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A generic software framework for Wang-Landau type algorithms

Augustin Chevallier ∗, Frédéric Cazals†

March 22, 2020

Abstract

The Wang-Landau (WL) algorithm is a stochastic algorithm designed to compute densities of states
of a physical system. Is has also been recently used to perform challenging numerical integration in
high-dimensional spaces. Using WL requires specifying the system handled, the proposal to explore the
definition domain, and the measured against which one integrates. Additionally, several design options
related to the learning rate must be provided.

This work presents the first generic (C++) implementation providing all such ingredients. The
versatility of the framework is illustrated with a variety of problems including the computation of density
of states of physical systems and biomolecules, and the computation of high dimensional integrals. Along
the way, we that integrating against a Boltzmann like measure to estimate DoS with respect to the
Lebesgue measure can be beneficial.

We anticipate that our implementation, available in the Structural Bioinformatics Library (http:
//sbl.inria.fr), will leverage experiments on complex systems and contribute to unravel free energy
calculations for (bio-)molecular systems.
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1 Introduction

1.1 Sampling with the Wang-Landau algorithm

The Wang-Landau (WL) algorithm is a recently developed stochastic algorithm computing densities of states
(DoS) of a physical system. From a physics standpoint, WL computes the density of states associated to an
energy. From a mathematical standpoint, WL estimates the push forward measure by an energy function
of a density in state space, with a control on the relative error. For typical systems, the DoS spans several
orders of magnitude and may be close to zero, whence the shear difficulty. WL is a stochastic approximation
method falling in the class of adaptive Monte Carlo as it uses an evolving Markov kernel. At each step,
WL estimates s the density of states of the system, which requires two main ingredients: the construction
of a Markov kernel biased using the current estimation of the DoS – this requires a so-called move set or
proposal; the update of the DoS – referred to as the learning rule. (In the sequel, we distinguish between the
proposal as just defined, and the random walk i.e. the sequence of points used in the algorithm, as output
by the Metropolis-Hasting criterion used in WL.)

This state of affairs prompted a variety of developments: since its inception, the Wang-Landau algorithm
has spurred the development of many different variants, and numerous studies have been published about
their efficiencies.

The learning rule was extensively studied, comparing the flat histogram criterion with deterministic rules
and other proposed rules [1, 2]. It was proposed to smooth or dynamically split the histogram [3, 4] or even
replace it with a continuous representation [5]. Other suggested merging the Wang-Landau algorithm with
parallel tempering [6, 7]. Finally, a wealth of models were studied, ranging from discrete models [8, 1] to
molecules such as met-enkephalin (a pentapeptide) [7, 6, 9, 3, 10].

The physical systems studied triggered the development of various proposals. For example, in molecular
studies, various proposals were designed, based on molecular dynamics [6, 3], on internal coordinates (dihedral
angles) [9, 10], or variants [11, 4]. In a related vein, WL was also used to perform numerical integration.
Multidimensional integral may be approximated by a discrete sum of function values multiplies by the
measure of points achieving a given value [12]. (Note that the function value plays the role of the density of
states of a physical system.) Such calculations are of special interest to study convergence properties, since
exact values (for the whole integral or the density of states) make it possible to scrutinize the convergence
properties [13]. In this context, it was observed that bin width introduce another kind of saturation error,
which call for a refined treatment of function values [13].

In most if not all the aforementioned studies, the reproducibility of results is jeopardized by the absence
of software and/or the lack of implementation details.

1.2 Contributions

The previous review of previous work calls for a customizable implementation of WL, capable of accommo-
dating a variety of systems, the variants of the algorithm, and the proposals. Naturally, the corresponding
design should not sacrifice any performance.

Systems. We isolate the pre-requisite namely the configuration space, the density, and the energy function
within the so-called physical system. This design accommodates discrete and continuous physical systems,
as well as systems derived from numerical integration.

WL and variants. The Wang-Landau algorithm has many variants. The flat histogram rule originally
proposed has been enhanced by the 1/t rule. However it has been suggested that the flat histogram crite-
rion is not relevant, and other proposal have been suggested. In addition, several updates rule have been
proposed [14]. In this work, we present here a generic framework compatible with all these variants.
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Move sets–aka proposals. As outlined in [15], the choice of the underlying proposal q and the associated
mixing time for Wang-Landau is a core ingredients for fast convergence. Furthermore, in specific situation,
like a discrete state space (e.g. the Ising model) or a state space which is a manifold, the creation of a
custom proposal respecting the constrains of these state space is mandatory. In this paper we present a
generic framework for proposals, allowing to easily create and combine customs adaptive proposals, with
the ability to exploit and/or learn features from the configuration space, reducing the mixing time. In
addition, we provide several generic proposals on Rn that uses geometric information to enhance mixing
time [15]. Those proposals are readily available for users and extensive experimental results are provided in
[15], including for a small bio-molecule.

This work presents the first generic (C++) implementation providing these features, which is integrated
to the SBL Structural Biology Library [16] and http://sbl.inria.fr. The versatility of the framework is
illustrated with a variety of problems including the computation of density of states of physical systems and
biomolecules, and the computation of high dimensional integrals.

2 Mathematical pre-requisites

This section present mathematical pre-requisites to make the paper self-contained, and also provides insights
on the role of the measure.

2.1 Density of states and calculation by WL

First, it should be noted the measure on state space only requires to be defined up to a constant (in other
words, it is a finite measure and not a probability measure). Therefore in this work, we consider a distribution
with density π(x) defined on a subset E ⊂ RD. Also consider a partition of E into so-called strata {E1, . . . , Ed}.
Denoting λ the Lebesgue measure, our problem is to estimate

θπ∗i
Def
=

π(Ei)
π(E)

=
1

π(E)

∫
Ei
π(x)λ(dx). (1)

This problem arises in many areas of science and engineering, two of them being of particular interest in the
sequel.

At time t, the WL algorithm computes a sequence of estimates θπi (t). Let J(x) be the index of the
stratum containing point x Points sampled in a given stratum Ei by WL at time t follows the probability
density

πθπ(t)(x) =

(
d∑
i=1

θπ∗i
θπi (t)

)−1

π(x)

θπJ(x)(t)
. (2)

The WL algorithm iteratively construct a sequence θπ(t) = (θπ1 (t), ..., θπd (t)) of estimates for the unknown
vector θπ∗ = (θπ∗1 , ..., θπ∗d ). To do so, the main steps are (see Algo 1) (i) to sample a point according to a
Markov kernel Pθ(xt, .) depending on the current estimate θ, (ii) update θ using a learning rate γ, and (iii)
evolve γ according to two possible strategies known as the 1/t regime and the exponential regime. (This
latter option comes from the fact that log γ ← (1/2) log γ.) We note that the exponential regime is governed
by a flat histogram, which allows checking that all bins are visited evenly. Denoting νt(i) be the number
of samples up to iteration t falling into the i-th stratum Ei. The vector {νt(i)} is said to verify the flat
histogram (FH) criterion provided that, given a constant c:

max
i=1,...,d

| νt(i)
t
− 1/d |< 1− c. (3)
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Algorithm 1 Wang Landau

1: Set θ = (1/d, ..., 1/d)
2: Set exponential regime = True
3: Set γ = γ0 with γ0 > 1
4: while t < tmax do
5: // Sample according to a Markov kernel Pθ(xt, .) depending on θ
6: Sample y ∼ q(xt, .)
7: Compute the Metropolis-Hastings acceptance ratio α = π(y)

π(x)

θJ(x)

θJ(y)

q(y,x)
q(x,y)

8: Sample u ∼ Unif(0, 1)
9: if u < α then

10: Set xt+1 = y
11: else
12: Set xt+1 = xt
13: // Update the DoS
14: Set θJ(xt+1) = γ θJ(xt+1)

15: Renormalize the estimated DoS θ
16: if Exponential regime then
17: if Flat histogram then
18: γ =

√
γ

19: if γ < exp( 1
t+1 ) then

20: Set exponential regime = False
21: Set γ = exp( 1

t+1 )
22: else
23: γ = exp( 1

t+1 )

2.2 Numerical integration

The Wang-Landau algorithm has been used for numerical integration [12, 17, 18]. In the early works, the bin
sizes leaded to a saturation of the error. To prevent the error saturation, estimations of the average energy
were added in [18]. In practice, the method proposed by [18] to compute an integral I =

∫
E U(x)π(x)dx

relies on the following observation:

I =
∑
i

∫
Ei
U(x)π(x)dx (4)

= π(E)
∑
i

π(Ei)
π(E)

∫
Ei
U(x)

π(x)dx

π(Ei)
(5)

= π(E)
∑
i

θ∗i

∫
Ei
U(x)

π(x)dx

π(Ei)
. (6)

Following the points distribution in each stratum given by Eq. (2), the average value in a bin is defined by
the integral

1

π(Ei)

∫
Ei
U(x)π(x)dx. (7)

This integral can be computed during WL runtime by computing the average energy value in a given bin.
Therefore if the total volume π(E) is known, the integral I can be computed with WL.

It should be noted that our formulation slightly differs from [18] because we consider the general case of
a finite measure π on E while they only consider the Lebesgue measure.
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2.3 Incidence of the choice of the measure

For two measure π and µ, we define:

θπ∗i =

∫
Ei π(x)dx∫
E π(x)dx

=
π(Ei)
π(E)

θµ∗i =

∫
Ei µ(x)dx∫
E µ(x)dx

=
µ(Ei)
µ(E)

The choice between π and µ has two direct implications. First, θπ∗ is different than θµ∗. Second, as seen
from Eq. (2), the density sampled by WL in a given stratum are different.

In certain cases changing the measure on the state can improve the convergence speed. Consider the
potential energy U(x) = ‖x‖2. In high dimension, because of the concentration of measure, most of the
points of each stratum will be on the outer boundary with the Lebesgue measure, making it difficult to go
from one stratum to a lower one. Changing the measure π to counter this effect and bias towards the interior
boundary might be beneficial. On the other, we will inspect one case for which the choice of measure does
not matter.

Density of state: change of measure We describe here a method to deduce the density of state for a
measure µ while the Wang-Landau algorithm was used with a measure π on state space. To get from one
measure to another, we will need the numerical integration capabilities of the software.

For each Ei, WL for the measure π samples points with respect to the density of Eq. (2) in Ei. Therefore
we can compute the following integral for each stratum during the runtime of the Wang-Landau algorithm:

IEi
Def
=

µ(Ei)
π(Ei)

=

∫
Ei

µ(x)

π(x)

π(x)

π(Ei)
dx. (8)

Note that the right hand side of the previous equation yields a simple Monte Carlo approximation of IEi :
since π(x)/π(Ei) is the probability distribution of points in Ei sampled by the Wang-Landau algorithm, IEi
can be approximated by simply computing the average of µ(x)/π(x) of points in Ei.

We rewrite θπ∗i :

θπ∗i =
µ(Ei)
IEi

1

π(E)
(9)

=
µ(Ei)
IEi

1∑
j π(Ej)

(10)

=
µ(Ei)
IEi

1∑
j
µ(Ej)
IEj

(11)

Hence:

θπ∗i
∑
j

µ(Ej)
IEj

=
µ(Ei)
IEi

∀i (12)

and diving by µ(E),

θπ∗i
∑
j

θµ∗j
IEj

=
θµ∗i
IEi

∀i (13)

Finally, using that θµ∗i = 1−
∑
j 6=i θ

µ∗
j we deduce:

θπ∗i
θµ∗i
IEi

+
∑
j 6=i

θµ∗j

(
θπ∗i
IEj

+
1

IEi

)
=

1

IEi
∀i. (14)

Since θπ∗i and IEi are estimated during runtime, the system of equation given in Eq. 14 yields a linear system
for the unknowns θµ∗i , which can therefore be estimated. In doing so, we note that the condition number of
the system matters to assess the stability of the calculation.
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2.4 Changing the measure: relevant cases

In the previous section, we established that it is possible to use a different measure than the true target
measure of which we wish to estimate the DoS. In this section, we will try to shed light on what type of
change of measure can or cannot bring an improvement to the estimation of the DoS.

Constant measure on strata. A natural class of measures are measures constant on each stratum. Such
case is equivalent to a discrete energy space {U1, ..., Ud} with measures of the form π(x) = fπ(U(x)) and
µ(x) = fµ(U(x)). This specific setting includes the Boltzmann distribution for discrete state spaces such as
the Ising models which are of crucial importance for statistical physics.

In these cases, it turns out that the choice of measure have no impact. In fact, Theorem 1 bellow tells us
that given a right choice of initial condition, the algorithm will sample the exact same points for these two
measures.

Theorem. 1. For any θµi (t0), if θπi (t0) verifies

θπi (t0) =
fπ(Ui)

fµ(Ui)
θµi (t0),∀i (15)

then the Wang-Landau algorithm will generate exactly the same points with densities µ and π on state space
and for all t ≥ t0,

θπi (t) =
fπ(Ui)

fµ(Ui)
θµi (t),∀i (16)

Proof. We have:

θπ∗i =

∫
Ei π(x)dx∫
E π(x)dx

=
fπ(Ui)V ol(Ei)∑
j fπ(Ui)V ol(Ej)

θµ∗i =

∫
Ei µ(x)dx∫
E µ(x)dx

=
fµ(Ui)V ol(Ei)∑
j fµ(Ui)V ol(Ej)

Let πθπ(t0) the biased density sampled by WL at time t0 when using π as the measure on state space.

πθπ(t0)(x) =

(
d∑
i=1

θπ∗i
θπi (t0)

)−1

π(x)

θπJ(x)(t0)

=

(
d∑
i=1

θπ∗i
θπi (t0)

)−1
fπ(UJ(x))

fπ(UJ(x))

fµ(UJ(x))
θµJ(x)(t0)

=

(
d∑
i=1

θπ∗i
θπi (t0)

)−1
fµ(UJ(x))

θµJ(x)(t0)

=

(
d∑
i=1

θµ∗i
θµi (t0)

)−1
fµ(UJ(x))

θµJ(x)(t0)

Where the last line is trivial when considering
(∑d

i=1
θµ∗i
θµi (t0)

)−1

as the renormalisation factor. Finally we

deduce

πθπ(t0)(x) =

(
d∑
i=1

θµ∗i
θµi (t0)

)−1

µ(x)

θµJ(x)(t0)
(17)
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Which is the biased density that would be used by WL at time t0 when using µ as the measure on state
space. Let xt0 be the sampled point. Then the updated estimations using γ as the correction factor are:

θπJ(xt0 )(t0 + 1) = θπJ(xt0 )(t0) ∗ γ

θµJ(xt0 )(t0 + 1) = θµJ(xt0 )(t0) ∗ γ

θπi (t0 + 1) = θπi (t0) ∀i 6= J(xt0)

θµi (t0 + 1) = θµi (t0) ∀i 6= J(xt0)

which still respects Eq.16. The final result is obtained by recurrence.

We also conjecture that for smooth densities, having a bin size close to 0 would yield a similar result.

Non constant measures. To improve convergence, it is then necessary for measures to be significantly
non constant inside each stratum. As we argued before, it might be beneficial to change the measure to
counter concentration of measure near (outer) boundaries in high dimension. However, the large measure
changes leads to high variance in the estimation of the IEi and high condition number associated to the
linear system 14. Therefore, we expect a trade-off between the connectivity of the Markov chain and the
complexity of the estimation of IEi . Experiments confirm this intuition (see section 3.4).

2.5 Boundary condition

In order to restrict the state space to a subset A, two ways are possible. The first is to design a custom
proposal q such that for every x in A, the probability q(x,Ac) of going out of A is 0. The second is to
reject samples by evaluating the characteristic function 1A of A. For complex boundary conditions, the first
method is usually impossible, and the second can be computationally expensive. However in some cases
it is possible to use a filtered predicate, i.e. to write 1A = 1B1C with 1B being cheap to evaluate and 1C
expensive, see Example 1 below. Assume most of the boundary is determined by B, in the sense that the
probability that Pθ leaves C without leaving B is small compared to the probability of leaving A. A simple
strategy is to only evaluate 1B at every step and evaluate 1C every k steps, with k of the order of magnitude
of the complexity of 1C . Then if xk(t+1) is not in C, the algorithms rolls back to xkt, and rerun the random
walk while checking 1C for each point to find the exit point.

This strategy calls for two comments. First, it requires going back in time to reproduce the same steps
of the random to find the exit point. Hence it requires saving the pseudo-random number generators states
in addition of the full state of the algorithm every k steps. Second, this method can introduce a bias in the
solution since the random walk is allowed to leave C for k − 1 point as long as it comes back to A for the
k-th point. However, under the previously stated assumption, we conjecture that this bias is small.

Example 1. A common use case is a filter ensuring that a given molecular conformation remains in a
prescribed basin below a potential energy threshold C. Checking the former condition requires quenching
i.e. minimizing U , a costly operation. We therefore use the indicator functions 1A(x) = 1B(x)1C(x), with
1B(x) = 1 iff U(x) < C, and 1C(x) = 1 iff x is in the prescribed basin.

2.6 Move sets and adaptivity

Adaptivity for WL. When exploring complex systems, as for example the energy landscapes of biomolec-
ular systems, using move sets adapted to the topography of the landscape is beneficial, as flat or steep regions
of the landscape are best explored using large and small steps respectively. The adaptivity over time of
the Markov kernel used depends on the particular application targeted, though. When the problem is to
generate diverse conformations regardless of a particular target distributions, continuous adaptive schemes
can be used [19, 20]. On the other hand, MCMC algorithms targeting a specific distribution must respect
certain adaptivity rules [21]. This duality is discussed in [4], which develops parallel adaptive Wang–Landau
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(PAWL) based on three adaptation mechanisms: first, a bin-split step when the bin boundaries face a pop-
ulation unbalance; second, the use of multiple chains instead of one; third, a Robbins-Monro update of the
standard deviation of the Gaussian move set used. It is noted however, that all ingredients add a level of
complexity to this modified algorithm whose theoretical convergence yet has to be established.

We also promote adaptivity by localizing move sets on a per bin basis, exploiting the topography of
the landscape, based in particular on the geometry of level set surfaces bounding the strata (Fig. 1). The
parameters used to define these move sets – and in particular the cone angles are detailed along with the
presentation of the classes (Table 1).

Adaptivity and diffusivity assessment. As shown in [15], we assess our adaptive schemes using the
diffusivity of the system across strata. To this end, we recall the notions of aggregated transition matrices
(ATM) and climbing times [15].

ATM actually come into two guises: for samples proposed by the move set, and for samples accepted and
used by WL:

Definition. 1. Consider an execution of WL. The aggregated transition matrix (ATM) for the proposal
q, denoted ATMq, is the d × (d + 1) row stochastic matrix providing the frequencies of transitions between
strata corresponding to the moves proposed by q along the execution. (Nb: column d+1 corresponds to moves
ending outside the bounded region E.)

The aggregated transition matrix for WL, denoted ATMWL, is the d× d row stochastic matrix providing
the frequencies of transitions within WL.

Samples accepted are also used to measure the time taken to travel across all strata:

Definition. 2. The climb across d strata is defined by two times t0 and t1 such that

• xt0 ∈ E0 and xt0−1 /∈ E0.

• xt1 ∈ Ed−1 and ∀t ∈ [t0, t1[, xt /∈ Ed−1.

The climbing time is then t1 − t0.

3 Experiments

We show the effectiveness of our software package to accommodating a variety of cases, from physical systems
to numerical integration.

3.1 Setup

Software setup. The software design presented is available from the Structural Bioinformatics Library
(http://sbl.inria.fr). See https://sbl.inria.fr/doc/Wang_Landau-user-manual.html and the sup-
plemental section 6.

All experiments were conducted as follows. The energy range is discovered at run time, with new bins
created when required. The 1/t WL update rule is used. Parameters of proposals are discussed on a per
example basis.

Tests. We report three types of experiments. We first illustrate the ability of our setup to handle both
discrete and continuous physical systems, reporting results for the Ising model and a small biomolecule
(alanine dipeptide). Second, we show the versatility and the efficiency of the implementation by presenting
numerical integration results, solving one case left open in [13]. Finally, we provide insights on an issue
typically overlooked, namely the choice of the measure used in the calculation/integral. More specifically, we
show that improved convergence is obtained upon integrating against a suitable measure (Boltzmann versus
Lebesgue).
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Ei

Ei+1

Ei−1
Ei−2

x

Eiα(x, Ei−1)

Ei−1

Figure 1: Adaptive move sets exploiting local features of the energy function. From [15]. (No-
overstep move set), class No Overstep Move Set Traits thereafter Given a starting point x and
a direction u, the no-overstep proposal computes intersections with the level set surfaces bounding the
current stratum Ei as well as the neighboring strata Ei−1 and Ei+1. These intersection points defined three
intervals (blue, green, red). One of these intervals is chosen at random, and a the proposed point is drawn at
random from this interval. (No-overstep cone move set, class No Overstep Cone Move Set Traits
thereafter) A cone whose aperture angle is learned is used to enhance the probability of reaching Ei−1 from
x ∈ Ei. The random direction chosen in such a cone is then used by the no-overstep move set.
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Figure 2: Relative error for 16x16 Ising model. Inset: overview for the whole range of relative errors.
Median value taken over 40 runs.

3.2 Handling discrete and continuous systems

In the following, we illustrate the ability of our framework to handle discrete and continuous systems, on
two classical examples.

3.2.1 Ising model

Ising models are simple yet challenging systems since the number of states is exponential in the system size.
Such models were first used to illustrate the strength of the WL algorithm [22]. In the sequel, we consider
the 16 × 16 Ising model, each vertex on the grid having the +1 or −1 label. The total number of states is
216×16 ∼ 1.151077. The energy of a given conformation is given by the sum over each vertex of the product
of the labels with the neighbors. The proposal flips 1 spin at random in the grid. An analytical formula of
the number of configuration for each energy is available [23], which we use to compute the relative error.

The relative error of the estimation computed by the WL algorithm first decreases exponentially, then
with the 1√

t
rate(Fig. 2).

3.2.2 Alanine dipeptide

Dialanine is a small (bio)-system with 22 atoms that is commonly used for benchmarking algorithms. The
amber99-sb force field in vacuum is used to compute the density of states between -21 kcal/mol and 4 kcal/-
mol, associated to a single local minima of the potential energy function (torsion angles: φ = 59.8862, ψ =
−35.5193.) As described in section 2.5, the boundary condition for a local minim requires energy minimi-
sation, which is too expensive to execute every step. Therefore, we use the method described in section 2.5
and minimize the energy only every 100 steps. We compute the following observable akin to the partition
function Z, with λ(E) the Lebesgue measure of the region of interest of the state space:

Z

λ(E)
=

1

λ(E)

∫
E

exp (−U(x)/kT ) ≈
∑

Energy levels U

θi exp (−U/kT ). (18)
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Figure 3: median and 1rst to 9nth decile of observable akin to the partition function (Eq. 18)
for Dialanine, data obtained for 60 runs.

We performed 60 runs, each with 107 steps, and plotted the median of the estimates, as well as the 2nd
and 8th deciles (Fig. 3).

3.3 Numerical integration

In cases where direct Monte-Carlo integration is impractical, in particular due to concentration of the
measure, numerical integration schemes based on Wang-Landau have been proposed [17, 13]. In the sequel,
we study a simple 2D example–as a sanity check, and proceed with one one ill-behaved Gaussian integral.

3.3.1 2D integral

We start with the following test integral from [12, 17, 18]:

I2D =

∫ 1

−1

∫ 1

−1

(x6
1 − x1x

3
2 + x2

1x2 + 2x1) sin(4x1 + 1) cos(4x2)dx1dx2 (19)

As expected, the decay rate is 1/
√
t (Fig. 4).

3.3.2 Integration of Gaussian density

More interesting is the following integral, studied up to dimension 6 in [13]:

In =

∫
fn(x)dx with fn(x) =

1

(2πσ2)n/2
e−
‖x‖2

2σ2 . (20)

In the sequel, we use σ2 = 0.4. In [13], the integration domain is restricted to [−10, 10]n to capture most of
the mass. However this choice adds artificial difficulties since random walks tend to get stuck in corners of
the cube. We therefore change the integration domain to the ball B(0, 10) of center 0 and radius 10. In this
setting, In is very close to 1 for the dimension range we are interested in.

12
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Figure 4: Median relative error for I2D (Eq. 19), data obtained for 40 runs.

This integral is studied up to dimension 6 in [13]. For dimensions 5 and 6 though, the algorithm does
not converge, leading the authors to introduce the so-called two state strategy which amounts to splitting
the integration domain by the median of function values.

In the sequel, we present an effective strategy up to dimension 15 (Fig. 5). When the dimension increases,
the volume of the outermost strata increases exponentially; also, since the gradient of the function gets small,
so are the components of the gradient, preventing the cone-based proposal to act as an effective guide to
diffuse across WL strata, jeopardizing convergence.

To enhance the ability to deal with high dimensions, we introduce a general strategy by taking as energy
the logarithm of our integration function:

En(x) = log(fn(x)). (21)

This boosts the diffusivity behaviour of the random walk. To get the correct value for the integral, instead
of taking the average in each strata, we take the average of the exponential (Eq. 7):

In(x) =
∑
i

V (Ei)
∫
Ei

eEn(x)

V (Ei)
dx. (22)

3.4 Incidence of the choice of the measure: experiments

In section 2.3, we have shown how to obtain results for a measure µ on state space while sampling from
the base measure π. Practically, this raises the question of choosing the measure to integrate against. we
illustrate this by comparing integration results obtained using respectively the Lebesgue and Boltzmann
measures. In both cases, we use a Gaussian proposal since cone based proposals (see section 4.3.1) attenuate
concentration effects, making the experiment irrelevant.

Consider the following potential U(x) = ‖x‖2 for x ∈ Rd(d = 20), and an energy discretisation of [0, 1].
The aim is to compute the volume of each stratum with respect to the Lebesgue measure. (We make this
choice because the exact volume is trivial to compute in the case of the Lebesgue measure.) When the
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Figure 5: Value (Top row) and relative error (Bottom row ) for the Gaussian integral (Eq. 20)
in dimensions 2, 5 and 15, respectively. A total of 40 runs were performed. The black plot display the
median; the purple plot display the 1st and 9th decile.

dimension increases, inside each stratum the volume is concentrated near the outer ring. Hence points
sampled by the Wang-Landau algorithm with respect to the Lebesgue measure would be concentrated near
this outer ring. This behaviour hinders the convergence speed of Wang-Landau, and a solution consists in
splitting the bins if the volume near the outer ring is too imbalanced compared to the interior ring [4].

A case study. We consider a different approach and introduce a Boltzmann-like density

πT (x) = e−U(x)/T . (23)

Using the Wang-Landau with this density means that points sampled in a stratum are distributed according
to πT , which is larger near the interior sphere than the exterior one. In other words, a suitable temperature
T is expected to balance out the measure concentration effects. On the other hand, using πT (x) rather than
Lebesgue imposes solving a linear involving the estimations of the integrals of Eq. (8). Poor estimates of
these coefficients, or an ill-conditioning of the linear system might yield instabilities.

In the sequel, we study these opposite effects using T ∈ [0.01, 105], this latter value defining an almost
flat distribution close to the Lebesgue measure.

We first notice that the best relative error is obtained with an intermediate temperature, namely T =
0.05 (Fig.6(A)). The same plot also shows a noticeable improvement in convergence speed and relative
error using the Boltzmann distribution with low temperature, as opposed to a high temperature yielding a
distribution which is essentially the same than the Lebesgue measure. On the other hand, both the climbing
times (Fig.6(B)) and the ATM matrices (Fig.6(C, D)) are best behaved with T = 0.01, a value promoting
adaptivity. As noticed above, we therefore observe a trade-off between the diffusivity of the proposal and
the accuracy of the estimated DoS.

To further this analysis, we analyse two additional statistics. The first one is the condition of the linear
system solved. The second one is the average over all bins of the relative standard deviation RSDi (standard
deviation divided by the mean) of IEi (computed over 40 runs). It appears that lowering T triggers a dramatic
increase of the condition number (Fig.6(E)) and significant increase of the relative standard deviation of IEi
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(Fig.6(F)). As already noticed, these two effects are counterbalanced by the enhanced diffusivity warranted
by lower temperatures.

Remark 1. The quantities involved in the previous linear system may span several orders of magnitude.
Practically, we solve this linear system using boost::multiprecision::mpfr float, a multiprecision num-
ber type.

4 C++ code design and low-level framework

Our C++ code design is meant to accommodate maximum versatility both in terms of systems processed,
move sets used, and inner data structures used by WL. We now review these software components.

4.1 Overview

4.1.1 Components.

The software package is divided into 5 major components (Fig. 7).

Physical system. The physical system, provided by the user, specifies the state space and the energy
function. It may also provide the gradient of the energy function, if used in conjunction with move set
requiring differential information.

Move set and its controller. The move set provides the mechanism to generate a novel conformation
given an existing one, and also provides transition probabilities used to ensure detailed balance. The move
set works in close collaboration with its so-called controller – see below.

WL algorithm. The Wang Landau class is the core one, which glues all pieces together and delivers the
DoS estimation. It relies in particular on the WL data structure, which stores bin ranges, additional pieces
of information detailed below, and provides the bins management policy.

To perform specific processing, like numerical integration, the user must defined a custom WL DS, by
inheritance from the default (provided) one.

Helper classes for simulations. We also provide a class Simulation, which encapsulates the main ingre-
dients and eases the task of launching a simulation on a given physical system using a given proposal.

4.1.2 Data flow upon generating a point

To present the data exchange between the main components (Fig. 8), we introduce the following parameters
and statistics:

• Λ: move set parameters (Class Move Params).

• Ξ: statistics gathered during the generation of a novel conformation y by the move set, and used to
tune adaptivity (Class Move Stats).

• ∆: statistics, on a per bin basis, aggregating the observed values of Ξ along the simulation (Class
Controller Data).

• θ: DoS estimates.
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Figure 6: Computing densities of states: incidence of the choice of the measure. Experiment for
the single well potential in dimension d = 20. A Gaussian proposal of variance 0.02 was used; a total of 40
runs were performed. Extreme values of T used are T = 0.01 and T = 105. The DoS may be computed
with respect to a density π or µ, see Eq. (9). In this experiment, we use the Boltzmann-like density Eq.
23 to estimate the DoS wrt to the Lebesgue measure. (A) Median relative errors with respect to Lebesgue
measure as a function of the temperature used in Eq. (23). (B) Boxplot of climbing times for the four
temperatures – Def. 2. (C) ATMWL of the first run (Def. 1) for T = 0.01. (D) ATMWL for the first run for
T = 105. (E) Boxplot of onditions number for the linear system of Eq. 14, log scale. (The boxplot is flat
since all simulations are converged.) (F) Relative standard deviation RSDi of IEi averaged over all bins.
Log scale.
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Sample point according to πθ
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Update density
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Physical System

WL data structures Wang-Landau algorithm

WL data structures

Figure 7: Algorithm overview: from sample generation to the update of DoS. Color codes are as
follows: gold: Must be provided; green: Can be provided – default exists; cyaun: Must use – provided by
the library.

Λ is expected to exist for all move sets. For example, for an isotropic Gaussian move set, Λ is just the
kernel width. The quantities Ξ and ∆ are meant to provide local information on the energy function, so as
to adapt the move set to local features of the energy landscape. (Incidentely, move sets devoid of adaption
yield empty Ξ and ∆.) See Table 1.

Using these parameters and statistics, the generation of a novel sample by the move set and its exploitation
by WL are as follows:

• Step 1. The controller accesses ∆ from the WL DS.

• Step 2. Using ∆ for the particular bin containing x, the controller generates the move set parameters
Λ, which are passed by WL to the move set.

• Step 3. Using Λ and the current conformation x, the move set generates a candidate conformation y.

• Step 4. From y, the physical systems returns to the move set the energy (and possibly gradient) at y.

• Step 5. WL uses the previous information to update the DoS, and passes Ξ to the move set controller.

• Step 6. Finally, Ξ is used to update the controller data ∆

We now review the main components and these steps in detail.

4.2 Physical system

Classes: User defined

The physical class defines the conformation type, an energy function, the boundary condition and if
required, the target density π on state space. If not specified, π(x) ∝ 1, see section 2.3. By conformation, we
refer to the class storing the point in state space and the corresponding energy U(x). For proposals requiring
the gradient, the conformation also stores ∇U(x).

In practice, for continuous systems, conformations are stored as a vector of doubles. For systems whose
state space is discrete, conformations are typically stored as an integer.
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Figure 8: Data flow and update of data structures upon generation of a point by the move set.
Arrows indicate the ordering for data exchange between the main components. See text for details.

4.3 Proposals in the context of a calling algorithm

Proposals play a pivotal role in various stochastic algorithms, including (energy) landscape exploration
algorithms in the lineage of basin hopping, and density of state calculations in the lineage of Wang-Landau.
We therefore outline a general design for proposals, discussing specific features for WL when applicable.

Strictly speaking, a proposal must provide two operations:

• generate a conformation y given a conformation x and parameters Λ.

• provide the probability q(x, y | Λ) to move from x to y. This information is used to satisfy detailed
balance if required, which is the case for WL.

Upon generating a conformation generation, the move set statistics Ξ are updated.

4.3.1 Elementary proposals provided

Classes: Gaussian Move Set Traits,
No Overstep Move Set Traits, No Overstep Cone Move Set Traits, Darting Move Set Traits

When the conformational space is Rn, the following proposals are provided ([15] and Fig. 1):

• isotropic Gaussian proposal (Gaussian Move Set Traits),

• no-overstep (No Overstep Move Set Traits),

• cone based no-overstep (No Overstep Cone Move Set Traits),

• darting proposal (Darting Move Set Traits).

The parameters Ξ and ∆ for these proposals are described in Table 1). Consider for example the cone based
no-overstep move set: Ξ provides information on the interval hit (Fig. 1(A)); ∆ is used to learn the best
cone to be used for all points x in a given stratum Ei.
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Λ Ξ ∆
Gaussian Move Set variance σ ∅ ∅
No-overstep Move Set ∅ ∅ ∅
Darting move set ∅ ∅ ∅
No-overstep Cone Move Set

• uses cone

• cone proba.

• cone angle

• interval up

• interval down

• used cone–if
any

Learning phase:

• proportion intervals
up

• proportion intervals
down

• statistics on candi-
date cones

Exploitation phase:

• uses cone (boolean)

• cone aperture angle

Table 1: Description of parameters Λ,Ξ,∆ for the move sets from [15]. See section 4.1.2 for the
definition of the data structures. Upon generating a new point, statistics Ξ are used to update those stored
on a per bin basis ∆. These parameters are used to update Λ i.e. the parameters used by the move set.

4.3.2 Combined proposal

Classes: Combined Move Set Traits

To go beyond unitary move sets, move sets can be recursively combined [15]. The generic pattern to
describe such move sets is as follows.

A combined proposal is composed of a collection of k > 0 proposals {MS1, ...,MSk}, and a function

w : E −→ Rk

x −→ (w1(x), ..., wk(x))

such that for all x ∈ E ,
∑
l wl(x) = 1. For a given x ∈ E , wl(x) represents the probability of choosing

the proposal MSl to generate the next point. The parameter for such a proposal is a vector Λ with each
coordinates Λl being the parameter for the proposal MSl. Denoting ql the transition kernel of the proposal
MSl, a combined proposal transition kernel is given by

q(x, y | Λ) =

k∑
l=1

wl(x)ql(x, y | Λl). (24)

The generic C++ class (Combined Move Set Traits) takes as template arguments traits classes for
the move sets embarked.

Remark 2. (Internal representation of combined move sets) Practically, a combined proposal is represented
as a tree. Internal nodes are the combined proposals, and samples are generated by proposals associated with
leaves.
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4.3.3 Adaptivity via controller

Classes: Data Interface, Move Set Controller Data
The parameters Λ used to define the move sets depend on specific requirements of the algorithm. In our

case, the fact that WL uses bins calls for a specialization of Λ on a per bin basis. We guarantee a proper
communication between the move set and the WL data structure by means of a controller. The controller
is a class endowed with a data structure of type Move Set Controller Data, denoted ∆, which is used
to generate the move set parameters Λ, and which is updated from the move set statistics Ξ. Practically,
the calling algorithm (WL in our case) imposes an algorithm dependent data interface (Data Interface) to
access ∆.

Remark 3. (Data structure ∆) In the case of Wang-Landau, the class Move Set Controller Data is
instantiated once per bin. The move parameters Λ generation by the controller defines a mapping from
the space controller data∆ × Conformational space E to Λ, see Eq. (24). Note that one could also directly
record data in the controller. However, in storing ∆i within the WL DS, one automatically benefits from the
dynamics (ie creation) of bins.

Remark 4. (Controller and adaptivity for combined proposals.) For the combined proposal, the controller
will be automatically generated. The data stored (Move Set Controller Data) is the reunion of the data
used by each controller, and the controllers of the proposals composing the combined proposal are automatically
called when relevant. In the WL case, it means that each Move Set Controller Data is instantiated once
per bin for all the proposals composing the combined proposal.

4.4 WL data structure

Classes: T WL Data Structure MS
In the sequel, we briefly detail the main functions and customization point of the WL data structure

class, denoted T WL Data Structure MS.

4.4.1 Bins data structure

Classes: Bin properties MS, Move Set Controller Data

The WL data structure handle bin creation and splitting. The user can specify the behaviour of the
data structure when a new bin is required by giving a default bin size and whether the energy levels are
continuous or not (e.g., the Ising model has discrete energies). We leave out the implementation details of
this behaviour. A type Bin properties MS defines the default properties to store for each bin: θ(i), ν(i)
and an instance of Move Set Controller Data ∆i.

Remark 5. (Storing additional statistics) One must define a class Custom Bin Properties inhering from
Bin properties MS and pass this type as a template parameter to T WL Data Structure MS.

4.4.2 Update after point generation

The WL data structure updates relevant information stored in the data structure each time a point is
generated by the algorithm. To that end, the WL data structure performs the following operations – see
also step 5 in section 4.1.2:

• Step 5a. check the energy U(x) of a generated conformation and possibly create a bin. Reset the
learning rate γ upon addition of a new bin.

• Step 5b. check the flat histogram criterion and update the learning rate γ

• Step 5c. update the estimated density i.e. θ if x is accepted
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Remark 6. (Customization.) This default behaviour can be customize to perform the following: use a
different learning strategy, possibly introducing variants of the flat histogram rule or record additional statistic.
For example, the average energy value per bin (Eq. 7) can be recorded to perform numerical integration, see
section 2.2. Practically, a new class inheriting from T WL Data Structure MS must be provided.

4.5 Main algorithm

Classes: T Wang Landau
The main class (T Wang Landau) implements the WL algorithm using the previous ingredients (Fig.

7). The corresponding C++ template class requires the following template parameters: the physical system,
the proposal (and its controller), the WL DS (default suitable for most cases T WL Data Structure MS).

4.6 Helper classes

Running a simulations. Classes: T WL Simulation
A common use case is that where one wishes to compare the performances of various proposals on various

physical systems.
To ease such experiments, we provide the class template class (T WL Simulation, call it A for concise-

ness) templated by two ingredients: the physical system and the proposal. This class admits two specialized
classes, one instantiating the physical system (call it B) and one instantiating the proposal (call it C). From
these two classes, one can derive a class D inheriting from classes B and C. This design makes it possible to
avoid the duplication of the code inherent to the physical system (found only in class B) and to the proposal
(found only in class C). Practically, this multiple inheritance problem is handle using the C++ diamond
patter – see e.g. https://en.wikipedia.org/wiki/Multiple_inheritance.

Performing a change of measure Classes: WL histo change measure The class performs the change of
measure described by section 2.3. It computes θµ given the vector of (IEi) and the result of a Wang-Landau
run θπ by solving eq. 14. Since solving this system usually fails when double precision is used, this class
uses boost::multiprecision::mpfr float internally, freeing the user of numerical issues.

4.7 Output

Default pieces of information. The algorithm saves datas contained in the WL Data Structure a given
times on a class called T DS snapshot. This data structure contains by default:

• Bin ranges (useful if bins are added at runtime)

• Estimated DoS θπ

• Move set data ∆ per bin

• The aggregated transition matrices and climbs/descents times (Section 2.6)

• The climbing and descending times

• The number of times the Flat Histogram criterion was reached

• The algorithm mode (flat Histogram regime or 1/t regime)

• The number of steps since the beginning of the algorithms

These pieces of information can be either saved at fixed intervals or at intervals that scales exponentially
with time for log plots.
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WL stats serializer An helper class is provided to save the previous results in files, that can be later
used by (provided) Python scripts to generate figures. This class allows to save: (i) The DoS θ with bin
ranges, (ii) The ATM matrices, and (iii) the climbing and descending times. A Python script is provided
to plot the ATM matrices from the serialized results. See the jupyter notebook available at https://sbl.

inria.fr/doc/Wang_Landau-user-manual.html.

5 Outlook

The Wang-Landau (WL) algorithm is a stochastic algorithm initially designed to compute densities of states
for physical systems, also suitable to handle challenging numerical integration cases in high dimensional
spaces. To the best of our knowledge, this work presents the first versatile implementation of WL, based
on a generic C++ architecture encompassing a wide range of WL variants and use cases. On the one hand,
end-users can easily perform calculations of discrete and continuous systems, which merely requires plugging
the specification of the system into our design. On the other hand, developers can easily test various building
blocks and combinations thereof, and select those best suited for a system. The most crucial aspects are
the energy discretization strategy and the proposal, which, if poorly chosen, jeopardize convergence. We
note in passing that the default implementations provided for proposals are state-of-the-art and should
prove useful for future benchmarking. We therefore anticipate that our framework will enjoy applications in
physics (partition function), numerical integration, as well as machine learning (computation of maxima a
posteriori), on systems involving from tens to hundreds of degrees of freedom.

We foresee developments in several directions, two of which are particularly important. On the method-
ological side, our framework should prove instrumental in testing novel ideas revolving around the bin
structure used in WL. More elaborate adaptation mechanisms for move sets should be investigated, so as
in particular to go beyond the adaption on a per bin basis used in this work. Needless to say that these
developments will also raise delicate convergence analysis questions. Finally, on the application side, we
believe that the ability to use move sets in internal coordinates will make it possible to use WL on molecular
systems of intermediate complexity (peptides involving tens of amino-acids), possibly providing valuable
thermodynamic estimates for systems of high biological interest.
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6 Appendix: using the Wang-Landau package

In the following, we sketch the steps required to reproduce the results presented in this paper, on a linux
like operating system.

6.1 Getting the SBL

To get the SBL, first clone it as follows:

git clone git://sbl.inria.fr/git/sbl.git

To proceed, set the following environment variables:

• $SBL DIR: the directory containing the sources of the SBL, obtained with git clone as indicated above.

• $SBL DIR INSTALL: the directory into which the executables (binaries) are installed. This directory
is expected to be in one’s PATH.

• $PYTHONPATH: the python PATH, to which one should add $SBL DIR/python/SBL and and
$SBL DIR/python. Nb: Python3 must be used.

6.2 Boltzmann energy single well: reproducing the results

To compile the executables:

cd $SBL_DIR/Core/Wang_Landau/examples/Wang_Landau/

mkdir build

cd build

cmake .. -DSBL_APPLICATIONS=ON -DCMAKE_INSTALL_PREFIX=${SBL_DIR_INSTALL}

make

make install

Once the executable Wang Landau/examples/Wang Landau/boltzmann energy single well figures.exe has
been generated, proceed with the jupyter notebook as explained at https://sbl.inria.fr/doc/Wang_

Landau-user-manual.html:

cd $SBL_DIR/Core/Wang_Landau/demos

jupyter notebook Wang_Landau.ipynb

6.3 Using the C++ classes

The C++ classses discussed in this paper are available from

$SBL_DIR/Core/Wang_Landau/include/SBL/CSB/
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