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Abstract

Brain networks are increasingly characterized at different scales, including summary

statistics, community connectivity, and individual edges. While research relating brain

networks to behavioral measurements has yielded many insights into brain-

phenotype relationships, common analytical approaches only consider network infor-

mation at a single scale. Here, we designed, implemented, and deployed Multi-Scale

Network Regression (MSNR), a penalized multivariate approach for modeling brain

networks that explicitly respects both edge- and community-level information by

assuming a low rank and sparse structure, both encouraging less complex and more

interpretable modeling. Capitalizing on a large neuroimaging cohort (n = 1, 051), we

demonstrate that MSNR recapitulates interpretable and statistically significant con-

nectivity patterns associated with brain development, sex differences, and motion-

related artifacts. Compared to single-scale methods, MSNR achieves a balance
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between prediction performance and model complexity, with improved interpretabil-

ity. Together, by jointly exploiting both edge- and community-level information,

MSNR has the potential to yield novel insights into brain-behavior relationships.
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1 | INTRODUCTION

Studying brain-phenotype relationships in high-dimensional con-

nectomics is an active area of research in neuroscience (Bassett &

Sporns, 2017; Bzdok et al., 2016). The advent of large neuroimaging

datasets that provide measures of brain connectivity for unprece-

dented numbers of subjects has yielded novel insights into develop-

ment and aging, cognition, and neuropsychiatric illnesses (Biswal et al.,

2010; Bzdok & Yeo, 2017; Jernigan et al., 2016; Schumann et al.,

2010; Van Essen et al., 2012). As the availability of datasets with rich

neural, genetic, and behavioral measurements from large numbers of

subjects continues to increase, there is a growing need for analytical

tools that are tailored for the discovery of complex relationships

between brain networks and phenotypes (Craddock, Tungaraza, &

Milham, 2015; Varoquaux & Craddock, 2013; L. Wang, Durante,

Jung, & Dunson, 2017; Zhang, Sun, & Li, 2018).

A typical brain network consists of hundreds of nodes that

denote brain regions, and tens of thousands of edges that indicate

connections between pairs of nodes (Rubinov & Sporns, 2009).The

network can be viewed on the micro-scale, meso-scale, or macro-scale.

The micro-scale of the network can be characterized by features of its

edges. The macro-scale of the network can be characterized by sum-

mary statistics such as characteristic path length and global efficiency

(Rubinov & Sporns, 2009). The meso-scale falls in between the micro-

scale and macro-scale, and includes the communities that make up

the network (Sporns & Betzel, 2016). A community refers to a collec-

tion of nodes that are highly connected to each other and have little

connection to nodes outside of the community. Prior work has dem-

onstrated that brain network architecture present on these different

scales is associated with development and aging (Betzel et al., 2014;

Gu et al., 2015; Power, Fair, Schlaggar, & Petersen, 2010), cognition

(Bressler & Menon, 2010; Crossley et al., 2013; Park & Friston, 2013),

and neuropsychiatric diseases (Bassett, Xia, & Satterthwaite, 2018;

Braun et al., 2016; Fornito, Zalesky, & Breakspear, 2015; Grillon et al.,

2013; Kernbach et al., 2018; Xia et al., 2018; Yu et al., 2019).

Despite increased appreciation that multi-scale organization of

the brain may be responsible for some of its major functions

(Bassett & Siebenhühner, 2013; Betzel & Bassett, 2017), thus far,

common strategies for studying the relationship between brain con-

nectivity and phenotypes consider network features at a single scale

(Craddock et al., 2015; Varoquaux & Craddock, 2013). For example, a

popular single-scale strategy focuses on group-level comparisons of

individual connections in brain networks (Bressler & Menon, 2010;

Fornito et al., 2015; Grillon et al., 2013). This approach typically

involves performing a statistical test on each network edge. While this

procedure is easy to implement, several drawbacks limit its effective-

ness (Bzdok & Ioannidis, 2019). Two main limitations are the need to

account for multiple comparisons, and a lack of interpretability

(Craddock et al., 2015; Varoquaux & Craddock, 2013). To achieve high

power while minimizing the risk of false discovery, alternative edge-

based methods have been developed, such as the network-based sta-

tistic (Zalesky, Fornito, & Bullmore, 2010) and multivariate distance

matrix regression (Zapala & Schork, 2012). While these strategies

have yielded important insights, they nonetheless focus exclusively on

the micro-scale without exploiting the multi-scale information present

in brain networks, often producing results that are difficult to

interpret.

Given the importance of community structure in brain networks

and its interpretability in the context of neural and cognitive computa-

tions (Betzel, Medaglia, & Bassett, 2018; Sporns & Betzel, 2016), it

might be tempting to conduct a mass-univariate analysis at the meso-

scale, considering within- and between-community connectivity as the

input features (Betzel et al., 2014; Braun et al., 2016; Gu et al., 2015;

Yu et al., 2019). Such an approach dramatically reduces the dimen-

sionality of the data, which in turn decreases the burden of multiple

comparisons correction. A community-based approach also has the

added benefit of not having to deconstruct the connectivity matrix

into vectors, as in an edge-based approach, which inevitably disrupts

the innate structure in the data. However, summarizing hundreds or

thousands of edges as one single number to represent the connection

within or between communities can be problematic. This is especially

true for large communities such as the default mode network, whose

edges are spatially distributed across the anterior and posterior por-

tions of the brain (Raichle, 2015). Stated another way, extracting the

mean connectivity at the community level risks mixing disparate

signals.

In this paper, we introduce Multi-Scale Network Regression

(MSNR), which simultaneously incorporates information across multi-

ple scales in order to reveal associations between high-dimensional

connectomic data and phenotypes of interest. We first describe the

MSNR model and introduce an algorithm to estimate the parameters.

Next, we capitalize on one of the largest neurodevelopmental imaging

cohorts, the Philadelphia Neurodevelopmental Cohort (PNC), to

empirically assess the ability of MSNR in delineating brain connectiv-

ity patterns that are associated with a wide variety of phenotypes.

Importantly, we conduct head-to-head comparisons between MSNR

and common edge- and community-based analyses that are based on

single-scale strategies, and show that MSNR achieves a balance
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between prediction performance and interpretability by considering

information at multiple network scales.

2 | METHODS

2.1 | A statistical model for multi-scale network
regression

Given n subjects, let A1, …, An ∈ Rp × p denote the adjacency matrices

corresponding to their brain connectivity networks, where p is the

number of nodes. For instance, Ai
jj0 could represent the Pearson corre-

lation of the mean activation timeseries of two brain regions, a com-

mon measure of functional connectivity, between the j-th and j
0
-th

nodes for the i-th subject. Furthermore, we assume that the p nodes

can be partitioned into K distinct communities C1, …, CK that are

known a priori: [K
k =1Ck = 1,…,pf g,Ck \Ck0 6¼ ; if k 6¼ k

0
. The notation

j∈Ck indicates that the j-th node is in the k-th community. Moreover,

for each subject, q covariates have been measured, so

that Xi = X1
i X

2
i …Xq

i

� �T
∈Rq is a covariate vector for the i-th subject,

i = 1, …, n.

In what follows, we consider the model

Ai
jj
0 =Θ

jj
0 +

Xq

f =1
Xf
i

�
XK

k =1

XK

k
0
=1

Γf

kk
0 1 j∈Ck j

0
∈C

k
0ð Þ

� �
+ ϵi

jj
0 , i=1,…,n, j, j

0
=1,…,p, ð1Þ

Where ϵi
jj0 is a mean-zero noise term, and ϵi

jj0 = ϵ
i
j0 j. Θ is a symmet-

ric p× p matrix that summarizes the mean connectivity, across all of

the subjects, of each pair of nodes, in the absence of covariates.

Finally, for f = 1, …, q, Γf is a symmetric K×K matrix that quantifies the

association between the f-th feature and the functional connectivity

between each pair of communities. For instance, a one-unit increase

in Xf is associated with a Γf
kk0 increase in the mean functional connec-

tivity between nodes in the k-th and k
0
-th communities.

We now define a p × K matrix W for which Wjk =1 j∈Ckð Þ , where

1(�) denotes an indicator variable. As such, Equation (1) can be re-

written as

Ai =Θ+
Xq

f =1
Xf
i � WΓfWT� �

+ ϵi , i=1,…,n: ð2Þ

In order to fit the Model (2), we make two assumptions about the

structures of the unknown parameter matrices Θ and Γ1, …, Γq.

Assumption 1: Θ has low rank (Leonardi et al., 2013; K. Li, Guo, Nie,

Li, & Liu, 2009; Smith et al., 2015). That is, Θ = VVT where V is

a p × d matrix, for a small positive constant d. This means that

the p nodes effectively reside in a reduced subspace of d

dimensions. The mean connectivity between any pair of nodes

is simply given by their inner product in this low-dimensional

subspace. Furthermore, to ensure identifiability, we assume

that Tr(WTΘW) = 0.

Assumption 2: Γ1, …, Γq are sparse (Eavani et al., 2015; Ng,

Varoquaux, Poline, & Thirion, 2012; Xia et al., 2018). That is,

most of their elements are exactly equal to zero. If Γf
kk0 =0,

then the value of the f-th feature is unassociated with the

mean connectivity between nodes in the k-th and k
0
-th

communities.

We note that Assumption 1: is closely related to the random dot

product graph model and similar models (Durante & Dunson, 2018;

Durante, Dunson, & Vogelstein, 2017; Fosdick & Hoff, 2015; Tang,

Athreya, Sussman, Lyzinski, & Priebe, 2017; Young & Scheinerman,

2007), whereas Assumption 2: is a standard sparsity assumption for

high-dimensional regression (Hastie, Tibshirani, & Friedman, 2008;

Hastie, Tibshirani, Wainwright, Tibshirani, & Wainwright, 2015;

Tibshirani, 1996). Under these two assumptions, a schematic of the

Model (2) can be seen in Figure 1.

Model (2) is closely related to both the stochastic block model

(Choi, Wolfe, & Airoldi, 2012) and the random dot product graph

model (Young & Scheinerman, 2007). In particular, if Θ = 0, q = 1, and

Xf
i =1 for i = 1, …, n, then Equation (2) reduces to a stochastic block

model with known communities C1, …, CK. And if Γ1 = … = Γq = 0

and Assumption 1: holds, then Equation (2) reduces to a random dot

product graph model. However, unlike those two models

Equation (2) explicitly allows for the mean of the adjacency matrix to

be a function of covariates, and effectively incorporates both edge-

and community-level network information.

2.2 | Optimization problem

We now consider the task of fitting the Model (2), under Assump-

tions 1: and 2:. It is natural to consider the optimization problem

minimize
Θ,Γ1, :::,Γq

Xn

i=1
Ai− Θ+

Xq

f =1
Xf
i � WΓfWT
� �� ���� ���2

F

	

+ λ1rank Θð Þ+ λ2
Xq

f =1
Γf

�� ��
0
g ð3Þ

where the notation j�j jj2F indicates the squared Frobenius norm of a

matrix, that is, Dk k2F =
Pp

j=1

Pp
j0D

2
jj0 , and the notatiton k�k0 indicates

the element-wise cardinality (or l0 norm) of a matrix, that is,

Dk k0 =
Pp

j=1

Pp
j0 =11 D jj0 6¼0ð Þ: In Equation (3), λ1 and λ2 are non-

negative tuning parameter values that control the rank of Θ and the

sparsity of Γ1 = … = Γq, respectively.

Unfortunately, due to the presence of the rank and l0 penalties,

the optimization problem (3) is highly nonconvex, and no efficient

algorithms are available to solve it. Therefore, in what follows, we will

consider an alternative to Equation (3), which results from replacing
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the nonconvex rank and l0 penalties in Equation (3) with their convex

relaxations. This leads to the optimization problem

minimize
Θ,Γ1,…,Γq

(Xn

i=1
Ai− Θ+

Xq

f =1
Xf
i � WΓfWT� �� ���� ���2

F

+ λ1 Θk k* + λ2
Xq

f =1
Γf

�� ��
1

)
ð4Þ

In Equation (4), the notation k�k* indicates the nuclear norm of a

matrix, that is, the sum of its singular values (Bien & Witten, 2016; Fazel,

2002; Recht, Fazel, & Parrilo, 2010). The nuclear norm is a convex surro-

gate for the rank of a matrix. The notation k�k1 indicates the element-

wise l1 (or lasso) norm of a matrix, that is, Dk k1 =
Pp

j=1

Pp
j0 =1 D jj0



 

; this

is a convex relaxation of the l0 norm (Hastie et al., 2015; Hastie et al.,

2008; Tibshirani, 1996). In Equation (4), the non-negative tuning

parameters λ1 and λ2 encourage Θ and Γ1, …, Γq to be low-rank and

sparse, respectively.
Importantly, the optimization problem (4) is convex, and so fast

algorithms are available to solve it for the global optimum. In

Supporting Information, we have derived a block coordinate

descent algorithm for solving Equation (4). Simulation studies indi-

cated that MSNR behaved in the manner that was dependent on

the signal-to-noise ratio and the observation-to-feature ratio, par-

ticularly in its ability to model underlying connectivity patterns (see

Figure S1).

2.3 | Philadelphia neurodevelopmental cohort

Resting-state functional magnetic resonance imaging (rs-fMRI) datasets

were acquired as part of the Philadelphia Neurodevelopmental Cohort

(PNC), a large community-based study of brain development

(Satterthwaite et al., 2014). In total, 1,601 participants completed the

cross-sectional neuroimaging protocol. Of these participants, 154 were

excluded for meeting any of the following criteria: gross radiological

abnormalities, history of medical problems that might affect brain func-

tion, history of inpatient psychiatric hospitalization, use of psychoactive

medications at the time of data acquisition. Of the remaining 1,447

participants, 51 were excluded for low quality or incomplete FreeSurfer

reconstruction of T1-weighted images. Of the remaining 1,396 partici-

pants, 381 were excluded for missing rs-fMRI, voxelwise coverage or

excessive motion, which is defined as having an average framewise

motion more than 0.20 mm and more than 20 frames exhibiting over

0.25 mmmovement (using calculation from Jenkinson, Bannister, Brady, &

Smith, 2002). These exclusions produced a final sample consisting of

1,015 youths (mean age 15.78, SD = 3.34; 461 males, and 554 females).

2.4 | Imaging acquisition

Structural and functional imaging data were acquired on a 3T Siemens

Tim Trio scanner with a 32-channel head coil (Erlangen, Germany), as

previously described (Satterthwaite et al., 2014, 2016). High-resolution

structural images were acquired in order to facilitate alignment of indi-

vidual subject images into a common space. Structural images were

acquired using a magnetization-prepared, rapid-acquisition gradient-

echo (MPRAGE) T1-weighted sequence (TR = 1, 810 ms; TE = 3.51 ms;

FoV = 180 × 240 mm; resolution 0.9375 × 0.9375 × 1 mm). Approxi-

mately 6 min of task-free functional data were acquired for each subject

using a blood oxygen level-dependent (BOLD-weighted) sequence

(TR = 3, 000 ms, TE = 32 ms; FoV = 192 × 192 mm; resolution 3 mm iso-

tropic; 124 volumes). Prior to scanning, in order to acclimatize subjects

to the MRI environment and to help subjects learn to remain still during

the actual scanning session, a mock scanning session was conducted

using a decommissioned MRI scanner and head coil. Mock scanning

was accompanied by acoustic recordings of the noise produced by gra-

dient coils for each scanning pulse sequence. During these sessions,

feedback regarding head movement was provided using the MoTrack

motion tracking system (Psychology Software Tools, Inc., Sharpsburg,

PA). Motion feedback was only given during the mock scanning session.

In order to further minimize motion, prior to data acquisition subjects'

heads were stabilized in the head coil using one foam pad over each ear

and a third over the top of the head. During the resting-state scan, a fix-

ation cross was displayed as images were acquired. Subjects were

instructed to stay awake, keep their eyes open, fixate on the displayed

crosshair, and remain still.

F IGURE 1 A schematic for Multi-Scale Network Regression (MSNR). We developed a penalized multivariate approach for modeling brain
networks that explicitly respects both edge- and community-level information. We specified the MSNR model in Equation (2), which is visually
represented here. Under the model, Ai is the connectivity matrix for the i-th subject, Θ is a low-rank matrix representing the mean connectivity
across all subjects, Γ1, …, Γq are sparse matrices representing the community-level connectivity associated with the covariates X1

i ,…,Xq
i

� �
, and ϵi is

the noise
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2.5 | Structural preprocessing

A study-specific template was generated from a sample of 120 PNC

subjects balanced across sex, race, and age using the

buildTemplateParallel procedure in ANTs (Avants, Tustison,

Song, et al., 2011). Study-specific tissue priors were created using a

multi-atlas segmentation procedure (H. Wang et al., 2013). Next, each

subject's high-resolution structural image was processed using the

ANTs Cortical Thickness Pipeline (Tustison et al., 2014). Following bias

field correction (Tustison et al., 2010), each structural image was

diffeomorphically registered to the study-specific PNC template using

the top-performing SyN deformation (Klein et al., 2009). Study-specific

tissue priors were used to guide brain extraction and segmentation of

the subject's structural image (Avants, Tustison, Wu, et al., 2011).

2.6 | Functional preprocessing

Task-free functional images were processed using the XCP Engine (Ciric

et al., 2017), which was configured to execute a top-performing pipeline

for removal of motion-related variance (Ciric et al., 2018). Preprocessing

steps included (a) correction for distortions induced by magnetic field

inhomogeneities using FSL's FUGUE utility, (b) removal of the four initial

volumes of each acquisition, (c) realignment of all volumes to a selected

reference volume using mcflirt (Jenkinson et al., 2002), (d) removal of

and interpolation over intensity outliers in each voxel's time series using

AFNI's 3Ddespike utility, (e) demeaning and removal of any linear or

quadratic trends, and (f) co-registration of functional data to the high-

resolution structural image using boundary-based registration (Greve &

Fischl, 2009). Confounding signals in the data were modeled using a

total of 36 parameters, including the six framewise estimates of motion,

the mean signal extracted from eroded white matter and cerebrospinal

fluid compartments, the mean extracted from the entire brain, the deriv-

atives of each of these nine parameters, and quadratic terms of each of

the nine parameters and their derivatives. Both the BOLD-weighted

time series and the artefactual model time series were temporally fil-

tered using a first-order Butterworth filter with a passband between

0.01 and 0.08 Hz (Hallquist, Hwang, & Luna, 2013).

2.7 | Network construction

We used a common parcellation of cortial and subcortical tissue into

264 regions (Power et al., 2011). The functional connectivity between

any pair of brain regions was operationalized as the Fisher-transformed

Pearson correlation coefficient between the mean activation timeseries

extracted from those regions. Connectomes were computed across all

regions within a common parcellation with 264 nodes and 13 communi-

ties (Power et al., 2011). We encoded the pattern of functional connec-

tivity in a formal network model in which nodes represent regions and

edges represent functional connections. We assigned each region to

one of 13 a priori communities (Power et al., 2011) that were delineated

using the Infomap algorithm (Rosvall & Bergstrom, 2008) and

replicated in an independent sample. We excluded 28 nodes that were

not sorted into any community, therefore resulting in the final p = 236

and K = 13 (Figure 2a). This parcellation was selected for our analysis as

it has been previously used for studying individual differences in brain

connectivity, including those related to brain development (Gu et al.,

2015; Satterthwaite et al., 2012), sex differences (Satterthwaite et al.,

2015), and in-scanner motion (Ciric et al., 2018).

2.8 | Cross-validation

We first randomly selected 20% of the total sample (n = 1, 015) to

serve as the left-out validation set (n = 202). We then performed five-

fold cross validation on the remaining 80% of the sample (n = 813) to

select the values of the tuning parameters λ1 and λ2 for MSNR (James,

Witten, Hastie, & Tibshirani, 2013, Figure 2b). To ensure the results

were not due to any single random data split, we repeated the entire

procedure above five times. The age distributions of subjects between

training and validation sets across these five data partitions were simi-

lar to each other (Figure S2). In each fold, the independent variables

(Xn × q) were centered to a mean of zero and scaled by each column's

standard deviation. The prediction error used in cross-validation was

the Frobenius norm of the difference between estimated and true con-

nectivity matrices in the test set, Ai− Â
i

��� ���2
F
(Figure 2c). We ensured

the prediction error was independent of the sample size by using the

average prediction error over all subjects in the test set.

2.9 | Permutation procedure

To estimate the distribution of prediction error under the null hypothesis

of no association between functional connectivity and phenotype, we

permuted the rows of the covariate matrix Xn × q. For each permutation,

we tuned λ1 and λ2 using cross-validation, and calculated the prediction

error in the left-out validation set. The p-value was defined to be the pro-

portion of prediction errors among the 1,000 permuted datasets that are

smaller than the prediction error on the observed data,

ppermutation =

P1,000
1 1ei ≤�e

1,000
ð5Þ

where e1, …, e1, 000 denote the prediction errors on the 1,000 per-

muted data sets, and �e denotes the prediction error on the original

data. Here, 1(A) is an indicator variable that equals 1 if the event A,

and 0 otherwise.

2.10 | Comparison to single-scale approaches

We compared the performance of MSNR to two of the most com-

monly used single-scale network regression strategies, namely the

individual edge model (Grillon et al., 2013; Lewis, Baldassarre, Com-

mitteri, Romani, & Corbetta, 2009) and community mean model
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(Betzel et al., 2014; King et al., 2018; Yan et al., 2019; Yu et al., 2019).

These two approaches have been commonly used to study

connectivity-phenotype relationships (Craddock et al., 2015;

Varoquaux & Craddock, 2013) and differ primarily in terms of the

scale of brain network examined (Figure S3). Details are as follows:

2.10.1 | Individual edge model

We vectorized the upper triangle of the adjacency matrix Ai for the i-th

subject, i = 1, …, n, in order to create a n × p(p − 1)/2 matrix. For each

of the p(p − 1)/2 columns of this matrix, we fit a linear regression to

model that column using three covariates: age, sex, and in-scanner

motion (Figure S3a). Specifically, we built a linear model for each edge

in R, with the formula edge ~ age + sex + motion (Chen et al., 2016;

Fjell et al., 2017; Wood, 2017; Xia et al., 2018, Figure S3b). We

corrected the results for multiple comparisons using the false discovery

rate (FDR, q < 0.05, Storey, 2002) and reshaped the p(p − 1)/2 columns

to a p × p matrix for visualizing significant coefficients. To calculate

out-of-sample prediction error, we used linear models fit for all edges.

The prediction error was calculated in the same way as in MSNR.

2.10.2 | Community mean model

Community-based linear models were built with mean within- and

between-community connectivity as the dependent variables. The

within-community connectivity is defined as

(a)

(b)

(c) (d)

F IGURE 2 A schematic for MSNR model training and evaluation. (a) MSNR is designed to study the brain connectivity-phenotype
relationship by taking into account both edge- and community-level information. The model takes in an n × p × p matrix, where n is the number
of subjects and p is the number of nodes in each symmetric adjacency matrix. The nodes belong to K communities, determined a priori. (b) 20%
(n = 202) of the total sample (n = 1, 015) were randomly selected as the left-out validation data. We conducted five-fold cross-validation to select
the values of the tuning parameters λ1 and λ2. These two parameters represent the nuclear norm penalty on the mean connectivity matrix (Θ) and
the l1 norm of the community-level connectivity-covariate relationship matrices (Γ1, …, Γq), respectively. This entire procedure was repeated five
times. (c) The model was then trained using the tuning parameters determined in (b) on the rest 80% of the total data set (n = 813). Out-of-sample
prediction error was then calculated as the Frobenius norm of the difference between the known and estimated connectivity matrices on the
validation set. (d) We also evaluated the final model through a permutation procedure, where we disrupted the linkage between brain
connectivity and covariate data to generate a null distribution of out-of-sample prediction error
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P
j,j0∈Ck

Ai
jj0

Ckj j× Ckj j−1ð Þ ð6Þ

where Ai
jj0 is the weighted edge strength between the node j and

node j
0
, both of which belong to the same community Ck, for the i-th

subject. The cardinality of the community assignment vector, |Ck|, rep-

resents the number of nodes in the k-th community. The between-

community connectivity is defined as

P
j∈Ck ,j

0∈Ck0
Ai

jj0

Ckj j× Ck0j j ð7Þ

where Ck and Ck0 represent two different communities, and |Ck| and

Ck0j j are the number of nodes in each community, respectively.

By applying Equations (6) and (7) to each subject, we created a

n× K K−1ð Þ
2 +K

h i
matrix. For each of the K K−1ð Þ

2 +K columns of this mat-

ric, we fit a linear model to predict that column using three covariates:

age, sex, and in-scanner motion. Similar to the edge-based model, we

built a linear model for each edge in R, with the formula community ~

age+ sex+motion (Chen et al., 2016; Fjell et al., 2017; Wood, 2017;

Xia et al., 2018 Figure S3b). We corrected the results for multiple

comparisons using the false discovery rate (FDR, q<0.05, Storey,

2002) and reshaped the K K−1ð Þ
2 +K columns to a K×K matrix to visual-

ize significant coefficients. To calculate out-of-sample prediction

error, we used linear models fit for all communities. The prediction

error was calculated in the same way as in MSNR.

2.11 | Data and code availability

The data reported in this article have been deposited in database of

Genotypes and Phenotypes (dbGaP): accession no. phs000607.v3.p2

[https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?

study_id=phs000607.v3.p2].

An implementation of the algorithm is available at bitbucket.org/

rshinohara/networkregression.

3 | RESULTS

3.1 | MSNR shows high accuracy in a large
developmental sample

We applied MSNR to data from the Philadelphia Neurodevelopmental

Cohort (PNC) (Satterthwaite et al., 2014) in order to delineate mean-

ingful brain-phenotype relationships. In total, we studied n = 1, 015

participants aged 8–22, who completed resting state functional neu-

roimaging as part of the PNC. We constructed functional connectivity

matrices from a commonly-used parcellation scheme (=236 nodes)

and community membership assignment (K = 13 communities; Power

et al., 2011, Figure 2a). We first randomly selected 20% of the total

sample as the left-out validation set (n = 202), with which we assessed

the prediction performance of all subsequent models Figure 2b). The

prediction performance was defined as the Frobenius norm of the dif-

ference between the observed and estimated adjacency matrices in

the validation set (Figure 2c). For this proof-of-concept empirical

study, we examined the association of functional connectivity with

age, sex, and in-scanner motion. On the remaining 80% of the obser-

vations, we selected tuning parameters, λ1 and λ2, through five-fold

cross-validation (Figure 2b). We iteratively refined the cross-validation

grid (Figure 3a,b) in order to obtain the best possible tuning parameter

values. Importantly, no boundary effect was observed in any of the

iterations during successive grid searches, revealing a smooth convex

landscape for the objective (Figure 3c).

We subsequently evaluated the model's out-of-sample prediction

error on the validation set. The prediction error on the unseen data

was comparable to the average error in the cross-validation proce-

dure, indicating MSNR did not overfit to the training data. In addition,

to determine the statistical significance of the model, we performed a

permutation test to compare the model's prediction error to the distri-

bution of prediction error under the null hypothesis of no association

between brain networks and the predictors (Figure 3d). Specifically,

we permuted the rows of the covariate data matrix 1,000 times. In

each permutation, we disrupted the linkage between functional con-

nectivity and phenotypes, while preserving the covariance structure

of the covariates. We repeated the process of selecting tuning param-

eter values by cross-validation. Using these permuted data, we cre-

ated a null distribution of prediction error. We then compared the

true MSNR prediction error against this null distribution to estimate

the p-value. We found that MSNR fit to the originally data out-

performed any of the 1,000 null model when there was no linkage

between covariates and connectivity (p < .001).

3.2 | MSNR recapitulates known individual
differences in functional connectivity

Next, we investigated connectivity-phenotype relationships are sum-

marized in the matrices Γ1, Γ2, and Γ3 in the MSNR model. These

coefficient matrices corresponded to the multivariate connectivity

associated with age, sex, and motion, respectively (Figure 4). Of note,

these matrices were relatively sparse, with 20.1, 19.5, and 16.6%

entries exactly equaling to zero. Among the nonzero entries, many

were previously reported in the literature. For example, stronger

DMN connectivity was associated with age (Bluhm et al., 2008;

Staffaroni et al., 2018) and with female sex (Bluhm et al., 2008). To

summarize the multivariate patterns extracted by MSNR, We counted

the number of positive and negative coefficients within each esti-

mated matrix. These represent, respectively, positive and negative

associations between community membership and age, sex, and in-

scanner motion (Figure 4). Consistent with the previous literature

(Gu et al., 2015; Satterthwaite et al., 2013), we found that as age

increased, there were more within-community, rather than between-

community connectivity, that strengthened with age (Figure 4a). Con-

versely, as age increased, there were more between-community,

rather than within-community connectivity, that weakened with age.
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This pattern of results suggests that functional brain networks tend to

segregate during normative brain development. Replicating findings

from a previous report using mass-univariate analyses (Satterthwaite

et al., 2015), here we observed that stronger within-community con-

nectivity, rather than between-community, was more representative

of functional brain networks in males; whereas stronger between-

community connectivity, rather than within-community, was more

representative of functional brain networks in females (Figure 4b).

Finally, following on prior studies, we evaluated the degree to which

the association between in-scanner motion and connectivity varies by

inter-node distance, defined as the Euclidean distance between two

spherical brain parcellations in the MNI space (Brett, Johnsrude, &

Owen, 2002, Figure 4c). As expected, the MSNR coefficients for in-

scanner motion in relation to functional connectivity were negatively

correlated with the distances between pairs of communities. In other

words, when two brain regions were close together, the presence of

in-scanner motion was typically associated with an increase in their

connectivity. This finding is consistent with prior reports that in-

(a) (b) (c)

(d)

F IGURE 3 Tuning parameter selection and model evaluation of MSNR in a large neuroimaging dataset. (a) We used five-fold cross-validation
in each data partition to estimate the test prediction error associated with various values of λ1 and λ2. The matrix here represents the average
error across five different data partition. (b) After the initial search, we repeated the search on a finer scale, focusing on the range of λ1 and λ2
indicated by the dashed-line box. (c) As visualized, no boundary effect was observed in the grid search, revealing a smooth convex landscape for
the objective, with warmer color indicating lower prediction error. (d) In each data partition, a permutation procedure showed that the MSNR fit
to the original data significantly outperformed that to the permutated data with regards to prediction error on the validation set (p < .001).
Consistent across five data partitions, the prediction error was consistently multiple standard deviations (z-score) below the mean of the null
distributions
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scanner motion induces a distance-dependent bias in estimation of

functional connectivity (Ciric et al., 2017; Satterthwaite et al., 2012).

Of note, we verified that the Θ matrix was indeed low-rank

(Figure S4).

3.3 | Comparison with typical mass-univariate
single-scale strategies

Next, we compared MSNR to common single-scale mass-univariate

approaches that make use of linear models at the edge-level or the

community-level (Figure 5). We computed the out-of-sample perfor-

mances of the two single-scale approaches using the left-out valida-

tion set. The prediction error of the community-based model on the

validation set was poor, whereas that of the edge-based model was

similar to MSNR (Figure 5a). Our estimation of prediction error of

edge- and community-based models were likely to be overly optimis-

tic, since we used all fitted models for the purpose of out-sample

prediction.

Next, we examined the interpretability of coefficients obtained in

each model after applying FDR correction to control for multiple

comparisons in single-scale approaches (Storey, 2002). We found that

while the edge-based model and MSNR achieved similar out-of-

sample prediction, coefficients estimated in MSNR (Figure 5b) were

more interpretable than the coefficients from edge-based models

(Figure 5c). The number of coefficients in edge-based models for each

covariate exceeded that of MSNR by three orders of magnitude. On

the other hand, at the expense of higher prediction error, community-

based models exhibited a level of interpretability that was similar to

that exhibited by MSNR (Figure 5d).

4 | DISCUSSION

In the past decade, the neuroscience community has begun to com-

plement the study of localized regions of the brain toward studying

inter-regional relationships, or connectivity (Bassett & Sporns, 2017;

Bzdok et al., 2016). The association of network architecture with

development and aging throughout the lifespan (Betzel et al., 2014;

Gu et al., 2015; Power et al., 2010), cognition (Bressler & Menon,

2010; Crossley et al., 2013; Park & Friston, 2013), and neuropsychiat-

ric disorders (Bassett et al., 2018; Xia et al., 2018; Yu et al., 2019) is of

(a) (b) (c)

F IGURE 4 MSNR describes meaningful individual differences in brain connectivity. Top row represents the coefficient matrix Γ for each of
the three phenotypes modeled in the MSNR. (a) We counted the number of positive and negative coefficients related to age. More within-
community, rather than between-community, connectivity strengthened as the age increased. Conversely, more between-community, rather than
within-community, connectivity weakened over age. (b) Stronger within-community than between-community connectivity was more
representative of male functional brain networks, whereas stronger between-community than within-community connectivity was more
representative of female functional brain networks. (c) Coefficient for in-scanner motion was negatively correlated with the average Euclidean
distance between communities (p < .001)
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profound interest to the burgeoning network neuroscience literature.

These brain-phenotype associations can be studied on the scale of

individual edges (micro-scale), communities (meso-scale), or the net-

work as a whole (macro-scale), with most existing approaches for ana-

lyzing networks, such as mass-univariate analyses, operate on a single

scale.

In recent years, interest has centered on multi-scale modeling

approaches (Jenatton et al., 2012; Y. Li et al., 2011, 2013), which aim

to integrate information across homogeneous regions in the brain

while still modeling data on finer scales. These methods have mainly

focused on the problem of smoothing without prior knowledge of

anatomical or functional parcellations of the brain, and have been

(a)

(b)

(d)

(c)

F IGURE 5 MSNR achieves a balance between out-of-sample prediction performance and model interpretability compared to common single-
scale mass-univariate approaches. (a) We compared out-of-sample prediction performance of MSNR to common single-scale mass univariate
analysis such as edge- and community-based methods. Among the three methods, the community-based approach had the highest prediction
error. In contrast, MSNR had similar prediction error as the edge-based approach. Error bar represents the standard deviation across five different
data partitions. (b) MSNR coefficients in Γ describe the multivariate connectivity-phenotype relationships. These correspond to age, sex, and in-
scanner motion, respectively. Results from single-scale models were visualized in (c) for edge-based and in (d) for community-based approaches.
Multiple comparisons were corrected using FDR
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adapted for both classification (Romberg, Choi, Baraniuk, & Kingbury,

2000) and regression (Y. Li et al., 2011) as well as in longitudinal set-

tings (Y. Li et al., 2013).

Building upon this recent work, we developed MSNR to study rela-

tionships between high-dimensional brain networks and variables of

interest. Specifically, our proposal modeled the connectivity matrix for

each subject by integrating both micro- and meso-scale network infor-

mation. By applying a low-rank assumption to the mean connectivity

network (Leonardi et al., 2013; K. Li et al., 2009; Smith et al., 2015) and

a sparsity assumption to the community-level network (Meunier, Lamb-

iotte, & Bullmore, 2010; Newman, 2006; Xia et al., 2018), we substan-

tially decreased the number of parameters and encouraged the

detection of interpretable brain-phenotype relationships.

Leveraging a large neuroimaging dataset of over 1000 youth, we

demonstrated that MSNR recapitulated known individual differences in

functional connectivity, including those related to development (Gu et al.,

2015; Satterthwaite et al., 2013), sex differences (Satterthwaite et al.,

2015), and in-scanner motion (Ciric et al., 2017; Satterthwaite et al.,

2012). Notably, compared to common single-scale mass-univariate

regression methods, MSNR achieved a balance between prediction per-

formance and model complexity, with improved interpretability. Together,

MSNR represents a new method for identifying individual differences in

high-dimensional brain networks.

Several limitations of the MSNR approach should be noted. First,

the term “scale” does not have a single definition. In fact, as pointed

out by Betzel and Bassett (2017), scale can represent at least three

different entities depending on the context: multi-scale topological

structure, multi-scale temporal structure, and multi-scale spatial struc-

ture. In MSNR, we only considered multi-scale topological structure.

Incorporating additional information from multiple scales beyond net-

work topology will likely generate more nuanced and richer models

for brain networks. Second, while we carefully conducted a permuta-

tion test to assess the statistical significance of the entire model, we

did not provide an inferential procedure for determining the associa-

tion between brain networks and each variable of interest. In particu-

lar, MSNR makes no claim of statistical significance for the

coefficients in the matrices Γ1, …, Γq, which describe the community-

level relationships with the covariates. Due to the inclusion of penalty

terms in the MSNR framework, making such inferential statements is

a challenging open problem.

In summary, by explicitly modeling variability at the edge and

community levels, we developed a multi-scale network regression

approach that achieved a balance between the trade-off of prediction

and model complexity, potentially offering enhanced interpretability.

Empirically, we demonstrated its advantages over alternative methods

and illustrated its ability to uncover meaningful signals in a large neu-

roimaging dataset. Approaches such as MSNR have the potential to

yield novel insights into brain-behavior relationships that incorporate

realistic multi-scale network architecture.
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