
HAL Id: hal-02297637
https://hal.archives-ouvertes.fr/hal-02297637v3

Submitted on 30 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Performance and Isolation of Asymmetric
Microkernel Design for Lightweight Manycores

Pedro Henrique Penna, João Souto, Davidson Lima, Márcio Castro, François
Broquedis, Henrique Freitas, Jean-François Mehaut

To cite this version:
Pedro Henrique Penna, João Souto, Davidson Lima, Márcio Castro, François Broquedis, et al.. On
the Performance and Isolation of Asymmetric Microkernel Design for Lightweight Manycores. SBESC
2019 - IX Brazilian Symposium on Computing Systems Engineering, Nov 2019, Natal, Brazil. pp.1-31.
�hal-02297637v3�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/362233962?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-02297637v3
https://hal.archives-ouvertes.fr


HAL Id: hal-02297637
https://hal.archives-ouvertes.fr/hal-02297637

Submitted on 26 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Performance and Isolation of Asymmetric
Microkernel Design for Lightweight Manycores

Pedro Henrique Penna, João Souto, Davidson Lima, Márcio Castro, François
Broquedis, Henrique Freitas, Jean-Francois Mehaut

To cite this version:
Pedro Henrique Penna, João Souto, Davidson Lima, Márcio Castro, François Broquedis, et al.. On
the Performance and Isolation of Asymmetric Microkernel Design for Lightweight Manycores. SBESC
2019 - IX Brazilian Symposium on Computing Systems Engineering, Nov 2019, Natal, Brazil. �hal-
02297637�

https://hal.archives-ouvertes.fr/hal-02297637
https://hal.archives-ouvertes.fr


On the Performance and Isolation of Asymmetric
Microkernel Design for Lightweight Manycores
Pedro Henrique Penna

UGA, PUC Minas
Grenbole, France

pedro.penna@sga.pucminas.br

João Vicente Souto
UFSC

Florianópolis, Brazil
joao.vicente.souto@grad.ufsc.br

Davidson Francis Lima
PUC Minas

Belo Horizonte, Brazil
davidson.francis@sga.pucminas.br

Márcio Castro
UFSC

Florianópolis, Brazil
marcio.castro@ufsc.br

François Broquedis
Grenoble INP, INRIA

Grenbole, France
francois.broquedis@univ-grenoble-alpes.fr

Henrique Freitas
PUC Minas

Belo Horizonte, Brazil
cota@pucminas.br

Jean-François Méhaut
UGA, LIG, CNRS
Grenbole, France

jean-francois.mehaut@univ-grenoble-alpes

Abstract—Multikernel operating systems (OSs) were intro-
duced to match the architectural characteristics of lightweight
manycores. While several multikernel OS designs are possible,
in this work we argue on one that is structured in asymmetric
microkernel instances. We deliver an open-source implementation
of an OS kernel with these characteristics, and we provide
a comprehensive assessment using a representative benchmark
suite. Our results show that an asymmetric microkernel design is
scalable and introduces at most 0.9% of performance interference
in an application execution. Also, our results unveil co-design
aspects between an OS kernel and the architecture of lightweight
manycore, concerning the memory system and core grouping.

Index Terms—manycore, operating system, kernel, MPPA-256

I. INTRODUCTION

Lightweight manycores were introduced to cope with the
ever-increasing high performance and low-power consumption
demands of applications [1]. To meet these requirements,
this emerging class of processors relies on a selected set of
architectural characteristics. On one hand, to enable scala-
bility, lightweight manycores feature a distributed memory
architecture and a rich on-chip interconnect [2]. On the
other hand, to achieve energy efficiency, they are built with
simple and low-power cores [3]; have a memory system
based on Scratchpad Memories (SPMs) with no hardware
cache coherency support [4]; and exploit heterogeneity by
bundling cores with different capabilities [5]. Some examples
of lightweight manycores are the Kalray MPPA-256 [6]; the
Adapteva Epiphany [7]; and the Sunway SW26010 [8].

Due to an outstanding performance scalability and energy
efficiency, lightweight manycores are currently employed in
areas that have demand for such requirements, like in Embed-
ded Computing and High-Performance Computing (HPC) [9].
Nonetheless, when comes to the applicability of these proces-
sors in other use-case scenarios that have additional needs,
such as multi-application/user support, lightweight manycores

We thank CNRS, CNPq, FAPESC, FAPEMIG for supporting this research.
This study was financed in part by the Coordenação de Aperfeiçoamento de
Pessoal de Nı́vel Superior - Brasil (CAPES) - Finance Code 001.

are not yet that diffused. The rationale for this observation
emerges from the system-level support for these processors.
So far, several solutions that run at the runtime level were
introduced to ease programmability of lightweight manycores,
such as OpenMP, Partitioned Global Address Space (PGAS)
and Message Passing Interface (MPI) [10], [11]. However,
these solutions do no effectively enable resource sharing and
multiplexing; and they lack on providing rich abstractions.

To expand the applicability of lightweight manycores, as
well as to improve software portability and programmability
to them, some research initiatives are focused on introducing
a rich Operating System (OS) solution for these emerging
processors [12]–[14]. Among these efforts, we highlight the
multikernel design, which stands out due to its natural match to
the architecture of lightweight manycores themselves. In this
approach, the OS is structured as a distributed system [15],
[16]: a set of independent OS kernels is deployed in the
processors; these kernels communicate with one another via
message-passing only; and they implement in a distributed
fashion traditional OS subsystems.

Several designs for a multikernel OS are possible [17]–
[19], but we claim that a design that is structured on top of
asymmetric microkernel instances better matches the unique
architectural features of a lightweight manycore. We argue
in favor of this structure due to multiple reasons. First, the
microkernel layout is inherently minimalist and hence leads
to a small memory footprint. Second, a microkernel structure
enables maximum flexibility. Finally, the asymmetric design
grants the microkernel scalability [12].

In this context, the goal of this work is to provide a
comprehensive assessment on the asymmetric microkernel
design for lightweight manycores. To do so, we implemented
a kernel with the aforementioned characteristics in the Nanvix
research OS [20], [21], and we evaluated its performance
scalability and isolation in the Kalray MPPA-256 processor,
using a representative suite of benchmarks. In summary, this
work delivers the following contributions to the state of the
art on OS kernel construction for lightweight manycores:



• Unveil that an asymmetric microkernel design matches
the architectural features of a lightweight manycore,
delivering performance and isolation to user software.

• Deliver an open-source implementation of an asymmetric
microkernel.

• Uncover co-design aspects between an OS kernel and a
lightweight manycore.

The remainder of this work is organized as follows. In
Section II, we present a background on lightweight manycores
and the multikernel OS design. In Section III, we discuss the
structure of Nanvix. In Section IV, we detail the evaluation
methodology that we adopted. In Section V, we analyze our
experimental results. In Section VI, we present related works.
Finally, we draw our conclusions in Section VII.

II. LIGHTWEIGHT MANYCORES

In this section, we cover the background of our work. First,
we carry out a discussion on the architecture of lightweight
manycores. Then, we highlight how programmability chal-
lenges in these processors emerge. Finally, we present the
multikernel OS design and argue why they match lightweight
manycores. For a discussion on Nanvix, see Section III.

A. Architectural Blueprints
Lightweight manycores differ from other high core count

platforms, such as Non-Uniform Memory Access (NUMA)
processors and Graphics Processing Units (GPUs), in sev-
eral points. In contrast to the latter architectures, lightweight
manycores: (i) integrate in a single chip hundreds to thou-
sands of low-power cores; (ii) are designed to target Multiple
Instruction Multiple Data (MIMD) workloads; (iii) present
a distributed memory architecture; (iv) feature a constrained
memory system, often with no single address space, small
local memories and no cache coherency; (v) rely on high-band-
width and rich Networks-on-Chip (NoCs) to carry out fast
and reliable message-passing communication; and (vi) may
have a heterogeneous configuration, in terms of both I/O and
computing capabilities. To better understand these key features
of lightweight manycores, in the paragraphs that follow, we
carry out a detailed discussion on a concept processor of this
emerging class. Noteworthy, the following discussion equally
applies to real-world lightweight manycores [6]–[8].

Figure 1 pictures an architectural overview of a concept
lightweight manycore. Overall, it has 67 cores that are bundled
into seventeen different tightly-coupled groups, called clusters
(or tiles). Cores within the same cluster share some local
hardware resources, such as SRAM and NoC interfaces; and
have uniform access latencies to these local components. Note
that clusters may differ in their structure, organization and
computing capabilities and/or I/O connectivity. In the given
example, two types of clusters co-exist:

i. sixteen Compute Clusters, each of which featuring four
cores, a SRAM, one NoC interface, and one Direct
Memory Access (DMA) engine; and

ii. one I/O Cluster that has three cores, a SRAM, two NoC
interfaces, one DMA engine, and connectivity to DRAM
and devices.

DRAM

Devices

Compute Cluster

corecore

core core

SRAM

NoC

I/O Cluster

corecore

SRAM

NoC

core

NoCDMA

DMA

Fig. 1. Concept lightweight manycore processor with 67 cores.

Clusters have distinct address spaces, and they may com-
municate with one another by explicitly exchanging messages
at software-level through a global mesh NoC. For instance, if
a core in a given Compute Cluster A wants to communicate
with a core lying in another Compute Cluster B, it can do
so by sending messages to the core in cluster B. Conversely,
to access external devices and DRAM attached to the I/O
Cluster, Compute Cluster A must exchange messages with
the I/O Cluster. Noteworthy, due to the explicit message-
passing communication, some lightweight manycores feature
built-in DMA controllers in their NoC interfaces to enable
asynchronous communications.

B. Programmability Challenges

Performance capabilities of lightweight manycores can be
drawn from their massive number of cores and rich on-chip in-
terconnect. However, their architectural features also introduce
challenges in software programmability, which affect both OS
construction and user-level application development. First, the
High Density Circuit Integration turns dark silicon [22] into
reality. Since it is not possible to power on all the cores
of a lightweight manycore at the same time, thermal-aware
scheduling strategies are required to enable the maximum
of them to be powered up safely. Second, the Distributed
Memory Architecture requires software to be designed to
handle data partitioning and accessing across multiple physical
address spaces. Data should be explicitly fetched from remote
memories to local ones, in order to be manipulated, which
leads to non-trivial software design [1].

Third, the Small Amount of On-Chip Memory requires the
software to explicitly tile the working data set into chunks,
load/store them from/to a remote memory, and locally manip-
ulate these chunks one at a time [20]. Additionally, it is up
to the software to take care of data caching and replication
to boost performance. Finally, the Rich On-Chip Interconnect
exposes mechanisms for asynchronous programming and ex-
plicit routing on the chip. The former should be used in order
to overlap communication with computation [23]. The latter
should be extensively considered in order to guarantee uniform
communication latencies [24].



C. The OS Multikernel Design

The multikernel OS design was introduced to address archi-
tectural characteristics of lightweight manycores [15]. In this
approach, the OS is structured as a distributed system: a set of
independent OS kernel instances is deployed in the processor;
these kernels communicate with one another via message-
passing only; and they implement in a distributed fashion
traditional OS subsystems. When it comes to lightweight
manycores, the rationale for this structure is three-fold [16]:

i. it relies on state replication instead of sharing, thereby
enabling large-scale scalability;

ii. it makes the OS structure hardware-neutral, thus being
inherently portable across diverse hardware; and

iii. it deals with inter-core communication explicitly, thus
enabling the OS to make more efficient use of the on-
chip interconnect by employing network optimizations.

Figure 2 presents a snapshot of a multikernel OS running
in a 40-core lightweight manycore. Cores of the underlying
processor are either idle (black cores), running an OS Kernel
Instance (gray cores), or executing a user application (white
cores). OS Kernel Instances are spawned during the system
startup and are spatially distributed across the processor. Each
OS Kernel Instance may provide a different set of function-
alities, and they all rely on agreement protocols to coordinate
their work. User applications are dynamically launched on idle
cores and rely on Remote Producere Call (RPC) libraries to
send requests to OS Kernel Instance.

At this point, it is interesting to highlight how flexible is
the multikernel design. At the deployment level, the set of OS
Kernel Instances that are started up with the system, as well
as the stub RPC libraries that are provided to applications,
may be narrowed to a specific use-case domain. For instance,
to improve fault tolerance, multiple OS Kernel Instances that
provide file system operations may be launched at system
start up. Conversely, if the network stack is not required, OS
Kernel Instances that implement this functionality do not need
to be brought up at system startup. At the implementation
level, the actual architecture and capabilities of an OS Kernel
Instance may be further tailored to better meet a specific set
of target platforms. For instance, OS Kernel Instances may
be implemented as a specialized monolithic kernel [19], to
address heterogeneous Instruction Set Architecture (ISA); or
as an exokernels [15], to enable maximum control over the
hardware, by user-level software.

Idle

Core

Application

Core

OS Service

Core

Interconnect

Fig. 2. Snapshot of a multikernel OS running.

In this wide-spectrum of design possibilities for a Multiker-
nel OS, we argue on an implementation based on asymmetric
microkernel instances, in order to meet the architectural fea-
tures of lightweight manycores. The rationale is four-fold:

i. a microkernel layout is inherently minimalist and hence
leads to a small memory footprint, which is an important
constraint for lightweight manycores;

ii. a microkernel structure enables maximum flexibility,
since subsystems may be easily adapted and deployed
so as to better meet the requirements of a use-scenario
(i.e. no need to change the kernel);

iii. an asymmetric design delivers better isolation to user
applications [18]; and

iv. an asymmetric design enables co-design optimizations
between the architecture and the OS kernel [8].

III. THE NANVIX OPERATING SYSTEM

Nanvix1 is an open-source research OS that targets light-
weight manycores and aims at POSIX compliance. It is under
constant development in joint collaboration between PUC
Minas (Brazil), UFSC (Brazil) and UGA (France); and it
currently supports multiple architectures, including Kalray
MPPA-256 [6], OpTiMSoC [25] and PULP [3]. Our OS
features a multikernel design that is structured on a set of
asymmetric microkernel instances. In this section, we cover
the main design aspects of Nanvix, which we argue to better
meet the architectural characteristics of lightweight many-
cores. First, we present an overview of the system structure,
and then we uncover the internals of the Nanvix microkernel.

A. System Structure Overview

Nanvix is organized in three layers. On the bottom layer,
one microkernel instance is deployed on each cluster. Our
microkernel features an asymmetric design, which means
that it exclusively runs in one core of the cluster, and it
leaves the remaining cores to general-purpose use. Overall, the
microkernel provides resource sharing and security, as well as
bare minimum OS abstractions and primitives, at cluster level.

On the mid-layer, system servers are launched in some cores
that were not used by the kernel. These servers implement
abstractions, primitives and services commonly found in an
OS, such as process scheduling, memory mappings, and
files table. Subsystems such as process management, memory
management and file system are thus implemented by a set
of these system servers that work together, in a distributed
fashion. Noteworthy, the internal organization and the number
of system servers that compose each subsystem may vary, from
one subsystem to another, as well as each underlying platform.

Finally, on the top layer, there are the runtime libraries.
These libraries are linked to the user applications and provide
a standard interface for user-level software to interact with
the OS. For instance, to create a process, a user application
would rely on a RPC library call of the process management
subsystem, which would be forwarded to the right system
server.

1Publicly available at: https://github.com/nanvix.

https://github.com/nanvix


B. Microkernel

Figure 3 presents an overview of the Nanvix microkernel. It
features an asymmetric design, which means that it exclusively
runs in one core of the underlying cluster. The Nanvix micro-
kernel is structured into three layers, from bottom to top: the
Hardware Abstraction Layer (HAL), the Modules Layer and
the Kernel Call Layer. The HAL enables the portability of
the kernel itself, by abstracting the hardware and exposing a
uniform interface to higher levels of the microkernel across
multiple lightweight manycores. For a detailed discussion on
the Nanvix HAL, refer to our previous work [21].

The Modules Layer hosts the implementation of the func-
tionalities and capabilities of the microkernel, and it currently
features four modules. The Device Module manages access
permissions to memory and port mapped devices, as well as it
exports uniform routines for reading and writing to both device
types. Furthermore, it provides the required mechanisms to
forward the implementation of rich device drivers to user
space. The Thread Module provides a thread abstraction in
kernel space. Kernel threads run in uninterruptible mode and
have exclusive access to a core. This module schedules kernel
threads to cores in a First-In First-Out (FIFO) fashion and it
supports the multiplexing of several user threads on top of
kernel threads through programmable software alarms. It also
features sleep and wakes up routines, to suspend and resume
the execution of a thread, respectively.

The Communication Facility provides three inter-cluster
communication primitives: (i) syncs which enable mutual ex-
clusion; (ii) mailboxes which are meant to exchange small and
fixed-size messages; and (iii) portals which enable one-sided
dense data transfers. All these primitives have a synchronous
behavior. However, for mailboxes and portals, asynchronous
mode of operation is also supported in lightweight manycores
that feature DMA engines. Finally, the Memory Management
Module provides a virtual memory extension to cluster-level.
It is based in a two-level paging scheme, supports pages of
heterogeneous sizes and uses a capabilities system [16] to keep
track of permissions on pages. Furthermore, to enable address
space management in user space, this module exposes routines
for inspecting and updating paging structures. The Kernel

Interrupts

Exceptions
Core

Execution

Context

Memory

Cache
MMU/TLBEvents

Memory

Mapped I/O

Port

Mapped I/O

Device Subsystem

Async

Engine
Inter-Cluster

Comm.

Communication Facility

Thread

Sync.

Thread

Mgmt.

Thread Subsystem

Paging

Module

Memory Subsystem

Frame

Module

mmio

portio

intctl
fence signals

mailbox portal

alarm

save spawn

wakeupload

sleep

join

pgumap

pgctl

pgmap

exit

OpTiMSoC
OpenRISC

MPPA-256
Bostan

NoC Traps

PULP
RISC-V

Fig. 3. Structural overview of the Nanvix microkernel.

Call Layer lies on top of the Modules Layer and effectively
exposes the functionalities of each module to user space. This
topmost layer performs security checking, controls execution
flow, and, more importantly, it handles the actual asymmetric
characteristic of our microkernel design.

In our asymmetric microkernel design, one core of the un-
derlying cluster, called the master core, executes the complex
routines of the Module Layers, and simple routines of the
kernel are executed in the other cores, called slave cores. The
controller module of the kernel Call Layer decides whether
or not a given kernel call should be executed locally (i.e. in
the slave core), or remotely (i.e. in the master core) based
on a two-fold condition. If the kernel call changes structures
of the requesting core, or if it accesses only read-only data
structures of the kernel, then this kernel call executes locally,
otherwise it executes remotely. For serving remote kernel calls,
the master core processes them in a FIFO fashion, and it relies
on a kernel-land semaphore to control the requests coming
from user-threads. With this design, remote kernel calls are
expected to have a higher latency than local ones. Still, in
Section V, we show that this approach leads to scalability and
isolation.

IV. EVALUATION METHODOLOGY

To deliver a comprehensive assessment of an asymmetric
microkernel design for lightweight manycores, we studied
the execution of several representative benchmarks in Nanvix
running on the Kalray MPPA-256 processor. In this section,
we present our evaluation methodology, and in the next one,
we unveil our experimental results and outcomes. First, we
detail the experimental benchmarks that we employed. Then,
we give further information on Kalray MPPA-256. Finally, we
discuss about our experimental design.

A. Experimental Benchmarks

We employed five benchmarks in our assessment. These
programs were selected so as to exercise important design
aspects of an asymmetric microkernel: (i) the performance of
core mechanisms of the kernel itself; (ii) the interference of the
kernel in the execution of user-level applications; and (iii) the
scalability of the kernel to serve user-level requests (i.e. kernel
calls). Overall, we partitioned these five benchmarks into two
groups, to ease our discussion: µBenchmarks and Synthetic
Benchmarks. In the first group, we intended to evaluate the
upper bound performance of fundamental mechanisms of an
asymmetric microkernel design. In contrast, in the Synthetic
Benchmarks, we aimed at assessing the scalability and isola-
tion of the kernel. In the paragraphs that follow, we present
a short description of each of these benchmarks. Noteworthy,
we made this application suite available2 for a detailed study.
Local Kernel Call (L-Kcall) This µbenchmark assesses the

performance of a local kernel call, which is one that
executes in the same core that the requesting user thread
is running. We used the kthread_self() kernel call

2Publicly available at: https://github.com/nanvix/microkernel-benchmarks.

https://github.com/nanvix/microkernel-benchmarks


of Nanvix in this benchmark, which retrieves the identifier
of the underlying kernel thread.

Remote Kernel Call (R-Kcall) This µbenchmark assesses the
performance of a remote kernel call. Remote kernel calls
execute in a dedicated core (i.e. master core) of the
underlying cluster, and they consist in the key feature of
asymmetric OS kernels. In this benchmark, we considered
a void remote kernel call of Nanvix.

Fork-Join This synthetic benchmark assesses the overhead
for creating and terminating kernel threads. The cost for
supporting these operations is important, if the OS aims
at efficient support for multithread frameworks, such as
Java Concurrency and POSIX Threads.

Buffer This synthetic benchmark launches multiple thread
pairs that perform buffered transfers. The actual transfer
of data between each thread pair relies on: (i) two
semaphores for flow control; (ii) a ring buffer to hold
temporary data; and (iii) a mutex for mutual exclusion to
the ring buffer. Essentially, this use-case scenario bench-
marks contention in the kernel to serve kernel calls. Since
operations in semaphores and mutexes in Nanvix execute
in the master core, this benchmark directly evaluates the
scalability of the asymmetric kernel design.

Kernel Noise (KNoise) This synthetic benchmark evaluates
the interference introduced by the kernel in the execution
of a user application, in the possible worst-case scenario.
Let n be the number of cores available in the underlying
cluster. Therefore, this benchmark launches x compute-
intensive threads in x of these cores, and in the n − x
remainder cores it launches kernel-intensive tasks (i.e.
threads that issue remote kernel calls in a tight loop).

B. Experimental Platform and Design

In this work, we benchmarked the Nanvix Microkernel in
the Kalray MPPA-256 processor [6]. This is a commercial
lightweight manycore that features the major characteristics
that we discussed in Section II-B. We chose this platforms
over the others that are supported by Nanvix, because it would
enable us to assess our asymmetric microkernel design in an
existing industrial solution and thus uncover some valuable
co-design aspects between the hardware and OS kernel.

Kalray MPPA-256 features 272 general-purpose cores,
named Processing Elements (PEs), and 16 firmware cores,
called Resource Managers (RMs). All cores (i.e. PEs and
RMs) run at fixed frequency of 400 MHz, implement a 64-
bit proprietary instruction set, present a 5-issue Very Long
Instruction Word (VLIW) pipeline, 8 kB instruction and data
caches, and feature a software-managed Memory Management
Unit (MMU). Overall, the 288 cores of the processor are
grouped within 16 Compute Clusters, which are intended for
computation, and 4 I/O Clusters, which are designed to provide
connectivity to peripherals. Each Compute Cluster bundles 16
PEs, 1 RM, a 2 MB of local SRAM, one DMA engine, and
two NoC interfaces. In these clusters, cache coherence is not
supported by the hardware. On the other hand, each I/O Cluster
has 4 PEs, 4 MB of SRAM, four DMA engines, and eight

TABLE I
BENCHMARK PARAMETERS FOR EXPERIMENTS.

Benchmark Group Threads Workload

L-Kcall µBenchmarks 1 -
R-Kcall 1 -

Fork-Join Synthetic 1 to 14 -
Buffer Benchmarks 2, 6, 8, 10, 14 1 to 8 kB objects
Knoise 1 to 14 1000 FOPs

NoC interfaces. Two of these clusters are connected to a DDR
controller each, and the other two are attached to PCI and
Ethernet controllers.

Clusters have distinct physical address spaces, and they may
communicate with one another only by exchanging messages
via either one of two different interleaved 2-D torus NoCs: (i)
a Control NoC (C-NoC) that features low bandwidth and is
intended for small data transfers; and (ii) a Data NoC (D-NoC)
that presents high bandwidth and is dedicated to dense data
transfers. In our experiments, we considered the execution of
the Nanvix microkernel in Compute Clusters.

What concerns software development in Kalray MPPA-256,
the processor is shipped with a patched version of GCC 4.9.4
and Binutils 2.11.0. Furthermore, specifically regarding OS
kernel implementation, OS engineers are required to rely on
a proprietary hypervisor from Kalray. This hypervisor runs
on the firmware cores of the processor and provides some
low-level routines for dealing with the hardware. Noteworthy,
Kalray Hypervisor imposes additional challenges in OS kernel
construction, because it was designed to host runtime libraries.

Table I details the parameters used for each benchmark. In
both groups of experiments, we used performance counters
to monitor hardware events with minimum overhead. We
conducted experiments in the Nanvix Microkernel commit
0a0088b, built with level three optimizations. With this build,
the memory footprint of the Nanvix Microkernel was 128 kB,
plus 320 kB of the Kalray Hypervisor. For each experimental
configuration, we carried out several replications to ensure
95% of confidence in our results.

V. EXPERIMENTAL RESULTS

In this section, we present our experimental results. First, we
analyze the outcomes for Microbenchmarks, and next we move
to a discussion on the results for the Synthetic Benchmarks.

A. Microbenchmarks

Figure 4 pictures the breakthrough of execution cycles for
the L-Kcall Benchmark. Before proceeding with our analysis,
it is important to note that hardware events that are depicted
are not exclusive with each other. For example, an I-Cache
Stall may incur in a Register Stall, thus the bar labeled Total
Cycles is not the aggregation of the other bars. Noteworthy,
this observation applies to the other plots that follow.

Overall, we observed that the Kalray Hypervisor accounts
for an important amount of execution statistics, which suggests
a hot spot for improvement. Besides this, we noted that the
cost for local kernel calls is about 766 cycles, from which

https://github.com/nanvix/microkernel/tree/0a0088b9915d2507f192d20e05fc695e470d1256


0

100

200

300

400

500

600

700

800

Total Cycles Register Stalls Branch Stalls I−Cache Stalls D−Cache Stalls

C
yc

le
s

 Kalray Hypervisor

 Nanvix

Fig. 4. Execution breakthrough for the L-Kcall Benchmark.

164 cycles are required for saving and restoring machine
registers upon mode switches. Execution stalls caused by the
branch unit and d-cache account for 11.88% and 18.28% of
total execution cycles, respectively. Together, these two metrics
suggest that the actual overhead for issuing local kernel calls
is low. The complex execution flow does not cause the branch
unit to perform badly; and the mode switch does not introduce
enough stalls in the d-cache so as it becomes the execution
bottleneck. On the other hand, stalls caused by the register file
and the i-cache account for 73.50% and 52.22% of execution
cycles, respectively. This behavior unveils that local kernel
calls impose substantial pressure in the i-cache, which incurs
in a great number of misses. We analyzed the code of this
benchmark, and we found out that it is small enough to fit in
the i-cache of the underlying core. Therefore, this behavior of
the i-cache is due to either: (i) its small associativity (2-way);
or (ii) bad performance of the prefetching buffer unit.

Figure 5 presents the breakthrough of execution cycles for
the R-Kcall Benchmark. Again, we observed that stalls on
register file accounted for 68.4% of the execution cycles.
Nevertheless, we found out that this behavior was caused by
stalls on both i-cache and d-cache, which added up to 40.51%
and 38.12% of execution cycles, respectively. For the i-cache
behavior, we carried out the same code analysis that we did
for the L-Kcall Benchmark, and we reached out the same
conclusions. However, for stalls caused by the data cache we
found out a different rationale. By design, a remote kernel call
requires inter-core communication and synchronization, and
from the perspective of the d-cache, some coherence traffic

0

450

900

1350

1800

2250

2700

3150

3600

4050

4500

Total Cycles Register Stalls Branch Stalls I−Cache Stalls D−Cache Stalls

C
yc

le
s

 Kalray Hypervisor

 Nanvix

Fig. 5. Execution breakthrough for the R-Kcall Benchmark.

arises. In this scenario, the performance issue thus emerges
from the fact that hardware cache coherence is not supported in
Kalray MPPA-256. To deal with this problem in software level,
Kalray MPPA-256 features instructions to flush, discard and
wait for changes to the d-cache of the underlying core, which
Nanvix makes use of. Notwithstanding, due to a lack of context
information, this is not enough for the kernel to either run
a fine-grain data prefetch algorithm or a coherency protocol.
Therefore, in order to ensure correct execution semantics, the
kernel issues a full cache shoot-down, just before starting
a kernel call and before returning from it, thereby causing
performance drops.

B. Synthetic Benchmarks

So far, we studied the performance of two fundamental
mechanisms of an asymmetric kernel design: local and remote
kernel calls. In this section, we move our discussion to the
scalability analysis of our approach as well as the interference
of the kernel in the execution of the user application.

Figure 6 presents experimental results for the Buffer Bench-
mark. In the plot, we picture the memory bandwidth speedup
when increasing the number of simultaneous buffered trans-
fers. In addition, note that, for purpose of comparison, we
also plot optimum increase results for this benchmark. This
benchmark consists in a representative use-case of the kernel
(i.e. buffered transfers) and enables us to assess the scalability
of our design, since for each buffered transfer we rely on
kernel calls (i.e. semaphores and mutexes) to synchronize
pairs. If an asymmetric structure for the kernel is scalable, then
the achieved memory bandwidth increase should be close from
the optimal one. An analysis of our results unveiled precisely
the performance that we sought in our design. When up to 4
simultaneous transfers take place, linear scalability is achieved,
and beyond this point, we observe a 95% optimum perfor-
mance (7 simultaneous buffered transfers). At this point, we
highlight one co-design aspect that we are currently aiming.
Recall that clusters of the underlying experimental platform
feature a moderate granularity (i.e. 16 cores per cluster). Even
though we do achieve near-optimum increase when using all
the cores, we are interested in investigating co-design aspects
that would offer a good compromise between the dimensions
of a cluster (i.e. number of cores, local memory) and the
achievable performance in representative use-case scenarios.

●

●

●

●

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7

Number of Peers

M
em

or
y 

B
an

dw
id

th
 S

pe
ed

up

● Nanvix Microkernel

Optimal

Fig. 6. Memory bandwidth increase for the Buffer Benchmark.



●
● ● ● ● ● ●

● ● ● ● ● ● ●

0.90

0.92

0.94

0.96

0.98

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Number of Threads

E
ffi

ci
en

cy
 (

F
LO

P
s/

co
re

)

● Without Noise

With Noise

Fig. 7. Execution efficiency for the KNoise Benchmark.

Figure 7 depicts results for the KNoise Benchmark. In the
plot, we present the efficiency sustained per thread when
increasing the number of threads that run a compute-intensive
task. Note that, for purpose of comparison, we also plot results
when running this benchmark without concurrently launching
kernel-intensive tasks in idle threads (without noise line in
the plot). Remind that this benchmark provides the worst-case
evaluation for the execution interference in our asymmetric
microkernel design: when kernel threads run the compute-
intensive workload, all the remainder kernel threads execute
the kernel-intensive one. Overall, our results uncover the major
property that we claimed about an asymmetric kernel: low
interference in the execution of user-level threads. When a
single thread runs a compute-intensive workload, and the
remainder 13 threads a kernel-intensive one, the efficiency
achieved is 0.9% below from the one that we could achieve
with no kernel-intensive tasks. Furthermore, we observed that
when the number of compute-intensive threads increases, the
performance interference gradually drops down to zero.

Figure 8 presents scalability results for the Fork-Join Bench-
mark. In the plot, we depict the costs for creating (i.e. Spawn)
and terminating (i.e. Join) kernel threads, in means of cycles.
Recall that this benchmark provides a representative use-case
assessment of our microkernel to support multithreaded frame-
works. If efficiency is aimed, overheads should be constant. In
general, our results unveiled precisely the desired performance
behavior: when increasing the number of kernel threads that
we spawn and join, costs grow linearly with the number of
threads. In average, for spawning and terminating a thread, we
observed an overhead of 5.14 k cycles (12.86 µs) and 3.42
k cycles (8.57 µs), respectively. With these results, we also
uncovered three other observations that are worthy to point
out. First, the latency for spawning and terminating a thread,
which is 21.43 µs, gives insights on the cost for supporting
frameworks based on the thread pop-up model, such as web
servers. Second, we observed a performance gap of about 1.5×
between the two operations. We found out that the reason for
this is the synchronous acquisition of resources in spawn, in
contrast to the asynchronous release of resources in join. To
decrease this performance gap, we intend to introduce thread
recycling in Nanvix. Finally, the linear spawn/join scalability
further shows that our asymmetric design is scalable, since
both operations are implemented as remote kernel calls.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

 0

20

40

60

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Number of Threads

C
yc

le
s

×
10

3

● Fork

Join

Fig. 8. Performance scalability for the Fork-Join Benchmark.

VI. RELATED WORK

The design of Nanvix was greatly influenced by other
multikernel OSs, but still our approach features differences
that we briefly discuss next. The Barrelfish [16] multikernel
OS is structured on top of highly optimized kernels, and in
Nanvix we follow a similar approach. Our kernel is built upon
a rich HAL that is designed to expose unique features of
lightweight manycores [21]. Nevertheless, unlike Barrelfish,
our multikernel OS does not maintain a single coherent state
across multiple kernel instances. Instead, Nanvix delivers
further flexibility and handles the application the possibility to
choose, at runtime level, between a scalable distributed view
or a simpler, but slower, single and coherent view. In this
point, Nanvix thus shares ideas with FOS [15], in which OS
functionalities are implemented by system servers. However,
in contrast to FOS, which targets cloud computing scenarios,
Nanvix aims lightweight manycores and is structured on top
of asymmetric microkernels. With our structure: (i) we keep
the memory footprint lower, since kernel code and data is
not replicated to all cores; and (ii) we decrease the kernel
interference, because caches are more efficiently used.

Like in MOSSCA [17] and Tessellation [26], Nanvix re-
lies on the clustered organization of the target processors
to provide core partitioning and application isolation. How-
ever, Nanvix aims lightweight manycores with a distributed
memory architecture, which introduces an extra challenge
on the resource partitioning algorithms. Similar to Popcorn
Linux [19] and Helios [18], Nanvix seeks for addressing
heterogeneity in a processor and exposing a standard interface
to applications. Nevertheless, different from the former OS,
our solution does not rely on compile-time analysis nor is
restricted to ISA heterogeneity. On the other hand, in contrast
to Helios, Nanvix features a distributed multikernel design,
instead of a hierarchical one. Hence, Nanvix is inherently
more scalable and fault-tolerant; once there is no master kernel
instance which could be the bottleneck or point of failure.

VII. CONCLUSIONS

Resource management in lightweight manycores is required
to enable their applicability in multi-user/application contexts.
On this goal, several research initiatives are focused [10]–[14].
Nonetheless, in this work, we highlight the multikernel OS
layout, due to its match to the aforementioned architectures.



Several structures for a multikernel OS are possible [17]–
[19], but we argue on one that is structured on top of
asymmetric microkernel instances. We deliver an open-source
implementation of an OS kernel with the aforementioned
characteristics and we provide a comprehensive assessment
of such design in the Kalray MPPA-256 processor, using
a representative benchmark suite. In our experiments, we
assess the performance and isolation of our kernel. Our
results unveiled that the benchmarked design achieves linear
scalability to serve kernel calls, and it introduces at most 0.9%
of performance interference in the execution of an applica-
tion. Furthermore, our experiments unveiled three co-design
investigations that may be pushed, between the OS kernel
and lightweight manycores. First, the investigation of a better
associativity and/or a smarter pre-fetching algorithm for the
instruction cache, to reduce the stalls in the instruction cache
in kernel calls. Second, hardware support for selective remote
cache shoot-down should be studied, so as to reduce the stalls
in the data cache when serving remote kernel calls. Finally,
investigations towards the dimensioning of a cluster should be
pushed, to find a compromise between the number of cores,
the amount of local memory and achievable performance.

In future work, we intend to carry out the aforementioned
co-design investigations with Nanvix and the academic light-
weight manycores that it supports, which are OpTiMSoC and
PULP. Furthermore, we intend to progress on our multikernel
OS construction that is based in the asymmetric microkernel
design, which we present and benchmark in this work.

REFERENCES

[1] E. Francesquini, M. Castro, P. H. Penna, F. Dupros, H. Freitas,
P. Navaux, and J.-F. Méhaut, “On the Energy Efficiency and Performance
of Irregular Application Executions on Multicore, NUMA and Manycore
Platforms,” Journal of Parallel and Distributed Computing, vol. 76,
no. C, pp. 32–48, Feb. 2015.

[2] B. Bohnenstiehl, A. Stillmaker, J. Pimentel, T. Andreas, B. Liu, A. Tran,
E. Adeagbo, and B. Baas, “KiloCore: A 32-nm 1000-Processor Com-
putational Array,” IEEE Journal of Solid-State Circuits, vol. 52, no. 4,
pp. 891–902, 2017.

[3] D. Rossi, A. Pullini, I. Loi, M. Gautschi, F. K. Gurkaynak, A. Teman,
J. Constantin, A. Burg, I. Miro-Panades, E. Beigne, F. Clermidy,
P. Flatresse, and L. Benini, “Energy-efficient near-threshold parallel
computing: The pulpv2 cluster,” IEEE Micro, vol. 37, no. 5, pp. 20–
31, sep 2017.

[4] D. Melpignano, L. Benini, E. Flamand, B. Jego, T. Lepley, G. Haugou,
F. Clermidy, and D. Dutoit, “Platform 2012, a Many-Core Computing
Accelerator for Embedded SoCs,” in Design Automation Conf., New
York, USA, jun 2012, p. 1137.

[5] S. Davidson, S. Xie, C. Torng, K. Al-Hawai, A. Rovinski, T. Ajayi,
L. Vega, C. Zhao, R. Zhao, S. Dai, A. Amarnath, B. Veluri, P. Gao,
A. Rao, G. Liu, R. K. Gupta, Z. Zhang, R. Dreslinski, C. Batten, and
M. B. Taylor, “The Celerity Open-Source 511-Core RISC-V Tiered
Accelerator Fabric: Fast Architectures and Design Methodologies for
Fast Chips,” IEEE Micro, vol. 38, no. 2, pp. 30–41, mar 2018.

[6] B. de Dinechin, R. Ayrignac, P.-E. Beaucamps, P. Couvert, B. Ganne,
P. de Massas, F. Jacquet, S. Jones, N. Chaisemartin, F. Riss, and
T. Strudel, “A clustered manycore processor architecture for embed-
ded and accelerated applications,” in Int. Conf. on High Performance
Extreme Computing, Waltham, USA, 2013, pp. 1–6.

[7] A. Olofsson, T. Nordstrom, and Z. Ul-Abdin, “Kickstarting high-
performance energy-efficient manycore architectures with epiphany,” in
Asilomar Conf. on Signals, Systems and Computers, november 2014, pp.
1719–1726.

[8] F. Zheng, H.-L. Li, H. Lv, F. Guo, X.-H. Xu, and X.-H. Xie, “Coop-
erative Computing Techniques for a Deeply Fused and Heterogeneous
Many-Core Processor Architecture,” Journal of Computer Science and
Technology, vol. 30, no. 1, pp. 145–162, Jan. 2015.

[9] H. Fu, W. Yin, G. Yang, X. Chen, C. He, B. Chen, Z. Yin, Z. Zhang,
W. Zhang, T. Zhang, W. Xue, and W. Liu, “18.9-Pflops Nonlinear
Earthquake Simulation on Sunway TaihuLight: Enabling Depiction of
18-Hz and 8-Meter Scenarios,” in Int. Conf. for High Performance
Computing, Networking, Storage and Analysis, Denver, Colorado, nov
2017, pp. 1–12.

[10] J. Ross and D. Richie, “Implementing OpenSHMEM for the Adapteva
Epiphany RISC Array Processor,” Procedia Computer Science, vol. 80,
no. C, pp. 2353–2356, jan 2016.

[11] B. D. de Dinechin, P. G. de Massas, G. Lager, C. Léger, B. Orgogozo,
J. Reybert, and T. Strudel, “A Distributed Run-Time Environment for the
Kalray MPPA-256 Integrated Manycore Processor,” Procedia Computer
Science, vol. 18, no. 2013 Int. Conf. on Computational Science, pp.
1654–1663, jan 2013.

[12] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek, R. Morris,
A. Pesterev, L. Stein, M. Wu, Y. Dai, Y. Zhang, and Z. Zhang, “Corey:
An Operating System for Many Cores,” in USENIX Conf. on Operating
Systems Design and Implementation, San Diego, USA, dec 2008, pp.
43–57.

[13] B. Rhoden, K. Klues, D. Zhu, and E. Brewer, “Improving Per-Node
Efficiency in the Datacenter with New OS Abstractions,” in ACM Symp.
on Cloud Computing, Cascais, Portugal, Oct. 2011, pp. 1–8.

[14] R. Wisniewski, T. Inglett, P. Keppel, R. Murty, and R. Riesen, “mOS: An
Architecture for Extreme-Scale Operating Systems,” in Int. Workshop on
Runtime and Operating Systems for Supercomputers, Munich, Germany,
Jun. 2014, pp. 1–8.

[15] D. Wentzlaff and A. Agarwal, “Factored Operating Systems (FOS): The
Case for a Scalable Operating System for Multicores,” ACM SIGOPS
Operating Systems Review, vol. 43, no. 2, pp. 76–85, Apr. 2009.

[16] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schüpbach, and A. Singhania, “The Multikernel: A New
OS Architecture for Scalable Multicore Systems,” in ACM Symp. on
Operating Systems Principles, Big Sky, USA, Oct. 2009, pp. 29–44.

[17] F. Kluge, M. Gerdes, and T. Ungerer, “An Operating System for
Safety-Critical Applications on Manycore Processors,” in Int. Symp. on
Object/Component/Service-Oriented Real-Time Distributed Computing,
Reno, USA, Jun. 2014, pp. 238–245.

[18] E. Nightingale, O. Hodson, R. McIlroy, C. Hawblitzel, and G. Hunt,
“Helios: Heterogeneous Multiprocessing with Satellite Kernels,” in ACM
Symp. on Operating Systems Principles, Oct. 2009, pp. 221–234.

[19] A. Barbalace, M. Sadini, S. Ansary, C. Jelesnianski, A. Ravichandran,
C. Kendir, A. Murray, and B. Ravindran, “Popcorn: Bridging the
Programmability Gap in Heterogeneous-ISA Platforms,” in European
Conf. on Computer Systems, Bordeaux, France, Apr. 2015, pp. 1–16.

[20] P. H. Penna, M. Souza, E. Podestá Jr, J. Souto, M. Castro, F. Broquedis,
H. Freitas, and J.-F. Mehaut, “Rmem: An os service for transparent
remote memory access in lightweight manycores,” in Int. Workshop
on Programmability and Architectures for Heterogeneous Multicores,
Valencia, Spain, jan 2019, pp. 1–16.

[21] P. H. Penna, D. Francis, and J. Souto, “The hardware abstraction layer
of nanvix for the kalray mppa-256 lightweight manycore processor,”
in Conférence d’Informatique en Parallélisme, Architecture et Système,
Anglet, France, jun 2019, pp. 1–11.

[22] M.-H. Haghbayan, A. Miele, A. M. Rahmani, P. Liljeberg, and
H. Tenhunen, “Performance/Reliability-Aware Resource Management
for Many-Cores in Dark Silicon Era,” IEEE Transactions on Computers,
vol. 66, no. 9, pp. 1599–1612, sep 2017.

[23] J. Hascoët, B. D. de Dinechin, P. G. de Massas, and M. Q. Ho,
“Asynchronous One-Sided Communications and Synchronizations for
a Clustered Manycore Processor,” in Symp. on Embedded Systems for
Real-Time Multimedia, Seoul, oct 2017, pp. 51–60.

[24] B. D. de Dinechin, Y. Durand, D. van Amstel, and A. Ghiti, “Guaranteed
Services of the NoC of a Manycore Processor,” in Int. Workshop on
Network on Chip Architectures, Cambridge, 2014, pp. 11–16.

[25] S. Wallentowitz, P. Wagner, M. Tempelmeier, T. Wild, and A. Herk-
ersdorf, “Open Tiled Manycore System-on-Chip,” ArXiV, Tech. Rep.
arXiv:1304.5081, Apr. 2013.

[26] J. Colmenares, S. Bird, H. Cook, P. Pearce, D. Zhu, J. Shalf,
K. Asanović, and J. Kubiatowicz, “Resource Management in the Tes-
sellation Manycore OS,” in USENIX Conference on Hot Topics in
Parallelism. Berkeley, USA: USENIX Association, jun 2010.


	Introduction
	Lightweight Manycores
	Architectural Blueprints
	Programmability Challenges
	The OS Multikernel Design

	The Nanvix Operating System
	System Structure Overview
	Microkernel

	Evaluation Methodology
	Experimental Benchmarks
	Experimental Platform and Design

	Experimental Results
	Microbenchmarks
	Synthetic Benchmarks

	Related Work
	Conclusions
	References

