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Abstract—Stream Processing (SP) is now a major paradigm
to timely handle large volumes of data generated at the edge
of the Internet. Stream processing engines (SPE) are tools
easing the specification, deployment and monitoring of SP
applications. Such applications are typically programmed as
a directed acyclic graph (DAG) of operators to be applied
on each data item. Yet, SPEs are mostly equipped to deploy
one application at a time without seeking synergies between
those applications. Yet, in many domains, the set of operators
composing applications overlap for a non-negligible amount.
We envision a platform on which applications are submitted
dynamically, each new graph of operators potentially sharing
some of them with the currently running operators. We
assume a homogeneous platform, a graph being deployed over
multiple nodes. We need to minimize the inter-node traffic
while guaranteeing that the capacity of a node is not exceeded.
This paper presents the Merge, Split and Cluster approach:
each time a new DAG of operators is submitted, i) its operators
are first merged with the already running operators, ii) if an
operator’s load thus created exceeds the nodes’ capacity, the
operators gets split into several instances, and iii) the operators
of the resulting graph are clustered, each cluster being hosted
by a single node so as to maximize intra-node traffic. Two
heuristics are proposed for this last phase. Simulation results
show that i) merging allows to drastically reduce the needs
in computing resources, and ii) that the heuristic provides an
efficient clustering minimizing the intra-node traffic.

Keywords-Stream Processing, Deployment, Clustering

I. INTRODUCTION

Stream Processing (SP) is becoming the dominant
paradigm when it comes to process continuous flows of data.
To be able to produce timely knowledge, Stream Processing
follows the principle of processing each new data record
independently as soon as it is produced, so the information
it carries is immediately added to the current knowledge. A
Stream Processing application is typically a set of operators
structured as a pipeline, or more generally as a directed
acyclic graph (DAG), that each data item traverses.

Stream processing has shown adequacy in the support of
many application domains ranging from social networks to
surveillance. Different applications in a given domain are
likely to share part of their operators. This is for instance
the case in maritime surveillance, our motivating use case.
Platforms such as [1] are dedicated to the aggregation and

processing of AIS signals1. Such platforms include software
tools able to extract relevant information about a particular
maritime area or a particular subset of ships of interest. Yet,
such processing still heavily rely on a human operator to
navigate through this too big amount of data and extract the
relevant information out of it.

The Sesame project2 aims at developing innovating tools
to help human operators take critical decisions when dealing
with an abnormal situation involving ships. Such tools must
quickly raise alerts when such a situation arises. The typical
kinds of requests to be answered in such a monitoring system
are:
• How many tankers recently entered a given country’s

exclusive economic zone (EEZ) at a high speed?
• Is there currently any abnormal behaviors in this EEZ

involving two fishing vessels?
Such queries, implemented following the Stream Process-

ing paradigm, will combine filters so that only relevant boats
are kept. Also, part of the operators will be present in both
pipelines. In many application domains, the set of building
blocks out of which most complex applications of this area
can be built is actually relatively small.

As such a platform should be able to deal with multiple
queries received at different times, detecting overlaps be-
tween the graphs can enhance significant reuse and reduce
the deployment costs. More precisely, a first step to the
deployment of a pipeline is to identify how many of its
operators are already running previously submitted query.
Then the two graphs can be at least partially merged,
providing this did not result in a too high increase in the
load of common operators regarding the capacity of the
compute node hosting it. In such a case, the operator has
to be replicated. Finally, since the new set of operators to
host was modified, the grouping of operators over compute
nodes has to be revised, with the goal of ensuring that no
compute node is overloaded while the traffic between nodes
is minimized.

In this paper, we propose an algorithm to handle the dy-
namic deployment of stream processing applications which
exhibit a non negligible overlaps. We assume graphs are

1The signal sent by ships to warn about their presence
2http://recherche.imt-atlantique.fr/sesame/



submitted to the platform at arbitrary times and put into
a queue. Each new graph needs to get merged with the
currently running set of operators, the operators which,
following this step, are too heavily loaded needs to get split.
Finally, the grouping of operators needs to get revised. The
approach proposed is composed of three steps: i) Merging
the currently running operators with the newly submitted
DAG, by identifying the common prefixes in these DAG.
In the worst case, there is no overlap between the two
DAGs, and the graphs are left unchanged. ii) Splitting the
operators whose load exceeds the compute nodes’ capacity.
Such operators are duplicated, and the load of the initial
node is shared between the replicas. The problem of finding
new compute nodes is here out of scope. The following
simply assume that new nodes can be allocated dynamically.
iii) clustering the operators, each cluster being deployed
over a different compute node. The algorithm relies on a
clustering heuristic minimizing the amount of inter-operator
traffic, which translate into actual inter-node traffic: The
traffic between two operators being grouped together into
a single node does not generate any real traffic.

These algorithms have been implemented in a simulation
tool so as to capture their ability to optimize the needed
number of nodes to support the applications as well as to
minimize the actual network traffic induced by the applica-
tions once deployed by the algorithms.

Section II more formally exposes the problem solved. Sec-
tion III describes globally the proposed resolution scheme
and its different phases. Section IV details the two heuristics
used for the clustering phases and discusses their complexity.
Section V presents the simulation experiments conducted
and their results. Finally, before a conclusion, Section VI
presents the related work.

II. PROBLEM DESCRIPTION

A. Platform model

We assume a platform composed of a homogeneous set
of nodes that can be scaled up or down. This reflects a
typical cloud platform, providing a limited number of virtual
machine sizes. We assume for simplicity, that there is a
single VM flavour which can be allocated, of capacity C,
and that the number of actual nodes to be allocated is to be
decided based on the workload. C is similar to a processor
frequency: it abstracts out the amount of processing it can
do during one time unit. VMs are referred to as compute
nodes or simply nodes in the following.

B. Application model

We target platforms dedicated to a given application do-
main where applications are submitted online by some users
so they can be deployed. These applications are submitted
as DAGs of stream processing operators. Because these
applications answer similar queries, we assume that the
chance of having common operators between applications is

high. More precisely, an application can be represented by
a DAG G = (V,E) where V is the set of operators of the
represented application. Each operator is associated with a
load l(v) which represents the processing capacity it requires
per time unit to process its incoming load without incurring
delays. Each edge e ∈ E is associated with a weight w(e)
which expresses the amount of data which traverses this edge
per time unit. We do not constraint the possible graphs with
a relation between the weights of edges and the loads of
operators: high input velocities do not necessarily lead to
high processing load: each record may be very simple to
process. An operator v can exist in one or more replicas: if
some operator v exhibits a load l(v) = 300 and that compute
nodes have a capacity C = 100, it is necessary to have three
replicas for it, each running on a distinct node.

C. The clustering problem

At its core, our problem is to be able to cluster the
operators into compute nodes while minimizing the inter-
node traffic. We denote PG a partition of G. A partition
is a set of clusters composed of operators in V , where
each cluster contains a set of connected operators and each
operator belongs to one and only one cluster. In other words,
PG = {cl1, cl2, . . . , clk}. In a partition, we can distinguish
the intra-cluster edges from the inter-cluster edges. Intra-
cluster edges are the set of edges whose both endpoints
belong to the same cluster:

Intra(E) = {(u, v) ∈ E : u ∈ cli, v ∈ clj , i = j}
Inter-cluster edges are the set of edges whose endpoints
belong to different clusters:

Inter(E) = {(u, v) ∈ E : u ∈ cli, v ∈ clj , i 6= j}
A partition PG has a cost and a value: The value PG is the
sum of the weights of intra-cluster edges. The cost of PG
is the sum of the weights of inter-cluster edges. Each edge
contributes either to the cost or to the value of PG:

cost(PG) =
∑

e∈Inter(E)

w(e)

value(PG) =
∑

e∈Intra(E)

w(e)

value(PG) + cost(PG) =
∑
e∈E

w(e)

The objective is to cluster the operators, each cluster being
deployed on a distinct node. Such an objective has the
following constraints: i) The set of operators deployed on
each node must not exceed the node’s capacity, and ii) The
traffic between nodes should be minimized. More formally,
given a platform whose computes nodes’ capacity is C, the
goal is to find a partition P ′G such that Equations 1 and 2



are verified:
∀cl ∈ P ′G,

∑
v∈cl

l(v) < C (1)

cost(P ′G) is minimized (2)

Graph partitioning is most commonly addressed in a slightly
different version in the literature, where the constraint is
not to ensure the cluster’s size does not exceed a certain
threshold, but where the imbalance between clusters is being
minimized [2]. Yet, given our strong constraint on the nodes’
capacity, the problem described is closer to a knapsack
problem with additional constraints related to minimizing
the cost coming from the edges. In both cases, the problem
appears to be NP-complete [12], [13]. Yet, when the graph
is a tree, optimal pseudo-polynomial algorithms exist [17],
[16], [13] for the problem.

D. The problem in context

The partitioning is only one of the needed steps towards
the deployment of a given application. We assume a platform
upon which multiple applications are submitted online for
their immediate deployment.

Each time a new application is submitted, different things
need to be ensured, namely, that i) any reuse of the currently
deployed operators running due to previous application is
possible, ii) that no new operator exhibits a load higher than
a node’s capacity, in which case, replication of the operator
is needed, iii) that the new graph is efficiently clustered
as per the objectives described in Section II-C. This led
to the development of the Merge, Split and Cluster (MSC)
approach, described in Section III.

III. THE GLOBAL MSC ALGORITHM

We now describe the general algorithm applied each time
a new application is submitted. It is composed of three
phases: i) the merging of the submitted application with the
current graph of operators running, ii) the splitting of any
new operator exceeding the capacity of one compute node,
and iii) the clustering of the resulting graph so it can be
deployed efficiently over the compute nodes. We need here
to refine a bit the representation of an operator. An operator
is represented by the following tuple (name, replica, level)
where:
• name denotes the actual function provided by the

operator;
• replica is the actual replica number, each replica of an

operator having a unique ID (allowing to order them);
• level denotes the level of the operator in the graph, i.e

its distance to the root of the DAG;

A. The Merging Phase

The merging phase consists in merging the running opera-
tors represented by Gcurrent with the operators of the newly
submitted operators, represented by DAG Gnew. It is similar

to identifying common prefixes between two graphs, as such
common prefixes can get merged: if two applications start
with a similar sequence of operators, the goal is to avoid a
useless duplicated deployment.
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Figure 1: Benefit obtained by the Merging phase.

The merging phase input is composed of the two graphs
and the maximum capacity of a compute node. Prefixes
are subgraphs composed of redundant operators, i.e., the
operators in Gnew that can be found in Gcurrent such that
their name and in-degree are the same and their predecessors
are also redundant. The merging phase output is a graph of
operators where the redundant operators appear only once,
while the non-redundant operators are unchanged. Figure 1
illustrates this process: the top graph is the graph of current
running operators. The middle graph is the newly submitted
graph. The third line illustrates the result of the Merging:
operators A, B and C form a common prefix of redundant
operators. Only J and K are kept and linked to the C operator
present in Gcurrent.

B. The Splitting Phase

After the new graph is merged into the currently running
operators, each operator’s load is checked against the capac-
ity of one node C. Any operator v whose load exceeds C is
split into several replicas vi, which will receive its own share
of the load, yet trying to maximize the utilization of nodes.
The number of replicas for v will be l(v)/C where the new
load of each node vi is l(vi) = C except for one replica
which takes the remaining load. New links are created in
the process between the parent of v and the set of vis,
the weight of the initial link being splitted similarly. This
process illustrated in Figure 2 for a node v whose initial load
is 950, the weight of its incoming link is 50 and C = 300.

C. The Clustering Phase

The third step of the submission is the clustering phase.
It groups together the operators in compute nodes so as to
optimize the resource usage of the deployment, as described
in Section II-C, specifically maximizing the utilization of
compute nodes while minimizing the inter-node traffic gen-
erated.
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Figure 2: Splitting an operator.

Two heuristics were devised to achieve this phase. The
first one, called Tree-Optimal Clustering (TOC) is the adap-
tation on a pseudo-polynomial optimal algorithm [17] having
the same objective function, but for the trees. The second
one, referred to as Greedy Clustering (GC) and is a linear-
time greedy heuristic.

IV. CLUSTERING HEURISTICS

We here describe the two heuristics mentioned previously
in more details. Both rely on dynamic programming to
cluster the graph so cluster’s cumulated load never exceeds
a given maximal capacity and the cumulated inter-cluster
weight is minimized. They offer a different tradeoff between
closeness to optimality and time complexity. Let us intro-
duce few notations common to both algorithms:
• (v1, . . . , vk) denotes the cluster composed of operators
v1 to vk

• (u1, . . . , uk)(v1, . . . , vl) is a partition composed of two
clusters

• ul denotes the optimal partition of the graph rooted at u
assuming a capacity l (u0 denotes the optimal partition
of u subtree)

• NP [ul, vk] denotes the partitions created by merging
the two partitions ul and vk

• value(ul) indicates the value of the partition ul

A. Tree-Optimal Clustering (TOC)

The first heuristic is inspired by the pseudopolynomial
yet an optimal algorithm for clustering trees [17] with the
objectives defined in Section II-C. Thus, before its actual
clustering, the input DAG is transformed into a tree by
removing some of its edges. The tree creation is made of
4 steps: i) In case the graph has multiple source operators,
an extra dummy operator whose load is zero is created as
the parent of the original sources. Edges created to connect
the dummy operator to its children is also zero-weighted. ii)
Each operator is associated with a level, which represents
its distance to the root. More precisely, the original source
nodes have a level of 1, the potential dummy operator has a
level of 0. the children of sources have a level of 2, etc. iii)
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Figure 3: Transformation of a DAG into a tree.

If a node at level i has multiple parent nodes (i.e., multiple
neighbours of level i − 1), only the edge to its parents
with the highest load is kept in the graph, the others are
removed. iv) Children of nodes are ordered. Figure 3 shows
an example of a DAG (a) being transformed into a tree (b).

The clustering algorithm, described by Algorithm 1 is then
applied. It is composed of four steps:
a - The partitions of every leaf operator i with load li

(Lines 5 to 15) are generated: Trivially, ili = i0 = (i).
The optimal partition i0 of i is composed of a single
cluster composed of operator i.

b - A non leaf operator i whose children have been pro-
cessed is chosen. The optimal partitioning of its subtree
is created on its turn, following steps in Lines 16 to 30.
In particular, Function FindSubTreePartitions (de-
scribed on Lines 31 to 45) generates all partitions of
the sub-tree rooted at i. It creates all possible partitions
i′j ,∀j ∈ [li, . . . , C] by combining its current partitions
with those of its children. For a given capacity j, to
concatenate ik with yj−k, two operations can be used:
either the respective clusters containing i and y are
merged, or they are not, and the partitions are simply
concatenated.

c - i0, the optimal partition of the sub-tree rooted at i is
chosen amongst {ili , ili+1

, . . . iC} (Line 22). If i is not
the root of the tree, Step b is repeated.

d - After having calculated the solutions of all operators,
the result will be the union of the solutions of the
operators in the first level (lines 24 to 26). Finally, once
all partitions of subtrees rooted at operators of level 1
are found, if the DAG has multiple source operators, the
dummy operator and its outgoing links are removed.



Algorithme 1 : Alg. Tree-Optimal Clustering

1 Main TOC(G,ML):
Result : Set of clusters having the largest sum of values
Input : G // Graph
Input : ML // Maximum Level in the graph
Input : C // Maximum capacity per cluster

2 Initialization(G,ML);
3 FindFinalPartition(G,ML,C);
4 End TOC
5 Procedure Initialization(G,ML):
6 for (level = ML; level >= 1; level−−) do
7 foreach (i ∈ Graph.getOperatorInLevel(level)) do
8 if (level == ML) then
9 ili = i0 = (i);

10 else
11 ili = (i);
12 end if
13 end foreach
14 end for
15 End Procedure
16 Function FindFinalPartition (G,ML,C):

Output : Final clusters result
17 Result← φ ;
18 for (level = ML− 1; level > 0; level−−) do
19 foreach (i ∈ G.getOperatorInLevel(level)) do
20 if i is not a leaf operator then
21 ListPi,li,C

←
FindSubTreePartitions(i,ML) ;

22 i0 ← HighestLoadInList(ListPi,li,C
) ;

23 end if
24 if level = 1 then
25 Result← Result ∪ i0;
26 end if
27 end foreach
28 end for
29 return Result;
30 End Function
31 Function FindSubTreePartitions (i, C):

Output : List of clusters of i depending on the load
Input : i // Operator

32 ListResult← φ ;
33 foreach (y ∈ GetChildOf(i)) do
34 for (j = li; j ≤ C; j + +) do
35 for (a = li; a ≤ C; a+ +) do
36 Create the partition i′j = NP (ia, yj−a);
37 end for
38 if

(
value(i′j) > value(ij)

)
then

39 ij = i′j ;
40 UpdateList(ListResult, i′j);
41 end if
42 end for
43 end foreach
44 return ListResult ;
45 End Function

Note that the operators at a given level can be processed
in parallel.

Let us illustrate the TOC algorithm by its application
on the DAG in Figure 3 where the load of each operator
and the weight of each edge are shown. We will assume a
capacity C = 4. Figure 3-b shows the tree obtained from
the graph. Note that each operator is labeled by its level
and identifier. After the initialization step, Operator 2 − 4,
whose all children have been processed at initialization time
can be processed. It first merges its own partitioning with
its Child 3-6, as shown in Figure 4(a). Two partitions (in
blue and pink, respectively) are created (see Step b of the
algorithm). Then, Child 3-7 is also included, leading to a

-

(a) Operator 2-4: merging partitions of Child 3-6.

-

(b) Operator 2-4: merging partitions of Child 3-7.

Figure 4: Partitioning for subtree rooted at Op. 2-4

set of 3 possible partitions: the pink and the blue one are
extended with Child 3-7, and a new one, in yellow, is created
by the merging of Op. 2−4 with Op. 3-7 in a single cluster.

Once Op. 2-4 has been processed, Level 1 can be pro-
cessed in its turn. This is illustrated in Figure 5. Let us focus
on Op. 1-1. Each possible partition whose cumulated load
does not exceed the capacity C are represented, each one
with a different color in Figure 5(a): The best partition with
a maximum load of 3 per cluster is shown in green, the best
one with a maximum load of 4 per cluster is shown in blue.
The final step of selecting the partition globally minimizing
the cost is then performed over these partitions. It is given
in blue on Figure 5(b). The final partition is composed of 4
clusters, and its value is 11.

Time Complexity of TOC: Let us consider the processing
time to create the possible partitions of a subtree rooted at
u with one of its children v. Without loss of generality, let
us consider that u has already partitioned part of its subtree:
Adding one child in the partitioning consists in trying all
possible combinations of the current partitions of u with the
set of possible partitions of the subtree of v. The number of
the current partitions for u depends on l(u): it already exists
at most an optimal partition for each c such that l(u) ≤
c ≤ C. For each partition whose cluster size is limited by
c, we can combine it with a partition of v of cost c′ such
that c + c′ ≤ C. So for c = 1, we can combine it with
c − 1 partitions of v, for c = 2, we can combine it with
c − 2 partitions of v, and so on. In the end the number of
combinations to build is bounded by

C∑
i=1

C − i = O(C2).



-

(a) Possible partitioning at Level 1.

-

(b) Final partitioning.

Figure 5: Partitioning at Level 1 and final step.

As, globally for the tree, each child is processed once (when
merging with its parent), the time complexity is in O(n ×
C2).

B. Greedy Clustering (GC)

Similarly, as what is done with the TOC algorithm, a 0-
loaded dummy operator connecting all the source nodes if
there are multiple ones is first added to the DAG. Again,
edges going out of the dummy operator have a weight of
0. Operators are again leveled from 0 to N and uniquely
identified so they can be sorted.

Then, the GC clustering is composed of three steps, as
detailed in Algorithm 2. Firstly, a partitioning is initialized
for each operator, consisting of a single cluster composed
of the operator itself (Lines 5 to 9). Secondly. the so-
lutions are computed in Lines 10 to 20): The function
FindFinalSolution processes levels one by one and, for
each non leaf operator i, calls the function FindPartitions
(in Line 14) which merges ip with one of its chlidren’s
partition yp to create the new current partition of i including
the subtree rooted at y. Two cases are possible here:
• If the sum of the load of the cluster containing i and

the load of the cluster containing y is less than C,
FindPartitions merges the clusters containing them
into a single cluster and adds it to the new partition,
the remaining clusters of ip and yp being also added in
it.

• Otherwise, FindPartitions simply concatenates the
original clusters in ip and yp into the new one.

Doing so, because the graph is not a tree, some operators can
have multiple parents, and so, appears multiple times in the
partitioning of the subtree rooted at the common ancestor

Algorithme 2 : Algorithm of Greedy Clustering (GC)

1 Main Main(G,ML):
Result : Set of clusters having the largest sum of values
Input : G // Graph
Input : ML // Maximum Level in the graph
Input : MC // Maximum capacity per cluster

2 Initialization(G,ML);
3 Result← FindFinalSolution(G,ML,MC);
4 End Main
5 Procedure Initialization(G):
6 foreach (i ∈ G.getAllOperators()) do
7 ip = (i);
8 end foreach
9 End Procedure

10 Function FindFinalSolution(G,ML,MC):
Output : Final clusters result

11 for (level = ML− 1; level >= 0; level−−) do
12 foreach (i ∈ G.getOperatorInLevel(level)) do
13 if y ∈ GetSonOf(i) then
14 P (i)← FindPartitions(i, y,MC);
15 end if
16 end foreach
17 Deduplicate(level, G.getOperatorInLevel(level)));
18 end for
19 return DUMp;
20 End Function
21 Function FindPartitions(i, y,MC):

Output : List of clusters of i depending on the load
Input : i // Operator
Input : y // Child of the operator i

22 NewPartition← φ ;
23 o1 ← CheckClusterOf(i);
24 o2 ← CheckClusterOf(y);
25 if InterCluster(o1, o2) > 0 and load(o1 ∪ o2) < MC then
26 NewPartition← Merge o1 and o2;
27 else
28 NewPartition← o1 ∪ o2
29 end if
30 NewPartition← ip\{o1} ∪ yp\{o2} ;
31 return NewPartition ;
32 End Function
33 Procedure Deduplicate (ListOpe):

Output : Duplicated operators between clusters are deleted
Input : ListOpe // Partitions of operators

34 ListOfDupOp← CheckDupOp(ListOpe) ;
35 foreach (k ∈ ListOfDupOp) do
36 higherV alue← GetHigClusterV alue(k, ListOpe) ;
37 foreach j ∈ ListOfClusterWhereExist(k, ListOpe) do
38 if (higherV alue > j.GetIntraCluster()) then
39 j.delete(k);
40 end if
41 end foreach
42 end foreach
43 End Procedure

of these parents. The GC algorithm checks for each level, if
such a redundancy exists. Function Deduplicate (Line 17)
removes such ocurrences: If an operator u which belongs
to multiple clusters in a single partition, u is kept in the
cluster which provides the highest value (Lines 33 to 43).
The partition thus found at the dummy operator constitutes
the final result.

Let us illustrate this simpler procedure on the DAG in
Figure 3-a which was already used to exemplify the TOC
algorithm. We again assume C = 4. Figure 6 shows the par-
titions created for operators at Level 2: Note that in contrast
with the TOC algorithm keeps a single partition for each
subtree, which simplifies a lot the partition constructions
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Figure 6: Level 2: Partition creations.
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Figure 8: Level 1: Partition creations.

at each step. The partitions kept for the subtree rooted at
2 − 3, 2 − 4 and 2 − 5 are shown in blue, pink and green,
respectively. After deduplication of Level 2, the partition is
shown on Figure 7.

The result, after processing Level 1 is shown in Figure 8.
As specified above, for each subtree, the partition created
is the one which is obtained by concatenating the clusters
containing a node and the child currently processed if such a
merge does not violate the capacity constraint. Deduplicating
the graph in Figure 8 is shown in Figure 9. The concatenat-
ing of green and pink clusters constitutes the final partition,
composed of 4 clusters and whose value is 6 (Remind that
the TOC algorithm found a partition with a value of 11).

Time Complexity of heuristic 2: In contrast with TOC,
GC process each child y in constant time when merging its
partition with its parent i partition. It is simply a matter of
merging (or not) the clusters containing y and the cluster
containing i in their respective partitions, depending on the
result of a test regarding their cumulated load. As each
child is processed once by the set of its direct ancestors
in the graph (their neighbours of the previous level), the
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Figure 9: Level 1: Deduplication.

complexity is linear in the number of edges in the graph.

V. EVALUATION

A. Simulation set-up

Simulation experiments were conducted to evaluate the
general scheme and compare the heuristics devised. The
three steps of the method, namely merging, splitting and
clustering were implemented in a homebuilt simulator in-
cluding approximately 10k lines of multi-threaded Java.
Both clustering heuristics were implemented leveraging
multi-threading: In both algorithms, the thread can launch
an operator of the next level if: (1) there is no operator to
be processed in the current level and (2) all children of the
target operator have been processed. The merging step is
multi-threaded similarly. The number of threads was set to
4.

The input of the simulator is composed of i) two graphs
representing the currently running operators and an appli-
cation newly submitted, respectively, and ii) the maximum
capacity C. Both graphs are generated using two parameters,
namely S, an approximate size for the graph, and the load
sent to the source operators. This load is generated randomly
between 1 and the maximum load.

The first graph is generated as follows: i) the number of
levels is chosen between 0 and

√
S. The number of operators

at each level is also chosen between 0 and
√
S. Edges are

added backward: For each level l, each node is linked to a
certain number of operators in levels 0 to l−1. It is ensured
that every operator at level 0 has at least one outgoing
link, and that every operator at the last level has at least
one incoming link. The weight of edges is again chosen
uniformly at random between 0 and a maximum weight.
The load of non-source operators are generated so as not to
exceed the sum of the loads of previous operators, each one
being multiplied by the weight of its associated edges. For
instance, the load of Op. 2 − 4 in Figure 3 cannot exceed
6(= 4 ∗ 1 + 2 ∗ 1).

The second graph is generated based on the first one
so as to ensure a deterministic degree of similarity. For
instance, if the similarity is required to be 50%, the second
graph will include half of the operators of the first graph.
A similarity of 100 % means that all operators from the



first graph are copied to the second graphs, yet the second
graph can be larger than the first one. The common operators
are systematically chosen at the beginning of the graph, so
there is a common prefix between the two graphs. Once
the selection of the common operators has been done, the
second graph is completed using a similar approach as for
the first graph.

We conducted experiments using 9 scenarios numbered
from 1 to 9. The targeted graph size given as input for
Experiment i is (i+1)×10. For instance, Scenario 4 created
graphs with a target size of 50. The other parameters are
as follows: the load for an operator is a positive integer
l ≤ 20. The weight for an edge is a positive float w ≤ 2.
The similarity between the first and the second graph is
between 45 and 55%, which is arbitrary but is sufficiently
high to be able to study the benefits of the merging. The
nodes’ capacity is set to 200, which allows to have a
significant clustering in regard to the operators’ load while
having a significant number of clusters. These synthetic
graphs were not necessarily created to reflect real maritime
traffic surveillance workflows but target the validating the
algorithms.

Each scenario is repeated 20 times, using the same initial
graph, but 20 different secondary graphs to merge with the
first. The numbers provided in the next section are averages
computed based on the results of these 20 runs. These
experiments were run over an Intel Core i7-8650U CPU
having 8 cores and 32 Gb of RAM.

The following results give hints on i) the benefit brought
about by the merging phase in terms of number of oper-
ators it removes, ii) the relative overhead induced by both
heuristics, and iii) the actual minimization of the inter-cluster
traffic.

B. Results

Figure 10 shows the benefits brought about by the merge
and split steps. This benefit is expressed in terms of reduc-
tion of operators’ load and reduction of data traffic. The
merge and split steps reduce the total operators loads of the
two submitted graphs from 24 to 30 % and the total of the
data traffic from 18 to 27%, thus confirming the possibility
to run more applications even if their cumulative needs in
resources seem to exceed the available computing power and
network bandwidth at first.

Figure 11 gives the execution time of the merge step,
which consists on two substeps: the detecting of overlapping
operators between the two graphs and the merging of these
operators. In Scenarios 8 and 9, the number of operators
increases significantly (more than 200 operators) and the
duration of the merging increases similarly.

Figure 12 shows the costs of the clustering obtained
during the last phase, i.e., the amount of data exchanges
actually leading to traffic between compute nodes. Remind
that we want to minimize this cost.
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Figure 13 shows the average numbers of clusters calcu-
lated by the two algorithms. The TOS algorithm reduces
considerably the number of clusters, which is inline with
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Figure 14: Duration of clustering.

the results on the cost and values. At this level, the TOS
algorithm responds our requests concerning the saving of
resources. Compared to GC, The TOC algorithm globally
gives better results, it reduces the clustering cost by 5 to 60
% (in Scenario 6) and increases the intra-cluster throughput.
TOC concomitantly saves computing resources: it reduces
the number of clusters by 8 to 13% when the input graphs
comprise each more than 50 operators.

Figure 14 shows the execution time of each heuristic
in the 9 scenarios. Recall that the number of operators
grows linearly with the id of the scenario. We can see that
our implementation of the algorithms seem to reflect the
complexities of the heuristics as given in Section III. Clearly,
GC increases linearly and slowly while TOC shows a non-
linear behavior. Thus, they offer a different compromise
between the quality of the result and the completion time.
TOS offers better results in most scenarios, despite its
execution time. GC has a significantly better execution time
yet an acceptable quality in its results in term of the resource
usage. The choice to use one heuristic or the other depends
on the use case: GC can clearly be could be useful for
smaller volatile applications, and TOC can be used when
the extra-benefit it brings can be useful on a long term basis.

VI. RELATED WORK

When deploying SP applications over these platforms, a
prominent problem is the placement problem, namely, how
to map the graph of operators over the compute resources.
This has been a recently addressed topic, over Clouds [8],
hybrid Edge/Cloud platforms [6], [19], or without a partic-
ular platform in mind [3], [18]. The placement problem is
related but orthogonal to the ability to preprocess the graph
before its actual deployment in regard to what is already
running on the platform.

A number of works dealt with preprocessing the SP graph.
These static analyses aim to detect the potential parallelism
of the graph [21] or the ordering semantics hidden in
the user-defined operations so as to reorder the operators
optimally [11].

The idea of sharing parts of the processing between graphs
for reuse is not new [10]. Yet, to our knowledge, only

few works put it into practice. Yet, Repantis et al. propose
a framework where it is possible to find already running
components that can be reused to build a new pipeline, based
on a peer-to-peer network [20]. More recently, Chaturvedi
et al formalized the problem of merging a set of graphs
sharing a prefix of their operations [4]. The merging part of
our algorithm is similar to their approach. Yet, they ignore
the splitting and clustering phases.

Graph clustering (or partitioning) has been the subject of
an important series of works over the years [2]. Let us first
differentiate several flavors of the problem. Partitioning a
graph into k balanced clusters has first been shown to be
NP-complete [12]. Also, a problem closer to ours, namely
partitioning a graph into balanced clusters (without knowing
k beforehand) while trying to minimize the the inter-cluster
cost (or min-cut) was also shown to be NP-complete [7].

The seminal work by Kernighan and Lin (KL) described
the partitioning problem and showed its similarity to the
min-cut problem [15]. They propose a heuristic, based on
the incremental improvement of an initial arbitrary solution,
for the bi-partitioning problem, running in O(n2 log n). A
number of improvements over the KL algorithm has been
proposed, either in terms of complexity or in terms of
precision regarding the balance between clusters. Fiduccia
and Mattheyses proposed an algorithm running in O(e) for
the bi-paritioning problem [5]. Early extensions to the k-
partitioning problem were based on recursively applying the
KL/FM methods, adding a k factor to the complexity, and
increasing the risk for imbalance between clusters.

Multilevel graph partitioning was then introduced as an at-
tempt to reduce the potential imbalance between clusters [9].
In this approach, the graph is first iteratively coarsened
up to a small graph on which the partitioning is applied.
This partitioning is then propagated back to the original
graph. This technique has been improved by Karypis and
Kumar [14] who provided linear-time algorithm.

It is worth noting that most of GP problems are formulated
so as to balance the load in clusters. In other words, that the
cumulated weight of nodes in each cluster is approximately
k. Our goal is slightly different: no cluster can have a weight
higher than a given threshold. Following this formulation,
the problem is similar to the knapsack problem with addi-
tional constraints related to the edges. The problem again
appears to be NP-complete [13]. Yet, when the graph is a
tree, optimal pseudo-polynomial algorithms exist, as the one
which inspired our work, and proposed by Lukes [17].

VII. CONCLUSION

This paper targets stream processing platforms over which
multiple applications are deployed dynamically. It details
a general scheme to be applied each time an application
is submitted, which optimizes the merging of the new
application into the currently deployment. It consists in three
steps: i) the application is merged with the currently running



applications, ii) the operator exceeding the capacity of one
compute node are split into as many instances as needed, and
iii) the resulting set of operators are clustered so as to ensure
no node sees its capacity exceeded and the network traffic
between nodes is globally minimized. For the last phase,
two heuristics providing a different cost/efficiency trade-off
were proposed. The first one relies on a pseudo-polynomial
algorithm which is optimal in the case of the tree. The
second one is a simpler heuristic whose time complexity
grows linearly with the number of edges in the graph. The
benefit and costs brought about by the different phases of
the scheme has been exhibited through simulation.

This work opens different perspectives: i) considering
heterogeneous, geographically distributed platforms, and ii)
decentralizing the scheme for an improved scalability.
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