. This may be done either by adding new constraints to exactCover (as
explained in Section 5.1), or by defining a new global constraint (as proposed in Section 5.2).

5.1 Addition of Existing Constraints to exactCover

In this section, we study how to add constraints to exactCoverS,P (selected) in order to
ensure that the number of selected subsets is equal to an integer variable k.

A first possibility is to add the constraint:
∑

u∈P selectedu = k. We denote ECDL,sum

and ECDL+,sum the Choco implementations that combine this sum constraint with the
propagation algorithms of exactCover introduced in Sections 4.2 and 4.3, respectively.

Another possibility is to use the NValues(X,n) global constraint (Pachet & Roy, 1999)
which constrains the integer variable n to be equal to the number of different values assigned
to variables in X. To combine NValues with exactCover, we must introduce new variables
such that the number of different values assigned to these variables corresponds to the
number of selected subsets: For each element a ∈ S, we define an integer variable coveredBya

whose domain is D(coveredBya) = cover(a) and we channel these variables with selected
variables like in the boolean model introduced in Section 3.4. In this case, the complete set
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Figure 4: Comparison of the number of choice points (left) and time (right) of ECDL,sum,
ECDL,NV , ECDL+,sum, and ECDL+,NV for enumerating all solutions when k is assigned
to x, with x ∈ [2, 49] (average on 10 instances obtained from ERP1 by randomly selecting
25% of its subsets).

of constraints is:

∀u ∈ P,∀a ∈ u, coveredBya = u⇔ selectedu = true

NValues(coveredBy , k)

exactCoverS,P (selected)

We denote ECDL,NV and ECDL+,NV the Choco implementations that combine these con-
straints with the propagation algorithms introduced in Sections 4.2 and 4.3, respectively.
In Choco, NValues is decomposed into two constraints, i.e., atLeastNValues and atMost-
NValues. In our experiments, we consider the strongest propagator for each of these two
constraints: The propagator of atLeastNValues ensures AC and the propagator of atMost-
NValues is described by Fages and Lapègue (2014).

Experimental Evaluation. We consider the problem of enumerating all EC solutions
when the number of selected subsets k is constrained to be equal to a given value. We
consider 10 instances obtained from ERP1 by selecting randomly 25% of the subsets in P
(the same 10 instances as in Section 4.4 when p = 25%). These instances have #S = 50
elements and the number of subsets is close to 400. We vary the value assigned to k from 2
to #S−1. For each point (x, y) in Figure 4, y is the performance measure (time or number
of choice points) for enumerating all solutions when k is assigned to x (i.e., for enumerating
all exact covers with exactly x selected subsets).

In Figure 4, we compare ECDL,sum, ECDL,NV , ECDL+,sum, and ECDL+,NV . The num-
ber of choice points is much smaller when using NValues, especially for extremal values of k.
However, the propagation of NValues is much more time consuming than the propagation
of a sum constraint. As a consequence, using NValues does not pay-off, except for very large
values of k (i.e., when k > 40) for which NValues reduces the number of choice points by
several orders of magnitude. Using DL+ instead of DL for propagating exactCover reduces
the number of choice points, especially when k is larger than 10, and this stronger filtering
also reduces the run time, except for very low values of k: When k is lower than 5, variants
that use DL are slightly faster than variants that use DL+.
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5.2 Definition of a New Global Constraint exactCoverK

As pointed out in the previous section, ECDL+,NV explores much fewer choice points than
ECDL+,sum, but this strong reduction of the search space pays off only for the largest values
of k because the propagation of NValues is more time consuming than the propagation of a
sum constraint. However, NValues is decomposed into two global constraints: atLeastNVal-
ues, for which AC is ensured in polynomial time, and atMostNValues, for which enforcing
AC is an NP-complete problem. Bessière et al. (2006) introduce a propagator for atMost-
NValues that exploits an intersection graph. This intersection graph may be easily derived
from the counters maintained by DL+ to detect coverE inclusions. Hence, we introduce
in this section a new global constraint which better propagates constraints between k and
selected variables by integrating a propagator designed for atMostNValues.

Definition 3. Let (S, P ) be an instance of EC, k an integer variable and, for each subset
u ∈ P , selectedu a Boolean variable. The global constraint exactCoverK S,P (selected , k) is
satisfied iff the number of selected variables assigned to true is equal to k and the subsets
associated with these variables define an exact cover of S, i.e.,

∀a ∈ S,
∑

u∈cover(a)

selectedu = 1

∑
u∈P

selectedu = k

In the next sections, we describe algorithms for updating upper and lower bounds of k,
and filtering domains of selected variables when the domain of k is reduced to a singleton.

5.2.1 Updating the Upper Bound of k

A first simple filtering ensures that k is upper bounded by the number of selected subsets
(i.e., #E) plus the number of subsets that are compatible with E (i.e., #PE). We tighten
this bound by taking into account the minimum number of elements that may be covered
by one subset. More precisely, we need at most b #SE

minu∈P #uc subsets to cover all elements
in SE . Note that we round the result of the division to the largest integer value no greater
than #SE

minu∈P #u as the number of elements must be an integer value. Therefore, k is upper

bounded by #E + min{#PE , b #SE
minu∈P #uc}. This upper bound is incrementally updated

with a constant time complexity.

We have experimentally compared this upper bound with the upper bound computed
by propagating the global constraint atLeastNValues(coveredBy,k), and noticed that the
propagation of atLeastNValues does not pay off because it is much more time consuming
and it nearly never reduces the number of choice points.

5.2.2 Updating the Lower Bound of k

Given the set E ⊆ P of subsets that have already been selected, k is lower bounded by
#E plus the minimum number of subsets in PE needed to cover all elements in SE . In
this section, we show how to compute a lower bound of this minimum number of subsets
by exploiting an algorithm introduced by Bessière et al. (2006) for propagating the global
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Figure 5: Intersection graphs associated with the instance displayed in Fig. 1 when E = ∅
(left) and when E = {x} (right).

constraint atMostNValues. This algorithm exploits independent sets and independence
numbers: An independent set of a graph G = (V,E) is a set of vertices S ⊆ V with no
edge in common, i.e., ∀i, j ∈ S, (i, j) 6∈ E, and the independence number of a graph is the
maximal cardinality of its independent sets.

Bessière et al. (2006) show that the minimum number of distinct values of a set X of
variables is lower bounded by the independence number of the intersection graph which
has a vertex vi for each variable xi ∈ X and an edge between two vertices vi and vj iff
D(xi) ∩ D(xj) 6= ∅. Indeed, the domains of all vertices in a same independent set have
empty intersections, and therefore the corresponding variables must be assigned to different
values. As a consequence, the independence number of the intersection graph is a lower
bound of the minimum number of distinct values of X.

The interest of exploiting this property during the propagation of exactCoverK (instead
of combining exactCover with NValues) is that the intersection graph can be derived in a
straightforward way from the counters we maintain for DL+: In our context, this graph
associates a vertex with every non covered element in SE and an edge with every pair of non
covered elements {a, b} ⊆ SE such that coverE(a) ∩ coverE(b) 6= ∅. As DL+ maintains in
counta∧b the size of coverE(a)∩coverE(b), edges of the intersection graph simply correspond
to pairs {a, b} ⊆ SE such that counta∧b > 0.

As computing the independence number of the intersection graph is NP-hard, we com-
pute a lower bound by constructing an independent set with the greedy algorithm of
Halldórsson and Radhakrishnan (1997), as proposed by Bessière et al. (2006). Starting
from an empty independent set, this algorithm iteratively adds vertices to it until the graph
is empty. At each iteration, it selects a vertex v of minimum degree and removes v and
all its adjacent vertices from the graph. The complexity of this algorithm is linear with
respect to the number of edges in the intersection graph, provided that buckets are used to
incrementally maintain the set of vertices of degree d for every d ∈ [0,#SE − 1].

Example 4. In Fig. 5, we display the two intersection graphs associated with the instance
displayed in Fig. 1 when E = ∅ and when E = {x}, respectively.

When E = ∅, the greedy algorithm builds the independent set {a, e, b}, and the lower
bound computed for k is #E + #{a, e, b} = 3.

When E = {x}, the greedy algorithm builds the independent set {b, a} (or {b, d}), and
the lower bound computed for k is #E + #{b, a} = 3.
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5.2.3 Use of Independent Sets to Filter selected Variable Domains

Bessière et al. (2006) also show how to use independent sets to filter domains when the
cardinality of the independent set is equal to the number of different values. In our context,
this filtering allows us to assign false to some selected variables. More precisely, when the
domain of k is reduced to the singleton {#I} where I is the independent set, for every
subset u that does not cover an element of I (i.e., u 6∈ ∪a∈IcoverE(a)), we can assign false
to selectedu.

This filtering may be done not only for I, but also for any other independent set that has
the same cardinality as I. However, as this is too expensive to compute all independent sets
that have the same cardinality as I, we only compute a subset of them using the algorithm
described by Beldiceanu (2001). This algorithm computes in linear time with respect to
#SE all independent sets that differ from I by only one vertex: It iterates on every vertex
a ∈ I and, for every edge {a, b} such that b is not adjacent to any vertex of I \ {a}, it adds
the independent set I \ {a} ∪ {b}.

Let I0 be the initial independent set computed with the greedy algorithm, and I1, . . . , In
be the independent sets derived from I0. We remove true from the domain of every variable
selectedu such that u 6∈

⋂
j∈[0,n]

⋃
a∈Ij coverE(a).

Example 5. On our running example, when E = {x}, the greedy algorithm builds a first
independent set which is either {b, a} or {b, d}. Hence, the lower bound of k is 3. The upper
bound of k is also equal to 3 because #E + min{#PE , d #SE

minu∈P #ue} = 1 + min{4, 4
2} = 3.

Therefore, the domain of k is reduced to the singleton {3} and we can apply the filtering
on selected domains. We derive from the first independent set (i.e., either {b, a} or {b, d}) a
second independent set (i.e., {b, d} if the first independent set is {b, a}, and {b, a} otherwise).
We have coverE(b) = {z}, coverE(a) = {t, u, v} and coverE(d) = {u, v}. We can remove
true from the domain of every selected variable associated with a subset that does not
belong to: {u, v, z} ∩ {t, u, v, z} = {u, v, z}. Therefore, we remove true from the domain of
selectedt.

Experimental Evaluation. We denote ECK the Choco implementation of exactCov-
erK, which combines the DL+ propagator described in Section 4.3 with the propagator de-
scribed in this section. We experimentally compare ECK with ECDL+,NV and ECDL+,sum

in Fig. 6.
ECK and ECDL+,NV explore a similar amount of choice points: ECK explores slightly

fewer choice points than ECDL+,NV when k < 16 and vice-versa for higher values of k. As
expected, the use ofNV alues is much more time consuming than our propagation algorithm.
However, our filtering does not pay off compared with ECDL+,sum when 17 ≤ k ≤ 27 even
if it explores almost twice fewer choice points.

6. Experimental Evaluation on a Conceptual Clustering Application

Clustering aims at grouping objects into homogeneous and well separated clusters. The
key idea of conceptual clustering is that every cluster is not only characterized by its set of
objects but also by a conceptual description such as, for example, a set of shared properties
(Michalski & Stepp, 1983). Many approaches (such as, for example, COBWEB introduced
by Fisher (1987)) build hierarchies of conceptual clusters in an incremental and greedy way
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Figure 6: Comparison of number of choice points (left) and CPU time (right) of ECDL+,NV ,
ECDL+,sum and ECK for enumerating all solutions of 10 instances obtained from ERP1
by selecting randomly 25% of its subsets, when k is assigned to x, with x ∈ [2, 49].

that does not ensure the optimality of the final hierarchy. Formal Concept Analysis (Ganter
& Wille, 1997) is a particular case of conceptual clustering where data are structured by
means of formal concepts, i.e., sets of objects that share a same subset of attributes. Formal
concepts are partially ordered, and we may compute lattices of formal concepts, as proposed
by Carpineto and Romano (1993), for example. Guns, Nijssen, and Raedt (2013) introduce
the problem of k-pattern set mining, concerned with finding a set of k related patterns
under constraints, and they show that this problem may be used to solve a particular case
of conceptual clustering problem: The goal of this problem is to find a subset of k formal
concepts which is a partition of the initial set of objects and which maximizes the minimal
weight of a selected formal concept. In this section, we experimentally evaluate the interest
of our global constraint on this particular case of conceptual clustering problem. Indeed,
this problem has been widely studied since its introduction by Guns et al., and different CP
and ILP approaches have been recently proposed for solving it. Furthermore, this problem
occurs in an industrial application which aims at mining a catalog of configuration parts
from existing configurations of an ERP (Enterprise Resource Planning) system (Chabert,
2018), and we consider instances coming from this application in our experimental study.

In Section 6.1, we formally define the problem and describe existing approaches for
solving it. As this problem involves optimizing some utility measures associated with the
selected subsets, we show how to extend our global constraints in order to add constraints on
bounds of these utility measures in Section 6.2. In Section 6.3, we describe the experimental
setup. In Sections 6.4, 6.5 and 6.6, we report experimental results on different problems,
where the number of clusters is either fixed to a given value (in Section 6.4) or bounded
within a given interval of values (in Sections 6.5 and 6.6), and where the goal is either to
optimize a single objective function (in Sections 6.4 and 6.5) or to compute the whole Pareto
front of non-dominated solutions for two conflicting objective functions (in Section 6.6).

6.1 Definition of the Problem

Definition 4. Let O be a set of objects, and for each object o ∈ O, let attr(o) be the set
of attributes that describes o.
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attr(o1) = {a1, a2, a4} attr(o3) = {a2, a4} attr(o5) = {a1, a3}
attr(o2) = {a1, a3, a4} attr(o4) = {a2, a3}

Figure 7: Example of dataset with 5 objects and 4 attributes.

F intent subset of objects frequency size diameter split

c0 ∅ {o1, o2, o3, o4, o5} 5 0 1 0

c1 {a1} {o1, o2, o5} 3 1 3/4 1/3

c2 {a2} {o1, o3, o4} 3 1 3/4 1/2

c3 {a3} {o2, o4, o5} 3 1 3/4 1/2

c4 {a4} {o1, o2, o3} 3 1 3/4 2/3

c5 {a1, a3} {o2, o5} 2 2 2/3 1/2

c6 {a1, a4} {o1, o2} 2 2 1/2 1/3

c7 {a2, a3} {o4} 1 2 0 2/3

c8 {a2, a4} {o1, o3} 2 2 1/3 1/2

c9 {a1, a3, a4} {o2} 1 3 0 1/2

c10 {a1, a2, a4} {o1} 1 3 0 1/3

c11 {a1, a2, a3, a4} ∅ 0 4 0 0

Table 2: The set F of all formal concepts contained in the dataset described in Table 7.

• The intent of a subset of objects Oi ⊆ O is the set of attributes common to all objects
in Oi, i.e., intent(Oi) = ∩o∈Oiattr(o).

• A subset of objects Oi ⊆ O is a formal concept if it contains every object whose set
of attributes is a superset of its intent, i.e., Oi = {o ∈ O : intent(Oi) ⊆ attr(o)}.

• A conceptual clustering is a partition of O in k formal concepts O1, . . . , Ok, i.e.,
∀o ∈ O,#{i ∈ [1, k] : o ∈ Oi} = 1.

Example 6. In Table 2, we list all formal concepts associated with the dataset displayed
in Fig. 7. Examples of conceptual clusterings are {c2, c5} and {c5, c7, c8}.

Quality Measures Associated with Formal Concepts. Two classical measures for
evaluating the quality of a formal concept Oi ⊆ O are the frequency, which corresponds to
its number of objects (i.e., frequency(Oi) = #Oi), and the size, which corresponds to its
number of attributes (i.e., size(Oi) = #intent(Oi)).

Two other measures that are often used to evaluate the quality of a group of objects
for clustering applications are the diameter and the split. These two measures assume that
there exists a distance measure d : O × O → R between objects. In our experiments, we
consider the distance of Jaccard (1901) which depends on the number of common attributes,

i.e., d(o, o′) = 1− #(attr(o)∩attr(o′))
#(attr(o)∪attr(o′)) . Given this distance measure d, the diameter of a formal

concept Oi ⊆ O evaluates its homogeneity by the maximal distance between objects in
Oi (i.e., diameter(Oi) = maxo,o′∈Oi

d(o, o′) if #Oi > 1 and diameter(Oi) = 0 otherwise)
whereas the split evaluates its separation with other objects by the minimal distance between
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objects in Oi and objects in O \ Oi (i.e., split(Oi) = mino∈Oi,o′∈O\Oi
d(o, o′) if Oi 6= O and

split(Oi) = 0 otherwise).

Many other quality measures could be defined, depending on the applicative context.
In this section, we report experimental results for these four quality measures which are
widely used and rather representative. We denote Q = {frequency, size, -diameter, split}
this set of four quality measures. Note that for each quality measure q ∈ Q, the higher
q(Oi), the better the quality of Oi (when the quality measure is the diameter, we define
q(Oi) = −diameter(Oi) as smaller diameter values indicate more homogeneous clusters).

Optimization Criteria for Conceptual Clustering. There may exist different solu-
tions to a conceptual clustering problem, and we may add an objective function to search
for the best solution. In this paper, we consider the case where we maximize an objective
variable denoted Minq (where q ∈ Q is a quality measure) which is constrained to be equal to
the smallest quality among the selected formal concepts, i.e., Minq = minOi∈{O1,...,Ok} q(Oi).
By maximizing Minq, we ensure a minimal quality over all clusters, and this is well suited
for many applications such as, for example, the ERP configuration problem addressed by
Chabert (2018).

Example 7. In Table 2, we give for each formal concept of the dataset the value of
each quality measure defined above. For the conceptual clustering {c5, c7, c8}, we have:
Minfrequency = 1, Minsize = 2, Min−diameter = −2/3, and Minsplit = 1/2.

Computation of Formal Concepts. Formal concepts correspond to closed itemsets
(Pasquier, Bastide, Taouil, & Lakhal, 1999) and the set of all formal concepts may be
computed by using algorithms dedicated to the enumeration of frequent closed itemsets. In
particular, LCM (Uno, Asai, Uchida, & Arimura, 2004) is able to extract all formal concepts
in linear time with respect to the number of formal concepts.

Constraint Programming (CP) has been widely used to model and solve itemset search
problems (Raedt, Guns, & Nijssen, 2008; Khiari, Boizumault, & Crémilleux, 2010; Guns,
Nijssen, & Raedt, 2011; Guns, 2015; Lazaar, Lebbah, Loudni, Maamar, Lemière, Bessiere,
& Boizumault, 2016; Schaus, Aoga, & Guns, 2017; Ugarte, Boizumault, Crémilleux, Le-
pailleur, Loudni, Plantevit, Räıssi, & Soulet, 2017). Indeed, CP allows the user to easily
model various constraints on the searched itemsets. The propagation of these constraints
reduces the search space and allows CP to be competitive with dedicated approaches such
as LCM for extracting constrained itemsets.

CP for Conceptual Clustering. The conceptual clustering problem we consider here
is a special case of k-pattern set mining, as introduced by Guns et al. (2013): This problem
is defined by combining a cover and a non-overlapping constraint, and a binary CP model
is proposed to solve this problem. Dao, Duong, and Vrain (2017) describe a CP model
for clustering problems where a dissimilarity measure between objects is provided, and this
CP model has been extended to conceptual clustering by Dao, Lesaint, and Vrain (2015).
Experimental results reported by Dao et al. (2015) show that this model outperforms the
binary model of Guns et al. (2013). Chabert and Solnon (2017) introduce another CP
model, which improves the model of Dao et al. (2015) when the number of clusters is not
fixed.
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Conceptual Clustering as an Exact Cover Problem. The set F of all formal concepts
may be efficiently computed with dedicated tools such as LCM (Uno et al., 2004). Given
this set, a conceptual clustering problem may be seen as an exact cover problem, the goal
of which is to find a subset of formal concepts E ⊆ F that covers every object exactly once,
i.e., ∀o ∈ O,#{Oi ∈ E : o ∈ Oi} = 1. This exact cover problem may be solved by using any
approach described in Section 3.4. In particular, Ouali et al. (2016) propose to use ILP,
and they show that ILP is very convenient and efficient for modeling and solving conceptual
clustering problems given the set of all formal concepts.

6.2 Extension of exactCover to exactCoverQ

We propose to use exactCover to solve conceptual clustering problems in a two-step ap-
proach: In a first step we use LCM to extract the set F of all formal concepts, and in
a second step we use exactCover to select a subset of F which is an exact cover of O.
However, as pointed out previously, we add an objective function to search for an exact
cover E that maximizes Minq where q ∈ Q is the measure which evaluates the quality of a
formal concept. Furthermore, in some cases it may be useful to add constraints on minimal
and/or maximal measures associated with selected formal concepts (this is the case, for
example, when considering several quality measures and computing the Pareto front of all
non dominated solutions with respect to these measures).

Hence, we extend exactCover and exactCoverK to the case where quality measures are
associated with subsets.

Definition 5. Let (S, P ) be an instance of EC and, for each subset u ∈ P , let selectedu
be a Boolean variable. Let n be the number of different quality measures and, for each
i ∈ [1, n] and each subset u ∈ P , let qi(u) denote the ith quality measure associated with u.
For each i ∈ [1, n], let MinQ i and MaxQ i be two integer variables. The global constraint
exactCoverQS,P,q(selected ,MinQ ,MaxQ) is satisfied iff all selected variables assigned to true
correspond to an exact cover of (S, P ) and MinQ and MaxQ variables are assigned to the
minimum and maximum quality associated with selected subsets, i.e.,

∀a ∈ S,
∑

u∈cover(a)

selectedu = 1

∀i ∈ [1, n],MinQ i = min
u∈P,selectedu=true

qi(u)

∀i ∈ [1, n],MaxQ i = max
u∈P,selectedu=true

qi(u)

Similarly, we define the global constraint exactCoverQK S,P,q(selected , k,MinQ ,MaxQ) which
further ensures that the integer variable k is equal to the number of selected subsets, i.e.,∑

u∈P selectedu = k.

Propagation of exactCoverQ (resp. exactCoverQK). This constraint is propagated
like exactCover (resp. exactCoverK), but before starting the search we remove from P every
subset u that does not satisfy the bound constraints, i.e., such that there exists i ∈ [1, n] for
which qi(u) 6∈ [MinQ i.lb,MaxQ i.ub] (where x.lb and x.ub respectively denote the smallest
and greatest value in the domain of a variable x). Then, each time a variable selectedu is
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Table 3: Benchmark: for each instance, #O gives the number of objects, #A gives the
number of attributes, #F gives the number of formal concepts, and t gives the time (in
seconds) spent by LCM to compute the set F of all formal concepts.

Name #O #A #F t Name #O #A #F t
ERP1 50 27 1,580 0.01 UCI1 (zoo) 101 36 4,567 0.01
ERP2 47 47 8,133 0.03 UCI2 (soybean) 630 50 31,759 0.10
ERP3 75 36 10,835 0.03 UCI3 (primary-tumor) 336 31 87,230 0.28
ERP4 84 42 14,305 0.05 UCI4 (lymph) 148 68 154,220 0.52
ERP5 94 53 63,633 0.28 UCI5 (vote) 435 48 227,031 0.68
ERP6 95 61 71,918 0.45 UCI6 (hepatitis) 137 68 3,788,341 13.90
ERP7 160 66 728,537 5.31

assigned to true, for each i ∈ [1, n], we propagate:

MinQ i.ub = min{MinQ i.ub, qi(u)},
MaxQ i.lb = max{MaxQ i.lb, qi(u)}.

Also, each time MinQ i.lb or MaxQ i.ub is updated, for each subset u such that qi(u) 6∈
[MinQ i.lb,MaxQ i.ub], we remove true from the domain of selectedu.

6.3 Experimental Setup

Benchmark. We describe in Table 3 six classical machine learning instances, coming
from the UCI database, and six ERP instances coming from an ERP configuration problem
described by Chabert and Solnon (2017).

Let us recall that to solve conceptual clustering problems with a two-step approach, we
first compute the set F of all formal concepts with a dedicated tool such as LCM, and then
we solve an exact cover problem (S, P ) such that S is the set of all objects (i.e., S = O) and
P is the set of all formal concepts (i.e., P = F). The number of objects #O varies from 47
to 630, and the number of formal concepts #F varies from 1, 580 to 3, 788, 341. The time
spent by LCM to compute F is smaller than one second for all instances but two. The two
harder instances (ERP7 and UCI6) are solved in 5.31 and 13.9 seconds, respectively.

Considered Implementations of our Global Constraints. All our global constraints
and propagators are implemented with Choco v.4.0.3 (Prud’homme et al., 2016). We
consider the following models:

• ECQ∗,sum with ∗ ∈ {DL,DL+}, which combines the exactCoverQ constraint (prop-
agated with the algorithms described in Sections 4.2 or 4.3 depending on whether
∗ = DL or ∗ = DL+) with a sum constraint, as described in 5.1;

• ECQK, which is the model that uses the exactCoverQK constraint.

We consider the ordering heuristic introduced by Knuth (2000): At each node, we search
for the element a ∈ SE such that #coverE(a) is minimal and, for each subset u ∈ coverE(a),
we create a branch where selectedu is assigned to true.
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Considered Implementations of Other Declarative Approaches. We compare ECQK
and ECQ∗,sum with the following declarative approaches:

• FCP1, the full CP model introduced by Dao et al. (2015), and implemented with
Gecode (2005);

• FCP2, the full CP model introduced by Chabert and Solnon (2017), and implemented
with Choco v.4.0.3;

• ILP, the hybrid approach introduced by Ouali et al. (2016), and implemented with
CPLEX v12.7. Note that ILP approaches dedicated to the set partitioning problem
(such as Rasmussen (2011), Rnnberg and Larsson (2014), or Zaghrouti et al. (2014),
for example) cannot be used to solve our problem as the goal is not to minimize a
weighted sum but to maximize the minimal weight of a selected subset.

Performance Measures. We consider two different performance measures, i.e., the num-
ber of choice points and the CPU time. All experiments were conducted on Intel(R)
Core(TM) i7-6700 with 3.40GHz of CPU and 65GB of RAM, using a single thread.

For all hybrid approaches that use LCM to extract all formal concepts in a preprocessing
step, and then solve an exact cover problem (i.e., ILP, ECQ∗,sum, and ECQK), CPU times
that are reported always include the time spent by LCM to extract all formal concepts (see
Table 3 for information on this time).

6.4 Single Criterion Optimization with k Fixed

In this section, we consider the problem of maximizing Minq (with q ∈ Q) when the number
of clusters k is fixed to a given value that ranges from 2 to 10. For this experiment which
is rather time-consuming (it involves solving one instance per value of k), we only report
results for six instances, i.e., ERP2 to ERP4, and UCI1 to UCI3.

Fig. 8 reports the number of nodes explored by ECQ∗,sum and ECQK for values of k
ranging between 2 and 10. For Min frequency , ECQDL+,sum usually explores much fewer
nodes than ECQDL,sum whereas ECQK often explores the same number of nodes as
ECQDL+,sum.

For Minsplit , the three propagators explore rather similar numbers of choice points when
k is small. When k increases, ECQK often explores fewer choice points than ECQ∗,sum,
but the difference is moderate. Finally, for Minsize and Min−diameter , ECQK explores
much fewer choice points than ECQDL+,sum, and ECQDL,sum and ECQDL+,sum nearly
always explore the same number of choice points. For these criteria, many instances are
not solved within a CPU time limit of 1000 seconds by ECQ∗,sum. ECQK is able to solve
more instances, but it fails at solving ERP4 and UCI2 when k > 6 for Minsize , and UCI3
when k > 4 for Minsize and Min−diameter .

In Fig. 9, we compare CPU times of ECQK (which is the best performing propagator
for exactCoverQ), FCP1 and ILP. We do not report CPU times of FCP2 because it is
outperformed by FCP1. ECQK, FCP1 and ILP have complementary performance:

• For Minsplit and Min−diameter FCP1 is very efficient and clearly outperforms ECQK
and ILP. For these two criteria, ECQK is always faster than ILP, except for UCI3
when k = 4.
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Figure 8: Number of nodes of ECQDL,sum , ECQDL+,sum , and ECQK to maximize
Min frequency , Minsplit , Minsize , and Min−diameter (from top to bottom), when k is assigned
to x, with x ∈ [2, 10]. Results are reported only when the time is smaller than 1000 seconds.

• For Min frequency and Minsize , FCP1 is the fastest approach when k = 2, but it does
not scale well when k increases, and it is not able to solve instances when k > 5.
For Min frequency , ECQK is faster than ILP (except for UCI1 when k ∈ {9, 10}), and
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Figure 9: CPU time of ECQK, FCP1, and ILP to maximize Min frequency , Minsplit , Minsize

and Min−diameter (from top to bottom) when k is assigned to x, with x ∈ [2, 10]. Results
are reported only when the CPU time is smaller than 1000 seconds.

ECQK is the only approach that is able to solve all instances. For Minsize , ECQK
and ILP have rather comparable performance for ERP2, ERP3, and UCI3. However,
ECQK is outperformed by ILP for ERP4, UCI1, and UCI2.
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As a conclusion, if ECQK is not the best approach on every instance, it is the approach
which solves the largest number of instances within the CPU time limit of 1000 seconds:
Among the 9 ∗ 6 ∗ 4 = 216 considered instances, ECQK solves 194 instances whereas ILP
and FCP1 solve 187 and 147 instances, respectively.

6.5 Single Criterion Optimization with k Bounded

In some applicative contexts, we do not know a priori the number of clusters and, therefore,
k is not fixed. This is the case, for example, in the application to ERP configuration
(Chabert & Solnon, 2017; Chabert, 2018). In this case, we only constrain k to be strictly
greater than 1 and strictly smaller than the number of objects, i.e., D(k) = [2,#O − 1].
In other words, we want more than one cluster and at least one cluster must contain two
objects.

When k is not fixed, there is a huge number of solutions, and we refine the ordering
heuristic in order to favor the construction of good solutions first. As the goal is to max-
imize Minq, this is done by branching first on subsets u ∈ coverE(a) such that q(u) is
maximal (where a is an element in SE such that #coverE(a) is minimal). However, we
apply this ordering heuristic only when q ∈ {size, split ,−diameter}. When the goal is to
maximize Min frequency , we use the objectiveStrategy ordering heuristic (Prud’homme et al.,
2016) which performs a dichotomous branching over Min frequency . Indeed, in this case, the
sum of frequencies of the subsets in an exact cover is equal to the number of objects. As a
consequence, better solutions are obtained by favoring the selection of subsets of medium
frequencies (instead of large frequencies) because once a first subset u has been selected, we
know that Min frequency is upper bounded by #E − frequency(u).

Table 4 displays the results of ECQDL,sum, ECQDL+,sum, FCP1, FCP2, and ILP when
maximizing Minq with q ∈ {size, split ,−diameter , frequency}. We do not report results
of ECQK because, when k is not fixed, the advanced bound computations and filterings
described in Section 5.2 nearly never reduce the number of choice points (compared to
ECQDL+,sum).

ECQDL+,sum is the only approach able to solve the 52 instances within the time limit of
1000 seconds. It never spends more than 104 seconds to solve an instance, and its average
solving time is equal to 9s. Both ECQDL,sum and FCP2 are able to solve all instances but
one, and their average solving time on the 51 solved instances are equal to 13.2s and 25.8s,
respectively. FCP1 fails at solving four instances, and its average solving time on the 48
solved instances is equal to 68.3s. Finally, ILP fails at solving 21 instances, and its average
solving time on the 31 solved instances is equal to 286.1s.

However, if ECQDL+,sum is the only approach able to solve all instances within a time
limit of 1000s, and if it has the smallest average solving time, there are only 10 instances for
which ECQDL+,sum is the fastest approach. Indeed, if ECQDL+,sum explores much fewer
choice points than ECQDL,sum for the Min frequency criterion, ECQDL,sum and ECQDL+,sum

often explore the same number of choice points (and when this is not the case, the differ-
ence is very small) for the three other criteria. As a consequence, the stronger propaga-
tion of DL+ only pays off for the Min frequency criterion, and for the three other criteria
ECQDL+,sum is never faster than ECQDL,sum.
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Maximize Minsize Maximize Min frequency

ECQDL,sum ECQDL+,sum FCP1 FCP2 ILP ECQDL,sum ECQDL+,sum FCP1 FCP2 ILP

time nodes time nodes time time time time nodes time nodes time time time

ERP1 0.1 48 0.1 48 0.2 0.4 57.5 0.1 7 0.1 5 0.2 0.3 57.4

ERP2 0.1 41 0.2 42 25.7 0.4 109.2 0.5 159 0.2 6 0.3 0.4 123.0

ERP3 0.1 58 0.2 59 459.9 0.5 122.6 0.6 106 0.2 6 1.4 0.9 136.9

ERP4 0.2 84 0.4 84 2.0 1.2 367.5 1.5 138 0.4 9 1.2 1.0 307.0

ERP5 0.5 77 0.8 79 - 0.4 609.2 16.8 346 1.0 7 72.5 1.5 586.5

ERP6 1.6 95 3.8 95 6.9 1.3 - 90.7 1212 1.9 7 47.6 1.7 -

ERP7 31.1 161 103.6 161 49.1 2.5 - - - 23.9 7 952.7 6.5 -

UCI1 0.1 58 0.1 58 1.4 0.5 0.0 0.2 34 0.2 9 1.1 1.6 151.1

UCI2 0.3 493 0.6 493 - 493.6 842.1 0.6 16 0.8 7 211.0 192.1 -

UCI3 0.5 215 0.8 215 334.0 20.8 1924.8 2.4 27 2.3 6 530.0 33.5 -

UCI4 3.3 152 6.2 152 212.7 3.1 - 1.6 18 1.9 10 101.1 4.5 -

UCI5 1.0 338 1.5 338 - 19.9 5697.6 1.3 6 2.1 4 - - -

UCI6 17.0 136 23.5 136 193.4 1.3 - 382.7 175 74.4 17 38.9 3.1 -

Maximize Minsplit Maximize Min−diameter

ECQDL,sum ECQDL+,sum FCP1 FCP2 ILP ECQDL,sum ECQDL+,sum FCP1 FCP2 ILP

time nodes time nodes time time time time nodes time nodes time time time

ERP1 0.1 8 0.1 8 0.0 0.2 50.5 0.1 48 0.1 48 0.0 0.2 61.4

ERP2 0.1 3 0.1 3 0.0 0.2 79.7 0.1 40 0.2 42 0.0 0.2 102.1

ERP3 0.1 4 0.2 4 0.0 0.3 103.8 0.1 58 0.2 59 0.0 0.3 120.7

ERP4 0.2 2 0.2 2 0.0 0.3 283.9 0.2 84 0.4 84 0.0 1.1 350.5

ERP5 0.6 5 0.7 4 0.1 0.4 557.5 0.5 76 0.7 78 0.1 0.4 628.7

ERP6 0.9 15 1.8 14 0.1 0.5 1739.8 1.6 95 3.8 95 0.1 1.2 -

ERP7 6.9 3 13.7 3 0.2 1.5 - 49.6 161 103.4 161 0.2 1.0 -

UCI1 0.1 3 0.1 3 0.1 0.7 139.3 0.1 58 0.1 58 0.1 0.4 113.0

UCI2 0.3 5 0.7 5 11.0 15.7 784.8 0.2 493 0.5 493 11.3 446.5 877.9

UCI3 0.7 33 2.4 33 1.7 4.2 - 0.5 215 0.8 215 1.7 13.9 -

UCI4 0.7 3 0.8 3 0.2 0.5 2788.4 3.2 152 6.3 152 0.2 3.5 -

UCI5 1.9 89 4.2 89 4.6 9.6 - 1.0 338 1.5 338 4.5 18.6 -

UCI6 17.9 5 34.9 5 0.2 1.0 - 28.2 136 38.3 136 0.2 1.8 -

Table 4: Comparison of ECQDL,sum , ECQDL+,sum , FCP1, FCP2 and ILP for mono-
criterion problems Minsize (top left), Min frequency (top right), Minsplit (bottom left), and
Min−diameter (bottom right). ’-’ is reported when time exceeds 1,000s. For each instance,
the fastest approach is highlighted in blue.

FCP1 is very efficient on most instances for Minsplit and Min−diameter criteria. However,
it has rather poor performance on Minsize and Min frequency criteria. FCP2 is the fastest
approach on some instances for Minsize and Min frequency criteria, but on some other instances
it has rather poor performance. ILP is not competitive with CP approaches.

In Fig. 10, we plot the evolution of the cumulative number of solved instances with
respect to time for the five different approaches. If FCP1 is able to solve more instances
for time limits smaller than 0.6s, it is outperformed by ECQDL,sum when the time limit
is greater than 0.6s. For time limits greater than 40s, ECQDL+,sum is able to solve more
instances than all other approaches.

6.6 Multi-Criteria Optimization

Solutions that maximize Minsize or Min−diameter usually have a very large number of clusters
(close to #O − 1), whereas solutions that maximize Min frequency or Minsplit usually have
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Figure 10: Cumulative number of solved instances with respect to time: For each approach
f ∈ {ECQDL+,sum , ECQDL,sum , FCP1, FCP2, ILP}, we plot the curve f(x) = y such that
y is the number of instances which are solved by f within a time limit of x seconds.

very few clusters (close to 2). To obtain different kinds of compromise solutions, ranging
from solutions that have very few clusters (with high values of Min frequency and Minsplit)
to solutions that have a lot of clusters (with high values of Minsize and Min−diameter ), we
may compute Pareto fronts: Given two optimization criteria, the Pareto front contains all
non-dominated solutions, where a solution s dominates another solution s′ if s is at least as
good as s′ for one criterion, and it is strictly better for the other criterion.

In this section, we evaluate scale-up properties of our global constraints for computing
the Pareto front of all non-dominated solutions for two pairs of conflicting criteria, i.e.,
Min frequency and Minsize (denoted (frequency,size)) and Minsplit and Min−diameter (denoted
(split,diameter)).

For this problem, the number of clusters k is not fixed to a given value, and it is only
bounded between 2 and #O−1. Hence, we do not consider ECQK and only report results
of ECQ∗,sum with ∗ ∈ {DL,DL+}.

There exist two main approaches for solving multi-criteria problems with CP. In Sec-
tion 6.6.1, we consider the static approach of Wassenhove and Gelders (1980) which involves
solving a sequence of mono-criterion problems. In Section 6.6.2, we consider the dynamic
approach of Gavanelli (2002) which involves solving a single enumeration problem while dy-
namically adding constraints to prevent the search from enumerating dominated solutions.
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(Split,Diameter) (Frequency,Size)
ECQDL,sum ECQDL+,sum ECQDL,sum ECQDL+,sum

#s time nodes time nodes #s time nodes time nodes

ERP 1 1 0.2 57 0.2 57 7 0.3 1003 0.3 162

ERP 2 5 0.4 165 0.5 134 9 6.7 5,593 0.7 154

ERP 3 2 0.3 70 0.4 72 10 9.7 4,582 1.1 213

ERP 4 2 0.6 98 0.9 98 13 69.4 64,546 3.1 546

ERP 5 3 1.4 128 2.2 115 13 601.8 53,349 12.9 362

ERP 6 3 3.2 143 5.5 132 15 2320.6 5,447,207 24.0 563

ERP 7 2 81.1 175 212.5 175 17 - - 826.5 2,698

UCI1 3 0.2 102 0.3 102 13 2.5 5,821 1.0 499

UCI2 3 0.8 650 3.1 647 - - - - -

UCI3 1 0.8 250 3.6 250 11 - - 368.5 18,523

UCI4 5 3.2 418 4.9 414 14 946.1 560,908 322.4 55,457

UCI5 2 3.4 513 10.1 513 8 2407.1 9,962,639 637.2 1,098,756

UCI6 4 428.1 518 467.4 519 - - - - -

Table 5: Time (in seconds) and number of choice points needed by ECQDL,sum and
ECQDL+,sum for (split,diameter) and (frequency,size) to compute the set of non-dominated
solutions using the static method of Wassenhove and Gelders (1980). #s gives the number
of non-dominated solutions. ’-’ is reported when time exceeds 1,000s.

6.6.1 Static Approach

Given two objective variables x1 and x2 to maximize, we can compute the Pareto front by
solving a sequence of mono-criterion optimization problems (Wassenhove & Gelders, 1980;
Duong, 2014). The idea is to alternate between the two objectives as follows:

1. Search for a solution s1 that maximizes x1;

2. Search for a solution s2 that maximizes x2 when x1 is assigned to its value in s1 (s2

is a non-dominated solution);

3. Constrain x2 to be greater than its value in s2, and go to step (1), until no more
solution can be found.

In Table 5, we report results of ECQDL,sum and ECQDL+,sum for solving (split,diameter)
(resp. (frequency,size)) when the first maximized variable (x1) is Minsplit (resp. Min frequency)
and the second variable to maximize (x2) is Min−diameter (resp. Minsize). Note that if there
is almost no difference between choosing Minsplit and Min−diameter as first variable to maxi-
mize, considering Min frequency as first variable significantly reduces solving times (compared
to considering Minsize as first variable).

The number of non-dominated solutions ranges from 1 to 5 for (split,diameter) whereas
it ranges from 7 to 19 for (frequency,size). This may come from the fact that frequency and
size measures are very conflicting criteria (formal concepts with large frequencies usually
have small sizes, and vice versa), whereas (split,diameter) are less conflicting criteria.

For (split,diameter), ECQDL,sum is faster than ECQDL+,sum because DL+ never re-
duces significantly the number of choice points.
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Figure 11: Example of dominated area for two quality measures q1 and q2. Each point
(x, y) corresponds to a subset uj ∈ P such that x = q1(uj) and y = q2(uj). Let us assume
that E = {u7, u8, u12} is an exact cover (displayed in red). The area dominated by E is
displayed in blue. The variables selectedu3 and selectedu4 can be assigned to false because
any exact cover that contains u3 or u4 is dominated by E.

For (frequency,size), DL+ significantly reduces the number of choice points, compared to
DL, for all instances, and ECQDL+,sum is able to solve four more instances than ECDL,sum

within the time limit.

6.6.2 Dynamic Approach

Gavanelli (2002) introduces an alternative approach to the static approach described in
the previous section. The idea is to solve a single enumeration problem: Each time a new
solution s is found, the Pareto front is updated by adding s to it and removing from it all
solutions dominated by s, and a constraint is dynamically added in order to prevent the
search from computing a solution which is dominated by s. The search stops when no more
solution can be found. A Pareto constraint based on this filtering rule has been introduced
by Schaus and Hartert (2013) with an efficient filtering algorithm for bi-objective problems.

In this section, we show how to improve this approach for solving a multi-criteria exact
cover problem (S, P ) when every objective function involves maximizing a variable Minq

with q ∈ Q′ (where Q′ ⊆ Q is the subset of considered quality measures). Indeed, during
the search process, when an exact cover E ⊆ P is found, we can discard any subset u such
that ∀q ∈ Q′, q(u) ≤ minv∈E q(v), as illustrated in Fig. 11.

Hence, we propose to extend the dynamic approach of Gavanelli (2002) and Schaus and
Hartert (2013). More precisely, each time a solution s is found, we dynamically add two
constraints:

• The first constraint is the constraint used by Gavanelli (2002) and Schaus and Har-
tert (2013) to prevent the search from computing a solution dominated by s, i.e.,∨
q∈Q′

Minq > s[Minq];

• The second constraint is a new constraint which prevents the search from selecting a
subset dominated by s, i.e., ∀u ∈ P,

∧
q∈Q′

qi(u) ≤ s[Minq]⇒ selectedu = false.

541



Chabert & Solnon

where s[Minq] denotes the value assigned to Minq in s, for each quality measure q ∈ Q′.
The second constraint immediately filters the domains of selected variables associated

with subsets which are dominated by s, whereas the first constraint does not filter any
domain when all upper bounds of Minq variables are greater than s[Minq].

Example 8. In Fig. 11, domains of selected variables are not immediately filtered if we only
add the first constraint Minq1 > 4 ∨Minq2 > 4. Indeed, when both upper bounds of Minq1

and Minq2 are greater than 4, this disjunctive constraint is not propagated: It is propagated
only when the upper bound of one of these variables becomes lower than or equal to 4. As
a comparison, the second constraint ∀u ∈ P, (q1(u) ≤ 4 ∧ q2(u) ≤ 4) ⇒ selectedu = false
allows us to remove true from the domains of selectedu3 and selectedu4 .

Experimental Evaluation. In Table 6, we compare the three strategies for computing
the Pareto front of non dominated solutions with ECQ∗,sum:

• The static approach of Wassenhove and Gelders (1980) denoted Static;

• The dynamic approach of Gavanelli (2002) denoted Dynamic;

• Our extension of Dynamic introduced in this section and denoted Extended.

We report results obtained with the best propagator according to the experimental com-
parison reported in Table 5, i.e., ECQDL,sum for (split,diameter), and ECQDL+,sum for
(frequency,size). We also report results obtained with ILP, using the static approach of
Wassenhove and Gelders (1980). We do not report results of the full CP approaches (FCP1
and FCP2) because they do not scale. For example, for the (size,frequency) criteria, FCP2
is not able to solve ERP1 in less than one day using the Static strategy, whereas this instance
is solved in less than one second with our global constraint.

Dynamic and Extended are very sensitive to ordering heuristics because they are very
sensitive to the quality of the enumerated solutions: If every new solution is far from the
Pareto front and dominates very few solutions then the search space is not much reduced
by the dynamically added constraints and a lot of solutions are enumerated. Hence, for
Dynamic and Extended, we adapt the ordering heuristic introduced by Knuth: We still
search for an element a ∈ SE such that #coverE(a) is minimal, but instead of branching
first on subsets that maximize the quality measure, we branch first on subsets that maximize
the number of dominated subsets in P .

Let us first compare Dynamic and Extended to evaluate the interest of adding the second
constraint that filters selected variables. Extended explores fewer choice points and is clearly
faster than Dynamic. In particular, it is able to solve four more instances than Dynamic.

For (split,diameter), Static is competitive with Extended for the small instances, but it
is outperformed for larger instances such as ERP6, ERP7, or UCI6. This may come from
the fact that the number of solutions computed by Extended is often close to the number of
non dominated solutions: nbSol is equal to #s for three instances, and never greater than
4 ∗#s. This means that ordering heuristics are able to guide the search towards solutions
that often belong to the Pareto front. All these solutions are computed by solving a single
enumeration problem within a single search. As a comparison, Static always computes 2∗#s
solutions, and each of these solutions is obtained by solving a new optimization problem.
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ECQ Static ECQ Dynamic ECQ Extended ILP
#s time nodes nbSol time nodes nbSol time nodes nbSol time

(split,diameter)

ERP1 1 0.2 57 2 0.1 191 3 0.1 127 3 0.5

ERP2 5 0.4 165 10 2.0 631 8 0.3 193 8 1.4

ERP3 2 0.3 70 4 2.3 459 2 0.2 62 2 1.5

ERP4 2 0.6 98 4 7.7 724 2 0.3 87 2 20.1

ERP5 3 1.4 128 6 157.2 3,488 3 0.9 85 3 27.4

ERP6 3 3.2 143 6 172.1 2,813 6 1.7 337 6 268.1

ERP7 2 81.1 175 4 - - - 42.9 452 4 -

UCI1 3 0.2 102 6 0.2 203 7 0.2 151 7 0.9

UCI2 3 0.8 650 6 1.3 2,523 11 3.7 2,515 11 231.8

UCI3 1 0.8 250 2 2.1 395 3 1.7 371 3 645.1

UCI4 5 3.2 418 10 571.2 12,457 12 4.4 805 12 -

UCI5 2 3.4 513 4 66.8 2,732 5 5.4 794 5 -

UCI6 4 428.1 518 8 - - - 151.5 563 10 -

(frequency,size)

ERP1 7 0.3 162 14 0.2 228 18 0.1 174 18 1.0

ERP2 9 0.7 154 18 2.5 3,239 26 2.4 2,138 27 3.8

ERP3 10 1.1 213 20 2.1 1,694 31 1.4 1,202 28 6.3

ERP4 13 3.1 546 26 8.4 1,169 47 7.7 989 47 39.4

ERP5 13 12.9 362 26 76.1 17,288 48 48.8 4,087 47 89.0

ERP6 15 24.0 563 30 185.2 6,619 68 153.8 2,322 70 450.4

ERP7 17 826.5 2,698 34 - - - - - - -

UCI1 13 1.0 499 26 2.5 1489 67 1.3 752 69 8.1

UCI2 - - - - - - - - - - -

UCI3 11 368.5 18,523 22 - - - 1574.3 205,887 99 -

UCI4 14 322.4 55,457 28 3,077.0 713,914 68 3,092.9 701,011 66 -

UCI5 8 637.2 1,098,756 16 - - - - - - -

UCI6 - - - - - - - - - - -

Table 6: Comparison of the three strategies Static, Dynamic, and Extended with ILP to
compute the Pareto front. For (split,diameter) (resp. (frequency,size)) we report results
of ECQDL,sum (resp. ECQDL+,sum) for the three strategies. #s is the number of non-
dominated clusterings, time is the CPU time in seconds (or ’-’ when time exceeds 3,600
seconds), nodes is the number of choice points, and nbSol is the number of solutions found.

On (frequency,size), Static is the fastest approach for all instances but ERP1, and it
scales much better: It is able to solve all instances but UCI2 and UCI6 in less than one
hour, whereas Extended reaches the CPU time limit for ERP7, UCI2, UCI5, and UCI6.
This may come from the fact that the number of solutions computed by Extended is often
much larger than the number of non dominated solutions. For example, for UCI3, Extended
computes 99 solutions, whereas the Pareto front only contains 11 non dominated solutions.
For this instance, Static solves 22 optimization problems, and it is three times as fast as
Extended.

As a conclusion, Dynamic is outperformed by Extended, and Extended and Static are
complementary: Extended is more efficient for (split,diameter), and Static for (frequency,size).
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In Table 6, we also report results of ILP. For (split,diameter), ECQDL,sum is significantly
faster than ILP: It is able to solve all instances whereas ILP fails at solving four instances.
For (frequency,size), ECQDL+,sum is also significantly faster than ILP: It is able to solve
all instances but UCI2 and UCI6 whereas ILP fails at solving six instances.

7. Conclusion

We have introduced the exactCover global constraint for modelling exact cover problems,
and we have introduced the DL propagator, that uses Dancing Links, and the DL+ prop-
agator, that exploits cover inclusions to strengthen DL. We have also extended exactCover
to the case where the number of selected subsets is constrained to be equal to a given vari-
able, and we have shown how to integrate a propagator designed for atMostNValues within
DL+, thus allowing us to take benefit of the fact that the intersection graph is maintained
by DL+.

We have experimentally evaluated our propagators on conceptual clustering problems,
and we have compared them with state-of-the-art declarative approaches, showing that our
approach is competitive with them for mono-criterion problems, and outperforms them for
multi-criteria problems.

As further works, we plan to extend our global constraint to allow the user to soften non-
overlapping or coverage constraints which may be relevant in some applications, as pointed
out by Ouali et al. (2016). A convenient and flexible extension is to add #S integer variables
to the input parameters: Each of these variables is associated with a different element and
is constrained to be equal to the number of selected subsets that cover this element. This
way, we allow the user to constrain in many different ways the coverage and the overlapping
of the selected subsets. For instance, we may easily model the constraint of allowing at
most x% of elements to overlap or allowing few elements not to be covered.

Also, we plan to study the extension of our work to other optimization criteria for con-
ceptual clustering problems. In the experiments reported in Section 6, we have considered
the case where we maximize a variable which is constrained to be equal to the smallest qual-
ity among the selected formal concepts. This aggregation function ensures a minimal quality
over all clusters. Aribi, Ouali, Lebbah, and Loudni (2018) consider other aggregation func-
tions for evaluating the quality of a clustering, and they show that the Ordered Weighted
Average function (that returns a weighted sum of qualities) ensures equity by weighting
quality measures according to their rank. This kind of aggregation function hardly scales
with CP, and it would be interesting to design a specific propagator for it.
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