
HAL Id: hal-02510517
https://hal.inria.fr/hal-02510517

Submitted on 17 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

GraphMDL: Graph Pattern Selection based on
Minimum Description Length

Francesco Bariatti, Peggy Cellier, Sébastien Ferré

To cite this version:
Francesco Bariatti, Peggy Cellier, Sébastien Ferré. GraphMDL: Graph Pattern Selection based on
Minimum Description Length. IDA 2020 - Symposium on Intelligent Data Analysis, Apr 2020, Kon-
stanz, Germany. �hal-02510517�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/362234094?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-02510517
https://hal.archives-ouvertes.fr

GraphMDL: Graph Pattern Selection based on

Minimum Description Length

Francesco Bariatti1, Peggy Cellier1, and Sébastien Ferré1

Univ Rennes, INSA, CNRS, IRISA
firstname.lastname@irisa.fr

Abstract. Many graph pattern mining algorithms have been designed
to identify recurring structures in graphs. The main drawback of these
approaches is that they often extract too many patterns for human anal-
ysis. Recently, pattern mining methods using the Minimum Description
Length (MDL) principle have been proposed to select a characteristic
subset of patterns from transactional, sequential and relational data. In
this paper, we propose an MDL-based approach for selecting a charac-
teristic subset of patterns on labeled graphs. A key notion in this paper
is the introduction of ports to encode connections between pattern oc-
currences without any loss of information. Experiments show that the
number of patterns is drastically reduced. The selected patterns have
complex shapes and are representative of the data.

Keywords: Pattern Mining · Graph Mining · Minimum Description
Length

1 Introduction

Many �elds have complex data that need labeled graphs, i.e. graphs where ver-
tices and edges have labels, for an accurate representation. For instance, in chem-
istry and biology, molecules are represented as atoms and bonds; in linguistics,
sentences are represented as words and dependency links; in the semantic web,
knowledge graphs are represented as entities and relationships. Depending on
the domain, graph datasets can be made of large graphs or large collections
of graphs. Graphs are complex to analyze in order to extract knowledge, for
instance to identify frequent structures in order to make them more intelligible.

In the �eld of pattern mining, there has been a number of proposals, namely
graph mining approaches, to extract frequent subgraphs. Classical approaches
to graph mining, e.g. gSpan [12] and Gaston [7], work on collections of graphs,
and generate all patterns w.r.t. a frequency threshold. The major drawback of
this kind of approach is the huge amount of generated patterns, which ren-
ders them di�cult to analyze. Some approaches such as CloseGraph [13] reduce
the number of patterns by only generating closed patterns. However, the set of
closed patterns generally remains too large, with a lot of redundancy between
patterns. Constraint-based approaches, such as gPrune [14], reduce the num-
ber of extracted patterns by extracting only the patterns following a certain

acceptance rule. These algorithms generally manage to reduce the number of
patterns, however they also limit their type. Additionally, if the acceptance rule
is user-provided, the user needs some background knowledge on the data.

More e�ective approaches to reduce the number of patterns are those based
on the Minimum Description Length (MDL) principle [3]. The MDL principle
comes from information theory, and states that the model that describes the
data the best is the one that compresses the data the best. It has been shown
on sets of items [10], sequences [9] and relations [4] that an MDL-based ap-
proach can select a small and descriptive subset of patterns. Few MDL-based
approaches have been proposed for graphs. SUBDUE [1] iteratively compresses
a graph by replacing each occurrence of a pattern by a single vertex. At each
step, the chosen pattern is the one that compresses the most. The drawback of
SUBDUE is that the replacement of pattern occurrences by vertices entails a
loss of information. VoG [5] summarizes graphs as a composition of prede�ned
families of patterns (e.g., paths, stars). Like SUBDUE, VoG aims to only ex-
tract �interesting� patterns, but instead of evaluating each pattern individually
like SUBDUE, it evaluates the set of extracted patterns as a whole. This allows
the algorithm to �nd a �good set of patterns� instead of a �set of good patterns�.
One limitation of VoG is that the type of patterns is restricted to prede�ned
ones. Another limitation is that VoG works on unlabeled graphs, (e.g. network
graphs), while we are interested in labeled graphs.

The contribution of this paper (Section 3) is a novel approach called Graph-
MDL, leveraging the MDL principle to select graph patterns from labeled
graphs. Contrary to SUBDUE, GraphMDL ensures that there is no loss of in-
formation thanks to the introduction of the notion of ports associated to graph
patterns. Ports represent how adjacent occurrences of patterns are connected.
We evaluate our approach experimentally (Section 4) on two datasets with dif-
ferent kinds of graphs: one on AIDS-related molecules (few labels, many cycles),
and the other one on dependency trees (many labels, no cycles). Experiments
validate our approach by showing that the data can be signi�cantly compressed,
and that the number of selected patterns is drastically reduced compared to the
number of candidate patterns. More so, we observe that the patterns can have
complex and varied shapes, and are representative of the data.

2 Background Knowledge

2.1 The MDL Principle

The Minimum Description Length (MDL) principle [3] is a technique from the
domain of information theory that allows to select the model, from a family of
models, that best describes some data. The MDL principle states that the best
model M for describing some data D is the one that minimizes the description
length L(M,D) = L(M) + L(D|M), where L(M) is the length of the model and
L(D|M) the length of the data encoded with the model. The MDL principle does
not de�ne how to compute every possible description length. However, common
primitives exist for data and distributions [6]:

Fig. 1. A labeled undi-
rected simple graph.

Fig. 2. Embeddings of a pattern in
the graph of Fig. 1.

X

a

Vertex singleton

Edge singleton

Fig. 3. Two singleton
patterns.

� An element x ∈ X with uniform distribution has a code of log(|X |) bits.
� An element x ∈ X , appearing usage(x,D) times in some data D has a code

of LX
usage(x,D) = −log

(
usage(x,D)∑

xi∈X usage(xi,D)

)
bits. This encoding is optimal.

� An integer n ∈ N without a known upper bound can be encoded with a
universal integer encoding, whose size in bits is noted LN(n)

1.

Description lengths of elements that are common to all models are usually
ignored, since they do not a�ect their comparison.

Krimp [10] is a pattern mining algorithm using the MDL principle to select a
�characteristic� set of itemset patterns from a transactional database. Because of
its good performances, Krimp has been adapted to other types of data, such as
sequences [9] and relational databases [4]. In our approach we rede�ne Krimp's
key concepts on graphs, in order to apply a Krimp-like approach to graph mining.

2.2 Graphs and Graph Patterns

De�nition 1. A labeled graph G = (V,E, lV , lE) over two label sets LV and LE
is a data structure composed of a set of vertices V , a set of edges E ⊆ V × V ,
and two labeling functions lV ∈ V → 2LV and lE ∈ E → LE that associate a set
of labels to vertices, and one label to edges.

G is said undirected if E is symmetric, and simple if E is irre�exive.

Although our approach applies to all labeled graphs, in the following we
only consider undirected simple graphs, so as to compare ourselves with existing
tools and benchmarks. Fig. 1 shows an example of graph, with 8 vertices and
7 edges, de�ned over vertex label set {W,X, Y, Z} and edge label set {a, b}. In
our de�nition vertices can have several or no labels, unlike usual de�nitions in
graph mining, because it makes it applicable to more datasets.

De�nition 2. Let GP and GD be graphs. An embedding (or occurrence) of GP

in GD is an injective function ε ∈ V P → V D such that: (1) lPV (v) ⊆ lDV (ε(v)) for
all v ∈ V P ; (2) (ε(u), ε(v)) ∈ ED for all (u, v) ∈ EP ; and (3) lPE(e) = lDE (ε(e))
for all e ∈ EP .
1 In our implementation we use Elias gamma encoding [2], shifted by 1 so that it can
encode 0. Therefore LN(n) = 2blog(n+ 1)c+ 1.

X Y Za b

a

W

v2

v1

Port ID
Port code

length (bits)

2

0.42

Pattern code

length (bits)

1

Port count

2

Pattern structure

v2

v1
1

1
2.58 2

2.58

X 2.58

1

1

1

1

2

2

3

Pattern usage

3

1

1

1

Port usage

1

3

1

1

P1

Pattern code Port code

v1

v2

v1

v2

P

P1

Pa

Pw

Px

ccPG
P

1 v1 1
0

1 v1 1
0

v

Pa

Pw

Px

Fig. 4. Example of a GraphMDL code table over the graph of Fig. 1. Pattern and
port usages, and code lengths have been added as illustration and are not part of the
table de�nition. Unused singleton patterns are omitted.

We de�ne graph patterns as graphs GP having some occurrences in the data
graph GD. Fig. 2 shows the three embeddings ε1, ε2, ε3 of a two-vertices graph
pattern into the graph of Fig.1. We de�ne singleton patterns as the elementary
patterns. A vertex singleton pattern is a graph with one vertex having one label.
An edge singleton pattern is a graph with two unlabeled vertices, connected by
a single labeled edge. Fig. 3 shows examples of singleton patterns.

3 GraphMDL: MDL for Graphs

In this section we present our contribution: the GraphMDL approach. This
approach takes as input a graph �the original graph Go� and a set of patterns
extracted from that graph �the candidate patterns� and outputs the most
descriptive subset of candidate patterns according to the MDL principle. The
candidates can be generated with any graph mining algorithm, e.g. gSpan [12].

The intuition behind GraphMDL is that since data and patterns are both
graphs, the data can be seen as a composition of pattern embeddings. Informally,
we want a user analyzing the output of GraphMDL to be able to say �the data
is composed of one occurrence of pattern A, connected to one occurrence of
pattern B, which is itself connected to one occurrence of pattern C�. More so,
we want the user to be able to tell how these structures are connected together:
which vertices of each pattern are used to connect it to other patterns.

3.1 Model: A Code Table for Graph Patterns

Similarly to Krimp [10], we de�ne our model as a Code Table (CT), i.e. a set P of
patterns with associated coding information. A �rst di�erence with Krimp is that
the patterns are graph patterns. A second di�erence is the need for additional
coding information: a single code would not su�ce since all the information
related to connectivity between pattern occurrences would be lost.

We therefore introduce the notion of ports in order to represent how pattern
embeddings connect to each other to form the original graph. The set of ports of
a pattern is a subset of the vertices of the pattern. Intuitively, a pattern vertex

P1

v1

v2

v2

v1

v2

Rewritten graph

X

Y
X

X

Z

Z

Z

X

W

a

a

a

a

b

b

b

P1

P1

P1

Pa

Pattern occurrences

v2

Pw

Px

v1

v1

P1

Pa

Pw

Px

P1

a) b)

Fig. 5. How the data graph of Fig. 1 is encoded with the code table of Fig. 4. a) Re-
tained occurrences of CT patterns. b) The rewritten graph. Blue squares are pattern
embeddings (their label indicates the pattern), white circles are port vertices. Edge
labels represent which pattern port correspond to each port vertex.

is a port if at least one pattern embedding maps this vertex to a vertex in the
original graph that is also used by another embedding (be it of the same pattern
or a di�erent one). For example, in Fig. 5a the three occurrences of pattern P1
are inter-connected through their middle vertex: this vertex is a port. Since port
information increases the description length, we expect our approach to select
patterns with few ports.

Fig. 4 shows an example of CT associated to the graph of Fig. 1. Every
row of the CT is composed of three parts, and contains information about a
pattern P ∈ P (e.g. the �rst row contains information about pattern P1). The
�rst part of a row is the graph GP , which represents the structure of the pattern
(e.g. P1 is a pattern with three labeled vertices and two labeled edges). The
second part of a row is the code cP , associated to the pattern. The third part
of a row is the description of the port set of the pattern, ΠP , (e.g. P1 has two
ports, its �rst two vertices, with codes of 2 and 0.42 bits2). We note Π the set of
all ports of all patterns. Like Krimp, the length of the code of a pattern or port
depends on its usage in the encoding of the data, i.e. how many times it is used
to describe the original graph Go (e.g. P1 has a code of 1 bit because it is used
3 times and the sum of pattern usages in the CT is 6, see Sections 3.2 and 3.3).

3.2 Encoding the Data with a Code Table

The intuition behindGraphMDL is that we can represent the original graph Go

(i.e. the data) as a set of pattern occurrences, connected via ports. Encoding the
data with a CT consists in creating a structure that explicits which occurrences
are used and how they interconnect to form the original graph. We call this
structure the rewritten graph Gr.

De�nition 3. A rewritten graph Gr = (V r, Er, lrV , l
r
E) is a graph where the set

of vertices is V r = V remb ∪ V rport: V remb is the set of pattern embedding vertices
and V rport is the set of port vertices. Er ⊆ V remb × V rport is the set of edges from
embeddings to ports, lrV ∈ V remb → P and lrE ∈ Er → Π are the labelings.

2 MDL approaches deal with theoretical code lengths, which may not be integers.

In order to compute the encoding of the data graph with a given CT, we start
with an empty rewritten graph. One after another, we select patterns from the
CT. For each pattern, we compute the occurrences of its graph GP . Similarly to
Krimp, we limit embeddings overlaps: we admit overlap on vertices (since it is
the key notion behind ports), but we forbid edge overlaps.

Each retained embedding is represented in the rewritten graph by a pat-
tern embedding vertex : a vertex ve ∈ V remb with a label P ∈ P indicating which
pattern it instantiates. Vertices that are shared by several embeddings are
represented in the rewritten graph by a port vertex vp ∈ V rport. We add an
edge (ve, vp) ∈ Er between the pattern embedding vertex ve of a pattern P
and the port vertex vp, when the embedding associated to ve maps the pattern's
port vπ ∈ ΠP to vp. We label this edge vπ.

We make sure that code tables always include all singleton patterns, so that
they can always encode any vertex and edge of the original graph.

Fig. 5 shows the graph of Fig. 1 encoded with the CT of Fig. 4. Embeddings
of CT patterns become pattern embedding vertices in the rewritten graph (blue
squares). Vertices that are at the boundary between multiple embeddings become
port vertices in the rewritten graph (white circles). When an embedding has a
port, its pattern embedding vertex in the rewritten graph is connected to the
corresponding port vertex and the edge label indicates which pattern's port it
is. For instance, the three retained occurrences of pattern P1 all share the same
vertex labeled Y (middle of the original graph), thus in the rewritten graph the
three corresponding pattern embedding vertices are connected to the same port
vertex via port v2.

3.3 Description Lengths

In this section we de�ne how to compute the description length of the CT and
the rewritten graph. Description lengths are used to compare CTs. Formulas are
explained below and grouped in Fig. 6.

Code table. The description length L(M) = L(CT) of a CT is the sum of
the description lengths of its rows (skipping rows with unused patterns), and
every row is composed of three parts: the pattern graph structure, the pattern
code, and the pattern port description.

To describe the structure G = GP of a pattern (L(G)) we start by encoding
the number of vertices of the pattern. Then we encode the vertices one after
the other. For each vertex v, we encode its labels then its adjacent edges. To
encode the vertex labels (LV (v,G)) we specify their number �rst, then the labels
themselves. To encode the adjacent edges (LE(v,G)) we specify their number
(between 0 and |V | − 1 in a simple graph), then for each edge, its destination
vertex and its label. To avoid encoding twice the same edge, we decide �in
undirected graphs� to encode edges with the vertex with the smallest identi�er.
Vertex and edge labels are encoded based on their relative usage in the original
graph Go (LLV

usage(l, G
o) and LLE

usage(lE(v, w), G
o)). Since this encoding does not

change between CTs, it is a meaningful way to compare them.

L(cP) = LP
usage(P,G

r) where usage(Pi, G
r) = |{ve ∈ V remb | lrV (ve) = Pi}|

L(cπ, P) = LΠP
usage(π,G

r) where usage(πi, G
r) = |{e ∈ Eremb | lrE(e) = πi}|

L(M) = L(CT) =
∑
P∈P

usage(P)6=0

L(G)︸ ︷︷ ︸
structure

+L(cP)︸ ︷︷ ︸
code

+L(ΠP)︸ ︷︷ ︸
ports∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

L(G) = LN(|V |)︸ ︷︷ ︸
vertex count

+
∑
v∈V [LV (v,G)︸ ︷︷ ︸

vertex labels

+ LE(v,G)︸ ︷︷ ︸
edges of vertex

]

∣∣∣∣∣∣∣∣∣
LV (v,G) = LN(|lV (v)|)︸ ︷︷ ︸

label count

+
∑
l∈lV (v) L

LV
usage(l, G

o)︸ ︷︷ ︸
label code

LE(v,G) = log(|V |)︸ ︷︷ ︸
edge count

+
∑

(v,w)∈E|v<w[log(|V |)︸ ︷︷ ︸
destination

+LLE
usage(lE(v, w), G

o)︸ ︷︷ ︸
label

]

L(ΠP) = log(|V |+ 1)︸ ︷︷ ︸
port count |ΠP |

+ log(

(
|V |
|ΠP |

)
)︸ ︷︷ ︸

port ids

+
∑
π∈ΠP

L(cπ, P)︸ ︷︷ ︸
port code

L(D|M) = L(Gr) = LN(|V rport|)︸ ︷︷ ︸
port vertex count

+
∑

v∈V r
emb

Lemb(v, P,G
r) with P = lrV (v)

∣∣∣∣∣Lemb(v, P,G
r) = L(cP)︸ ︷︷ ︸

pattern code

+ log(|ΠP |+ 1)︸ ︷︷ ︸
edge count

+
∑

(v,w)∈Er

π=lrE(v,w)

log(|V rport|)︸ ︷︷ ︸
port vertex id

+L(cπ, P)︸ ︷︷ ︸
port code

Fig. 6. Formulas used for computing description lengths. The struc-
ture GP = (V P , EP , lPV , l

P
E) is shortened to G = (V,E, lV , lE) for ease of reading.

The second element of a CT row is the code cP associated to the pattern
(L(cP)). This code is based on the usage of the pattern in the rewritten graph.

The last element of a CT row is the description of the pattern's ports
(L(ΠP)). First, we encode the number of pattern's ports (between 0 and |V |).
Then we specify which vertices are ports: if there are k ports, then there are

(|V |
k

)
possibilities. Finally, we encode the port codes (L(cπ, P)): their code is based on
the usage of the port in the rewritten graph w.r.t. other ports of the pattern.

Rewritten graph. The rewritten graph has two types of vertices: port
vertices and pattern embedding vertices. Port vertices do not have any asso-
ciated information, so we just need to encode their number. The description
length L(D|M) = L(Gr) of the rewritten graph is the length needed for encoding
the number of vertex ports plus the sum of the description lengths Lemb(v, P,G

r)
of the pattern embedding vertices v. Every pattern embedding vertex has a la-
bel lrV (v) specifying its pattern P , encoded with the code cP of the pattern. We
then encode the number of edges of the vertex i.e. the number of ports of this
embedding in particular (between 0 and |ΠP |). Then for each edge we encode
the port vertex to which it is connected and to which port it corresponds (using
the port code cπ).

Table 1. Characteristics of the datasets used in the experiments

Dataset Graph count |V | |E| |LV | |LE |
AIDS-CA 423 16714 17854 21 3
AIDS-CM 1082 34387 37033 26 3

UD-PUD-En 1000 21176 20176 17 46

3.4 The GraphMDL Algorithm

In previous subsections we presented the di�erent MDL de�nitions that Graph-
MDL uses to evaluate pattern sets (CT). A naive algorithm for �nding the most
descriptive pattern set (in the MDL sense) could be to create a CT for every
possible subset of candidates and retain the one yielding the smallest descrip-
tion length. However, such an approach is often infeasible because of the large
amount of possible subsets. That is why GraphMDL applies a greedy heuristic
algorithm, adapting Krimp algorithm [10] to our MDL de�nitions.

Like Krimp, our algorithm starts with a CT composed of all singletons, which
we call CT0. One after the other, candidates are added to the CT if they allow to
lower the description length. Two heuristics guide GraphMDL: the candidate
order and the order of patterns in the CT. We use the same heuristics as Krimp,
with the di�erence that we de�ne the size of a pattern as its total number of
labels (vertices and edges). We also implement Krimp's �post-acceptance prun-
ing�: after a pattern is accepted in the CT, GraphMDL veri�es if the removal
of some patterns from the CT allows to lower the description length L(M,D).

4 Experimental Evaluation

In order to evaluate our proposal, we developed a prototype of GraphMDL.
The prototype was developed in Java 1.8 and is available as a git repository3.

4.1 Datasets

The �rst two datasets that we use, AIDS-CA and AIDS-CM, are part of the
National Cancer Institute AIDS antiviral screen data4. They are collections of
graphs often used to compare graph mining algorithms [11]. Graphs of this col-
lection represent molecules: vertices are atoms and edges are bonds. We stripped
all hydrogen atoms from the molecules, since their positions can be inferred.

We took our third dataset, UD-PUD-En, from the Universal Dependencies
project5. This project curates a collection of trees describing dependency rela-
tionships between words of sentences of multiple corpora in multiple languages.
We used the trees corresponding to the English version of the PUD corpus.

3 https://gitlab.inria.fr/fbariatt/graphmdl
4 https://wiki.nci.nih.gov/display/NCIDTPdata/AIDS+Antiviral+Screen+Data
5 https://universaldependencies.org/

Table 2. Experimental results for di�erent candidate sets

gSpan Candidate Median Median

Dataset support count Runtime |CT | L(CT,D)
L(CT0,D)

label count port count

AIDS-CA 20% 2194 19m 115 24.42% 9 3
AIDS-CA 15% 7867 1h47m 123 21.64% 10 4
AIDS-CA 10% 20596 3h36m 148 19.03% 11 3

AIDS-CM 20% 433 22m 111 28.91% 7 4
AIDS-CM 15% 779 32m 131 27.44% 9 4
AIDS-CM 10% 2054 1h10m 163 24.94% 9 4
AIDS-CM 5% 9943 5h02m 225 20.43% 9 4

UD-PUD-En 10% 164 1m 162 39.55% 5 2
UD-PUD-En 5% 458 3m 249 34.45% 5 2
UD-PUD-En 1% 6021 19m 523 28.14% 7 2
UD-PUD-En 0% 233434 9h57m 773 26.25% 7 2

Table 1 presents the main characteristics of the three datasets that we use:
the number of elementary graphs in the dataset, the total amount of vertices,
the total amount of edges, the number of di�erent vertex labels, and the number
of di�erent edge labels. Since GraphMDL works on a single graph instead of a
collection, we aggregate collections into a single graph with multiple connected
components when needed. We generate candidate patterns by using a gSpan
implementation available on its author's website6.

4.2 Quantitative Evaluation

Table 2 presents the results of the �rst experiment. For instance the �rst line tells
that we ran GraphMDL on the AIDS-CA dataset, with as candidates the 2194
patterns generated by gSpan for a support threshold of 20%. It took 19 minutes
for our approach to select a CT composed of 115 patterns, yielding a description
length that is 24% of the description length obtained by the singleton-only CT0.
Selected patterns have a median of 9 labels and 3 ports.

We observe that the number of patterns of a CT is often signi�cantly smaller
than the number of candidates. This is particularly remarkable for experiments
ran with small support thresholds, where GraphMDL reduces the number of
patterns up to 300 times: patterns generated for these support thresholds prob-
ably contain a lot of redundancy, that GraphMDL avoids.

We also note that the description lengths of the CTs found by GraphMDL
are between 20% and 40% of the lengths of the baseline code tables CT0, which
shows that our algorithm succeeds in �nding regularities in the data. Description
lengths are smaller when the number of candidates is higher: this may be because
with more candidates, there are more chances of �nding �good� candidates that
allow to better reduce description lengths.

6 https://sites.cs.ucsb.edu/~xyan/software/gSpan.htm

P1

P1

P2

P2

P3

P1

P1

P2

P2

P3

v1

v1

v1

v1

v2

v1

v2

v2

P1 P1

With GraphMDL With SUBDUE

P1: 7 labels

P2: 16 labels

P3: 1 label (singleton)

Fig. 7. How GraphMDL (left) and SUBDUE (right) encode one of AIDS-CM graphs.

We observe that GraphMDL can �nd patterns of non-trivial size, as shown
by the median label count in Table 2. Also, most patterns have few ports, which
shows that GraphMDL manages to �nd models in which the original graph is
described as a set of components without many connections between them. We
think that a human will interpret such a model with more ease, as opposed to a
model composed of �entangled� components.

4.3 Qualitative Evaluations

Interpretation of rewritten graphs. Fig. 7 shows how GraphMDL uses patterns
selected on the AIDS-CM dataset to encode one of the graphs of the dataset
(more results are available in our git repository). It illustrates the key idea behind
our approach: �nd a set of patterns so that each one describes part of the data,
and connect their occurrences via ports to describe the whole data.

We observe that GraphMDL selects bigger patterns (such as P2), describ-
ing big chunks of data, as well as smaller patterns (such as P3, edge singleton),
that can form bridges between pattern occurrences. Big patterns increase the
description length of the CT, but describe more of the data in a single occur-
rence, whereas small patterns do the opposite. Following the MDL principle,
GraphMDL �nds a good balance between the two types of patterns.

It is interesting to note that pattern P1 in Fig. 7 corresponds to the carboxylic
acid functional group, common in organic chemistry. GraphMDL selected this
pattern without any prior knowledge of chemistry, solely by using MDL.

Comparison with SUBDUE. On the right of Fig. 7 we can observe the encoding
found by SUBDUE on the same graph. The main disadvantage of SUBDUE is
information loss: we can see that the data is composed of two occurrences of
pattern P1, but not how these two occurrences are connected. Thanks to the
notion of ports, GraphMDL does not su�er from this problem: the user can
exactly know which atoms lie at the boundary of each pattern occurrence.

Table 3. Classi�cation accuracies. Results of methods marked with * are from [8].

Algorithm AIDS-CA/CI Mutag PTC-MR PTC-FR

Baseline-Largest 50.01± 0.03 66.50± 0.00 55.80± 0.00 65.50± 0.00
GraphMDL 71.61± 0.96 80.79± 1.51 57.38± 1.68 62.70± 1.86
WL* N/A 87.26± 1.42 63.12± 1.44 67.64± 0.74
P-WL-C* N/A 90.51± 1.34 64.02± 0.82 67.15± 1.09
RetGK* N/A 90.30± 1.10 62.15± 1.60 67.80± 1.10

Assessing patterns through classi�cation. We showed in the previous experi-
ments that GraphMDL manages to reduce the amount of patterns, and that
the introduction of ports allows for a precise analysis of graphs. We now ask
ourselves if the extracted patterns are characteristic of the data. To evaluate
this aspect, we adopt the classi�cation approach used by Krimp [10]. We apply
GraphMDL independently on each class of a multi-class dataset, and then use
the resulting CTs to classify each graph: we encode it with each of the CTs, and
classify it in the class whose CT yields the smallest description length L(D|M).
Since GraphMDL is not designed with the goal of classi�cation in mind, we
would expect existing classi�ers to outperform GraphMDL. In particular, note
that patterns are selected on each class independently of other classes. Indeed,
GraphMDL follows a descriptive approach whereas classi�ers generally follow
a discriminative approach. Table 3 presents the results of this new experiment.
We compare GraphMDL with graph classi�cation algorithms found in the lit-
erature [8], and a baseline that classi�es all graphs as belonging to the largest
class. The AIDS-CA/CI dataset is composed of the CA class of the AIDS dataset
and a same-size same-labels random sample from the CI class (corresponding to
negative examples). The other datasets7 are from [8]. We performed a 10-fold
validation repeated 10 times and report average accuracies and standard devia-
tions.

GraphMDL clearly outperforms the baseline on two datasets, AIDS and
Mutag, but is only comparable to the baseline for the PTC datasets. On Mutag,
GraphMDL is less accurate than other classi�ers but closer to them than to
the baseline. On the PTC datasets, we hypothesize that the learned descriptions
are not discriminative w.r.t. the chosen classes, although they are characteristic
enough to reduce description length. Nonetheless results are still better than
random guessing (accuracy would be 50%). An interesting point of GraphMDL
classi�cation is that it is explainable: the user can look at how the patterns of
the two classes encode a graph (similarly to Fig. 7) and understand why one
class is chosen over another.

5 Conclusion

In this paper, we have proposed GraphMDL, an MDL-based pattern mining
approach to select a representative set of graph patterns on labeled graphs. We

7 For concision, we do not report on PTC-{MM,FM}, they yield similar results.

proposed MDL de�nitions allowing to compute description lengths necessary to
apply the MDL principle. The originality of our approach lies in the notion of
ports, which guarantee that the original graph can be perfectly reconstructed,
i.e., without any loss of information. Our experiments show that GraphMDL
signi�cantly reduces the amount of patterns w.r.t. complete approaches. Further,
the selected patterns can have complex shapes with simple connections. The
introduction of the notion of ports facilitates interpretation w.r.t. to SUBDUE.
We plan to apply our approach to more complex graphs, e.g. knowledge graphs.

References

1. Cook, D.J., Holder, L.B.: Substructure Discovery Using Minimum Description
Length and Background Knowledge. Journal of Arti�cial Intelligence Research 1,
231�255 (1993)

2. Elias, P.: Universal codeword sets and representations of the integers. IEEE Trans-
actions on Information Theory 21(2), 194�203 (Mar 1975)

3. Grünwald, P.: Model selection based on minimum description length. Journal of
Mathematical Psychology 44(1), 133�152 (2000)

4. Koopman, A., Siebes, A.: Characteristic Relational Patterns. In: Proceedings of
the 15th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. pp. 437�446. KDD '09, ACM (2009)

5. Koutra, D., Kang, U., Vreeken, J., Faloutsos, C.: Summarizing and understanding
large graphs. Statistical Analysis and Data Mining: The ASA Data Science Journal
8(3), 183�202 (2015)

6. Lee, T.C.M.: An Introduction to Coding Theory and the Two-Part Minimum De-
scription Length Principle. International Statistical Review 69(2), 169�183 (2001)

7. Nijssen, S., Kok, J.N.: The Gaston tool for frequent subgraph mining. Electron.
Notes Theor. Comput. Sci. 127(1), 77�87 (2005)

8. Rieck, B., Bock, C., Borgwardt, K.: A Persistent Weisfeiler-Lehman Procedure
for Graph Classi�cation. In: Proceedings of the 36th International Conference on
Machine Learning. pp. 5448�5458. PMLR (2019)

9. Tatti, N., Vreeken, J.: The long and the short of it: Summarising event sequences
with serial episodes. In: Proc. of the Int. Conf. on Knowledge Discovery and Data
Mining (KDD'12). pp. 462�470. ACM (2012)

10. Vreeken, J., van Leeuwen, M., Siebes, A.: Krimp: mining itemsets that compress.
Data Min. Knowl. Discov. 23(1), 169�214 (2011)

11. Wörlein, M., Meinl, T., Fischer, I., Philippsen, M.: A Quantitative Comparison
of the Subgraph Miners MoFa, gSpan, FFSM, and Gaston. In: Knowledge Dis-
covery in Databases: PKDD 2005. LNCS, vol. 3721, pp. 392�403. Springer Berlin
Heidelberg (2005)

12. Yan, X., Han, J.: gSpan: Graph-based substructure pattern mining. In: Proc. of the
2002 IEEE Int. Conf. on Data Mining (ICDM '02). pp. 721�724. IEEE Computer
Society (2002)

13. Yan, X., Han, J.: CloseGraph: Mining closed frequent graph patterns. In: ACM
SIGKDD Int. Conf. Knowledge Discovery and Data Mining (KDD). pp. 286�295.
ACM (2003)

14. Zhu, F., Yan, X., Han, J., Yu, P.S.: gPrune: A Constraint Pushing Framework for
Graph Pattern Mining. In: Advances in Knowledge Discovery and Data Mining.
pp. 388�400. LNCS (2007)

