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Abstract. Crowdsourcing consists in hiring workers on internet to perform large 4

amounts of simple, independent and replicated work units, before assembling the 5

returned results. A challenge to solve intricate problems is to define orchestrations 6

of tasks, and allow higher-order answers where workers can suggest a process to 7

obtain data rather than a plain answer. Another challenge is to guarantee that 8

an orchestration with correct input data terminates, and produces correct out- 9

put data. This work proposes complex workflows, a data-centric model for crowd- 10

sourcing based on orchestration of concurrent tasks and higher order schemes. We 11

consider termination (whether some/all runs of a complex workflow terminate) and 12

correctness (whether some/all runs of a workflow terminate with data satisfying FO 13

requirements). We show that existential termination/correctness are undecidable 14

in general excepted for specifications with bounded recursion. However, universal 15

termination/correctness are decidable when constraints on inputs are specified in 16

a decidable fragment of FO, and are at least in co−2EXPTIME. 17

1 Introduction 18

Crowdsourcing leverages intelligence of crowd to realize tasks where human skills 19

still outperform machines [25]. It was successful in contributive science initiatives, 20

such as CRUK’s Trailblazer [3], Galaxy Zoo [5], etc. Most often, a crowdsourcing 21

project consists in deploying a huge number of tasks that can be handled by humans 22

in a reasonable amount of time. Generally, work units are simple micro-tasks, that 23

are independent, cheap, repetitive, and take a few minutes to an hour to complete. 24

They can be labeling of images, writing scientific blogs, etc. The requester publishes 25

the tasks on a platform with a small incentive (a few cents, reputation gain, good- 26

ies...), and waits for the participation from the crowd. However, many projects, 27

and in particular scientific workflows, can be seen as a coordination of high-level 28

composite tasks. As noted by [38], composite tasks are not or poorly supported 29

by crowdsourcing platforms. Crowdsourcing markets such as Amazon Mechani- 30

cal Turk [1], Foule Factory [4], CrowdFlower[2], etc. already propose interfaces and 31

APIs to access crowds, but the specification of crowd based complex processes is still 32

in its infancy. Some works propose solutions for data acquisition and management 33

or deployment of workflows, mainly at the level of micro-tasks [17, 29]. Crowd- 34

forge uses Map-Reduce techniques to solve complex tasks [23]. Turkit [30] builds 35

on an imperative language embedding calls to services of a crowdsourcing plat- 36

form, which requires programming skills to design complex orchestrations. Turko- 37

matic [26] and [41] implement a Price, Divide and Solve (PDS) approach: crowd 38

workers divide tasks into orchestrations of subtasks, up to the level of micro-tasks. 39

However, current PDS approaches ask clients to monitor workflows executions. In 40

this setting, clients cannot use PDS crowdsourcing solutions as high-level services. 41



The next stage of crowdsourcing is hence to design more involved processes 1

still relying on the crowd. A first challenge is to fill the gap between a high-level 2

process that a requester wants to realize, and its implementation in terms of micro- 3

tasks composition. Moving from one description level to the other is not easy, and 4

we advocate the use of expertise of the crowd for such refinement. This can be 5

achieved with higher-order answers, allowing a knowledgeable worker to return an 6

orchestration of simpler tasks instead of a crisp answer to a question. A second 7

challenge in this setting is to give guarantees on the termination (whether some/all 8

runs terminate) and correctness of the overall process (whether the output data 9

returned by a crowdsourced process meet some requirements w.r.t input data). 10

This paper proposes a data-centric model called complex workflows, that define 11

orchestrations of tasks with higher-order schemes, and correctness requirements 12

on input and output data of the overall processes. Complex workflows are mainly 13

orchestrations of data transformation tasks, that start from initial input datasets 14

that are explicitly given as crisp data or represented symbolically with a logical 15

formula. Workers can contribute to micro-tasks (input data, add tags...) or refine 16

tasks at runtime. Some easy tasks (simple SQL queries or record updates) are au- 17

tomated. Input/Output (I/O) requirements are specified with a fragment of FO. 18

We address the question of termination (whether all/some runs terminate) and cor- 19

rectness (whether all/some runs terminate and meet the I/O requirements). Due 20

to higher-order, complex workflows are Turing complete, and hence existence of 21

a terminating run is undecidable. However, one can decide whether all runs of a 22

complex workflow terminate as soon as initial data is fixed or specified in an FO 23

fragment where satisfiability is decidable. Existential termination becomes decid- 24

able with the same constraints on initial data as soon as recursion in higher-order 25

rewritings is bounded. We then show that existential correctness is undecidable, and 26

universal correctness is decidable if constraints on data are expressed in a decidable 27

fragment of FO. The complexity of termination and correctness depends mainly on 28

the length of runs, and on the complexity of satisfiability for the FO fragment used 29

to specify initial data and I/O requirements. It is at least in (co-)2EXPTIME for 30

the simplest fragments of FO, but can increase to an n-fold complexity for FO 31

fragments that use both existential and universal quantification. 32

Several formal models have been proposed for orchestration of tasks and ver- 33

ification in data-centric systems or business processes. Workflow nets [40, 39], a 34

variant of Petri nets, address the control part of business processes, but data is 35

not central. Orchestration models such as ORC [22] or BPEL [36] can define busi- 36

ness processes, but cannot handle dynamic orchestrations and are not made to 37

reason on data. [10] proposes a verification scheme for a workflow model depicting 38

business processes with external calls, but addresses operational semantics issues 39

(whether some ”call pattern” can occur) rather than correctness of the computed 40

data. Several variants of Petri nets with data have been proposed. Obviously, col- 41

ored Petri nets [20] have a sufficient expressive power to model complex workflows. 42

But they are defined at a low detail level, and encoding higher-order necessarily 43

have to be done through complex color manipulations. Complex workflows sepa- 44

rate data, orchestration, and data transformations. Several variants of PNs where 45



transitions manipulate global variables exist (see for instance [14]), but they can- 1

not model evolution of unbounded datasets. Other variants of PNs with tokens 2

that carry data have also been proposed in [27]. Termination and boundedness are 3

decidable for this model, but with non-elementary complexity, even when equal- 4

ity is the only predicate used. The closest Petri net variant to complex workflows 5

are Structured Data nets [9], in which tokens carry structured data. Higher order 6

was introduced in nested Petri nets [31] a model where places contain sub-nets. 7

Interestingly, termination of nested nets is decidable, showing that higher-order 8

does not imply Turing completeness. Data-centric models and their correctness 9

have also been considered. Guarded Active XML [7] (GAXML) is a model where 10

guarded services are embedded in structured data. Though GAXML does not ad- 11

dress explicitly crowdsourcing nor higher-order, the rewritings performed during 12

service calls can be seen as a form of task refinement. Restrictions on recursion in 13

GAXML allows for verification of Tree LTL (a variant of LTL where propositions 14

are statements on data). More recently, [8] has proposed a model for collaborative 15

workflows where peers have a local view of a global instance, and collaborate via 16

local updates. With some restrictions, PLTL-FO (LTL-FO with past operators) is 17

decidable. Business artifacts were originally developed by IBM [35], and verification 18

mechanisms for LTL-FO (LTL formula embedding FO statements over universally 19

quantified variables) were proposed in [13, 24]. LTL-FO is decidable for subclasses 20

of artifacts with data dependencies and arithmetic. [15] considers systems com- 21

posed of peers that communicate asynchronously. LTL-FO is decidable for systems 22

with bounded queues. Business artifacts allow for data inputs during the lifetime 23

of an artifact, but are static orchestrations of guarded tasks, described as legal 24

relations on datasets before and after execution of a task. Further, LTL-FO verifi- 25

cation focuses mainly on dynamics of systems (termination, reachability) but does 26

not address correctness. [18] considers data-centric dynamic systems (DCDS), i.e. 27

relational databases equipped with guarded actions that can modify their contents, 28

and call external services. Fragments of FO µ-calculus are decidable for DCDS with 29

bounded recursion. 30

2 Motivation 31

Our objectives are to provide tools to develop applications in which human actors 32

execute tasks or propose solutions to realize a complex task, and check the cor- 33

rectness of the designed services. The envisioned scenario is the following: a client 34

provides a coarse grain workflow depicting important phases of a complex task to 35

process data, and a description of the expected output. The tasks can be completed 36

in several ways, but cannot be fully automated. It is up to a pool of crowdwork- 37

ers to complete them, possibly after refining difficult tasks up to the level of an 38

orchestration of easy or automated micro-tasks. 39

The crowdsourcing model presented in section 4 is currently used to design a 40

real example, the SPIPOLL initiative [6]. The objective of SPIPOLL is to study 41

populations of pollinating insects. The standard processes used by SPIPOLL call 42

for experience of large pools of workers to collect, sort and tag large databases 43

containing insects pictures. The features provided by our model fit particularly 44
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Fig. 1. a) A simple actor popularity poll, and b) a rule example.

with the needs of SPIPOLL, as tagging pictures of rare insects is not a simple 1

annotation task, and usually calls for complex validation processes. 2

Let us illustrate the needs and main features of complex workflows, refinement, 3

and human interactions on a simpler example. A client (for instance a newspaper) 4

wants to rank the most popular actors of the moment, in the categories comedy, 5

drama and action movies. The task is sent to a crowdsourcing platform as a high- 6

level process decomposed into three sequential phases: first a collection of the most 7

popular actors, then a selection of the 50 most cited names, followed by a classifi- 8

cation of these actors in comedy/drama/action category. The ranking ends with a 9

vote for each category, that asks contributors to associate a score to each name. The 10

client does not input data to the system, but has some requirements on the output: 11

it is a dataset Dranked with relational schema rout(name, cites, category, score), 12

where name is a key, cites is an integer that gives the number of cites of an actor, 13

category ranges over {drama, comedy, action} and score is a rational number be- 14

tween 0 and 10. Further, every actor appearing in the final database should have 15

a score and a number of cites greater than 0. Obviously, there are several ways to 16

collect actors names, several ways to associate a category tag, to vote, etc. How- 17

ever, the clients needs are defined in terms of an orchestration of high-level tasks, 18

without information on how the crowd will complete them, and without any ter- 19

mination guarantee. The orchestration is depicted in Figure 1-a. It starts from an 20

empty input dataset D∅, and returns an actor popularity dataset Dranked. 21

In the rest of the paper, we formalize complex workflows and their semantics 22

(Sec. 4). We then address termination (Sec. 5) and correctness (Sec. 6). More 23

precisely, given a complex workflow CW , we consider the following problems: 24

Universal termination: Does every run of CW terminate ? 25

Existential termination: Is there an input for which at least one run of CW 26

terminates ? 27

Universal correctness: For a given I/O requirement ψin,out relating input and 28

output data, does every run of CW terminate and satisfy ψin,out ? 29

Existential correctness: For a given I/O requirement ψin,out, is there a particular 30

input and at least one run of CW that terminates and satisfies ψin,out? 31

3 Preliminaries 32

We use a standard relational model [12], i.e., data is organized in datasets, that 33

follow relational schemas. We assume finite set of domains dom = dom1, . . . , doms, 34

a finite set of attribute names att and a finite set of relation names relnames. Each 35

attribute ai ∈ att is associated with a domain dom(ai) ∈ dom. A relational schema 36



(or table) is a pair rs = (rn,A), where rn is a relation name and A ⊆ att denotes 1

a finite set of attributes. Intuitively, attributes in A are column names in a table, 2

and rn the table name. The arity of rs is the size of its attributes set. A record of 3

a relational schema rs = (rn,A) is tuple rn(v1, . . . v|A|) where vi ∈ dom(ai) (it is a 4

row of the table), and a dataset with relational schema rs is a multiset of records 5

of rs. A database schema DB is a non-empty finite set of tables, and an instance 6

over a database DB maps each table in DB to a dataset. 7

We address properties of datasets with First Order logic (FO) and predicates 8

on records. For simplicity and efficiency, we will consider predicates defined as sets 9

of linear inequalities over reals and integer variables. We use FO to define relations 10

between the inputs and outputs of a task, and requirements on possible values of 11

inputs and outputs of a complex workflow. 12

Definition 1 (First Order). A First Order formula (in prenex normal form) over 13

a set of variables
−→
X = x1, . . . , xn is a formula of the form ϕ ::= α(

−→
X ).ψ(

−→
X ) 14

where α(
−→
X ) is an alternation of quantifiers and variables of

−→
X , i.e. sentences 15

of the form ∀x1∃x2, ... called the prefix of ϕ and ψ(
−→
X ) is a quantifier free for- 16

mula called the matrix of ϕ. ψ(
−→
X ) is a boolean combinations of atoms of the 17

form rni(x1, . . . xk) ∈ Di, Pj(x1, . . . xn), where rni(x1, . . . xk)’s are relational state- 18

ments, and Pj(x1, . . . xn)’s are boolean function on x1, . . . xn called predicates. 19

In the rest of the paper, we consider variables that either have finite domains 20

or real valued domains, and predicates specified by simple linear inequalities of 21

dimension 2, and in particular equality of variables, i.e. statements of the form 22

xi = xj . One can decide in NP if a set of linear inequalities has a valid assignment, 23

and in polynomial time [21] if variables values are reals. Let
−→
X1 = {x1, . . . xk} ⊆ 24

−→
X . We write ∀

−→
X1 instead of ∀x1.∀x2 . . . ∀xk, and ∃

−→
X1 instead of ∃x1.∃x2 . . . ∃xk. 25

We use w.l.o.g. formulas of the form ∀
−→
X1∃

−→
X2 . . . ψ(X) or ∃

−→
X1∀

−→
X2 . . . ψ(X), where 26

ψ(X) is a quantifier free matrix, and for every i 6= j,
−→
Xi ∩

−→
Xj = ∅. Every set of 27

variables
−→
Xi is called a block. By allowing blocks of arbitrary size, and in particular 28

empty blocks, this notation captures all FO formulas in prenex normal form. We 29

denote by ϕ[t1/t2] the formula obtained by replacing every instance of term t1 in ϕ 30

by term t2. Each variable xi in
−→
X has a domain Dom(xi). A variable assignment 31

is a function µ that associates a value dx from Dom(x) to each variable x ∈
−→
X . 32

Definition 2 (Satisfiability). A variable free formula is satisfiable iff it evaluates 33

to true. A formula of the form ∃x, φ is satisfiable iff there exists a value dx ∈ 34

Dom(x) such that φ[x/dx] is satisfiable. A formula of the form ∀x, φ is satisfiable 35

iff, for every value dx ∈ Dom(x), φ[x/dx] is satisfiable. 36

It is well known that satisfiability of an FO formula is undecidable in general, 37

but it is decidable for several fragments. The universal fragment (resp. existential 38

fragment) of FO is the set of formulas of the form ∀
−→
X .ϕ (resp. ∃

−→
Y .ϕ) where ϕ is 39



quantifier free. We denote by ∀FO the universal fragment of FO and by ∃FO the 1

existential fragment. Checking satisfiability of the existential/universal fragment 2

of FO can be done non-deterministically in polynomial time. In our setting, where 3

atoms in FO formula are relational statements and linear inequalities, satisfiability 4

of formulas with only universal or existential quantifiers is decidable and (co)-NP- 5

complete. We refer interested readers to Appendix B for a proof. 6

One needs not restrict to existential or universal fragments of FO to get decid- 7

ability of satisfiability. A well known decidable fragment is (FO2), that uses only 8

two variables [34]. However, this fragment forbids atoms of arity greater than 2, 9

which is a severe limitation when addressing properties of datasets. The BS frag- 10

ment of FO is the set of formulas of the form ∃
→
Y 1.∀

→
X2.ψ, where ψ is quantifier 11

free, may contain predicates, but no equality. The Bernays-Schonfinkel-Ramsey 12

fragment of FO [11] (BSR-FO for short) extends the BS fragment by allowing 13

equalities in the matrix ψ. Satisfiability of a formula in the BS or BSR fragment 14

of FO is NEXPTIME-complete (w.r.t. the size of the formula) [28]. 15

Recent results [37] exhibited a new fragment, called the separated fragment of 16

FO, defined as follows: Let V ars(A) be the set of variables appearing in an atom 17

A. We say that two sets of variables Y, Z ⊆ X are separated in a quantifier free 18

formula φ(X) iff for every atom At of φ(X), V ars(At)∩Y = ∅ or V ars(At)∩Z = ∅. 19

A formula in the Separated Fragment of FO (SF -FO for short) is a formula of the 20

form ∀
→
X1.∃

→
Y 2. . . .∀

→
Xn.∃

→
Y nφ, where

→
X1 · · · ∪

→
Xn and

→
Y 1 · · · ∪

→
Y n are separated. 21

The SF fragment is powerful and subsumes the Monadic Fragment [32] (where 22

predicates can only be unary) and the BSR fragment. Every separated formula can 23

be rewritten into an equivalent BSR formula (which yields decidability of satisfia- 24

bility for SF formulas), but at the cost of an n-fold exponential blowup in the size of 25

the original formula. Satisfiability of a separated formula ϕ is hence decidable [37], 26

but with a complexity in O(2↓n
|ϕ|

). 27

A recent extension of FO2 called FO2BD allows atoms of arbitrary arity, but 28

only formulas over sets of variables where at most two variables have unbounded 29

domain. Interestingly, FO2BD formulas are closed under computation of weakest 30

preconditions for a set of simple SQL operations [19]. We show in Section 4 that 31

conditions needed for a non-terminating execution of a complex workflow are in 32

∀FO, and that ∀FO, ∃FO, BSR-FO, SF-FO are closed under precondition calculus. 33

4 Complex Workflows 34

This section formalizes the notion of complex workflow, and gives their semantics 35

through operational rules. This model is inspired by artifacts systems [13], but 36

uses higher-order constructs (task decomposition), and relies on human actors (the 37

crowdworkers) to complete tasks. We assume a client willing to use the power of 38

crowdsourcing to realize a complex task that needs human contribution to collect, 39

annotate, or organize data. This complex task is specified as a workflow that or- 40

chestrates elementary tasks or other complex tasks. The client can input data to 41

the system (i.e. enter a dataset Din), and may have a priori knowledge on the 42

relation between the contents of his input and the plausible outputs returned after 43

completion of the complex workflow. This scenario fits several types of applications 44



such as opinion polls, citizen participation, etc. High-level answers of workers are 1

seen as workflow refinements, and elementary tasks realizations are simple opera- 2

tions that transform data. During an execution of a complex workflow, we consider 3

that each worker is engaged in the execution of at most one task. 4

Tasks: A task t is a work unit designed to transform input data into output data. 5

It can be a high-level description submitted by a client, a very basic atomic task 6

that can be easily realized by a single worker (e.g. tagging images), a task that can 7

be fully automated, or a complex task that requires an orchestration of sub-tasks 8

to reach its objective. We define a set of tasks T = Tac ] Tcx ] Taut where Tac 9

is a set of atomic tasks that can be completed in one step by a worker, Tcx is a 10

set of complex tasks which need to be refined as an orchestration of smaller sub- 11

tasks to produce an output, and Taut is a set of automated tasks performed by a 12

machine (e.g. simple SQL queries: selection, union, projection...). Tasks in Tac and 13

Taut cannot be refined, and tasks in Taut do not require contribution of a worker. 14

Definition 3 (Workflow). A workflow is a labeled acyclic graph W = (N,→, λ) 15

where N is a finite set of nodes, modeling occurrences of tasks, →⊆ N×N is a 16

precedence relation, and λ : N →T associates a task name to each node. A node 17

n ∈ N is a source iff it has no predecessor, and a sink iff it has no successor. 18

In the rest of the paper, we fix a finite set of tasks T , and denote by W the set 19

of all possible workflows over T . Intuitively, if (n1, n2) ∈−→, then an occurrence 20

of task named λ(n1) represented by n1 must be completed before an occurrence 21

of task named λ(n2) represented by n2, and the data computed by n1 is used as 22

an input for n2. We denote by min(W ) the set of sources of W , by succ(ni) the 23

set of successors of a node ni, and by pred(ni) its predecessors. The size of W 24

is the number of nodes in N and is denoted |W |. We assume that when a task 25

in a workflow has several predecessors, its role is to aggregate data provided by 26

preceding tasks, and when a task has several successors, its role is to distribute 27

excerpts from its input datasets to its successors. With this convention, one can 28

model situations where a large database is split into smaller datasets of reasonable 29

sizes that are then processed independently. We denote by W \{ni} the restriction 30

of W to N\{ni}, i.e. a workflow from which node ni is removed along with all edges 31

which origins or goals are node ni. We assume some well-formedness properties of 32

workflows: Every workflow has a single sink node nf . Informally, we can think 33

of nf as the task that returns the dataset computed during the execution of the 34

workflow. There exists a path from every node ni of W to the sink nf . The property 35

prevents from launching tasks which results are never used to build an answer to a 36

client. We define a higher-order answer as a refinement of a node n in a workflow 37

by another workflow. Intuitively, n is simply replaced by W ′ in W . 38

Definition 4 (Refinement). Let W = (N,−→, λ) be a workflow, W ′ = (N ′,−→′ 39

, λ′) be a workflow with a unique source node n′src = min(W ′), a unique sink 40

node n′f such that N ∩N ′ = ∅. The refinement of n ∈ N by W ′ in W is the 41

workflow W[n/W ′] = (N[n/W ′],−→[n/W ′], λ[n/W ′]), where N[n/W ′] = (N \{n})∪N ′, 42

λ[n/W ′](n) = λ(n) if n ∈ N,λ′(n) otherwise, and 43
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Definition 5. A Complex Workflow is a tuple CW = (W0, T ,U , sk,R) where T 3

is a set of tasks, U a finite set of workers, R ⊆ T × 2W is a set of rewriting rules, 4

and sk ⊆ (U×R)∪(U×Tac) defines workers competences. W0 is an initial workflow, 5

that contains a single source node ninit and a single sink node nf . 6

We assume that in every rule (t,W ) ∈ R, the labeling λ of W is injective. This 7

results in no loss of generality, as one can create copies of a task for each node in 8

W , but simplifies proofs and notations afterwards. Further, W has a unique source 9

node src(W ). The relation sk specifies which workers have the right to perform or 10

refine a particular task. This encodes a very simple competence model. We refer 11

to [33] for further studies on competences and more elaborated competence models. 12

Let us consider the example of Figure 2-left: a workflow contains a complex task 13

tlike which objective is to rank large collections of images of different animals with 14

a score between 0 and 10. The relational schema for the dataset D used as input for 15

tlike is a collection of records of the form Picdata(nb, name, kind) where nb is a key, 16

name is an identifier for a picture, kind denotes the species obtained from former 17

annotation of data by crowdworkers. Let us assume that a worker u knows how 18

to handle task tlike (i.e. (u, tlike) ∈ sk), and wants to divide dataset D into three 19

disjoint datasets containing pictures of cats, dogs, and other animals, rank them 20

separately, and aggregate the results. This is captured by the rule R = (tlike,Wlike) 21

of Figure 1-b, where node n0 is an occurrence of an automated tasks that splits 22

an input dataset into datasets containing pictures of dogs, cats, and other animals, 23

n1, n2, n3 represent tagging tasks for the respective animal kinds, and node nf is an 24

automated task that aggregates the results obtained after realization of preceding 25

tasks. A higher-order answer of worker u is to apply rule R to refine node n1 in 26

the original workflow with Wlike. The result is shown in Figure 2-right. 27

It remains to show how automated and simple tasks are realized and process 28

their input data to produce output data. At every node n representing a task 29

t = λ(n), the relational schemas of all input (resp. output) datasets are known and 30

denoted rsin1 , . . . rs
in
k (resp. rsout1 , . . . rsoutk ). We denote by Din = Din

1 , . . . D
in
k the 31

set of datasets provided by predecessors of t, and by Dout = Dout
1 . . . Dout

q the set of 32

output datasets computed by task t. During a run of a complex workflow, we allow 33



tasks executions only for nodes which inputs are not empty. The contents of 1

every Dout
i is the result of one of the operations below: 2

SQL-like operations : We allow standard SQL operations: 3

– Selection: For a given input dataset Din
i with schema rn(x1, . . . , xn) and 4

a predicate P (x1, . . . xn), compute Dout
j = {rn(x1, . . . xn) | rn(x1, . . . xn) ∈ 5

Din
i ∧ P (x1, . . . xn)}. 6

– Projection: For a given input dataset Din
i with schema rn(x1, . . . xn) and an 7

index k∈ 1..n compute Dout
j = {rn(x1, . . . xk−1, xk+1, . . . xn) | rn(x1, . . . xn) ∈ 8

Din
i }. 9

– Insertion/deletion : For a given input datasetDin
i and a fixed tuple rn(a1, . . . an),10

compute Dout
j = Din

i ∪ {rn(a1, . . . an)} (resp. Dout
j = Din

i \ {rn(a1, . . . an)}) 11

– Union: For two input dataset Din
i , D

in
k with schema rn(x1, . . . xn), compute 12

Dout
j = Din

i ∪Din
k 13

– Join: For two input datasetDin
i , D

in
k with schema rni(x1, . . . xn) and rnk(y1, . . . yq),14

for a chosen pair of indices indi, indk computeDout
j = {rn′(x1, . . . xn, y1, . . . yindk−1,15

yindk+1, . . . yq) | xindi = yindk ∧ rni(x1, . . . xn) ∈ Din
i ∧ rnk(y1, . . . yq) ∈ Din

k } 16

– Difference: For two input datasetDin
i , D

in
k with the same schema rn(x1, . . . xn), 17

compute Dout
j = Din

i \Din
k 18

workers operations : These are elementary tasks performed by workers to mod- 19

ify the datasets computed so far. These operations may perform non-deterministic 20

choices among possible outputs. 21

– Field addition: Given an input dataset Din
i with schema rn(x1, . . . xn), a 22

predicate P (.), compute a dataset Dout
j with schema rn′(x1, . . . xn, xn+1) such 23

that every tuple rn(a1, . . . , an) ∈ Din
i is extended to a tuple rn(a1, . . . , an, an+1) ∈ 24

Dout
j such that P (a1, . . . an+1) holds. Note that the value of field xn+1 can be 25

chosen non-deterministically for each record. 26

– Record input: Given an input dataset Din
i with schema rn(x1, . . . xn), and a 27

predicate P , compute a dataset Dout
j on the same schema rn(x1, . . . xn) with 28

an additional record rn(a1, . . . , an) such that P (a1, . . . , an) holds. Note that 29

the value of fields x1, . . . xn+1 can be non-deterministically chosen. Intuitively, 30

P defines the set of possible entries in a dataset. 31

– Field update: For each record rn(a1 . . . an) ofDin
i , compute a record rn(b1, . . . bn) 32

in Dout
j such that some linear arithmetic predicate P (a1, an, b1, . . . bn) holds. 33

Again, any value for b1, . . . bn that satisfies P can be chosen. 34

Record to record arithmetic operations : For each record rni(a1 . . . an) of 35

Din
i , compute a record in Dout

j of the form rnj(b1, . . . bq) such that each bk, k ∈ 1..q 36

is a linear combination of a1 . . . an. 37

These operations can easily define tasks that split a database Din
1 in two 38

datasets Dout
1 , Dout

2 , one containing records that satisfy some predicate P and 39

the other one records that do not satisfy P . Similarly, one can describe input of 40

record from a worker, operations that assemble datasets originating from different 41

threads... To summarize, when a node n with associated task t with I predecessors 42

is executed, we can slightly abuse our notations and write Dout
k = fk,t(D

in
1 , . . . D

in
I ) 43



when the task performs a deterministic calculus (SQL-based operations or record 1

to record calculus), and Dout
k ∈ Fk,t(D

in
1 , . . . D

in
I ) when the tasks involves non- 2

deterministic choice of a worker. We now give the operational semantics of complex 3

workflows. 4

An execution starts from the initial workflow W0 (the initial high-level descrip- 5

tion provided by a requester). Executing a complex workflow consists in realizing 6

all its tasks following the order given by the dependency relation −→ in the or- 7

chestration, possibly after some refinement steps. At each step of an execution, the 8

remaining part of the workflow to execute, the assignments of tasks to workers and 9

the data input to tasks are memorized in a configuration. Execution steps consist 10

in updating configurations according to operational rules. They assign a task to a 11

competent worker, execute an atomic or automated task (i.e. produce output data 12

from input data), or refine a complex task. Executions end when the remaining 13

workflow to execute contains only the final node nf . 14

A worker assignment for a workflow W = (N,−→, λ) is a partial map wa :N → 15

U that assigns a worker to a subset of nodes in the workflow. Let wa(n) = wi. If λ(n) 16

is a complex task, then there exists a rule r = (λ(n),W ) ∈ R such that (wi, r) ∈ sk 17

(worker wi knows how to refine task λ(n)). Similarly, if λ(n) is an atomic task, 18

then (wi, λ(n)) ∈ sk (worker wi has the competences needed to realize λ(n)). We 19

furthermore require map wa to be injective, i.e. a worker is involved in at most one 20

task. We say that wi ∈ U is free if wi 6∈ wa(N). If wa(n) is not defined, and wi is 21

a free worker, wa ∪ {(n,wi)} is the map that assigns node n to worker wi, and is 22

unchanged for other nodes. Similarly, wa\{n} is the restriction of wa to N \ {n}. 23

A data assignment for a workflow W is a function Dass : N → (DB ] {∅})∗, 24

that maps nodes in W to sequence of input datasets. For a node with k predecessors 25

n1, . . . nk, we have Dass(n) = D1 . . . Dk. A dataset Di can be empty if ni has not 26

been executed yet, and hence has produced no data. Dass(n)[i/X] is the sequence 27

obtained by replacement of Di by X in Dass(n). 28

Definition 6 (Configuration). A configuration of a complex workflow is a triple 29

C = (W,wa,Dass) where W is a workflow depicting remaining tasks that have to 30

be completed, wa is a worker assignment, and Dass is a data assignment. 31

A complex workflow execution starts from the initial configuration 32

C0 = (W0,wa0,Dass0), where wa0 is the empty map, Dass0 associates dataset 33

Din provided by client to ninit and sequences of empty datasets to all other nodes 34

of W0. A final configuration is a configuration Cf = (Wf ,waf ,Dassf ) such that 35

Wf contains only node nf , waf is the empty map, and Dassf (nf ) represents 36

the dataset that was assembled during the execution of all nodes preceding nf 37

and has to be returned to the client. The intuitive understanding of this type of 38

configuration is that nf needs not be executed, and simply terminates the workflow 39

by returning final output data. Note that due to data assignment, there can be more 40

than one final configuration, and we denote by Cf the set of all final configurations. 41

We define the operational semantics of a complex workflow with 4 rules that 42

transform a configuration C = (W,wa,Dass) in a successor configuration C ′ = 43

(W ′,wa′,Dass′). Rule 1 defines task assignments to free workers, Rule 2 defines 44



the execution of an atomic task by a worker, Rule 3 defines the execution of an 1

automated task, and Rule 4 formalizes refinement. We only give an intuitive de- 2

scription of semantic rules and refer reader to appendix A for a formal definition. 3

Rule 1 (Worker Assignment): A worker u ∈ U is assigned to a node n. The 4

rule applies if u is free, has the skills required by t = λ(n), if t is not an automated 5

task (t 6∈ Taut) and if node n is not already assigned to a worker. Note that a worker 6

can be assigned to a node even if it does not have input data yet, and is not yet 7

executable. This rule only changes the worker assignment part in a configuration. 8

Rule 2 (Atomic Task Completion): An atomic task t = λ(n) can be executed 9

if node n is minimal in current workflow W , it is assigned to a worker u = wa(n) 10

and its input data Dass(n) does not contain an empty dataset. Upon completion 11

of task t, worker u publishes the produced data Dout to the succeeding nodes of 12

n in the workflow and becomes available. This rule modifies the workflow part 13

(node n is removed), the worker assignment, and the data assignment (new data 14

is produced and made available to successors of n). 15

Rule 3 (Automated Task Completion): An automated task t = λ(n) can be 16

executed if node n is minimal in the workflow and its input data does not contain 17

an empty dataset. The difference with atomic tasks completion is that n is not 18

assigned a worker, and the produced outputs are a deterministic function of task 19

inputs. This rule modifies the workflow part (node n is removed), and the data 20

assignment. 21

Rule 4 (Complex Task refinement): The refinement of a node n with t = 22

λ(n) ∈ Tcx by worker u = wa(n) uses a refinement rule Rt such that (u, t) ∈ sk, 23

and Rt = (t,Wt). Rule 4 refines node n with workflow Wt = (Ns,−→s, λs) (see 24

Def. 4). Data originally used as input by n become inputs of the source node of 25

Wt. All other newly inserted nodes have empty input datasets. This rule changes 26

the workflow part of configurations and data assignment accordingly. 27

We say that there exists a move from a configuration C to a configuration C ′, or 28

equivalently that C ′ is a successor of configuration C and write C  C ′ whenever 29

there exists a rule that transforms C into C ′. 30

Definition 7 (Run). A run ρ = C0.C1 . . . Ck of a complex workflow is a finite 31

sequence of configurations such that C0 is an initial configuration, and for every 32

i ∈ 1 . . . k, Ci−1  Ci. A run is maximal if Ck has no successor. A maximal run 33

is terminated iff Ck is a final configuration, and it is deadlocked otherwise. 34

In the rest of the paper, we denote by Runs(CW,Din) the set of maximal 35

runs originating from initial configuration C0 = (W0,wa0,Dass0) (where Dass0 36

associates dataset Din to node ninit). We denote by Reach(CW,Din) the set of 37

configurations that can be reached from C0. Along a run, the size of datasets in use 38

can grow, and the size of the workflow can also increase, due to refinement of tasks. 39

Hence, Reach(CW,Din) and Runs(CW,Din) need not be finite. Indeed, complex 40

tasks and their refinement can encode unbounded recursive schemes in which work- 41

flow parts or datasets grow up to arbitrary sizes. Even when Reach(CW,Din) is 42

finite, a complex workflow may exhibit infinite cyclic behaviors. Hence, without 43

restriction, complex workflows define transitions systems of arbitrary size, with 44

growing data or workflow components, and with cycles. 45



In section 5, we give an algorithm to check termination of a complex workflow 1

with bounded recursion. Roughly speaking, this algorithms searches a reachable 2

configuration Cbad in which emptiness of a dataset D could stop an execution. 3

Once such a configuration is met, it remains to show that the statement D = ∅ 4

is compatible with the operations performed by the run (insertion, projections, 5

unions of datasets...) before reaching Cbad. This is done by computing backward 6

the weakest preconditions ensuring D = ∅ along the followed run, and checking 7

that they are satisfiable. Weakest precondition were introduced in [16] as a way to 8

prove correctness of programs. They were used recently to verify web applications 9

with embedded SQL [19]. 10

Definition 8. Let C  C ′ be a move of a complex workflow. Let m be the nature 11

of this move (an automated task realization, a worker assignment, a refinement...). 12

We denote by wp[m]ψ the weakest precondition required for C such that ψ holds 13

in C ′ after move m. 14

Moves create dependencies among input and output datasets of a task, that are 15

captured as FO Properties. Further, the weakest precondition wp[m]ψ of an FO 16

property ψ is also an FO property. 17

Proposition 1. Let CW be a complex workflow, r be the maximal arity of rela- 18

tional schemas in CW and ψ be an FO formula. Then for any move m of CW , 19

wp[m]ψ is an effectively computable FO formula, and is of size in O(r.|ψ|). 20

We refer readers to Appendix B.1 for a proof of Proposition 1. If automated 21

tasks use SQL difference, universal quantifiers can be introduced in the weakest 22

precondition. Interestingly, if automated tasks do not use SQL difference, a weakest 23

precondition is mainly obtained by syntactic replacement of relational statements 24

and by changes of variables. It can increase the number of variables, but it does not 25

change the number of quantifier blocks nor their ordering, and does not introduce 26

new quantifiers when replacing an atom. We hence easily obtain: 27

Corollary 1. The existential, universal, BSR and SF fragments of FO are closed 28

under calculus of a weakest precondition if tasks do not use SQL difference. 29

5 Termination of Complex Workflows 30

Complex workflows use the knowledge and skills of crowd workers to complete a 31

task starting from input data provided by a client. However, a workflow may never 32

reach a final configuration. This can be due to particular data input by workers 33

that cannot be processed properly by the workflow, or to infinite recursive schemes 34

appearing during the execution. 35

Definition 9 (Deadlock, Termination). Let CW be a complex workflow, Din 36

be an initial dataset, Din be a set of datasets. CW terminates existentially on input 37

Din iff there exists a run in Runs(CW,Din) that is terminated. CW terminates 38

universally on input Din iff all runs in Runs(CW,Din) are terminated. Similarly, 39

CW terminates universally on input set Din iff CW terminates universally on 40

every input Din ∈ Din, and CW terminates existentially on Din iff some run of 41

CW terminates for an input Din ∈ Din. 42



When addressing termination for a set of inputs Din, we describe Din sym- 1

bolically with a decidable fragment of FO (∀FO, ∃FO, BSR, or SF-FO). Complex 2

workflows are Turing powerful (we show in Appendix C.1 how to encode a counter 3

machine). So we get : 4

Theorem 1. Existential termination of complex workflows is undecidable. 5

An interesting point is that undecidability does not rely on arguments based 6

on the precise contents of datasets (that are ignored by semantic rules). Indeed, 7

execution of tasks only requires non-empty input datasets. Undecidability holds as 8

soon as higher order operations (semantic rule 4) are used. 9

Universal termination is somehow an easier problem than existential termina- 10

tion. We show in this section that it is indeed decidable for many cases and in 11

particular when the datasets used as inputs of a complex workflow are explicitly 12

given or are specified in a decidable fragment of FO. We proceed in several steps. 13

We first define symbolic configurations, i.e. descriptions of the workflow part of 14

configurations decorated with relational schemas depicting data available as input 15

of tasks. We define a successor relation for symbolic configurations. We then iden- 16

tify the class of non-recursive complex workflows, in which the length of executions 17

is bounded by some value KTcx . We show that for a given finite symbolic executions 18

ρS , and a description of inputs, one can check whether there exists an execution ρ 19

that coincides with ρS . This proof builds on the effectiveness of calculus of weakest 20

preconditions along a particular run (see Prop. 1). Then, showing that a complex 21

workflow does not terminate amounts to proving that it is not recursion-free, or 22

that it has a finite symbolic run which preconditions allow a deadlock. 23

Definition 10 (Symbolic configuration). Let CW = (W0, T ,U , sk,R) be a 24

complex workflow with database schema DB. A symbolic configuration of CW is 25

a triple CS = (W,Ass,DassS) where W = (N,→, λ) is a workflow, Ass : N → U 26

assigns workers to nodes, and DassS : N → (DB)∗ associates a list of relational 27

schemas to nodes of the workflow. 28

Symbolic configuration describe the status of workflow execution as in stan- 29

dard configurations (see def. 6) but leaves the data part underspecified. For every 30

node n that is minimal in W , the meaning of DassS(n) = rs1, . . . rsk is that task 31

attached to node n takes as inputs datasets D1 . . . Dk where each Di conforms 32

to relational schema rsi. For a given symbolic configuration, we can find all rules 33

that apply (there is only a finite number of worker assignments or task executions 34

), and compute successor symbolic configurations. This construction is detailed in 35

Appendix C.2. 36

Definition 11 (Deadlocks, Potential deadlocks). A symbolic configuration 37

CS = (W,Ass,DassS) is final if W consists of a single node nf . It is a dead- 38

lock if it has no successor. It is a potential deadlock iff a task execution can occur 39

from this node, i.e. there exists n,∈ min(W ) such that λ(n) is an automated or 40

atomic task. 41



A deadlocked symbolic configuration represents a situation where progress is 1

blocked due to shortage of competent workers to execute tasks. A potential deadlock 2

is a symbolic configuration CS where empty datasets may stop an execution. This 3

deadlock is potential because DassS does not indicate whether a particular dataset 4

Di is empty. We show in this section that one can decide whether a potential 5

deadlock situation in CS represents a real and reachable deadlock, by considering 6

how the contents of dataset Di is forged along the execution leading to CS . 7

Definition 12 (Symbolic run). A symbolic run is a sequence ρS = CS0
m1−→ 8

CS1
m2−→ . . .

mk−→ CSk where each CSi is a symbolic configuration, Ci+1 is a successor 9

of Ci, and CS0 = (W0, Ass0,DassS) where W0, Ass0 have the same meaning as for 10

configurations, and DassS0 associates to the minimal node n0 in W0 the relational 11

schema of Dass0(n0). 12

One can associate to every execution of a complex workflow ρ = C0
m1−→ 13

C1 . . . Ck a symbolic execution ρS = CS0
m1−→ CS1

m2−→ . . .
mk−→ CSk called its sig- 14

nature by replacing data assignment in each Ci = (Wi, Assi,Dassi) by a function 15

from each node n to the relational schemas of the datasets in Dassi(n). It is not 16

true, however, that every symbolic execution is the signature of an execution of 17

CW , as some moves might not be allowed when a dataset is empty (this can occur 18

for instance when datasets are split, or after a selection). A natural question when 19

considering a symbolic execution ρS is whether it is the signature of an actual run 20

of CW . The proposition below shows that the decidability of this question depends 21

on assumptions on input datasets. 22

Proposition 2. Let CW be a complex workflow, Din be a dataset, Din be an FO 23

formula with nin variables, and ρS = CS0 . . . C
S
i be a symbolic run. If tasks do not 24

use SQL difference, then deciding if there exists a run ρ with input dataset Din and 25

signature ρS is in 2EXPTIME. Checking if there exists a run ρ of CW and an 26

input dataset Din that satisfies Din with signature ρS is undecidable in general. If 27

tasks do not use SQL difference, then it is in 28

– 2EXPTIME if Din is in ∃FO and 3EXPTIME if Din is in ∀FO or BSR-FO. 29

– nin−foldEXPTIME where nin is the size of the formula describing Din if 30

Din is in SF-FO 31

This proposition is proved in Appendix C.3. It does not yet give an algorithm 32

to check termination, as a complex workflows may have an infinite set of runs and 33

runs of unbounded length. However, semantic rules 1,2,3 can be used a bounded 34

number of times from a configuration (they decrease the number of available users 35

or remaining tasks in W ). Unboundedness then comes from the refinement rule 4, 36

that implements recursive rewriting schemes. 37

Definition 13. Let t be a complex task. We denote by Rep(t) the task names that 38

can appear when refining task t, i.e. Rep(t) = {t′ | ∃u,W, (u, t) ∈ sk∧ (t,W ) ∈ R∧ 39

t′ ∈ λ(NW )}. The rewriting graph of a complex workflow CW = (W0, T ,U , sk,R) 40

is the graph RG(CW ) = (Tcx,−→R) where (t1, t2) ∈−→R iff t2 ∈ Rep(t1). Then 41

CW is recursion-free if there is no cycle of RG(CW ) that is accessible from a task 42

appearing in W0. 43



When a complex workflow is not recursion free, then some executions may 1

exhibit infinite behaviors in which some task ti is refined infinitely often. Such an 2

infinite rewriting loop can contain a deadlock. In this case, the complex workflow 3

does not terminate. If this infinite rewriting loop does not contain deadlocks, the 4

complex workflow execution will never reach a final configuration in which all tasks 5

have been executed. Hence, complex workflows that are not recursion-free do not 6

terminate universally (see the proof of Prop. 3 for further explanations). We show 7

in Appendix C.4, Prop. 5 that recursion-freeness is decidable and in O(|T 2
cx|+ |R|). 8

Further, letting d denote the maximal number of complex tasks appearing in a 9

rule, there exists a bound KTcx ≤ d|Tcx| on the size of W in a configuration, 10

and the length of a (symbolic) execution of CW is in O(3.KTcx) (see Prop. 6 in 11

Appendix C.4). We now characterize complex workflows that terminate universally. 12

Proposition 3. A complex workflow terminates universally if and only if: 13

i) it is recursion free, ii) it has no (symbolic) deadlocked execution, 14

iii) there exists no run with signature CS0 . . . C
S
i where CSi is a potential deadlock, 15

with Dk = ∅ for some Dk ∈ Dass(nj) and for some minimal node nj of Wi. 16

Condition i) can be easily verified, as shown in Prop. 5, Appendix C.4. If i) 17

holds, then there is a bound 3.KTcx on the length of all symbolic executions, and 18

checking condition ii) is an exploration of reachable symbolic configurations to 19

find deadlocks. It requires log(3.KTcx).KTcx space, i.e. can be done in EXPTIME 20

(w.r.t. KTcx). Checking condition iii) is more involved. First, it requires finding a 21

potential deadlock, i.e. a reachable symbolic execution CSi with a minimal node nj 22

representing a task to execute. Then one has to check if there exists an actual run 23

ρ = C0 . . . Ci with signature CS0 . . . C
S
i such that one of the input datasets Dk in 24

sequence Dassi(nj) is empty. Let rsj = (rnk, Ak) be the relational schema of Dk, 25

with Aj = {a1, . . . , a|Aj |}. Then, emptiness of Dk can be encoded as a universal FO 26

formula of the form ψi ::= ∀x1, . . . x|Aj |, rnk(x1, . . . x|Aj |) 6∈ Dk. Then all weakest 27

preconditions needed to reach Ci with Dk = ∅ can be computed iteratively, and 28

remain in the universal fragment of FO (see Prop. 1). If a precondition ψj computed 29

this way (at step j < i) is unsatisfiable, then there is no actual run with signature 30

ρS such that Dk is an empty dataset. If one ends weakest precondition calculus 31

on configuration CS0 with a condition ψ0 that is satisfiable, and Din |= ψ0, then 32

such a run exists and iii) does not hold. Similarly with inputs described by Din, if 33

Din ∧ ψ0 is satisfiable, then condition iii) does not hold. Note that this supposes 34

that Din is written in a decidable FO fragment. 35

Theorem 2. Let CW be a complex workflow, in which tasks do not use SQL dif- 36

ference. Let Din be an input dataset, and Din be an FO formula. Universal ter- 37

mination of CW on input Din is in co− 2EXPTIME. Universal termination on 38

inputs that satisfy Din is undecidable in general. It is in 39

– co−2EXPTIME (in K, the length of runs) if Din is in ∀FO, co−3EXPTIME 40

if Din is ∃FO or BSR-FO 41

– co− nin-fold-EXPTIME, where nin = |Din|+ 2K if Din is in SF-FO. 42



One can notice that the algorithm to check universal termination of CWs guesses 1

a path, and is hence non-deterministic. In the worst case, one may have to explore 2

all symbolic executions of size at most 3 ·KTcx . 3

Undecidability of existential termination has several consequences: As complex 4

workflows are Turing complete, automatic verification of properties such as reach- 5

ability, coverability, boundedness of datasets, or more involved properties written 6

in logics such as LTL FO [13] are also undecidable. However, the counter machine 7

encoding in the proof of Theorem 1 uses recursive rewriting schemes. A natural 8

question is then whether existential termination is decidable when all runs have 9

a length bounded by some integer Kmax. Indeed, when such a bound exists it is 10

sufficient to find a terminating witness, i.e. find a signature ρS of size Kmax end- 11

ing on a final configuration non-deterministically, compute weakest preconditions 12

ψ|ρS |, . . . , ψ0 and check their satisfiability. The length of ψ0 is in O(rKmax), and as 13

one has to verify non-emptiness of datasets used as inputs of tasks to allow execu- 14

tion of a run with signature ρS , the preconditions are in the existential fragment 15

of FO, yielding a satisfiability of preconditions in O(2r
Kmax

). 16

Theorem 3. Let CW be complex workflow in which tasks do not use SQL dif- 17

ference, and which runs are of length ≤ Kmax. Let Din be a dataset, and Din a 18

FO formula. One can decide in 2 − EXPTIME (in Kmax) whether CW termi- 19

nates existentially on input Din. If Din is in ∃FO, termination of CW is also in 20

2− EXPTIME. It is in 3− EXPTIME when Din is in ∀FO or BSR-FO 21

Recursion-free CWs have runs of length bounded by 3.KTcx , so existential ter- 22

mination is decidable as soon as automated tasks do not use SQL difference (which 23

makes alternations of quantifiers appear in weakest preconditions). The bound KTcx 24

can be exponential (see proof of Prop. 2), but in practice, refinements are supposed 25

to transform a complex task into an orchestration of simpler subtasks, and one can 26

expect KTcx to be a simple polynomial in the number of complex tasks. Another 27

way to bound recursion in a CW is to limit the number of refinements that can 28

occur during an execution. For instance, if each complex task can be decomposed 29

at most k times, the bound on length of runs becomes Kmax = 3 · k · n2 + 3 · |W0|. 30

6 Correctness of Complex Workflows 31

Complex workflows provide a service to a client, that inputs some data (a dataset 32

Din) to a complex task, and expects some answer, returned as a dataset Dout. A 33

positive answer to a termination question means that the process specified by a 34

complex workflow does not deadlock in some/all executions. Yet, the returned data 35

can still be incorrect. We assume the client sees the crowdsourcing platform as a 36

black box, and simply asks for the realization of a complex task that needs specific 37

competences. However, the client may have requirements on the type of output 38

returned for a particular input. We express this constraint with a FO formula ψin,out 39

relating inputs and outputs, and extend the notions of existential and universal 40

termination to capture the fact that a complex workflow implements client’s needs 41

if some/all runs terminate, and in addition fulfill requirements ψin,out. This is called 42

correctness. 43



Definition 14. A constraint on inputs and outputs is an FO formula 1

ψin,out ::= ψin,outE ∧ ψin,outA ∧ ψin,outAE ∧ ψin,outEA , where 2

– ψin,outE is a conjunction of ∃FO formulas addressing the contents of the in- 3

put/output dataset, of the from ∃x, y, z, rn(x, y, z) ∈ Din ∧ P (x, y, z), where 4

P (.) is a predicate, 5

– ψin,outA is a conjunction of ∀FO formulas constraining all tuples of the in- 6

put/output dataset, of the form ∀x, y, z, rn(x, y, z) ∈ Din ⇒ P (x, y, z) 7

– ψin,outAE is a conjunction of formulas relating the contents of inputs and outputs, 8

of the form ∀x, y, z, rn(x, y, z) ∈ Din ⇒ ∃(u, v, t), ϕ(x, y, z, u, v, t), where ϕ is 9

a predicate. 10

– ψin,outEA is a conjunction of formulas relating the contents of inputs and outputs, 11

of the form ∃x, y, z, rn(x, y, z) ∈ Din,∀(u, v, t), ϕ(x, y, z, u, v, t) 12

The ψAE part of the I/O constraint can be used to require that every record 13

in an input dataset is tagged in the output. The ψEA part can be used to specify 14

that the output is a particular record selected from the input dataset (to require 15

correctness of a workflow that implements a vote). 16

Definition 15 (Correctness). Let CW be a complex workflow, Din be a set of in- 17

put datasets, and ψin,out be a constraint given by a client. A run in Runs(CW,Din) 18

is correct if it ends in a final configuration and returns a dataset Dout such that 19

Din, Dout |= ψin,out. CW is existentially correct with inputs Din iff there exists a 20

correct run Runs(CW,Din) for some Din ∈ Din. CW is universally correct with 21

inputs Din iff all runs in Runs(CW,Din) are correct for every Din∈Din. 22

In general, termination does not guarantee correctness. A terminated run start- 23

ing from an input dataset Din may return a dataset Dout such that pair Din, Dout 24

does not comply with constraint ψin,out imposed by the client. For instance, a run 25

may terminate with an empty dataset while the client required at least one an- 26

swer. Similarly, a client may ask all records in the input dataset to appear with 27

an additional tag in the output. If any input record is missing, the output will be 28

considered as incorrect. As for termination, correctness can be handled through 29

symbolic manipulation of datasets, but has to consider constraints that go beyond 30

emptiness of datasets. Weakest preconditions can be effectively computed (Prop. 1): 31

one derives successive formulas ψin,outi , . . . ψin,out0 between Din, Dout and datasets 32

in use at step i, . . . 0 of a run. However, the ψin,outAE part of formulas is already in an 33

undecidable fragment of FO, so even universal termination is undecidable in gen- 34

eral, and even when a bound on the length of runs is known. It becomes decidable 35

only with some restrictions on the fragment of FO used to write ψin,out. 36

Theorem 4. Existential and universal correctness of CW are undecidable, even 37

when runs are of bounded length K. If tasks do not use SQL difference, and ψin,out 38

is in a decidable fragment of FO, then 39

– existential correctness is decidable for CWs with runs of bounded length, and is 40

respectively in 2EXPTIME, 3EXPTIME and 2K-fold-EXPTIME for the 41

∃FO, ∀FO, BSR, and SF fragments. 42

– universal correctness is decidable and is respectively in co − 2EXPTIME, 43

co− 3EXPTIME and co-2K-fold-EXPTIME for the ∀FO, ∃FO, BSR, and 44

SF fragments. 45



Proof (Sketch). First, a CW that does not terminate (existentially or universally) 1

cannot be correct, and setting ψin,out ::= true we get a termination question. 2

So existential correctness is undecidable for any class of input/output constraint. 3

Then, if ψin,out is in a decidable fragment of FO, and operations do not use SQL 4

difference, then weakest preconditions preserve this fragment, and we can apply 5

the algorithm used for Thm. 2 and 3, starting from precondition ψ|ρS | = ψin,out.ut 6

Restricting constraints to ∃FO, ∀FO, BSR, or SF-FO can be seen as a limi- 7

tation. However, ∃FO can already express non-emptiness properties: ∃x1, . . . ,∃xk, 8

rn(x1, . . . , xk) ∈ Dout says that the output should contain at least one record. Now, 9

to impose that every input is processed correctly, one needs a formula of the form 10

ψvalidin,out ::= ∀x1, . . . , xk, rn(x1, . . . xk) ∈ Din =⇒ ∃y1, . . . , yq, rn(x1, . . . xk, y1, . . . yq) ∈ 11

Dout∧P (x1, . . . xk, y1, . . . yq), that asks that every input in Din appears in the out- 12

put, and P () describes correct outputs. Clearly, ψvalidin,out is not in the separated frag- 13

ment of FO. We can decide correctness for formulas ψin,outAE of the form ∀
−→
X1∃

−→
Y2 , ϕ 14

as soon as every atom in ϕ that is not separated contains only existential variables 15

that take values from a finite domain. Then ψin,outAE can be transformed into an 16

∀FO formula which matrix is a boolean combination of separated atoms. 17

7 Conclusion 18

We have proposed complex workflows, a model for crowdsourcing applications which 19

enables intricate data centric processes built on higher order schemes. We studied 20

termination and correctness of complex workflows w.r.t. requirement on inputs and 21

output of the overall process. Unsurprisingly, termination of a complex workflow 22

is undecidable, already due to the control part of the model. Now the question 23

of whether all runs terminate can be answered when the initial data is specified 24

in a fragment of FO for which satisfiability is decidable. Similar remarks apply to 25

correctness. Table 1 below summarizes the complexities of termination and correct- 26

ness for static complex workflows (without higher order answer) or with bounded 27

recursion, and for generic workflows with higher order. We consider complexity 28

of termination and correctness for different decidable FO fragments. The (co)- 29

2EXPTIME bound for the fragments with the lowest complexity mainly comes 30

from the exponential size of the formula depicting preconditions that must hold at 31

initial configuration (the EXPTIME complexity is in the maximal length of runs). 32

This can be see as an untractable complexity, but one can however expect depth 33

of recursion to be quite low, or even enforce such a depth. 34

Several questions remain open: So far, we do not know whether the complex- 35

ity bounds are sharp. Beyond complexity issues, crowdsourcing relies heavily on 36

incentives to make sure that a task progresses. Placing appropriate incentives to 37

optimize the overall cost of a complex workflow and ensure progress in an im- 38

portant topic. Similarly, a crux in crowdsourcing is monitoring, in particular to 39

propose tasks to the most competent workers. Cost optimization and monitoring 40

can be addressed as a kind of quantitative game. Other research directions deal 41

with the representation and management of imprecision. So far, there is no mea- 42

sure of trust nor plausibility on values input by workers during a complex workflow 43



execution. Equipping domains with such measures is a way to provide control tech- 1

niques targeting improvement of trust in answers returned by a complex workflow, 2

and trade-offs between performance and accuracy of answers. 3

Workflow
Type

FO
Fragment

(for Din or ψin,out)

Problems & Complexity (no SQL diff.)
Existential

Termination
Universal

Termination
Existential
Correctness

Universal
Correctness

Static,
Recursive
Bounded

FO Undecidable Undecidable Undecidable Undecidable
∃∗(∀∗ if univ. PB) 2EXPT co− 2EXPT 2EXPT co− 2EXP

BSR,∀∗(∃∗ if univ. PB) 3EXPT co− 3EXPT 3EXPT co− 3EXPT
SF nin−foldEXPT co− nin-fold-EXPT 2KTcx -fold-EXPT co-2KTcx -fold-EXPT

Recursive
Unbounded

FO Undecidable Undecidable Undecidable Undecidable
∃∗(∀∗ if univ. PB) Undecidable co− 2EXPT Undecidable co− 2EXPT

BSR,∀∗(∃∗ if univ. PB) Undecidable co− 3EXPT (K) Undecidable co− 3EXPT
SF Undecidable co− nin−foldEXPT Undecidable co-2KTcx -fold-EXPT

Table 1. Complexity of Termination and Correctness (EXPT stands for EXPTIME).
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Fig. 3. Application of semantic rule R1

A Appendix : Operational semantics of Complex Workflows 1

This appendix provides details on the operational semantics of complex workflows, 2

the definition of the successor relation among symbolic configurations and the 3

proofs of all theorems and propositions in the paper. All illustrations of seman- 4

tics rules borrow examples from the SPIPOLL initiative [6]. 5

A.1 Operational semantics 6

Rule 1 (Worker Assignment): A worker u ∈ U is assigned a task t = λ(n) 7

such that t 6∈ Taut. The rule applies if u is free and has the skills required by t, and 8

if node n is not already assigned to a worker. Note that a task can be assigned to 9

a worker even if it does not have input data yet, and is not yet executable. 10

n 6∈ Dom(wa) ∧ u 6∈ coDom(wa) ∧ λ(n) 6∈ Taut
∧ ((u, λ(n)) ∈ sk ∨ (u, r = (λ(n),Wr)) ∈ sk)

(W,wa,Dass)→ (W,wa ∪ {(n, u)},Dass)
(1)

Consider for instance the application of rule R1 described in Figure 3. Config- 11

urations are represented by the contents of dashed rectangles. Workflow nodes are 12

represented by circles, tagged with a task name representing map λ. The depen- 13

dencies are represented by plain arrows between nodes. Worker assignments are 14

represented by dashed arrows from a worker name ui to its assigned task. Data 15

assignment are represented by double arrows from a dataset to a node. The left 16

part of Figure 3 represents a configuration C with four nodes n1, n2, n3 and nf . 17

The predecessors of n1 and n2 have been executed. Node n1 represents occurrence 18

of a task of type t1 and is attached dataset D1. Let us assume that D1 is a database 19

containing bee pictures, and that task t1 cannot be automated (t1 6∈ Taut) and con- 20

sists in tagging these pictures with bee names, which requires competences on bee 21

species. Let us assume that worker Smith is currently not assigned any task and 22

has competences on bees. Then (Smith, t1) ∈ sk and rule R1 applies. The resulting 23

configuration is configuration C ′ at the right of Figure 3, where the occurrence of 24

t1 represented by node n1 is assigned to worker Smith. 25



Rule 2 (Atomic Task Completion): An atomic task t = λ(n) ∈ Tac can be 1

executed if node n is minimal in the workflow, it is assigned to a worker u = wa(n) 2

and its input data Dass(n) does not contain an empty dataset. Upon completion 3

of task t, worker u publishes the produced data Dout to the succeeding nodes of n 4

in the workflow and becomes available. 5

n ∈ min(W ) ∧ λ(n) ∈ Tac ∧wa(n) = u
∧Dass(n) 6∈ DB∗.∅.DB∗
∧ ∃Dout = Dout

1 . . . Dout
k ∈ Fλ(n),u(Dass(n)),

Dass′ = Dass \ {(n,Dass(n))}∪
{(nk,Dass(nk)[j/Dout

k ]) | nk ∈ succ(n)

∧n is the jth predecessor of nk}

(W,wa,Dass)
λ(n)−−−→ (W \{n},wa\{(n, u)},Dass′)

(2)
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Fig. 4. Application of semantic rule R2

Consider the example of Figure 4. We start from a configuration in which worker 6

Smith has to tag bee images stored in a dataset D1. We assume that the relational 7

schema for D1 is a tuple R(id, pic) where id is a key and pic a picture. We also 8

assume that tags are species names from a finite set of taxons, e.g. 9

Tax = {Honeybee,Bumblebee,Masonbee, ..., Unknown}. Worker Smith performs 10

the tagging task, which results in a datasetD3 with relational schemaR′(id, pic, tag). 11

One can notice that no information is given of the way worker Smith tags the pic- 12

tures in D1, the only insurance is that for every tuple R(id, pic), there exists a 13

tuple R′(id, pic, tx) in D3 where tx ∈ Tax. Notice that application of this rule 14

may results in several successor configurations, as a human worker can choose non- 15

deterministically any tag for each picture (including wrong answers). 16



Rule 3 (Automated Task Completion): An automated task t = λ(n) ∈ Taut 1

can be executed if node n is minimal in the workflow and its input data does 2

not contain an empty dataset. The difference with atomic tasks completion is that 3

t ∈ Taut, n is not assigned a worker, and that the produced outputs are deterministic 4

functions of task inputs. 5

n∈min(W ) ∧ λ(n) ∈ Taut ∧Dass(n) 6∈ DB∗.∅.DB∗

∧Dout = fλ(n),u(Dass(n)) = Dout
1 . . . Dout

k ,
Dass′ = Dass \ {(n,Dass(n))}∪

{(nk,Dass(nk)[j/Dout
k ]) | nk ∈ succ(n)

∧n is the jth predecessor of nk}

(W,wa,Dass)
λ(n)−−−→ (W \n,wa,Dass′)

(3)
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Consider the example of Figure 5. We resume from the situation in Figure 4, 6

i.e. with two nodes n2, n3 remaining to be executed before nf , and with a dataset 7

composed of tagged images attached to node n3. Let us assume that task t3 is 8

an automated task that consists in pruning out images with tag ”unknown”. This 9

task can be realized as a projection of D3 of tuples R′(id, pic, tx) such that tx 6= 10

”Unknown”. As a result, we obtain a dataset D4, used as input by node nf such 11

that ∀R′(id, pic, tx) ∈ D4, tx 6= ”unknown” , This task can be realized by simple 12

SQL query. 13

Rule 4 (Complex Task refinement): The refinement of a node n with t = 14

λ(n) ∈ Tcx by worker u = wa(n) replaces node n by a workflow Ws = (Ns,−→s, λs) 15

if a rule R = (t,Ws) exists and is listed in the competences of u. Data originally 16

accepted as input by n are now accepted as input by the source node of Ws. All 17

newly inserted nodes have empty input datasets. 18



t = λ(n) ∈ Tcx ∧ ∃u, u = wa(n) ∧ (u,R) ∈ sk ∧R = (t,WS)
∧Dass′(min(Ws)) = Dass(n)
∧∀x ∈ Ns \min(Ws),Dass′(x) = ∅|Pred(x)|
∧wa′ = wa\{(n,wa(n))}

(W,wa,Dass)
ref(n)−−−−→ (W[n/Ws],wa′,Dass′)

(4)
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Consider the example of Figure 6. Let us assume that worker ”Smith” is assigned 1

task t1 and that this task is a complex tagging task (for instance workers are asked 2

to find names of rare species). In such situation, Smith can decide to replace the task 3

by a simple single-worker tagging mechanism, or by a more complex workflow, that 4

asks a competent worker to tag pictures, then separates the obtained datasets into 5

pictures with/without tag ”Unknown”, and sends the unknown species to an expert 6

( for instance an entomologist) before aggregating the union of all responses. This 7

refinement lead to a configuration C ′, shown in the right part of Figure 6, where n′1 8

is a tagging task, n′2 is an automated task to split a dataset, n′3 is a tagging tasks 9

which requires highly competent workers and n′4 is an aggregation task. Note that 10

conditions for worker assignment guarantee that refinement is always performed by 11

a competent worker, owning an appropriate refinement rule to handle a task. 12

Note that the definition of a complex task is very subjective and varies from 13

one worker to another. Classifying tasks as complex or not a priori should not 14

be seen as a limitation, as refinement is not mandatory: a worker can replace a 15

node n labeled by task t ∈ Tcx by a another node labeled by an equivalent task 16

t′ ∈ Tac∪Taut if this possibility is allowed by the rules she can apply. This allows to 17

model situations where a worker has the choice to realize a task or refine it when 18

she thinks it is too complex to be handled by a single person. 19

Runs of a complex workflow are successive rewritings of configurations via rules. 20

Figure 7 gives an example of run. The top-left part of the figure is an initial con- 21



figuration C0 = (W0,wa0,Dass0) composed of an initial workflow W0, an empty 1

map wa0 and a map Dass0 that associates dataset Din to node ni. The top-right 2

part of the figure represents the configuration C1 = (W1,wa1,Dass1) obtained by 3

assigning worker u1 for execution of task t2 attached to node n2 (Rule 1). The 4

bottom part of the Figure represents the configuration C2 obtained from C1 when 5

worker u1 decides to refine task t2 according refinement rule (t2,Wt2,1) (Rule 4). 6

Workflow Wt2,1 is the part of the Figure contained in the Grey square. 7
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Fig. 7. Complex workflow execution. C0 represents the initial configuration with data
Din allocated to node ni. C1 is the successor of C0: worker u1 is allocated to node n2,
and t2 = λ(n2) is a complex task. C3 depicts the configuration after refinement of node
n2 by a new workflow Wt2 (shown in the Grey rectangle).

A.2 A non-terminating Complex Workflow 8

Let us show on an example why complex workflow may not terminate. Consider 9

a simple linear workflow composed of three nodes : ni, nf , n1 where n1 is at- 10

tached task λ(n1) = t1 such that −→= {(ni, n1), (n1, nf )}. Let us assume that 11

our system has a single worker u1, and that this worker has the right to use rule 12



rewrite1 = (t1,Wt1) where Wt1 is a workflow with three nodes w1, w2, wf , such 1

that λ(w1) = t2 and λ(w2) = t1 and where −→= {(w1, w2), (w1, wf )}. Then, after 2

application of semantic rule R1 (assigning worker u1 to the node that carries task 3

t1) and semantic rule R4 (replacing via rewriting rule rewrite1 task t1 by Wt1), 4

one obtains a larger workflow that still contains an occurrence of task t1. One can 5

repeat these steps an arbitrary number of times, leading to configurations which 6

workflow parts are growing sequences of nodes labeled by sequences of task occur- 7

rences of the form λ(ni).t
k
2 .t1.λ(wf )k.λ(nf ). In this recursive scheme, the workflow 8

part of configurations obviously grows. Moreover, but one can easily modify this 9

example to exhibit complex workflows with unbounded recursive schemes where 10

the data part of configurations grows unboundedly (for instance if t2 is a task that 11

adds records to some dataset). 12

B Proofs for FO 13

Proposition 4. Let X be a set of variables of the form X = Xb ]Xr where vari- 14

ables from Xb take values from finite domains and variables from Xr take values in 15

R. Then, satisfiability of formulas of the form φ ::= ∃
−→
X .

∧
i∈1..I

Ri(X)∧
∧

j∈1..J
Pj(X) 16

is NP-complete. 17

Proof. Let us first show that the problem belongs to NP . Let us consider an ex- 18

istential formula φ ::= ∃
−→
X ,ψ where ψ contains positive relational statements of 19

the form φR+ ::= R1(X), . . . Rk(X), and negative relational statements of the form 20

φR− ::= ¬R1(X), . . .¬Rk′(X), and predicates of the form P1(X), . . . PJ(X). For 21

each Ri(x1, . . . , xq) in φR+, with relational schema rni and legal domain Domi, 22

we define Ldomi as the constraint (x1, . . . xq) ∈ Domi. One can choose nondeter- 23

ministically in polynomial time a value dx for each bounded variable x in Xb, and 24

obtain a formula where only real variables appear by substitution of these variables 25

by their value. 26

Then one can choose non-deterministically which relational statements and 27

predicate hold, by guessing a truth value vj ∈ {true, false} for each relation 28

Ri ∈ 1..I (Resp. predicate Pj , j ∈ 1..J). Now, for each pair of choices where 29

rn(x1, . . . xq) holds and rn(x′1, . . . x
′
q) does not, we verify that the designed tu- 30

ples are disjoint, i.e. that ¬(x1 = x′1 ∧ · · · ∧ xq = x′q). We call φRxR the for- 31

mula that is the conjunction of such negations. The size of φRxR is in O(r.|φ2|) 32

where r is the maximal arity in a relational schema of the complex workflow. 33

We can then verify that the guess of truth value for atoms yields satisfaction 34

of φ, i.e. check that φ′[Ri,Pj/true,false,vj ]
evaluates to true. In case of positive an- 35

swer, it suffices to check that with the truth value choosen for atoms, the formula 36

φRxR ∧
∧

i∈1..k
Ldomi ∧

∧
vi=true

Pi ∧
∧

vi=false

¬Pi is satisfiable, i.e. that one can find an 37

assignment for the real variables that are not yet valuated, which can be done in 38

polynomial time. Now, for the hardness proof, one can easily encode a SAT problem 39

with an FO formula over boolean variables. Checking satisfiability of a universally 40



quantified formula can be done in co−NP in the same way, as ∀Xφ is satisfiable 1

iff ∃X,¬φ is not. ut 2

B.1 Proof of Proposition 1: 3

Proposition 1: Let CW be a complex workflow, r be the maximal arity of relational 4

schemas in CW and ψ be an FO formula. Then for any move m of CW , wp[m]ψ 5

is an effectively computable FO formula, and is of size in O(r.|ψ|). 6

Proof (Sketch). The effect of moves on the contents of datasets can be described 7

as sequential composition of basic operations that are projections of datasets, se- 8

lections, insertions of records or fields, differences, unions or joins of dataset. We 9

first show that these basic dataset transformations allow for computation of a 10

weakest precondition, and then show on a particular move (selection of records, 11

Lemma 1) application of these basic properties. We do not detail all technical lem- 12

mas in this appendix, but they are rather straightforward, and will appear in an 13

extended version of this work. Let D1, . . . Dk be the datasets that appear in ψ. If 14

some Di is obtained as a selection of records from a dataset D′i, then Di contains 15

only records of D′i satisfying some predicate P . The precondition will hence be 16

obtained by a simple replacement in ψ of any statement of the form rn(
−→
X ) ∈ Di 17

by rn(
−→
X ) ∈ Di ∧ P (

−→
X ). 18

If Di is obtained after insertion of a fresh record in some dataset D′i then every 19

statement rn(
−→
X ) ∈ Di can be replaced by a subformula (rn(

−→
X ) ∈ D′i∨Domi(

−→
X )) 20

where Domi(
−→
X ) represents constraints on legal values of inputs in a dataset with 21

the same relational schema as Di. Note that Domi(
−→
X ) is a quantifier free boolean 22

combination of predicates. 23

Similarly, if some dataset Di is obtained as the union of two datasets D1, D2, 24

the precondition for ψ should consider that tuples that satisfy rn(
−→
X ) ∈ Di belong 25

to D1 or D2. We simply replace atoms of the form rs(
−→
X ) ∈ Di by the disjunction 26

rn(
−→
X ) ∈ D1 ∨ rn(

−→
X ) ∈ D2. We also replace negative statements rn(

−→
X ) 6∈ Di by 27

conjunction rn(
−→
X ) 6∈ D1∧rn(

−→
X ) 6∈ D2. The size of the obtained formula is hence 28

in O(2.|ψ|). 29

If some Di is obtained by creation of a new field for each record in dataset D′i, 30

then relational statement rn(
−→
X ) ∈ Di is replaced by another statement rn(

−→
Y ) ∈ 31

D′i ∧ P ′(
−→
Y ) where

−→
Y is a subset of

−→
X , and P ′(

−→
Y ) is a quantifier free predicate 32

indicating constraint on
−→
Y obtained after variable elimination when

−→
X takes 33

legal values imposed by relational schema of Di (i.e. it satisfies Ldomi –see proof 34

of Proposition 4–) and satisfies the constraints of relational schema of D′i. As we 35

assume that arithmetic predicates are simple (two-dimensional) inequalities, the 36

size of P ′ is not larger than that of Ldomi. The weakest precondition can hence 37

double the number of atoms, but keeps the same bound on the number of variables 38

used. 39



For (binary) joins, relation of the form rs(
−→
X i) are transformed in statements 1

of the form rs(
−→
Yi ) ∧ rs(

−→
Zi ) ∧ y1 = z1, where y1 ∈

−→
Yi and z1 ∈

−→
Zi . As every 2

relational statement can be replaced and hence create new variables, this calculus 3

of a weakest precondition may give a formula of size in O(2.|ψ|). 4

Last, if some Di is a projection of some dataset D′i on a subset of its field, then 5

the weakest precondition for ψ may multiply the number of variables in use by r, 6

whence giving a formula of size in O(r.|ψ|). 7

We rely on technical lemmas that detail the construction of a weakest precon- 8

dition for each particular type of move. 9

B.2 A technical lemma for weakest precondition 10

The computation of weakest precondition can be effectively performed for every 11

type of task (automated execution of SQL requests, inserttion/creation/deletion 12

of answers by workers, refinement,...). We give below an example of weakest pre- 13

condition calculus for a task that performs a selection of records that satisfy some 14

predicate in a dataset. For all other types of actions, computing a weakest precon- 15

dition follows the same lines. For conciseness, we do not detail all of them. The 16

whole set of lemma for each type of action is considered in an extended version of 17

this work. 18

Lemma 1 (Weakest precondition for Selection of records). Let ϕ be a FO 19

formula, and mv be a move that selects records that satisfy a predicate P from 20

datasets. Then one can effectively compute an FO formula ψ = wp[mv]ϕ. Moreover, 21

if ϕ is in ∀FO (resp. ∃FO, BSR, SF) and P is an arithmetic/boolean predicate then 22

ψ is also in ∀FO (resp. ∃FO, BSR, SF). 23

Proof. Let D′1, . . . D
′
j , . . . D

′
k |= ϕ, and let D′j be a dataset with relational schema 24

rs = (rn,A) obtained by selection of records from an input dataset Di with rela- 25

tional schema rs(rn,A). One can notice that selection keeps the same relational 26

schema, and in particular the same set of attributes A = (a1, . . . ak). We will as- 27

sume that selected records are records that satisfy some predicate P (v1, . . . vk) 28

that constrain the values of a record (but do not address properties of two or 29

more records of Di). That is, the records selected from Di by P are records 30

that satisfy ψsel = ∃v1, . . . vk, rn(v1, . . . vp) ∧ P (v1, . . . , vk). We want to compute 31

ψ = wp[Selection(ψsel)] ϕ. 32

Formula ϕ is a formula of the form α(
−→
X ).φ, where α(

−→
X ) is a prefix. It con-

tains Krn subformulas of the form rn(wi, . . . wi+k) or ¬rn(wi, . . . , wi+k) and we
assume without loss of generality that these subformulas are over disjoint sets of
variables (one can add new variables and equalities if this is not the case). Let
φrn,1, . . . φrn,Krn be the subformulas of φ addressing tuples with relational schema
rs. For i ∈ 1..Krn, we let φPrn,i denote the formula rn(wi, . . . wi+k)∧P (wi, . . . wi+k)
if φrn,i is in positive form and ¬(rn(wi, . . . wi+k) ∧ P (wi, . . . wi+k)) otherwise. Let
us denote by φ[{ϕrn,i}|{ϕP

rn,i}] the formula φ where every φrn,i is replaced by φPrn,i.



The weakest precondition on D′1, . . . Di, . . . , D
′
k for a selection operation with pred-

icate P is defined as

ψ = wp[Selection(ψsel)]ϕ = α(
−→
X ).φ[{phirn,i}|{phiPrn,i}]

Last, one can notice that transforming α(
−→
X ).φ into α(

−→
X ).φ[{phirn,i}|{phiPrn,i}] 1

does not introduce new variables, and preserve the prefix of the formula. As ϕ and 2

ψ start with the same prefix α(
−→
X ), we can claim that ϕ and ψ are in the same 3

fragment of FO. ut 4

One can notice that this weakest precondition is a rather syntactic transforma- 5

tion, that replaces atoms of the form rn(x1, . . . xk) by rn(x1, . . . xk)∧P (x1, . . . xk). 6

If x1, . . . , xk are all existentially quantified variables (resp. all universally quanti- 7

fied variables in ϕ, then they remain existentially (resp universally quantified) in 8

ψ. Hence, if ϕ is in ∃FO,∀FO,BSR, SF-FO then so is wp[Selection(ψsel)]ϕ. The 9

same remark applies to all other types of moves (we do not give proofs for each 10

move here, but they follow the same line as for selection, and will be available in 11

an extended version of this work). 12

C Appendix : proofs for termination 13

C.1 Proof of Theorem 1 14

Theorem 1 Existential termination of complex workflows is an undecidable prob- 15

lem. 16

Proof. The proof is done by reduction from the halting problem of two counter 17

machines to termination of complex workflows. A 2-counter machine (2CM) is a 18

tuple 〈Q, c1, c2, I, q0, qf 〉 where: 19

– Q is a finite set of states. 20

– q0 ∈ Q is the initial state, qf ∈ Q is a particular state called the final state. 21

– c1, c2 are two counters holding non-negative integers. 22

– I = I1 ∪ I2 is a set of instructions. Instructions in I1 are of the form instq = 23

inc(q, cl, q
′), depicting the fact that the machine is in state q, increases the 24

value of counter cl by 1, and moves to a new state q′. Instructions in I2 are 25

of the form instq = dec(q, cl, q
′, q′′), depicting the fact that the machine is in 26

state q, if cl == 0, the machine moves to new state q′ without making any 27

change in the value of counter cl, and otherwise, decrements the counter cl and 28

moves to state q′′. We consider deterministic machines, i.e. there is at most 29

one instruction instq per state in I1 ∪ I2. At any instant, the machine is in a 30

configuration C = (q, v1, v2) where q is the current state, v1 the value of counter 31

c1 and v2 the value of counter c2. The machine executes instructions from its 32

current configuration, and stops as soon as it reaches state qf . 33



From a given configuration C = (q, v1, v2), a machine can only execute instruc- 1

tion instq, and hence the next configuration ∆(C) of the machine is also unique. 2

A run of a two counters machine is a sequence of configurations ρ = C0.C1 . . . Ck 3

such that Ci = ∆(Ci−1). The halting problem is defined as follows: given a 2-CM, 4

an initial configuration C0 = (q0, 0, 0), decide whether a run of the machine reaches 5

some configuration (qf , n1, n2), where qf is the final state and n1, n2 are arbitrary 6

values of the counter. It is well known that this halting problem is undecidable. 7

Let us now show how to encode a counter machine with complex workflows. 8

– We consider a dataset D with relational schema rs = (R, {k, cname}) where 9

k is a unique identifier, and cname ∈ Cnt1, Cnt2,⊥. Clearly, we can encode 10

the value of counter cx with the cardinal of {(k, n) ∈ D | n = Cntx}. We start 11

from a configuration where the dataset contains a single record R(0,⊥) 12

– For every instruction of the form inc(q, cx, q
′) we create a task tq, and a work- 13

flow W inc
q , and a worker uq, who is the only worker allowed to execute these 14

tasks. The only operation that uq can do is refine tq with workflow W inc
q . W inc

q 15

has two nodes nincq and nq′ such that (nincq , nq′) ∈−→, λ(nincq ) = tincq and 16

λ(nq′) = tq′ . Task tincq is an atomic task that adds one record of the form 17

(k′, Cntx) to the dataset. Hence, after executing tasks tq and tincq , the number 18

of occurrences of Cntx has increased by one. 19

– For every instruction of the form dec(q, cx, q
′, q′′), we create a complex task tq 20

and a worker uq who can choose to refine tq according to rule (tq,Wq,Z) or rule 21

(tq, ,Wq,NZ). The choice of one workflow or another will simulate the decision 22

to perform a zero test or a non-zero test. Note that as the choice of a particular 23

rule to replace a task workflow is non-deterministic, worker uq can choose one 24

or the other. 25

– Let us now detail the contents of Wq,NZ , represented in Figure 8. This workflow 26

is composed of nodes ndivq , nCx
q , nCx̄∪⊥

q , n⊗q , n
dec
q and nq′′ , respectively labeled by 27

tasks tdivq , tCx
q , tCx̄∪⊥

q , t⊗q , tdecq and tq′′ . The dependence relation in Wq,NZ con- 28

tains pairs (ndivq , nCx
q ), (ndivq , nCx̄∪⊥

q ), (nCx
q , n⊗q ), (nCx̄∪⊥

q , n⊗q ), (n⊗q , n
dec
q ) and 29

(ndecq , nq′). The role of tdivq is to split Dass(ndivq ) into disjoint parts: the first 30

one contains records of the form R(k,Cx) and the second part consists of all 31

other remaining records. Tasks tCx
q and tCx̄∪⊥

q simply forward their inputs, and 32

task t⊗q computes the union of its inputs. Note however that if one of the inputs 33

is empty, the task cannot be executed. Then, task tdecq deletes one record of 34

the form R(k,Cx). Hence, if Dq = Dass(nq) is a dataset that contains at least 35

one record of the from R(k,Cx), the execution of all tasks in Wq,NZ leaves the 36

system in a configuration with a minimal node nq′′ labeled by task tq′′ , and 37

with Dass(nq′) = Dq \R(k,Cx) 38

– Let us now detail the contents of Wq,Z . This workflow is composed of nodes 39

ndivq ,nCx∪⊥
q , nidq , nbtestq , ndoneq , nq′ respectively labeled by tasks tdivq ,tCx∪⊥

q , tidq , 40

tbtestq , tdoneq , t′q. The flow relation if given by pairs (ndivq , nCx∪⊥
q ), (ndivq , nidq ) 41

(nCx∪⊥
q , nbtestq )(nbtestq , ndoneq ) and (nidq , n

done
q ). The role of task tdivq is to project 42

its input dataset on records with cname = Cx or cname = ⊥, and forwards 43

the obtained dataset to node nCx∪⊥
q . On the other hand, it creates a copy of 44



the input dataset and forwards it to node nidq . The role of task tCx∪⊥
q is to 1

perform a boolean query that returns {true} if the dataset contains a record 2

R(k,Cx) and {false} otherwise, and forwards the result to node nbtestq . Task 3

tbtestq selects records with value {false} (it hence returns an empty dataset as 4

the result of the boolean test was {true}). Task tidq forwards its input to node 5

ndoneq . Task tdoneq received input datasets from nbtestq and nidq and forwards 6

the input from nidq to node nq′′ . One can immediately see that if the dataset 7

input to ndivq contains an occurrence of Cx then one of the inputs to ndoneq 8

is empty and hence the workflow deadlocks. Conversely, if this input contains 9

no occurrence of Cx, then this workflows reached a configuration with a single 10

node nq′′ labeled by task tq′′ , and with the same input dataset as nq. 11

One can see that for every run ρ = C0 . . . Ck of the two counter machine, where 12

Ck = (q, v1, v2) there exists a single non-deadlocked run of the complex workflow, 13

that terminates of configuration (W,wa,Dass) where W consists of a single node 14

nq labeled by task tq, and such that Dass(nq) contains v1 occurrences of records 15

of the form R(k,C1) and v2 occurrences of records of the form R(k,C2). Hence, 16

a two counter machine terminates in a configuration (qf , v1, v2) iff the only non- 17

deadlocked run of the complex workflow that encodes the two counter machine 18

reaches a final configuration. 19

ndiv
qtdivq

nCx
q tCx

qnCx̄∪⊥
q tCx̄∪⊥

q

n⊗qt⊗q

ndec
qtdecq

nq′′tq′′

Wq,NZ
Wq,Z

ndiv
qtdivq

nCx∪⊥
q tCx∪⊥

q nid
q tidq

nbtest
q tbtestq

ndone
q tdone

q

nq′ tq′

Fig. 8. Encoding of Non-zero test followed by decrement (left), and Zero Test followed by
state change (right).



C.2 Successor relation among symbolic configurations 1

From a symbolic configuration, that does not describe the exact contents of datasets 2

in use, we can compute the effects of application of a particular rule, i.e. compute 3

symbolic descriptions of configurations that appear after a move. A symbolic con- 4

figuration CSj = (Wj ,waj , Dass
S
j ) is the successor of a symbolic configuration 5

CSi = (Wi,wai, Dass
S
i ) iff one of the following situation holds: 6

– there exists a worker u ∈ U and a node n ∈ Wi such that wa−1i (u) = ∅, 7

wai(n) = ∅, ∃(u, λ(n)) ∈ sk or (u, r) = (λ(n),Wt)) ∈ sk, and Wj = Wi, 8

DassS = DassS and waj = wai ] {(n, u)}. 9

– there exists n ∈ min(Wi) such that t = λ(n) is an automated task manipulating 10

datasets D1, . . . Dq, n has k successors n1, . . . nk, Wj = Wi\{n}, DassS assigns 11

to each successor nj , j ∈ 1..k the relational schema rsoutj , and waj = wai. 12

– there exists n ∈ min(Wi) such that t = λ(n) is an atomic task manipulating 13

datasets D1, . . . Dq, with and n has k successors n1, . . . nk, Wj = Wi \ {n}, 14

DassS assigns to each successor nj , j ∈ 1..k the relational schema rsoutj , and 15

waj = wai \ {(n,wai(n))}. 16

– there exists n ∈ Wi, λ(n) is a complex task, and wa(n) = u, Wj is the 17

workflow obtained by replacement of n in Wi by a workflow Wnew such that 18

r = (λ(n),Wnew) ∈ R , and (u, r) ∈ sk. DassS assigns to the copy of minimal 19

node nj of Wnew the relational schemas in DassSi (n), and waj = wai\{(n, u)}. 20

C.3 Proof of Proposition 2 21

Proposition 2: Let CW be a complex workflow, Din be a dataset, Din be an FO 22

formula with nin variables, and ρS = CS0 . . . C
S
i be a symbolic run. If tasks do not 23

use SQL difference, then deciding if there exists a run ρ with input dataset Din and 24

signature ρS is in 2EXPTIME. Checking if there exists a run ρ of CW and an 25

input dataset Din that satisfies Din with signature ρS is undecidable in general. If 26

tasks do not use SQL difference, then it is in 27

– 2EXPTIME if Din is in ∃FO and 3EXPTIME if Din is in ∀FO or BSR-FO. 28

– nin−foldEXPTIME where nin is the size of the formula describing Din if 29

Din is in SF-FO 30

Proof. We have to check feasibility of ρS , that is starting from CSi , check that all 31

conditions met along a run with signature ρS to reach a configuration Ci com- 32

patible with CSi are met at each step, and allow for existence of configurations 33

C0, C1, . . . Ci−1. First notice that the actual run with signature ρS performs the 34

same sequence of moves as in ρS , and that the question of existence of a run ρ with 35

signature ρS only needs to verify satisfiability of constraints on data computed at 36

each step of this run, not the sequence of moves along ρ. Second, one can notice 37

that if ρS contains a deadlock, it is necessarily the last symbolic configuration of 38

the run, as for every symbolic configuration from CS0 up to CSi−1 we are able to 39

find a successor configuration. So one needs not check existence of a deadlock sep- 40

arately when checking feasibility of ρS , and we mainly have to check for emptiness 41



of datasets for configurations that are potential deadlocks. A third remark is that 1

semantic rules that affect workers to tasks or perform a refinement do not consider 2

data contents. Hence, if the move from Ci−1 to Ci is a worker assignment or a 3

refinement, then it is necessarily feasible as long as Ci−1 is reachable. The only 4

cases where data can affect execution of a step along a run is when an automated 5

task or an atomic task has to process empty data. For each of these steps, one 6

has to check that the inputs of an executed task t are not empty, i.e. suppose that 7

D1 6= ∅ ∧ · · · ∧Dk 6= ∅ for some datasets D1 . . . Dk used by t. Non-emptiness of a 8

dataset Dk is simply encoded by the ∃FO formula ∃
−→
X , rn(

−→
X ) ∈ Dk. 9

Non-emptiness of a dataset Dk at some configuration Cj is a property that 10

depends on properties of previous steps in the execution. For instance, if the move 11

from Cj−1 to Cj realizes the projection of a dataset, i.e. filters records in a dataset 12

D′k to keep only those that satisfy some predicate P , then the precondition that 13

must hold at Cj−1 is ψj−1 ::= ∃
−→
X , rn(

−→
X )∧P (

−→
X ). We have seen in Proposition 1 14

that , if the move Cj−1
mi−1−→ Ci−1 is a transformation of records, a transformation 15

of some dataset that adds new fields, a join of two datasets, the formula ψj−1 is 16

effectively computable. Further, from Corollary 1, if tasks do not use SQL differ- 17

ence, the weakest precondition of an existential FO formula is an existential FO 18

formula. 19

This generalizes to the whole signature. Let ψk be an ∃FO formula that has to 20

be satisfied by configuration Ck in a run compatible with signature ρS . There exists 21

a sequence of moves C0
m1−→ C1 . . .

mk−→ Ck iff the sequence C0
m1−→ C1 . . .

mk−1−→ Ck−1 22

ends in a configuration Ck−1 such that Ck−1 |= wp[mk]ψk (by definition of weakest 23

precondition). One can decide whether wp[mk]φk is satisfiable, as ψk is in ∃FO, 24

and by Prop. 1, wp[mk]ψk is effectively computable and in the ∃FO fragment. 25

If wp[mk]ψk is not satisfiable, then the move from Ck−1 to Ck always ends with 26

datasets that do not fulfill ψk. If wp[mk]ψk is satisfiable, then the runs that reach 27

Ck−1 are realizable only if we assume that several datasets (used as input of some 28

task realized at step k) are non-empty at stage k−1. We then have to add statements 29

of the form Di 6= ∅ to obtain a formula that should hold at step k − 1, and get a 30

formula of the form ψk−1 ::= wp[mk]ψk ∧D1 6= ∅ ∧ · · · ∧Dm 6= ∅. This adds only 31

an existential conjunction, so ψk−1 is also in ∃FO. 32

Now, one can starts from ψi ::= true and build inductively all weakest pre- 33

conditions ψi−1, ψi−2, . . . , ψ0 that have to be satisfied respectively by configura- 34

tions Ci−1, . . . , C0 so that an actual run of the complex workflow with signature 35

CS0 . . . C
S
i exists. If any of these preconditions is unsatisfiable, then there exists no 36

run with signature CS0 . . . C
S
k leading to a configuration Ci compatible with CSi , and 37

hence ρS is not the signature of an actual run of CW . The size of ψ0 is in O(i.ri). 38

Indeed, we add obligations to prove non-emptiness at each step k, but proving 39

satisfiability of ∃
−→
X ,φ(

−→
X ) ∧ ∃

−→
X ,φ(

−→
X ) amounts to checking separately satisfia- 40

bility of ∃
−→
X ,φ(

−→
X ) and ∃

−→
Y , φ(

−→
Y ). According to Prop. 1, the size of wp[mk]ψ 41

is in O(r.|ψ|, where r is the maximal arity of relational schemas of the complex 42

workflow. So one can check separately satisfiability of ∃
−→
X ,φ(

−→
X ) and Dx 6= ∅, and 43



maintain a series of O(i) formulas of total size in O(i.ri). Hence, as ψ0 is still in 1

the existential fragment of FO, and as checking satisfiability of an existential FO 2

formula is in EXPTIME in the size of the formula (by proposition 4), checking 3

all preconditions for a run of size k compatible with ρS can have a complexity that 4

is in O(2r
i

). 5

Assume that ψk−1, ψk−2, . . . ψ0 are satisfiable. It remains to show that the in- 6

put(s) of the complex workflow satisfy the weakest precondition for the execution 7

of ρS , i.e. satisfy ψ0. Then, when the input is a single dataset Din, it remains to 8

check that Din |= ψ0 to guarantee existence of a run with signature CS0 . . . C
S
i that 9

starts with input data Din and leads to a configuration Ck. This is a standard model 10

checking question, which can be solved in O(|Din||ψ0|), that is in O(|Din|r
k

). As the 11

complexity of checking satisfiability of weakest preconditions ψk . . . ψ0 is already in 12

2EXPTIME, the overall complexity is in 2EXPTIME. 13

Similarly, if Din is given as an FO formula, the complexity depends on the 14

considered fragment used to specify Din. In general, if Din is given as an FO 15

formula, it is undecidable if Din ∧ψ0 is satisfiable. If Din is an existential formula, 16

then the complexity is exponential in the size of Din and also exponential in the 17

size of ψ0. Assuming that |Din| ≤ 2k we have a 2EXPTIME complexity. If Din is 18

in the BSR fragment, then checking satisfiability of Din is in NEXPTIME [28], 19

and so the overall complexity needed to check existence of a run with signature 20

ρS from a dataset in Din is in 2EXPTIME w.r.t the size of Din ∧ ψ0, and hence 21

3EXPTIME. If Din is a universal formula then we can use standard mini-scoping 22

rules to transform Din ∧ ψ0 is a formula in the BSR fragment, yielding again 23

a 3EXPTIME complexity. Last if Din is in the separated fragment of FO, then 24

checking its satisfiability is nin-fold exponential in the size of the formula depicting 25

Din, so the overall process of checking realizability of ρS has an nin-fold exponential 26

complexity. ut 27

C.4 Recursion freeness: decidability an bounds on runs 28

Proposition 5. Let CW = (W0, T ,U , sk,R) be a complex workflow. One can 29

decide if CW is recursion free in O(|T 2
cx|+ |R|). 30

Proof. Building RG(CW ) can be done in O(|R|). Checking existence of a cycle in 31

RG(CW ) that is accessible from some task in W0 can be done in polynomial time 32

in the size of RG(CW ), for instance using a DFS algorithm, than runs in time in 33

O(|Tcx|2). ut 34

In executions of recursion free CWs, a particular task t can be replaced by a 35

workflow that contains several tasks t1, . . . tk that differ from t. Then, each ti can 36

be replaced by workflows combining other tasks that are not t nor ti, and so on... 37

For simplicity, we assume that W0 and all workflows in rules have nodes labeled 38

by distinct task names. We can then easily prove the following property: 39

Proposition 6. Let C = (W,wa,Dass) be a configuration of a recursion free 40

complex workflow CW . Then there exists a bound KTcx on the size of W , and the 41

length of a (symbolic) execution of CW is in O(3.KTcx) 42



Proof (Sketch). We assume, without loss of generality, that all workflows in all 1

rules have nodes labeled by distinct task names, and that the initial workflow 2

has a single node. Let d be the maximal number of new occurrences of complex 3

tasks that can be rewritten in one refinement (i.e., the maximal number of complex 4

tasks that appear in a rule). Each rewriting adds at most d−1 complex tasks to the 5

current configuration. The number or rewritings is bounded, as CW is recursion 6

free. For a given node n appearing in a configuration Ck along a run, one can 7

trace the sequence of rewritings Past(n) performed to produce n. According to 8

recursion freeness, when a node n is replaced by a workflow Wt, then none of the 9

tasks labeling nodes of Wt appears in Past(n). Hence, the number of nodes in a 10

configuration is at most KTcx = dTcx . Now, for a given configuration, the number 11

of applications of semantic rules R1,R2, and R3 is bounded, and decreases the 12

number of nodes in the workflow part of the configuration. ut 13

C.5 Proof of Proposition 3 14

Proposition 3 A complex workflow terminates universally if and only if: 15

i) it is recursion free 16

ii) it has no (symbolic) deadlocked execution 17

iii) there exists no run with signature CS0 . . . C
S
i where CSi is a potential deadlock, 18

with Dk = ∅ for some Dk ∈ Dass(nj) and for some minimal node nj of Wi. 19

Proof. Let us first prove that if i) fails, a complex workflow does not terminate 20

universally. If CW has recursive task rewriting, then there is a cycle in the rewriting 21

graph RG(CW ) that is accessible from a task t0 = λ(n0) appearing in W0. Hence, 22

there is an infinite run ρ∞ = C0
a1−→ C1

r1−→ C2 . . . of CW which moves are only 23

worker assignments (moves of the form ai in ρ∞) to a node of the current workflow 24

at configuration Ci followed by a rewriting (moves of the form ri in ρ∞) that creates 25

new instances of tasks, such that the sequence of rewritten task follows the same 26

order as in the cycle of RG(CW ). Similarly, if CW terminates universally, then all 27

runs are finite, and infinite runs of the form ρ∞ cannot exist, and CW must be 28

recursion free. 29

We can now address point ii) If CW can reach a deadlocked configuration, then 30

by definition, it does not terminate. If all runs of CW terminate, then from any 31

configuration, there is a way to reach a final configuration, and hence no deadlock 32

is reachable. 33

The need for the last point iii) is proved in lemma 2 below. ut 34

Lemma 2. Let CSi be a potential deadlock with successors CSi,1, . . . C
S
i,k correspond- 35

ing respectively to execution of tasks attached to minimal nodes n1, . . . nk in the 36

workflow part of node CSi . Then a run ρ with signature ρS = CS0 . . . C
S
i such that 37

Dk = ∅ for some Dk ∈ Dass(nj) does not terminate. 38

Proof. If a node nj in a configuration Ci with signature CSi is labeled by a task 39

and is attached an empty dataset, then any sequence of worker assignment, refine- 40

ment, or task execution occurring from Ci will result in a configuration C ′i where 41



either nj is still attached an empty dataset, or nj was replaced, but the refinement 1

produced fresh nodes with an empty dataset attached to it. Then either nj or one 2

of its refinements will never be executed, and the workflow cannot reach a final 3

configuration.ut 4

This lemma has useful consequences: it is sufficient to detect a run with sig- 5

nature CS0 . . . C
S
i as prefix, where CSi = (Wi,wai,DassSi ), and to prove that a 6

node nj in Wi can have an empty input dataset Dnj to claim that there exists an 7

execution that deadlocks in CW. 8

C.6 Proof of Theorem 2 9

Theorem 2 : Let CW be a complex workflow, in which tasks do not use SQL 10

difference. Let Din be an input dataset, and Din be an FO formula. Universal 11

termination of CW on input Din is in co − 2EXPTIME. Universal termination 12

on inputs that satisfy Din is undecidable in general. It is in 13

– co−2EXPTIME (in K, the length of runs) if Din is in ∀FO, co−3EXPTIME 14

if Din is ∃FO or BSR-FO 15

– co− nin-fold-EXPTIME, where nin = |Din|+ 2K if Din is in SF-FO. 16

Proof. Complex workflows terminate iff they have bounded recursive schemes, and 17

if they do not deadlock. Condition i) can be verified in O(|T 2
cx|+ |R|) (see propo- 18

sition 5). 19

If CW is recursion free, then condition ii) can be verified non-deterministically 20

by guessing a symbolic execution CS0 . . . C
S
k of length at most 3.KTcx . If this exe- 21

cution deadlocks, then there is an execution of CW that does not terminate, and 22

we can safely conclude that CW does not terminate universally (for any input). 23

Absence of deadlocks can hence be checked in EXPTIME. 24

If this execution contains a potential deadlock at symbolic configuration CSi , 25

then Ci is a configuration from which a particular dataset D must be used as input 26

by a task, and must be empty to cause a deadlock. Before concluding that CSi can 27

be a real deadlock, one has to check whether there exists an actual real execution 28

C0 . . . Ci such that property D = ∅ holds at Ci. Emptyness of D can be encoded 29

as by a universal FO formula of the form ψi ::= ∀
−→
X , rn(

−→
X ) 6∈ D. We can show 30

that the precondition ψi−1 that needs to hold at Ci−1 in order to obtain an empty 31

dataset D at step Ci are still of the form D′ = ∅ (hence expressible via an universal 32

formula) for some D′ (this is the case if the move from Ci−1 to Ci just adds a field 33

to D′ to obtain D) or an FO formula in the universal fragment computed as the 34

weakest precondition wp[mi]ψi. Then one can repeat the following steps at each 35

step k ∈ i− 1, i− 2, . . . up to CS0 : 36

– compute ψk = wp[mk]ψk+1. We know that this weakest precondition can be 37

computed, and that ψk is still an universal formula of size in O(r.|ψk+1|) (see 38

proposition 1). 39



– Check satisfiability of ψk. If the answer is false, then Fail: one cannot satisfy 1

the conditions required to have D = ∅ at step i, and hence there is no execution 2

with signature CS0 . . . C
S
i that deadlocks at Ci, the randomly chosen execution 3

is not a witness for deadlock. If the answer is true, continue. 4

If the algorithm does not stop before step k = 0, then the iteration computes a 5

satisfiable formula ψ0 of size in O(ri). It remain to show that inputs of the complex 6

workflow meet the conditions in ψ0. 7

Let us assume that the universal termination question is considered for a single 8

input dataset Din, one has to check that Din |= ψ0. As ψ0 is a universal formula 9

i.e. is of the from ∀
−→
X ,ϕ0, this can be done in O(|Din||ψ0|). If the answer is true 10

then we have found preconditions that are satisfied by Din and that are sufficient 11

to obtain an empty dataset in at configuration Ci in a run C0 . . . Ci that has 12

signature CS0 . . . C
S
i , i.e. CS0 . . . C

S
i witnesses the existence of a deadlock. Overall, 13

one has to solve up to i < 3.KTcx satisfiability problems for universal FO formulas 14

ψi−1, ψi−2 . . . ψ1 of size smaller than ri, and a model checking problem for input 15

Din with a cost in O(|Din|r
i

). The satisfiability problems are NEXPTIME in 16

the size of the formula [28] whence checking satisfiability of ψi−1, . . . , ψ0 has a 17

complexity that is doubly exponential in KTcx . Considering that data fields are 18

encoded with c bits of information, Din is a dataset of size in O(2r.c). Hence, the 19

overall complexity to check that CS0 . . . C
S
i is a witness path that deadlocks is in 20

2− EXPTIME. 21

Conversely, if the universal termination question is considered for a several input 22

datasets described with an FO formula Din, one has to check that no contradiction 23

arises when requiring existence of an input Din that satisfies both Din and ψ0. This 24

can be done by checking the conjunction Din ∧ ψ0. Now, this formula is of size in 25

|Din|+ |ψ0|, and one can consider variables in Din and ψ0 to be disjoint. Standard 26

equivalence rules (miniscoping rules, see [37]) allow to rewrite this conjunction into 27

an equivalent formula in prenex normal form. If Din is in ∀FO, then Din ∧ψ0 is in 28

∀FO and we have a co-2EXPTIME procedure to verify its satisfiability. For frag- 29

ments (∃FO, BSR-FO), Din∧ψ0 fall is the class of BSR-FO or SF-FO formulas, but 30

with three alternations, with an NEXPTIME complexity of satisfiability, yielding a 31

triple exponential complexity. For Din in SF-FO, the complexity of the last step is 32

nin-fold exponential in the size of Din+ the size of ψ0. As for the unique input case, 33

if Din ∧ ψ0 is satisfiable, then CS0 . . . C
S
i witnesses existence of a non-terminating 34

execution. 35

Hence, one can witness existence of a non-terminating run in O(KTcx .2
rKTcx + 36

Cin) where Cin is the cost required to check satisfiability of Din ∧ ψ0. 37

Last if Din is specified in an undecidable fragment of FO, then one cannot 38

conclude whether there exists a legal input that satisfies Din and ψ0. 39

D Proofs for Section 6 40

Theorem 4 : Existential and universal correctness of CW are undecidable, even 41

when runs are of bounded length K. If tasks do not use SQL difference, and ψin,out 42

is in a decidable fragment of FO, then 43



– existential correctness is decidable for CWs with runs of bounded length, and is 1

respectively in 2EXPTIME, 3EXPTIME and 2K-fold-EXPTIME for the 2

∃FO, ∀FO, BSR, and SF fragments of FO. 3

– universal correctness is decidable and is respectively in co − 2EXPTIME, 4

co− 3EXPTIME and co-2K-fold-EXPTIME for the ∀FO, ∃FO, BSR, and 5

SF fragments of FO. 6

Proof. Let us first prove the undecidability part: It is well known that satisfiability 7

of FO is undecidable in general, and in particular for the AE fragment with formu- 8

las of the form ∀
→
X∃
→
Y , φ(X,Y ). Hence ψin,outAE can be a formula which satisfiability 9

is not decidable. One can take an example of formula ψunsat which satisfiability 10

is not decidable. One can also build a formula ψid that says that the input and 11

output of a workflow are the same. One can design a workflow CWid with a sin- 12

gle final node which role is to return the input data, and set as client constraint 13

ψin,out = ψunsat∧ψid. This workflow has a single run. Then, CWid terminates prop- 14

erly iff there exists a dataset Din such that Din |= ψunsat, i.e. if ψunsat is satisfiable. 15

Universal and existential proper termination are hence undecidable problems. 16

For the decidable cases, one can apply the technique of Theorem 2. One can 17

find non-determinisitically a symbolic run ρS that does not terminate and check 18

that it is the signature of an actual run, or a symbolic run ρS that terminates and 19

check whether it satisfies ψin,out. 20

Let us first consider universal termination. Assume that CW terminates univer- 21

sally, ans select a symbolic run ρS = CS0 . . . C
S
n . We can then compute a chain of 22

weakest preconditions ψn, ψn−1, . . . ψ0 that have to be enforced to execute success- 23

fully CW and terminate in node n. In particular, ψn ::= true. Similarly, one can 24

compute at each step, a weakest precondition ψin,outi needed at step i so that ψin,out 25

holds. Intuitively, ψin,outi describes the constraints between the initial dataset and 26

the output dataset ”consumed” at stage i + 1 in ρS . If at one stage, ψi ∧ ψin,outi 27

is not satisfiable, then ρS is not the signature of an actual run of CW that termi- 28

nates properly, and we have found a witness of non-proper termination. We have 29

assumed that ψin,out was specified in a decidable fragment of FO. As computing 30

the weakest precondition of a property in the existential, universal, BSR, SF frag- 31

ment of FO gives a property in the same fragment, all ψi’s and ψin,outi ’s are in 32

a decidable fragment of FO. Then, the complexity will depend on the considered 33

fragment, and on the fragment of FO used to specify inputs. As for universal termi- 34

nation, if inputs and ψin,out are specified with the universal fragment of FO, then 35

universal proper termination is in co − 2EXPTIME, and in co − 3EXPTIME 36

for the existential fragment (as one may alternate ∃ statements on outputs with ∀ 37

statements inherited from obligation to prove non-emptiness of a dataset. Similar 38

remark and complexity holds for the BSR fragment (separation of variables main- 39

tains an NEXPTIME complexity [37]). If ψin,out is in SF, then checking proper 40

universal termination is co−K − fold−exponential time, where K = rKTcx . 41

The proof and complexities for existential termination follow the same lines, 42

yielding 2EXPTIME complexity when ψin,out is written with the existential, 43

fragment of FO, 3 − EXPTIME complexity for when ψin,out is written in the 44



universal or BSR fragments (as checking satisfiability for a BSR formula is in 1

NEXPTIME [28]) and K − fold−exponential for SF formulas [37]. ut 2


