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Abstract. In this paper we propose a method for locally adjusted optical
flow-based registration of multimodal images, which uses the segmentation of

object of interest and its representation by the signed-distance function (OFdist

method). We deal with non-rigid registration of the image series acquired by

the Modiffied Look-Locker Inversion Recovery (MOLLI) magnetic resonance

imaging sequence, which is used for a pixel-wise estimation of T1 relaxation
time. The spatial registration of the images within the series is necessary to

compensate the patient’s imperfect breath-holding. The evolution of intensi-

ties and a large variation of image contrast within the MOLLI image series,
together with the myocardium of left ventricle (the object of interest) typically

not being the most distinct object in the scene, makes the registration chal-

lenging. The paper describes all components of the proposed OFdist method
and their implementation. The method is then compared to the performance of

a standard mutual information maximization-based registration method, ap-

plied either to the original image (MIM) or to the signed-distance function
(MIMdist). Several experiments with synthetic and real MOLLI images are

carried out. On synthetic image with a single object, MIM performed the best,

while OFdist and MIMdist provided better results on synthetic images with
more than one object and on real images. When applied to signed-distance
function of two objects of interest, MIMdist provided a larger registration er-
ror, but more homogeneously distributed, compared to OFdist. For the real
MOLLI image series with left ventricle pre-segmented using a level-set method,

the proposed OFdist registration performed the best, as is demonstrated vi-
sually and by measuring the increase of mutual information in the object of

interest and its neighborhood.

1. Introduction. Image registration [3] is defined as a geometrical aligning of two
images of the same object taken at different times or captured by different imaging
techniques. It is a challenging image processing task that is encountered in many
fields such as remote sensing, biomedical imaging [10, 19], map matching and many
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others. The registration of two scenes is a necessary step for image processing tasks
in the field of medical imaging, e.g. in compensation for patient’s moving during
data acquisition or in integration of data obtained by different imaging techniques.

The image acquisition by different modalities often means that not only the
intensity but also the image contrast and texture do not match. However, the
problem of varying intensities or contrast occurs also in registering the images from
one source. An example of such a series is the image series acquired by the Modified
Look-Locker Inversion Recovery (MOLLI) magnetic resonance imaging sequence,
used for a pixel-wise estimation of T1 relaxation times. The spatial registration
of the images within the MOLLI series is necessary to compensate the patient’s
imperfect breath-holding. The main characteristics of the MOLLI image series are
the evolution of intensities and large variation of the image contrast. In particular,
the myocardium of left ventricle – the object of interest in the images – is often
not the most distinct object in the scene, which makes the registration process
challenging.

In [10] three main categories of registration methods are presented: Landmark-,
segmentation- and voxel property-based methods. In the landmark-based registra-
tion methods, the alignment of images is obtained by registering a finite set of
points – landmarks – detected in the source and target images. The landmarks
should be accurately detectable in all registered images. They can either be de-
tected manually based on knowledge of the scene or automatically based on some
geometrical properties (e.g. points of curvature extrema, intersections, etc.). The
set of detected points is sparse compared to the original image, which makes the
registration process faster. However, as pointed out in [11], the heart exhibits
less accurate anatomical and geometrical landmarks than for example brain, which
limits the use of landmark-based registration methods on heart images. In the
segmentation-based methods, the objects extracted from the source image are de-
formed to fit the objects in the target image. The segmentation is usually made
semi-automatically. Finally, the voxel property-based methods use all information
contained in the image without a reduction to the set of points or segmented objects
by working directly with the image voxel values. This category of methods includes
for instance the maximization of mutual information [9] and optical flow estimation
[6] – the two methods on which the presented paper is based.

In this work, we propose a segmentation-based registration method based on
representing the segmented objects by their signed-distance functions. The optical
flow – traditionally a voxel-property-based registration method – is used for the
signed-distance functions registration. The representation by the signed-distance
maps excludes the effect of varying intensities and, additionally, captures all local
deformations of the segmented objects. It is, therefore, a suitable representation of
the segmented objects.

The level-set method used for segmentation of the objects of interest is described
in Sections 2, the subsequent computation of the signed-distance function is de-
scribed in Section 3. The optical flow method which is applied to the distance
functions is introduced in Section 4. The numerical solution of the problem is de-
scribed in Section 5. The experimental results and comparison of the proposed
method with two other registration approaches are presented in Section 6.

2. Segmentation of the myocardium. The image segmentation is a process of
dividing the image into several parts – the segments. In this work, the myocardium
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is segmented using the level-set method for edge detection. The result of this
method is a closed smooth curve corresponding with the myocardium edge. The
outer (epicardial) and subsequently the inner (endocardial) edge of the myocardium
is detected and the myocardium is then defined as the area between these two curves.

2.1. Mean-curvature motion of level sets. The level-set methods are based on
representing a dynamic curve C(θ) as a zero level set of a corresponding level-set

function ψ(~x, θ), i.e. C(θ) = {~x, such that ψ̃(~x, θ) = 0} [12]. We assume that the
level-set function takes positive values on the exterior of curve C(θ) – denoted as
C(θ)ext – and negative values in the interior – denoted as C(θ)int, i.e.:

ψ̃(~x, θ) = 0, ∀~x ∈ C(θ),∀θ ∈ [0,∞),

ψ̃(~x, θ) < 0, ∀~x ∈ C(θ)int,∀θ ∈ [0,∞), (1)

ψ̃(~x, θ) > 0, ∀~x ∈ C(θ)ext,∀θ ∈ [0,∞).

The initial curve represented by ψ̃0(~x) is placed around the object which is to be
contoured. Then, by the evolution of the level-set function the curve is adapted
to the contour of the object. During the evolution, the equation ψ̃(~x(θ), θ) = 0,
∀θ ∈ [0,∞), has to be satisfied. Further, the equation describing the evolution of
the level-set function [17] can be derived:

∂ψ̃

∂θ
+ |∇ψ̃|V = 0, (2)

where V denotes the magnitude of the velocity in the direction of the outer normal
unit vector to the curve C. By setting V to a mean curvature of the curve C [2], i.e.

V = −∇ ·
(
∇ψ̃
|∇ψ̃|

)
, the level-set formulation of the mean-curvature flow is obtained:

∂ψ̃

∂θ
− |∇ψ̃|∇ ·

(
∇ψ̃
|∇ψ̃|

)
= 0. (3)

For theoretical and numerical reasons, |∇ψ̃| is regularized as |∇ψ̃|ε =
√
ε2 + |∇ψ̃|2

[2, 15]. In this work ε = 10−4 was used. The final form of the equation reads:

∂ψ̃

∂θ
− |∇ψ̃|ε∇ ·

(
∇ψ̃
|∇ψ̃|ε

)
= 0 on Ω× (0, Tfin], (4)

ψ̃(x, 0) = ψ̃0(x) on Ω,

∇ψ̃ · ~n = 0 on ∂Ω× (0, Tfin].

2.2. Edge detection using mean-curvature flow. In the image processing,
edges are typically characterized by a large gradient of the image intensity. In
an input image represented by image intensity function I : Ω→ [imin, imax], where
Ω denotes the image domain and [imin, imax] is the range of intensities, the edges
can be detected based on the norm of image function gradient. For the application
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in the edge detection, the level-set equation (3) is modified in the following way [1]:

∂ψ̃

∂θ
= |∇ψ̃|εg0∇

(
∇ψ̃
|∇ψ̃|ε

)
+∇ψ̃ · ∇g0, on Ω× (0, Tfin], (5)

ψ̃(x, 0) = ψ̃0(x) on Ω,

∇ψ̃ · ~n = 0 on ∂Ω× (0, Tfin],

where function g0 = g0(|∇I|) depends on the norm of the image gradient. We use
function g0 in the form g0(|∇I|) = 1/(1+K|∇I|2), as proposed in [14]. The function
g0 controls the velocity of the propagation of the contour C defined by the level-set
function ψ̃. In the regions with high values of |∇I| (typically on the edges), the
velocity is close to zero. The parameter K modifies the sensitivity to variations
of image intensity. Its value depends on the image contrast. The position of the
initial curve for the outer edge segmentation is set by the user. The initial condition
for the inner edge segmentation is obtained by subtracting the constant from the
signed-distance function of the segmented outer edge, which moves the zero level
set inwards. The constant is also provided by the user.

For the application on real data, two preprocessing methods were used. First,
the histogram equalization [20] was used for increasing the contrast in images. The
method adjusts the distribution of the intensities in the histogram and spreads out
the most frequent intensities. Secondly, for image smoothing, equation (4) was
solved. The parameters of numerical solutions are specified in Section 6.

3. Signed-distance function. A level-set function ψ(~x) = ψ̃(~x, Tfin) is obtained
as a result of the segmentation process. It is, however, not a suitable representation
of the segmented object, as one object might be represented by several level-set
functions. Therefore, function φ̃, which has the same zero level set as function ψ
and additionally has the properties of the signed-distance function, is constructed.
Only one signed-distance function exists for each segmented object and therefore
it is a representation suitable for comparing the objects. Function φ̃ with the
characteristics described above is obtained by solving the following equation [18]:

∂φ̃

∂θ
= S(ψ)

(
1−

∥∥∥∇φ̃∥∥∥) on Ω× (0, Tfin), (6)

φ̃(x, 0) = ψ(x) on Ω,

∇φ̃ · ~n = 0 on ∂Ω× (0, Tfin),

where function S is defined as smoothed sign function S(ψ) = ψ/
√
ψ2 + ε2. The

shape representation by the signed-distance function is convenient as it distributes
the information about contour C into the whole area Ω and thus enables the use of
the optical flow registration method.

4. Optical flow based registration. Optical flow [6] is a vector field containing
the displacements that occur between the images of the same scene taken at times
t and t+ ∆t.

Let us consider an image series represented by a time-dependent image function
I : Ω × T → [imin, imax], where T represents the time interval during which the
images were taken.
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For the series of images, the optical flow is defined as a vector field ~u(~x, t) =
(u1(~x, t), u2(~x, t), t), where ui(~x, t) : Ω × T → R, i ∈ {1, 2} denote the displace-
ments in directions of axes x and y, respectively. To determine the optical flow, a
rule for finding the correspondence between the points on images taken at time t
and t + ∆t is needed. In most optical flow determining algorithms the correspon-
dence is found based on a constancy assumption, which states that a certain value
remains unchanged in time. The assumption frequently used for a single-modality
registration is the brightness constancy assumption, according to which the intensity
of each point remains the same in all images of the given series, i.e.:

I(x(t), y(t), t) = D, ∀t ∈ T. (7)

In the proposed method, the optical flow is applies to the series of signed-
distance functions. The object can be represented by a signed-distance function
in each image of the original image-sequence. This way we obtain time dependent
signed-distance function φ(x, t). Specifically, from image I1(~x) = I(~x, t1) we obtain

ψ1(~x) = ψ̃1(~x, Tfin) by solving (5), subsequently we get φ̃1(~x, Tfin) as a solution of

(6). Finally we assign φ(x, t1) = φ̃1(~x, Tfin).
The constancy is applied to the signed-distance function φ:

φ(x(t), y(t), t) = D, ∀t ∈ T. (8)

In other words, we assume that the distance of a given point from the edge of
the segmented object remains constant in time. The determined transformation is
subsequently applied to the original source image.

From the registration point of view, it is not necessary to see the MOLLI sequence
as a continuous evolution of the scene in time, as the deformations are independent
of the ordering of the images. Instead, the sequence can be divided into several two-
image subsequences, each containing the target and one of the source images. The
time dimension is then neglected and we set the value ∆t = 1 in each subsequence,
for simplicity.

By total derivation of equation (8) we obtain the optical flow constraint equation:

∂φ

∂x
u1 +

∂φ

∂y
u2 +

∂φ

∂t
= 0, (9)

where u1 and u2 denote x- and y-component of the displacements.
The variational approach is used to regularize the optical flow. All the assump-

tions on the vector field are therefore formulated as minimization problems. First,
the following functional derived from the optical flow constraint is used:

Econstancy(u1, u2) =

∫
Ω

(
∂φ

∂x
u1 +

∂φ

∂y
u2 +

∂φ

∂t

)2

. (10)

Two additional assumptions are stated on the displacement vector field to ensure
the uniqueness of the solution: the assumption of smoothness and the assumption
of minimal magnitude. These two assumptions, together with the constancy as-
sumption, force the zero displacements into the areas with the constant values of
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image function I. The final functional has the following form:

E(u1, u2) = α

∫
Ω

(
∂φ

∂x
u1 +

∂φ

∂y
u2 +

∂φ

∂t

)2

︸ ︷︷ ︸
Econstancy

+β

∫
Ω

q
(
‖∇u1‖2 + ‖∇u2‖2

)
︸ ︷︷ ︸

Esmoothness

+γ

∫
Ω

u2
1 + u2

2︸ ︷︷ ︸
Emagnitude

,

(11)

where q
(
‖∇u1‖2 + ‖∇u2‖2

)
=

√
ε+ ‖∇u1‖2 + ‖∇u2‖2. The terms of functional

(11) will be referred to as Econstancy, Esmoothness and Emagnitude, respectively.
The domain of functional E(u1, u2) is W = W 1,2(Ω)×W 1,2(Ω), where W 1,2(Ω)

is the Sobolev space W 1,2(Ω) =
{
u|u,Dxu,Dyu ∈ L2(Ω)

}
[7]. The functions mini-

mizing functional E on its domain are denoted as (u∗1, u
∗
2).

Functional E(u1, u2) is convex and therefore satisfies the equation

dE((u∗1, u
∗
2); (θ1, θ2)) = 0, ∀(θ1, θ2) ∈W, (12)

where dE(u∗1, u
∗
2) is the Fréchet derivative of functional E at the point (u∗1, u

∗
2) [16].

Equation (12) is the necessary and sufficient condition for the functions (u∗1, u
∗
2) to

be minimizers of the functional E(u1, u2)[16].
Using the fundamental lemma of calculus of variations [4] it can be proven that

the minimizing functions (u∗1, u
∗
2) have to satisfy the following set of equations:

α

(
∂φ

∂x
u∗1 +

∂φ

∂y
u∗2 +

∂φ

∂t

)
∂φ

∂x
− β∇ ·

(
q′(‖∇u∗1‖

2
+ ‖∇u∗2‖

2
)∇u∗1

)
+ γu∗1 = 0,

α

(
∂φ

∂x
u∗1 +

∂φ

∂y
u∗2 +

∂φ

∂t

)
∂φ

∂y
− β∇ ·

(
q′(‖∇u∗1‖

2
+ ‖∇u∗2‖

2
)∇u∗2

)
+ γu∗2 = 0.

(13)

The nonlinear set of equations (13) is solved using the method of steepest descend.
The following set of partial differential equations is obtained:

∂u1

∂θ
= −α

(
∂φ

∂x
u1 +

∂φ

∂y
u2 +

∂φ

∂t

)
∂φ

∂x

+ β∇ ·
(
q′(‖∇u1‖2 + ‖∇u2‖2)∇u1

)
− γu1 on Ω× (0, Tfin), (14)

∂u2

∂θ
= −α

(
∂φ

∂x
u1 +

∂φ

∂y
u2 +

∂φ

∂t

)
∂φ

∂y

+ β∇ ·
(
q′(‖∇u1‖2 + ‖∇u2‖2)∇u2

)
− γu2 on Ω× (0, Tfin), (15)

ui|θ=0 = ui,0 on Ω, i = 1, 2

ui = 0 on ∂Ω× (0, Tfin], i = 1, 2.

In the case of no prior knowledge about the initial vector field, the initial conditions
u1,0, u2,0 are set to uniform value ±0.1h, where h is the spatial discretization step.

The diagram of the proposed method is shown in Figure 1. For the source image
I(~x, t) and target image image I(~x, t + ∆t), the object of interest is segmented

by solving (5). The signed-distance functions φ̃1(~x, Tfin) and φ̃2(~x, Tfin) obtained
from (6) are assigned to φ(~x, t) and φ(~x, t + ∆t), respectively. Finally the optical
flow is computed by solving (14) and (15). By applying the transformation to the
source signed-distance function φ(~x, t), we obtain φ(~x − ~u(~x, t)∆t, t) which is an
approximation of φ(~x, t+ ∆t).
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Similarly, by applying the transformation to the source image I(~x, t), we obtain
approximation of the target image I(~x, t+ ∆t).

I(~x, t + ∆t)I(~x, t)

to be registered

ψ(~x, t) = ψ̃1(~x, Tfin)

(5)

ψ(~x, t + ∆t) = ψ̃2(~x, Tfin)

(5)

φ(~x, t) = φ̃1(~x, Tfin) φ(~x, t + ∆t) = φ̃2(~x, Tfin)

optical flow (14),(15)

(6) (6)

source image target image

~u(~x, t)

apply to φ(~x, t) φtransformed(~x, t) ≈ φ(~x, t + ∆t)

apply to I(~x, t) Itransformed(~x, t) ≈ I(~x, t + ∆t)

Figure 1. Diagram of the proposed method.

5. Numerical Solution.

5.1. Spatial Discretization and Approximation of Spatial Derivatives. The
complementary finite volume method described in [5, 8] is used for the spatial
discretization. The digital image can be considered as a grid of pixels denoted
by V:

V = {(ih, (i+ 1)h)× (jh, (j + 1)h) | i = 0, .., N1 − 1, j = 0, .., N2 − 1} , (16)

where h = 1/max(N1, N2) is the spatial step. The individual volume elements of
set V are denoted by Vi,j = (ih, (i + 1)h) × (jh, (j + 1)h). The centers of volume
elements Vi,j are denoted by xi,j =

[(
1
2 + i

)
h,
(

1
2 + j

)
h
]
.

The set of volume elements and the central points are shown in Figure 2. The

xi,j−1 xi+1,j−1xi−1,j−1

E2

n2 = (0,−1)

xi,j
E1E3

E4

n4 = (0, 1)

n1 = (1, 0)n2 = (−1, 0)

xi,j−1 xi,j+1

Figure 2. Volume elements and the central points.

finite differences are used to approximate the spatial derivatives of φ in optical flow
method. The forward finite difference in direction x of function φ at point xi,j and
time tk is denoted by φkx;i,j = (φki+1,j−φki,j)/h, the backward difference is denoted by

φ
k

x;i,j = (φki,j+1−φki+1,j)/h and the central difference by φ̇kx;i,j = (φki+1,j−φki−1,j)/2h.
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5.2. Edge Detection. In this section, the spatial derivatives in the set of partial
differential equations (5) are discretized. After the discretization, the resulting
ordinary differential equation in time is solved by the explicit Euler scheme until
reaching a steady state. The time interval (0, Tfin] is discretized with a time step
τ = 2.0 · 10−6. The same approach can be used for equation (4), when neglecting
the term g0. The stopping criteria for both equations are provided in Section 6.

Equation (5) is first integrated over a fixed volume Vi,j :∫
Vi,j

∂ψ̃

∂θ
=

∫
Vi,j

∇ψ̃ · ∇g0 +

∫
Vi,j

|∇ψ̃|εg0∇

(
∇ψ̃
|∇ψ̃|ε

)
. (17)

The left-hand side of equation (17) is approximated by
∫
Vi,j

∂ψ̃
∂θ ≈ h

2 d
dθ ψ̃

∣∣∣
xi,j

. The

first term on the right-hand side of equation (17) is discretized using the first-order
upwind scheme. The second term on the right-hand side is discretized using the
schemes described in detail in Appendix of [8]. Therefore, the discretization will be
described only briefly in this paper. The term is divided into three parts P1, P2, P3:

∫
Vi,j

|∇ψ̃|εg0∇

(
∇ψ̃
|∇ψ̃|ε

)
≈ |∇ψ̃|ε

∣∣∣
Vi,j︸ ︷︷ ︸

P1

1

1 +K |∇I|ε|Vi,j︸ ︷︷ ︸
P2

∫
Vi,j

∇

(
∇ψ̃
|∇ψ̃|ε

)
︸ ︷︷ ︸

P3

.

Notation |∇ψ̃|ε
∣∣∣
Vi,j

and |∇I|ε|Vi,j
, respectively, is used to approximate the values

of function |∇ψ̃|ε and |∇I|ε in the volume element Vi,j . Similar notation will be
used to approximate the value on the edges of these volumes.

The terms P1, P2 are discretized as:

P1 ≈

√√√√ε2 +
1

4

[(
|∇ψ̃|ε

∣∣∣
E1

)2

+

(
|∇ψ̃|ε

∣∣∣
E2

)2

+

(
|∇ψ̃|ε

∣∣∣
E3

)2

+

(
|∇ψ̃|ε

∣∣∣
E4

)2
]
,

P2 ≈
1

1 +K

√
ε2 + 1

4

[(
|∇I|ε|E1

)2
+
(
|∇I|ε|E2

)2
+
(
|∇I|ε|E3

)2
+
(
|∇I|ε|E4

)2]
The discretization of the third term P3 will be shown on a more general term P̃3 =∫
Vi,j

∇ ·
(
g(ψ̃)∇ψ̃

)
, as this approach is used also in the discretization of equations

(14) and (15). In the case of term P3, the function has the form of g(ψ̃) = 1/|∇ψ̃|ε.
First, the Gauss theorem is applied to P̃3:

P̃3 =

∫
Vi,j

∇ ·
(
g(ψ̃)∇ψ̃

)
=

∫
Si,j

g(ψ̃)∇ψ̃ · ~n, (18)

where ~n denotes the outer unit normal vector to the edge Si,j of the volume Vi,j .
The boundary Si,j consists of four edges E1, E2, E3, E4 as can be seen in Figure 2.
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We substitute the values of normal vectors to the edges:∫
Si,j

g(ψ̃)∇ψ̃ · ~n =

4∑
k=1

∫
Ek

g(ψ̃)∇ψ̃ · ~n =

∫
E1

[
g(ψ̃)∇ψ̃

]∣∣∣
E1

· (1, 0)+

∫
E2

[
g(ψ̃)∇ψ̃

]∣∣∣
E2

· (0,−1) +

∫
E3

[
g(ψ̃)∇ψ̃

]∣∣∣
E3

· (−1, 0) +

∫
E4

[
g(ψ̃)∇ψ̃

]∣∣∣
E4

· (0, 1)

=

∫
E1

g(ψ̃)
∣∣∣
E1

∂ψ̃

∂x

∣∣∣∣∣
E1

−
∫
E2

g(ψ̃)
∣∣∣
E2

∂ψ̃

∂y

∣∣∣∣∣
E2

−
∫
E3

g(ψ̃)
∣∣∣
E3

∂ψ̃

∂x

∣∣∣∣∣
E3

+

∫
E4

g(ψ̃)
∣∣∣
E4

∂ψ̃

∂y

∣∣∣∣∣
E4

,

(19)

where ∂ψ̃
∂x

∣∣∣
Ei

and ∂ψ̃
∂y

∣∣∣
Ei

denote the approximate value of the derivatives on the

edges Ei. The final expression (19) is discretized by the scheme described in [8].

5.3. Signed-Distance Function. The discretization of the derivatives on the
right-hand side of partial differential equation (6) was done by the Godunov scheme
[13]. The time interval (0, Tfin] is discretized with a time step τ = 1.0 · 10−4. The
stopping criterion is provided in Section 6.

5.4. Determining of the Optical Flow. In order to determine the optical flow
field, it is needed to solve the set of partial differential equations (14) and (15). The
spatial derivatives are discretized and the resulting system of ordinary differential
equation is then solved by the explicit Euler scheme. The time interval (0, Tfin]
is discretized with time step τ = 7.0 · 10−8. The stopping criterion is provided in
Section 6.

Equation (14) is first integrated over a fixed volume Vi,j :∫
Vi,j

∂u1

∂θ
= −α

∫
Vi,j

(
∂φ

∂x
u1 +

∂φ

∂y
u2 +

∂φ

∂t

)
∂φ

∂x
+

β

∫
Vi,j

∇ ·
(
q′(‖∇u1‖2 + ‖∇u2‖2)∇u1

)
− γ

∫
Vi,j

u1.

The left-hand side is approximated by
∫
Vi,j

∂u1

∂θ ≈ h2 d
dθu1,i,j . The first term on the

right-hand side is approximated by∫
Vi,j

(
∂φ
∂xu1 + ∂φ

∂yu2 + ∂φ
∂t

)
∂φ
∂x ≈ h

2 (φx;i,ju1,i,j + φy;i,ju2,i,j + φt;i,j)φx;i,j and the third

one as
∫
Vi,j

u1 ≈ h2u1,i,j .

The second term on the right-hand side,
∫
Vi,j

∇ · (q′∇u1), has the same form as

the term (18) and it is discretized in the same way.

6. Experimental Results. In the beginning of this section we introduce the no-
tation, norms and functions used to evaluate the results of registration and the
stopping criteria for equations discretized in the previous section. Then, we present
the results of the proposed method applied on synthetic and real heart MOLLI im-
ages. The results are compared with the mutual information maximization method
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[9], for which the version described in [21] and implemented in MIRTK library1 was
used.

Mutual information is a widely used metrics for comparing multimodality medical
images. In the following section, the normalized mutual information will be used
to evaluate the difference between the images with varying intensity. Before its
definition, we introduce the following notations. Let P (i) denotes the probability
of intensity i in image I with the range of discrete intensities i ∈ {0, 1, .., imax}.
For two images I, J , P (i, j) denotes joint probability of intensities i, j being present
at the same position in images I, J . For the given images and intensity ranges,
these probabilities can be computed based on histograms. The normalized mutual
information is defined in the following way: MI(I, J) = (H(I) + H(J))/H(I, J),

where H(I) = −
∑imax

i=0 P (i)ln(P (i)) denotes the marginal entropy of given image

and H(I, J) = −
∑imax

i,j=0 P (i, j)ln(P (i, j)) denotes the joint entropy of two images.
For the difference between the signed-distance functions the following norm will

be used: ‖φ1 − φ2‖2 =
(∑N1,N2

i=1,j=1 (φ1(xi,j)− φ2(xi,j))
2
) 1

2

. The same formula can

be applied to the level-set functions and image functions I1, I2 of binary images.
In the following subsections, the target image is denoted as T , the source image

by S and the signed-distance functions of the target and source objects by φT
and φS , respectively. The source image registered by the given method is denoted
by Smethod, the registered signed-distance function of source object by φS,method.
The compared methods include: optical flow applied to signed-distance functions
(OFdist), mutual information maximization method applied to the original images
(MIM) and to the signed-distance functions (MIMdist). The stopping criteria and
values of Tfin used to generate the presented results are as follows. The condition
‖ψ̃n+1−ψ̃n‖2
‖ψn‖2 < 5 · 10−4 was used as a stopping criterion for edge-detection equation.

The equation used for image denoising is not solved until a steady state to avoid
“over-smoothing” of the image, hence Tfin was set to 6·10−5. The distance function
was evaluated only in the surrounding of the zero level set. Therefore, based on
[22], it is not necessary to solve the equation until reaching the steady state. In
order to get the correct solution in the 10-pixel-wide neighborhood of the zero level
set, it was sufficient to set Tfin = 10h. For the optical flow equation, the stopping

condition was used in the form
‖un+1

1 −un
1 ‖2+‖un+1

2 −un
2 ‖2

‖un
1 ‖2+‖un

2 ‖2
< 0.002.

6.1. Synthetic images with single object. Two binary synthetic images with
one fully visible object are shown in Figures 3a and 3b. Thanks to the simplicity
of the scene, the segmentation was done by thresholding. The OFdist method was
applied to the signed-distance functions, as described in the previous sections. To
provide a relevant comparison, the mutual information maximization method was
applied directly to the images and to the signed-distance functions (i.e. methods
MIM and MIMdist).

The absolute value of the difference between the target and source images before
registration can be seen in Figure 3c. The differences after registration by OFdist,
MIM and MIMdist are shown in the second line of Figure 3. As can be seen in
Table 1, the best result was obtained by the MIM method. The segmentation of
the object of interest does not provide any advantage in this case.

1https://mirtk.github.io/sidebar.html
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(a) Source image S. (b) Target image T . (c) Original difference.

(d) Difference between
SOFdistand T .

(e) Difference between
SMIM and T .

(f) Difference between
SMIMdist and T .

Figure 3. Source image (A), target image (B), the absolute value
of their difference before registration (C) and after registration by
OFdist, MIM and MIMdist (D-F). Parameters of OFdist: N1 =
200, N2 = 200, α = 1.0, β = 3.25, γ = 2.5.

‖T − S‖2 ‖T − SOFdist‖2 ‖T −SMIM‖2 ‖T − SMIMdist‖2
9462.47 3130.83 2173.93 2607.66

Table 1. Norms of difference between the target 3b image and
source image 3a before and after registration by OFdist, MIM and
MIMdist.

6.2. Synthetic images with two objects. Next, we present binary synthetic
images with two fully visible objects. The source and target images are shown in
Figures 4a and 4b, respectively. The absolute value of the difference between the
target and source images before registration can be seen in Figure 4c.

First, both objects were registered by OFdist, MIM and MIMdist. The differences
between the source and target image after registration are presented in the second
line of Figure 4. The direct application of MIM is not suitable in this case, as can
be seen in Figure 4e. Much better results were obtained by the MIMdist method,
which uses the signed-distance functions. However, as the values in Table 2 show,
the smallest error was obtained by OFdist. In Figure 5 the difference between
OFdist and MIMdist approach is well visible. Applying MIMdist decreases the error
uniformly throughout the whole image (Figure 5b), while OFdist (Figure 5b) creates
unevenly distributed error. Table 3 quantifies these errors and shows that OFdist

performed best also when this distance function criteria were used. Similar results
could be expected for a larger number of fully visible objects.

In the next experiment, one object was segmented (marked by a green line in
Figure 6a) and registered by OFdist, while MIM was applied directly on the images
in order to provide global registration. The results can be seen in Figures 6b and 6c,
respectively. The global registration by MIM provides smaller global error, as can
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(a) Source image S. (b) Target image T . (c) Original difference.

(d) Difference between
SOFdist and T .

(e) Difference between
SMIM and T .

(f) Difference between
SMIMdist and T .

Figure 4. Source image (A), target image (B) and the absolute
value of their difference before (C) and after registration by OF,
MIM and MIMdist (D-F). Parameters of OFdist: N1 = 200, N2 =
200, α = 1.5, β = 3.75, γ = 3.25.

‖T − S‖2 ‖T − SOFdist‖2 ‖T −SMIM‖2 ‖T − SMIMdist‖2
6654.44 2199.07 4121.95 3602.27

Table 2. Norms of difference between the target image in Figure
4b image and source image in Figure 4a before and after registration
by OFdist, MIM and MIMdist.

‖φT − φS‖2 ‖φT − φS,OFdist‖2 ‖φT−φS,MIMdist‖2
0.849915 0.239367 0.2950385

Table 3. Norms of difference between target and source signed-
distance function before and after registration by OFdist and
MIMdist. The source and target objects can be seen in Figure
4a and 4b, respectively.

be seen in Table 4. However, the local registration by OFdist (denoted by S1,OFdist)
provides smaller error in the object of interest as can bee seen in Figure 6.

‖T − S‖2 ‖T − S1,OFdist‖2 ‖T −SMIM‖2
6654.44 5062.1 4121.95

Table 4. Norms of difference between the target image 4b and
source image 4a before registration, after registration of one object
by OFdist, and after global registration by MIM.

6.3. Results on real data. In this section, we present a comparison of the three
registration approaches on real MRI MOLLI data. A set of three images with
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(a) Difference between
φT and φS .

(b) Difference between
φT and φS,OFdist .

(c) Difference between
φT and φS,MIMdist .

Figure 5. Absolute value of the difference between the target
and source signed-distance function before and after registration
by OFdist and MIMdist. The signed-distance functions are com-
puted on 10-pixel-wide neighborhood of the edges of the object
and set to constant outside the neighborhood.

(a) The segmented object. (b) Difference between T
and SOFdist .

(c) Difference between T
and SMIM .

Figure 6. The results of OFdist registration of object marked by
green line in 6a, and global MIM registration of the whole scene.

segmented myocardium marked by the green contour is presented in Figure 7. In this
case, the segmentation was done by the level-set method described in Section 5.2.
The initial circle around the segmented object was provided by the user. The initial
level-set function with properties given by (1) was then computed as ψ0(xi,j) =
‖xi,j − s‖ − r, where s is the center of the circle and r is the radius. The values
of parameter K, which governs the sensitivity of edge detection in equation (5), are
provided in the caption of Figure 7.

(a) Source image S1. (b) Source image S2. (c) Target image T .

Figure 7. Images from the MOLLI sequence with segmented
myocardium. Parameters for the outer edge detection: KS1

=
1.3 · 10−6, KS2 = 1.3 · 10−6, KT = 2.3 · 10−6. Parameters for the
inner edge detection: KS1 = KS2 = KT = 9.0 · 10−6.

The images were registered by OFdist, MIM and MIMdist. The results of all
these approaches are presented in Figure 8.
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(a) S1,OFdist (b) S1,MIM (c) S1,MIMdist

(d) S2,OFdist (e) S2,MIM (f) S2,MIMdist

Figure 8. Results of registration of S1, S2 with target image T .
Parameters of OFdist: N1 = 256, N2 = 218, α = 1.25, β = 3.5, γ =
3.0.

MI measure was used to compare all three registration approaches. The MI
was computed only in a 10-pixels-wide surroundings of the edge of the segmented
object. The values of MI are presented in Table 5. The largest increase of MI was

i MI(T, Si) MI(T, Si,OFdist) MI(T, Si,MIM ) MI(T, Si,MIMdist)
1 1.1556 1.2184 1.2273 1.2170
2 1.1012 1.2034 1.2052 1.1964

Table 5. MI target image and source images from Figure 8 before
and after registration by OFdist and MIM and MIMdist. The MI
was computed only in the surroundings of the segmented objects.

obtained by direct application of MIM on the source and target images. However,
the transformation led to an unrealistic deformation of the myocardium, as can
be seen especially in Figure 8e. The results obtained by OFdist and MIMdist are
visually comparable. The unrealistic deformation of the myocardium is avoided
when using the signed-distance function (see Figures 8d and 8f), while the value
of mutual information is higher. The largest increase of mutual information was
obtained by the OFdist method.

Software for the registration of series with varying image intensity function, using
the proposed method, can be found on
http://geraldine.fjfi.cvut.cz/mmg-medical-tools.

7. Conclusion. This paper presented an approach to the registration of medical
images with varying image intensity. We were specifically interested in the MOLLI-
image series, in which the changes in intensity and contrast make the registration
challenging. The proposed registration method consists of the segmentation of the
object of interest by level set method, its representation by a signed-distance func-
tion and determining optical flow based on this functions. The transformation
between source and target signed-distance function is then applied to the original
images.
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The proposed method (OFdist) was compared with two traditional registration
methods based on maximization of mutual information: either applied to the orig-
inal images (MIM) or to the signed-distance function (MIMdist). The experiments
on synthetic binary images with one or two objects and on real images of the MOLLI
cardiac MRI sequence were presented. The segmentation of the object of interest
provided no advantage in the case of one binary object. It was however proven to be
beneficial in other tested cases, i.e. synthetic image with two objects of interest or
the images of real MOLLI sequence, where both OFdist and MIMdist provided better
results than MIM. In particular, in the experiments on real MOLLI images the MIM
provided the largest increase in mutual information by prioritizing the registration
of more distinct objects in the scene. This, however, led to unrealistic deformation
of the myocardium, which was then avoided by using OFdist and MIMdist. Based
on the experiments, it can be concluded, that the proposed segmentation-based reg-
istration using the signed-distance function provides better results when registering
the objects of interest which are not the most distinct in the scene.
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