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Abstract

We propose a variant of public announcement logic for asynchronous systems. To
capture asynchrony, we introduce two different modal operators for sending and receiving
messages. The natural approach to defining the semantics leads to a circular definition,
but we describe two restricted cases in which we solve this problem. The first case requires
the Kripke model representing the initial epistemic situation to be a finite tree, and the
second one only allows announcements from the existential fragment. After establishing
some validities, we study the model checking problem and the satisfiability problem in
cases where the semantics is well-defined, and we provide several complexity results.1

Keywords: Epistemic logic, Public announcements, Asynchronous systems

1. Introduction

Asynchrony plays a central role in distributed systems such as robotic rescue teams,
smart cities, autonomous vehicles, etc. In such systems, there may be an unpredictable
delay between sending and receiving messages, and there is not always access to a cen-
tralized clock. Recently, with the proliferation of multi-agent systems (MAS) where
independent agents interact, communicate, and make decisions under imperfect infor-
mation, modeling the evolution of knowledge as informative events occur has become
increasingly important for both verification and design. For instance, it is often crucial
to know whether an agent has received some information, so it would be highly desirable
to be able to analyze messages such as “agent a knows that agent b received message
m”, i.e., we want to model

messages with epistemic content, (1)

and because we are considering automated systems where agents do not lie, make
logical mistakes, or have inaccurate factual information (for instance autonomous vehicles
communicating about their position), we also make the classic assumption that

messages are true when they are sent. (2)

1We acknowledge support from ERC project EPS 313360.
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Public announcement logic (PAL) [Plaza, 2007] is one of the first and most influ-
ential proposals for modelling the relationship between knowledge and announcements.
In PAL, true announcements are made to a group of agents. This logic later led to
the powerful and much studied dynamic epistemic logic (DEL) [van Ditmarsch et al.,
2007], which can describe more complex forms of communication, such as semi-private
announcements, private announcements, and much more. However, both these logics
assume synchronicity: In PAL messages are immediately received by all agents at the
same time, as soon as they are sent, and in DEL agents may perceive events differently,
but events immediately change the epistemic state of agents as soon as they occur. In
asynchronous settings, however, messages are not delivered instantly, and agents may re-
ceive them at different points in time, making PAL intrinsically unfit for reasoning about
such settings. This fact becomes even more evident when we consider that in PAL, every
announcement immediately leads to common knowledge, while common knowledge is not
achievable in asynchronous systems [Moses and Tuttle, 1988; Halpern and Moses, 1990].
The only work we know of considering how DEL can capture asynchrony is [Dégremont
et al., 2011], but in this logic an agent can only consider possible “future” events if they
do not change her epistemic state. This is related to the principle of inertia [van Lam-
balgen, 2010; Braüner et al., 2016], which states that in absence of any observation, one
assumes that nothing has happened. This assumption is natural in contexts where agents
believe that they can observe all events at the time of their occurrence. In asynchronous
systems however, agents should know that even when they do not observe anything, or
when they do not receive any messages, it is possible that messages are being sent and
received by other agents. Therefore the inertia principle does not apply in our setting,
and agents should be able to

imagine possible pending messages. (3)

Our aim is to propose a logic in the spirit of PAL for reasoning about (1) epistemic
messages in asynchronous systems, (2) that are true at the time of announcement, and
where (3) agents can imagine messages that have been sent but not yet received.

Because this is an ambitious endeavour, we make a few assumptions to start as simply
as possible:

Broadcasts: all messages are sent to every agent
External source: messages are emitted by an external, omniscient source
FIFO: messages are received in the order they are sent.

The first assumption comes from PAL, and is natural in the context of smart cities
for instance, where autonomous vehicles broadcast their current position or direction.
The second one is a choice made to simplify the syntax by not having to model the origin
of announcements, as in PAL. Announcements from an external, omniscient source can
in some cases be used to model messages broadcast by agents within the system, in
particular, an omniscient outside agent broadcasting that agent a knows ϕ is in many
situations equivalent to agent a broadcasting ϕ to the other agents within the system.
This captures the fact that in order for an agent within the system to make a true
announcement, she should know that the announcement is true before she broadcasts
it. Thus upon receiving an announcement made by agent a, another agent learns both
the announcement and the fact that a knows it, modelled within the framework where
announcements come from an external source by the announcement of Kaψ (Ka being
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the classic knowledge operator of epistemic logics, see for instance Fagin et al. [2003]).
However, depending on assumptions about the agents’ epistemic and reasoning capacities,
this way of modelling agents’ announcements may not be completely faithful to the real
situation. We discuss this issue briefly in the future work section.

Concerning the last assumption, FIFO is a simple but classic scheme of commu-
nication in asynchronous systems (see for instance Yu and Gouda [1982]; Brand and
Zafiropulo [1983]; Chambart and Schnoebelen [2008]).

Figure 1 depicts the architecture of such a system with three autonomous agents
receiving messages from a public channel and reading them when they are ready to
process them. To represent the fact that agents read messages in the order they were
sent, we provide each one with a private FIFO channel. Each copy receives the same
messages from the public channel, in the order in which they are announced, but the
moment at which these messages are read differs from one agent to another.

new announcementchannel

FIFO for agent a

FIFO for agent b

FIFO for agent c

Figure 1: Agent architecture

In PAL, messages are received at the same time they are sent, and thus the an-
nouncement operator combines both sending and receiving. In contrast, in our setting,
messages are not received immediately and they may be received at different times by
different agents. The syntax reflects this aspect by providing both a sending operator,
which adds new messages to the public channel, and a receiving operator for each agent,
which allows her to read the first message in her FIFO queue that she has not read yet.
Thus, in our logic, we provide the following modal constructions:

• 〈ψ〉ϕ, which means “ψ is currently true, and after its announcement, ϕ holds”;
• ©aϕ, which means “after agent a reads the next announcement, ϕ holds”;
• Kaϕ, which means “agent a knows that ϕ holds”.

Interestingly, the natural semantics for this logic presents a challenging problem of
circular definition: In order to define the truth of epistemic formulas, we classically
quantify over the set of all states that the agent considers possible, where states include
the current content of the public channel and pointers to the last message read by each
agent. But some states are not consistent and must not be considered: intuitively a
state is consistent if the announcements it contains were true at the time they were
made. Therefore, defining consistent states requires defining the truth of formulas, and
vice versa. PAL presents a similar circularity, as the definition of the update of a model
by an announcement and the definition of the truth values are mutually dependent, thus
this phenomenon is not inherent to the asynchronous setting. However, only asynchrony
makes it a problem. Indeed in PAL a simple definition by mutual induction is possible. In
an asynchronous setting, however, agents do not know what or how many messages other
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agents have received; in particular, an agent may consider it possible that some formula
has been announced that is bigger than all those that have actually been announced,
which makes a mutual induction impossible for lack of a decreasing quantity. This
circularity problem is inherent in the asynchronous setting, and is independent from the
assumptions of broadcasts, external source and FIFO described above. It only depends
on the assumptions that announcements can talk about knowledge (1), that they must
be true (2), and that agents can imagine pending messages (3).

We partially solve the issue by defining three restricted cases in which we manage
to avoid circularity. The first one requires the Kripke model representing the initial
epistemic situation to be a finite tree; the second one only allows announcements from
the existential fragment of our logic, and the third one makes the assumption that only
a bounded number of announcements can be made during each time unit (a strong form
of non-Zeno assumption), and that agents have access to a global clock. In the second
case, the semantics is defined thanks to an application of the Knaster-Tarski fixed point
theorem [Tarski, 1955].

We then discuss some properties of our logics, compare them to PAL, and establish
some validities that hold whenever the semantics is well-defined; we also study the model
checking problem for our logic and establish the following complexity results:

Restrictions Complexity of model checking
Propositional announcements Pspace-complete
Finite tree initial models in Pspace
Announcements from the existential fragment in Exptime, Pspace-hard

Finally, we study the satisfiability problem in the case of propositional announce-
ments, and we establish that it is NExptime-complete.

The paper is organized as follows. In Section 2, we recall (synchronous) public an-
nouncement logic. In Section 3 we present our logic, and discuss the circularity problem
that arises from the definition of the semantics, and present an example to illustrate the
logic. In Section 4 we exhibit cases where it can be solved. We then present some prop-
erties in Section 5 (a comparison with PAL and some validities), we study the model
checking problem in Section 6 and the satisfiability problem in Section 7. Finally we
discuss related work in Section 8 and future work in Section 9.

This paper is an extended version of [Knight et al., 2015]. Section 7 is completely
new material. The other sections are based on the older version of this paper but include
more details, improvements and clarifications.

2. Background: Public Announcement Logic

In this section, we recall Public Announcement Logic (PAL) [Plaza, 2007], the classic
logic for synchronous public announcements. Let AP be a countable infinite set of atomic
propositions, and let Ag be a finite set of agents.

Definition 1. The syntax of PAL is given by the following grammar:

ϕ ::= p | (ϕ ∧ ϕ) | ¬ϕ | Kaϕ | 〈ϕ〉PAL
ϕ

where p ranges over AP and a ranges over Ag.
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(a)
w : pu : ¬p v : pa a, b

w : p v : p
a, b

(b)

Figure 2: A Kripke model and an updated Kripke model

The intuitive meaning of the last two operators is the following: Kaϕ means that
agent a knows ϕ, and 〈ψ〉

PAL
ϕ means that ψ is true and after ψ has been publicly

announced and publicly received by all the agents (meaning that all agents know that
each agent received the message), ϕ holds. We define the following usual abbreviations:
⊥:= p ∧ ¬p, > := ¬ ⊥, ϕ ∨ ϕ′ := ¬(¬ϕ ∧ ¬ϕ′) and the dual of the knowledge modality,
K̂aϕ := ¬Ka¬ϕ, which reads as “agent a considers it possible that ϕ holds”.

The semantics of PAL relies on classic Kripke models and the possible worlds seman-
tics, widely used in logics of knowledge [Fagin et al., 2003].

Definition 2. A Kripke model is a tuple M = (W, {→a}a∈Ag ,Π), where:

• W is a non-empty finite set of worlds,
• for each a ∈ Ag, →a⊆W ×W is an accessibility relation for agent a,
• Π : W −→ 2AP is a valuation on worlds.

A pointed model (M, w) is a model M with a specified world w. For the sake of
generality we allow arbitrary relations and not only equivalence relations as traditional
in epistemic logic [Fagin et al., 2003; van Ditmarsch et al., 2007].2

Example 1. Let us consider the Kripke model of Figure 2(a), where w, u and v are
worlds, a and b are agents and p is an atomic proposition. The arrows represent the
agents’ accessibility relations. At world w, agent a considers u and v possible, and agent
b considers only world v possible. Now assume that p is announced in (M, w). This is
possible, as p holds in w. As a result of this announcement, all agents know that p holds,
and thus the resulting epistemic situation is obtained by removing all worlds where p does
not hold, i.e., u. This updated model is represented in Figure 2(b).

The update of a Kripke model by an announcement and the semantics of PAL are
defined by mutual induction:

Definition 3. The update of a Kripke model M with an announcement ψ is the Kripke
model Mψ = (Wψ, {→ψ

a }a∈Ag ,Π
ψ) where:

• Wψ = {u ∈W | M, u |= ψ};
• →ψ

a =→a ∩ (Wψ ×Wψ) for all agents a;
• Πψ is the function Π restricted to Wψ,

and the truth condition relation M, w |= ϕ (read as ϕ is true in M, w) is defined as:
M, w |= p if p ∈ Π(w)
M, w |= (ϕ1 ∧ ϕ2) if M, w |= ϕ1 and M, w |= ϕ2

M, w |= ¬ϕ if M, w 6|= ϕ
M, w |= Kaϕ if for all u such that w →a u, M, u |= ϕ
M, w |= 〈ψ〉

PAL
ϕ if M, w |= ψ and Mψ, w |= ϕ.

2This allows for alternative semantics of knowledge such as S4 [Hintikka, 1962], S4.2 [Lenzen, 1978],
S4.3 [van der Hoek, 1990], S4.4 [Kutschera, 1976], KD45 for beliefs [Fagin et al., 2003], etc.
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Observe that the definition by structural induction on ϕ is sound: defining the seman-
tics of 〈ψ〉

PAL
ϕ requires having defined the update of a Kripke model by announcement

ψ, which only requires having defined the semantics of ψ, a subformula of ϕ.

Example 2. Let M be the model of Figure 2(a). We have M, w |= 〈p〉
PAL
Kap. Indeed,

the announcement p is true, that is M, w |= p, and Mp, w |= Kap. Note that Mp is the
model of Figure 2(b).

The model-checking problem of public announcement logic is P-complete (the mem-
bership in P is established in Benthem [2011] and P-hardness in Schnoebelen [2002]3)
and the satisfiability problem for public announcement logic is Pspace-complete [Lutz,
2006]. A tableau proof system for PAL is provided in [Balbiani et al., 2010].

3. Asynchronous Broadcast Logic

In this section we present our framework for reasoning about asynchronous epistemic
announcements in a public channel. As in Section 2, AP is a countable infinite set of
atomic propositions, and Ag is a finite set of agents. For pedagogical reasons, we first
introduce models, then the syntax and finally the semantics of our logic, even though by
doing so we need to refer to the language before we formally define it.

3.1. Models

Agents start with an initial state of knowledge of the world, which is modelled by
an initial pointed epistemic model, or Kripke model. Then true announcements are
made by some external entity, and sent in the public channel. The whole sequence of
announcements that have been made up to the present moment is modelled as a sequence
of formulas from our logic, whose syntax we introduce later in Section 3.2. Agents
read these messages independently, possibly at different times, but in FIFO order. To
represent which messages each agent has already read, and thus which ones remain to
be read, we simply map each agent to the number of announcements she has read. Such
a mapping is called a cut.

3.1.1. Initial Kripke model

An initial model is given as a Kripke model M = (W, {→a}a∈Ag ,Π), as defined in
Definition 2. It represents the initial knowledge of agents before any announcements
are made, and it corresponds to the notion of initial knowledge in [Raynal, 2013], p. 5.
In practice, (M, w) is directly provided by the modeller or inferred from what agents
perceive [Balbiani et al., 2013; Gasquet et al., 2016].

3.1.2. Announcements

We consider that, in a given scenario, not every formula may be announced, but
rather that there is a certain set of relevant announcements. Furthermore, we allow the
number of times an announcement can be made to be bounded. To represent this, we
define the notion of announcement protocols (ABL is the language defined in Section 3.2).

3Epistemic logic is an extension of the fragment of CTL with only the next operators AX and EX,
proven to be P-hard.
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Definition 4. An announcement protocol is a multiset of formulas in ABL, where the
multiplicity of an element ψ is either an integer or ∞.

Example 3. The reader may imagine a card game where it is only possible to announce
‘agent a has a heart card’ once and ‘agent a does not know whether agent b has a heart
card or not’ twice. We let the proposition ♥a mean “agent a has a heart card,” and
define the announcement protocol to be {{♥a , K̂a♥b ∧ K̂a¬♥b , K̂a♥b ∧ K̂a¬♥b}}.

Given an announcement protocol A, we denote by Seq(A) the set of finite sequences
σ = [ϕ1, . . . , ϕk] such that the multiset {{ϕ1, . . . , ϕk}} is a submultiset of A. We define

the size of a sequence σ as |σ| :=
∑k
i=1 |ϕi|. For σ, σ′ ∈ Seq(A), we write σ ≤ σ′ if σ is

a prefix of σ′. The sequence σ|k is the prefix of σ of length k. Given a formula ϕ and
a sequence of formulas σ, ϕ::σ (resp. σ::ϕ) is the sequence obtained by adding ϕ at the
beginning (resp. at the end) of σ.

3.1.3. States

We now define the set of possible states of the models in which the formulas of our
logic will be evaluated.

Definition 5. Let M be an initial model and A an announcement protocol. We define
the set of possible states SM,A as follows:

SM,A = {(w, σ, c) | w ∈W,σ ∈ Seq(A) and c : Ag −→ {0, ..., |σ|}} .

The first element of a state represents the world the system is in. The second element
is the list of messages that have already been announced. The last element, c, is called
a cut, and for each a ∈ Ag , c(a) is the number of announcements of σ that agent a has
received so far. Given two cuts c and c′, we write c < c′ if for all a, c(a) ≤ c′(a) and there
exists b such that c(b) < c′(b): in other words, c < c′ if all agents have received at least
as many messages in c′ as in c, and at least one agent received strictly more messages in
c′. Typical elements of SM,A are denoted S, S′, etc.

Example 4. Consider the state S = (w, [ϕ,ψ, χ], c) where c(a) = 2 and c(b) = 1. S
represents the situation where in initial world w, the sequence [ϕ,ψ, χ] of formulas has
been announced, agent a has received ϕ and ψ, and agent b has only received ϕ. Only χ
remains in the queue of a and has not been read yet, and only ψ and χ remain in the
queue of b. We represent S as follows:

w
a :

b :

ϕ ψ χ

and we may also write S = (w, [ϕ,ψ, χ], a 7→ 2
b 7→ 1 ).

Example 5. Consider the state S = (w, ε,0), where ε denotes the empty sequence of
formulas and 0 is the function that assigns 0 to all agents. S represents an initial world
w in which no announcement has been made (and therefore no announcement has been
received either). It can be represented as follows:
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w
a :

b : no
mes

sa
ge
s

Example 6. State S = (w, [ϕ, χ],0), which represents the situation where in initial world
w, ϕ and χ have successively been announced, but neither agent a or agent b received any
announcement yet. We depict it as follows:

w
a :

b :

ϕ χ

3.1.4. Consistent states

Definition 5 allows for all combinations of worlds, sequences of announcements allowed
by the announcement protocol, and cuts. This definition is an over-approximation of the
set of states we want to consider: indeed, because announcements must be true, some of
the states in S are inconsistent. For example, suppose that w is a world in M where p
does not hold. Because only true announcements can be made, p cannot be announced
in world w, and thus the state (w, [p],0) is inconsistent.

Example 7. Let us consider the following initial model, where w, u, v and z are worlds,
a and b are agents and p is a proposition. The arrows represent the agents’ accessibility
relations, before any announcements have been made. So at world w, agent a considers
u and v possible, and agent b considers world z possible.

w : p

u : ¬p v : p z : p

a
a

b

Now assuming that the announcement protocol A contains p, ϕ and ψ, a partial
depiction of the asynchronous model M⊗A is below. We depict the states w, u, v, and
z where no announcement has been made, as well as copies of u where two different
sequences of announcements have been made, and received in one state by agent b and in
a different state by agent a. Of course, the entire model M⊗A is infinite so we do not
depict all the states here.

w
a :

b : no
mes

sa
ge
s

u
a :

b : no
mes

sa
ge
s

v
a :

b : no
mes

sa
ge
s

z
a :

b : no
mes

sa
ge
s

u
a :

b :

p ϕ

u
a :

b :

ψ
. . .

a a b a b

State u
a :

b :

p ϕ

is not consistent because p has been announced even though p is

not true in u. This notion of inconsistency is the source of the circularity problem, as
we discuss in Section 3.4. For now, we define the relations that capture which states an
agent considers possible before removal of inconsistent ones.
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3.1.5. Pre-accessibility relation and asynchronous pre-model

We now define, for each agent, a pre-accessibility relation that does not yet take
consistency into account, but is only based on the agents’ accessibility relations in the
initial model, and the messages it has already read.

Definition 6. The pre-accessibility relation for agent a, written Ra, is defined as follows:
given S = (w, σ, c) and S′ = (w′, σ′, c′), we have SRaS

′ if:

1. w →a w
′, and

2. σ|c(a) = σ′|c′(a).

The first clause simply says that for S′ to be considered possible by a when in S,
world w′ must be considered possible by a from w. The second clause says that agent a
is aware of, and only aware of, messages that she has received: therefore she can only
consider possible states where she has received exactly the same messages. Then, because
the principle of inertia does not apply to the asynchronous setting, she can imagine
any possible sequence of pending announcements, as long as it is compatible with the
announcement protocol. Also, as she has no information about what messages the other
agents have received, c′(b) can be anything if b 6= a: agent a considers it possible that
b received more, or fewer, messages than she actually has. Note that the second clause
also implies c(a) = c′(a).

Given an initial model M and an announcement protocol A, we define the asyn-
chronous pre-model M ⊗ A := (SM,A, {Ra}a∈Ag), where SM,A is the set of possible
states, and for a ∈ Ag , Ra is the pre-accessibility relation for agent a.

3.2. Language

We now introduce the syntax of our logic, which we call Asynchronous Broadcast
Logic, or ABL for short. Note that we do not use the term “public announcement” in
the name of our logic as it has a strong synchronous connotation: public announcements
are often thought of as becoming common knowledge the moment they are made.

Definition 7 (Syntax). The set of ABL-formulas is given by the following grammar:

ϕ ::= p | (ϕ ∧ ϕ) | ¬ϕ | Kaϕ | 〈ϕ〉ϕ | ©a ϕ,

where p ranges over AP and a ranges over Ag.

The intuitive meaning of the last three operators is the following: Kaϕ means that
agent a knows ϕ, 〈ψ〉ϕ means that ψ is true and after ψ has been put on the public
channel, ϕ holds, and ©aϕ means that agent a has a pending message, and after she
has received and read it, ϕ holds. We define the dual of the announcement operator:
[ψ]ϕ := ¬〈ψ〉¬ϕ, meaning that if ψ is true, then ϕ holds after its announcement. |ϕ| is the
length of ϕ, and we denote by propositional formula a formula that uses no modalities,
i.e., containts no occurrences of Ka, 〈ϕ〉, or ©a.

In (synchronous) public announcement logic (see Definition 1), the operator 〈ψ〉
PAL

captures both the broadcast and the reception of an announcement ψ, because in the
synchronous setting, sending and reception occur simultaneously. In our asynchronous
setting, not only can sending and reception occur at different times, but also different
agents may receive the same message at different times. Therefore we capture the broad-
cast of a formula ψ with operator 〈ψ〉, while agent a’s reception of a broadcasted formula
is captured by the operator ©a.
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3.3. Truth conditions

For the rest of the section, we fix an initial modelM and an announcement protocol
A. As discussed in Section 3.1.4, some possible states from Definition 5 are inconsis-
tent, because they contain announcements that were not true at the time they were
announced. Also, because agents should not consider inconsistent states possible, we
described how defining consistency is necessary to define the semantics of the knowl-
edge operator, which in turn is necessary to define the consistency of states that contain
epistemic announcements, hence a circularity problem.

We describe in Figure 3 the definition of consistency (represented with symbol X)
as well as truth conditions for our logic. This definition is circular, and therefore the
semantics as presented here is not well-founded, although it conveys the intended meaning
of our operators. In the next section we will describe restricted cases in which we can
provide a semantics that is well-defined.

Truth conditions for consistency:

(w, ε,0) |= X (always)
(w, σ, c) |= X if there is c′ < c s.t. (w, σ, c′) |= X, or

σ = σ′::ψ, (w, σ′, c) ∈ SM,A,
(w, σ′, c) |= X and (w, σ′, c) |= ψ

Truth conditions for formulas:

(w, σ, c) |= p if p ∈ Π(w)
(w, σ, c) |= (ϕ1 ∧ ϕ2) if (w, σ, c) |= ϕ1 and (w, σ, c) |= ϕ2

(w, σ, c) |= ¬ϕ if (w, σ, c) 6|= ϕ
(w, σ, c) |= Kaϕ if for all S′ s.t. (w, σ, c)RaS

′ and S′ |= X, S′ |= ϕ
(w, σ, c) |= 〈ψ〉ϕ if σ::ψ ∈ Seq(A), (w, σ, c) |= ψ and (w, σ::ψ, c) |= ϕ
(w, σ, c) |=©aϕ if c(a) < |σ| and (w, σ, c+a) |= ϕ

where c+a(b) =

{
c(b) if b 6= a
c(b) + 1 if b = a

Figure 3: Consistency and semantics

The intuitive meaning of (w, σ, c) |= X is that the state (w, σ, c) is consistent, that is,
all announcements in σ were true when they were made. The first clause is obvious: the
initial state where no announcement has been made is consistent. The second clause gives
two possibilities for a state to be consistent. Either there was an earlier consistent state
(w, σ, c′) in which some agents received some already announced formulas, increasing the
cut from c′ to c, or a new, true announcement ψ has been made from an earlier consistent
state, extending the history from σ′ to σ′::ψ.

For the formulas, the first three clauses are straightforward. The fourth clause says
that agent a knows ϕ if ϕ holds in all consistent states that she considers possible. The
fifth clause says that 〈ψ〉ϕ holds in a state S if ψ can be announced (it is true in S), and
ϕ holds in the state obtained by adding ψ to the public channel. The last clause says
that ©aϕ holds if agent a has at least one unread announcement in the channel, and ϕ
holds after she reads the first unread message.

10



3.4. Circularity

By observing the truth conditions for consistency and for formulas in Figure 3, one
can see that defining whether a state is consistent requires one to define whether an
announcement can be made, and this requires the semantics of our logic to be defined.
But to define the semantics of the knowledge operators, we need to define which consistent
states are considered possible by the agent, which requires us to define which states are
consistent, hence the circularity.

Let us consider the following example, where Ag = {a}. Let the initial model be
M = (W,→a,Π) where W = {w}, →a = {(w,w)} and Π(w) = ∅, and let the announce-
ment protocol be A = {{Kap}}. According to Figure 3, we have: (w, [Kap],0) |= X
iff (w, ε,0) |= Kap. But, as (w, ε,0)Ra(w, [Kap],0), the definition of the truth value
of (w, ε,0) |= Kap depends on the truth value of (w, [Kap],0) |= X. To sum up, the
definition of (w, [Kap],0) |= X depends on itself.

The circularity problem depends on assumptions (1), (2), and (3) from the introduc-
tion:

• Announcements can be epistemic
• Announcements are true
• Agents can imagine pending messages

If one of these assumptions is dropped, the circularity problem is easily solved: if
announcements do not need to be true, then all states are consistent; if announcements
are only propositional formulas, consistency of a state (w, σ, c) can be trivially checked
by evaluating all propositional formulas in σ in the world w. The last point is only a little
bit less obvious: if agents cannot imagine pending annoucements, then the definition of
the pre-accessibility relation Ra for agent a (see Definition 6) is that (w, σ, c)Ra(w′, σ′, c′)
if w →a w

′, c(a) = c′(a) and σ|c(a) = σ′: the only sequence of announcements that she
considers possible is the one she has already received. In that case, the length of the
sequence of announcements |σ| together with the size of the formula to evaluate can be
used to define truth conditions for consistency and for formulas by induction. Indeed,
evaluating a formula Kaϕ in a state (w, σ, c) only requires evaluating the consistency of
states (w′, σ′, c′) such that |σ′| ≤ |σ|, which in turn only requires evaluating formulas
ψ ∈ σ in states (w′, σ′′, c′) where σ′′ is a strict prefix of σ.

We also note that it is possible to solve the circularity problem by only constraining
the last assumption instead of completely dropping it. Indeed, under a bounded non-
Zeno behaviour assumption (only a bounded finite number of discrete events occur in a
finite time), and assuming a global clock that is common knowledge, the imagination of
the agents is sufficiently constrained to solve the circularity problem rather easily (see
Appendix B).

In relation with the above discussion, we point out that the circularity problem does
not depend on the following assumptions:

• Announcements are broadcast
• Announcements are made by an external source
• Announcements are received in FIFO order.

In Section 4 we will describe several restricted settings in which we manage to over-
come this problem. But first we present a small example to better understand the
intuitions behind our logic.
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3.5. Example

We consider two agents Ag = {B,C}, where B stands for Bonnie and C for Clyde.
Bonnie and Clyde go to rob a bank, and Bonnie stays in the car while Clyde goes to the
vault. At noon, Bonnie notices that Clyde left the paper with the secret code to open
the vault in the car. She uses her smartphone to broadcast the code on their chat group.
But Clyde has also realized that he forgot the paper, and before he receives Bonnie’s
message he sends a message saying that he does not know the code.

In the following, let p represent the fact that the secret code is 0000, and q the fact
that the vault is open. The situation at noon is represented by the following initial
pointed Kripke model (M, w):

u : p, q w : p,¬q v : ¬p,¬qB C

B,C B,C B,C

In the initial world w, Bonnie knows p, i.e., she knows the code, but Clyde does not.
On the other hand, Clyde knows that q is not true, i.e., he knows that the vault is closed,
but Bonnie does not (Clyde could have memorized the code before leaving the car, and
thus he might have opened the vault). In fact, we observe that initially Bonnie knows
that “the vault is open if, and only if, Clyde knows the code” or, in epistemic logic,
KB(q ↔ KCp).

The initial state at noon is w B :
C : no mess

ages

. In our scenario, first p is announced by

Bonnie, and then ¬KCp is announced by Clyde. The actual state becomes w B :
C :

p ¬KCp

.

Intuitively, since only true announcements are made, we see that ¬KCp can only be
announced before Clyde receives the announcement of p. We would like to verify whether,
after Bonnie receives both announcements but Clyde receives neither (the signal inside

the bank is weak), that is in state w B :
C :

p ¬KCp

, Bonnie knows ¬q, i.e., does she know

that the vault is not open, and what does she know about Clyde’s knowledge. In fact,
we can prove that the following holds:

(w, ε,0) |= 〈p〉〈¬KCp〉 ©B ©B(KB¬q ∧ ¬KBKCp ∧ ¬KB¬KCp) (4)

The meaning is that, after both announcements have been made and received by
Bonnie but not by Clyde,

• Bonnie knows that the vault is not open: intuitively, because Clyde told her he
didn’t have the code, and thus could not have opened it (recall that q represents

the situation at noon, i.e., before Bonnie announced p). In state w B :
C :

p ¬KCp

, all

consistent possible states for B are of the form (w, σ, c) for some σ and c: they share
the same world w in which q does not hold. Indeed, Bonnie initially considers world
u possible, but states with world u and announcement ¬KCp are not consistent.
Therefore, Bonnie knows ¬q.

12



• Bonnie does not know whether Clyde knows the code (because she does not know
whether Clyde received her message).

In state w B :
C :

p ¬KCp

, Bonnie considers state w B :
C :

p ¬KCp

as possible, and in

this state Clyde knows p. But Bonnie also considers possible state w B :
C :

p ¬KCp

,

in which Clyde considers state v B :
C : no mess

ages

possible, and thus does not know p.

We note that this example highlights the differences between asynchronous broad-
cast logic and (synchronous) public announcement logic. Since sending and receiving
occur at the same time in PAL, we can informally translate the asynchronous broad-
cast formula 〈p〉〈¬KCp〉 ©B ©B(KB¬q ∧ ¬KBKCp ∧ ¬KB¬KCp) to the PAL formula
〈p〉

PAL
〈¬KCp〉PAL

(KB¬q ∧ ¬KBKCp ∧ ¬KB¬KCp). Assuming the same initial Kripke
model and state w, we first notice that in PAL any formula of the form 〈p〉

PAL
〈¬KCp〉PAL

ϕ
is false because after a proposition p is announced, KCp holds in any circumstances, so
that ¬KCp cannot be announced. We can try to simulate the state where Bonnie has re-
ceived both announcements but Clyde received neither by using private announcements,
made to Bonnie but not to Clyde. Consider the trivial translation of our ABL formula
into a formula with private announcements:

〈p〉B〈¬KCp〉B(KB¬q ∧ ¬KBKCp ∧ ¬KB¬KCp),

where 〈ϕ〉B means that ϕ is sent to B and not to C. In all versions of PAL with
any variant of synchronous private or semi-private announcement (e.g. Gerbrandy and
Groeneveld [1997]; Baltag et al. [1998]; Baltag and Moss [2004]; Baltag et al. [2008]), this
formula is still false in (M, w): because Bonnie receives ¬KCp immediately when it is
sent, Clyde cannot receive p between the announcement of ¬KCp and its reception by
Bonnie, so that Bonnie knows that Clyde does not know p. Thus, this example shows
that there is no obvious translation from asynchronous broadcast logic to a variant of
DEL, and that asynchronous broadcast logic is indeed quite different from DEL.

The proof of (4) can be found in Appendix A. Note that here we anticipate the fact
that we are in one of the cases where we can solve the circularity problem: indeed, all
announcements are in the existential fragment of our language (see Section 4.2).

4. Solving the circularity problem

In this section we show how we solve the circularity problem identified in the last
section for several restricted cases.

4.1. When the initial model is a finite tree

If we assume in the initial model M = (W, {→a}a∈Ag ,Π) the relation
⋃
a →a forms

a finite tree over W , then the circularity problem can be avoided. In this case, we can
define a well-founded order on tuples of the form (w, σ, c, ϕ), where ϕ is either a formula
in ABL or X, the idea being that a tuple (w, σ, c, ϕ) means ‘w, σ, c |= ϕ’.
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Definition 8. The order ≺ is defined as follows:
(w, σ, c, ϕ) ≺ (w′, σ′, c′, ϕ′) if either

1 w is a descendent of w′ in M,
2 or w = w′ and |σ|+ |ϕ| < |σ′|+ |ϕ′|,
3 or w = w′, |σ|+ |ϕ| = |σ′|+ |ϕ′| and c < c′,

where |X| = 1.

It is clear that ≺ is a well-founded order, and with this order Figure 3 forms a well-
founded inductive definition of consistency and semantics of our language.

We detail the non-trivial cases. For the second clause of Figure 3, observe that by

Point 3 of Definition 8, if c′ < c then (w, σ, c′,X) ≺ (w, σ, c,X), and for all w, σ′, c and

ψ, by Point 2 of Definition 8, we have (w, σ′, c, ψ) ≺ (w, σ′::ψ, c,X).

For the clause for Kaϕ of Figure 3, by Point 1 of Definition 8 we have that for all
ϕ, σ, σ′, c, c′, if w′ is a child of w then (w′, σ′, c′, ϕ) ≺ (w, σ, c,Kiϕ).

Finally, for the clause for 〈ψ〉ϕ of Figure 3, by Point 2 of Definition 8 we have that
(w, σ::ψ, c, ϕ) ≺ (w, σ, c, 〈ψ〉ϕ) for all w, σ, c, ϕ and ψ (note that |〈ψ〉ϕ| = 1 + |ψ|+ |ϕ|).

Example 8. Suppose that we have only one agent a. Let us consider initial model M:

w : p

u : ¬p v : p

a a

In this model, p holds in the actual world w, but agent a does not know it. Assume
that p can be announced at least once (p ∈ A). We show that, as expected, after p is
announced and agent a receives this announcement, agent a knows that p holds. Formally,
we prove that, in M⊗A, we have (w, ε,0) |= 〈p〉 ©a Kap. To do so we in fact show
that (w, [p], a 7→ 1) |= Kap, from which it follows that (w, [p],0) |= ©aKap, hence the
desired result. By Definition 6 for pre-accessibility relations, every state S such that
(w, [p], a 7→ 1)RaS is of the form S = (w′, p::σ, a 7→ 1), where w′ ∈ {u, v} and σ is a
sequence of announcements. We must show that every such state either is inconsistent
or satisfies p.

First, for w′ = u. According to the clause for p in Figure 3, we have that (u, ε,0) 6|= p,
and by the second clause in Figure 3 it follows that (u, [p],0) 6|= X, from which it also
follows also that (u, [p], a 7→ 1) 6|= X and (u, p::σ, a 7→ 1) 6|= X, for any σ.

Now, for w′ = v, by the first clause for p in Figure 3, it follows that for all states of
the form S = (v, p::σ, a 7→ 1), S |= p, so that finally every state related to (w, [p], a 7→ 1)
is either inconsistent or verifies p. Note that we could also prove that S is consistent.

In practice, this setting can be used as an approximation scheme: taking the tree
unfolding of models and cutting them at level ` amounts to assuming that agents cannot
reason about deeper nesting of knowledge. This approach is similar to the well known
idea of bounded rationality [Jones, 1999], where it is assumed that due to computational
limits, agents have only approximate, bounded information about other agents’ knowl-
edge, which is represented by allowing only finite-length paths in the Kripke model. We
point out, however, that this method of approximation is only appropriate in certain
settings. One issue is that it does not allow the accurate representation of transitive
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accessibility relations, where the leaves of an initial model of any depth ` may be reached
just by evaluating a formula with one knowledge operator. This setting calls for more
work to clarify what the finite tree restriction really captures.

4.2. Announcing existential formulas

Now, we again allow the initial model to be arbitrary. In particular, we may use one of
the common models of knowledge, for example an initial model whose underlying frame
is KD45 (relations are serial, transitive and Euclidean) or S5 (relations are equivalence
relations); see Fagin et al. [2003]. However, we restrict the announcement protocol to
the existential fragment of our logic, generated by the following rule:

ϕ ::= p | ¬p | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | K̂aϕ | ©a ϕ | 〈ϕ〉ϕ

where p ranges over AP and a ranges over Ag . Formulas of the existential fragment are
called existential formulas. If an announcement protocol contains only existential for-
mulas, we call it an existential announcement protocol. For instance, the announcement
protocol in Example 3 is existential.

Here we tackle the circularity problem by defining consistency and truth conditions
separately. We first define as a fixed point the semantics of existential announcements
in A, together with consistency. In a second step we define the semantics of the full
logic with existential announcements as described in Figure 3, using the fixed point to
evaluate consistency.

We fix an initial model M = (W, {→a}a∈Ag ,Π) and an existential announcement
protocol A. Let B be the set of all pairs (S, ϕ) such that S is a state ofM⊗A and ϕ is
either a formula in A or X, the symbol for consistency. Observe that (P(B),⊆) forms a
complete lattice. We now consider the function f : P(B) → P(B) defined in Figure 4.
Function f takes a set Γ of truth pairs (pairs (S, ϕ) such that S |= ϕ), and extends it
with the new truth pairs that can be inferred from Γ by applying each of the rules in
Figure 3 once. For instance, if (w, σ, c) |= ϕ and (w, σ, c) |= ψ, then (w, σ, c) |= (ϕ ∧ ψ).
That is, if (w, σ, c, ϕ) and (w, σ, c, ψ) are in Γ, then (w, σ, c, (ϕ ∧ ψ)) is in f(Γ), which
explains line 3 of Figure 4. Every other line of Figure 4 similarly follows from one of the
truth conditions.

Now, as we restrict to existential formulas, it is easy to see that f is monotone, that
is, if Γ1 ⊆ Γ2 then f(Γ1) ⊆ f(Γ2). By the Knaster-Tarski theorem [Tarski, 1955], f has
a least fixed point Γ∗ :=

⋃
n∈N f

n(∅).
We can now define the truth condition for consistency as: S |= X if (S,X) ∈ Γ∗, and

use Figure 3 to define the semantics of the language with existential announcements.

Remark 1. If announcements of the form Kaϕ were allowed, we would have to add{
(w, σ, c,Kaϕ) | for all (w′, σ′, c′) such that (w, σ, c)Ra(w′, σ′, c′),

either (w′, σ′, c′,X) 6∈ Γ or (w′, σ′, c′, ϕ) ∈ Γ

}
to the definition of f in Figure 4. But then, if (w, σ, c)Ra(w′, σ′, c′) we would have:

• (w, σ, c,Kap) ∈ f(∅);
• (w, σ, c,Kap) /∈ f({(w′, σ′, c′,X), (w′, σ′, c′,¬p)})

It would thus no longer hold that f(Γ1) ⊆ f(Γ2) whenever Γ1 ⊆ Γ2. As f is clearly not
a decreasing function either, we would not be able to apply the Knaster-Tarski theorem.
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f(Γ) = Γ ∪
{

(w, σ, c, p) | p ∈ Π(w)
}

∪
{

(w, σ, c,¬p) | p 6∈ Π(w)
}

∪
{

(w, σ, c, (ϕ ∧ ψ)) | (w, σ, c, ϕ) ∈ Γ and (w, σ, c, ψ) ∈ Γ
}

∪
{

(w, σ, c, (ϕ ∨ ψ)) | ((w, σ, c, ϕ) ∈ Γ or (w, σ, c, ψ) ∈ Γ
}

∪
{

(w, σ, c, K̂aϕ) | there exists (w′, σ′, c′) s.t. (w, σ, c)Ra(w′, σ′, c′),
(w′, σ′, c′,X) ∈ Γ and (w′, σ′, c′, ϕ) ∈ Γ

}
∪
{

(w, ε,0,X) | w ∈W
}

∪
{

(w, σ, c,X) | there is c′ < c s.t. (w, σ, c′,X) ∈ Γ
}

∪
{

(w, σ, c,X) | (w, σ′, c,X) ∈ Γ and (w, σ′, c, ψ) ∈ Γ,
where σ = σ′ :: ψ

}
∪
{

(w, σ, c,©aϕ) | c(i) < |σ| and (w, σ, c+a, ϕ) ∈ Γ
}

∪
{

(w, σ, c, 〈ψ〉ϕ) | σ::ψ ∈ Seq(A), (w, σ, c, ψ) ∈ Γ and (w, σ::ψ, c, ϕ) ∈ Γ
}

Figure 4: Function f that applies one step of the truth conditions

Remark 2. The Knaster-Tarski theorem is often used to define the denotational seman-
tics of programming languages [Winskel, 1993] in the same spirit as what we do here to
define consistency.

5. Semantic properties

In this section we establish some semantic properties of our logic. First we compare it
with PAL, explaining why ABL is not a conservative extension of PAL when we have at
least two agents. Then we establish some validities of ABL that show how the correctly
defined semantics captures the intuitions we have about asynchrony.

For the rest of the section, we assume that we have a class of initial models and a
class of announcement protocols for which the circularity problem can be solved and
the semantics defined as in Figure 3 (for example, arbitrary initial models and positive
announcements), and we discuss some validities of our logic.

5.1. Difference from PAL

We discuss the difference between the semantics of our logic and those of PAL. In
PAL, every time an announcement is made, the Kripke model is updated by removing
possible worlds where the announcement is not true (see Definition 3). This amounts to
using the new information to delete epistemic alternatives that are no longer considered
possible: since announcements are true, a world where an announcement is not true is
not a possible world. In our case, epistemic alternatives cannot be deleted at the time
of the announcement, since announcements are not received immediately by the agents,
and in general agents can even have an unbounded number of pending announcements
to read. Instead, this pruning is performed directly in the semantics of the knowledge
operator, by eliminating all possible states that are not consistent: the pruning is not
performed at the moment of the announcement, but is delayed until a knowledge operator
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is evaluated. Thus, the update operation in PAL and the consistency check in our logic
play the same role. This is also reflected in the circularity problem, which stems from
a mutual dependence between the definition of the semantics and, in the case of PAL,
that of the update, and in the case of our logic, that of consistency.

We also note that if there are at least two agents, our logic is not a conservative exten-
sion of PAL. An intuitive way of seeing this is that in PAL, an announcement immediately
becomes common knowledge, while in our setting asynchrony makes common knowledge
unachievable. One may be tempted to define a translation tr from PAL to ABL, where
all cases of the inductive definition are trivial, except that of the announcement operator
which is

• tr(〈ψ〉
PAL

ϕ) := 〈tr(ψ)〉 ©a1 · · · ©an tr(ϕ), where Ag = {a1, . . . , an}.

In the single-agent case, the translation tr yields a conservative extension of PAL,
but it is not the case when there are at least two agents. One may think that “after
the synchronous public announcement of ψ, ϕ holds” is the same thing as “after the
asynchronous broadcast of ψ and its reception by all agents, ϕ holds”. But we show that
this is not the case.

In PAL, if p is announced, then p immediately becomes common knowledge, which
we recall, means that all agents know p, they all know that they all know p, they all know
that they all know that they all know p, and so on. On the other hand, in asynchronous
systems common knowledge cannot be reached [Halpern and Moses, 1990; Moses and
Tuttle, 1988], and our logic illustrates this phenomenon. Even finite approximations of
common knowledge fail to hold in our logic. For instance, while [p]PALKaKbp is a validity
of PAL, its translation [p]©a©bKaKbp is not valid.

Proposition 1. There exist M, an announcement protocol A and a consistent state
S ∈M⊗A such that M⊗A, S 6|= [p]©a©bKaKbp.

Proof. The idea is the following: after announcing p, and after all agents have received
the message p, a does not know whether agent b has received p or not. Therefore, a does
not know that b knows p. Let us consider the following initial model M:

w : p u : ¬pa, b
a, b a, b

The actual world is w. Since p holds in w, it can be announced. Let A = {{p}}. We
prove that M⊗A, (w, ε,0) 6|= [p]©a ©bKaKbp. To see this, observe that after p has
been announced and received by agent a and agent b (i.e., after evaluation of the first

three operators of the formula), we reach state S = (w, [p], a 7→ 1
b 7→ 1 ). But in M⊗A,

we have (we only represent a part of M⊗A, which is infinite):

u
a :

b :

p

w
a :

b :

p

u
a :

b : no mess
agesa b

Indeed in state S = (w, [p], a 7→ 1
b 7→ 1 ) agent a considers it possible that agent b

did not receive announcement p, and thus she considers state S′ = (w, [p], a 7→ 1
b 7→ 0 )
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possible. In S′, because b received no announcement, and in the initial model we have
w →b u, agent b considers it possible that the actual world is u and nothing has been
announced, i.e. she considers state S′′ = (u, ε,0) possible. Because p does not hold in
S′′, we have that S 6|= KaKbp, which concludes the proof.

5.2. Validities

We say that a formula ϕ is valid if for every initial modelM and every announcement
protocol A in the classes considered, and for every consistent state S ∈M⊗A, we have
M⊗A, S |= ϕ. We write |= ϕ to express that ϕ is valid. In the following proposition
we establish some validities that provide insights into our framework and show how our
definitions correctly capture some natural properties that intuitively should hold in the
asynchronous framework we consider.

Proposition 2. For every ϕ ∈ ABL and propositional formula ψ, we have that:

1. |=©a©b ϕ↔©b©a ϕ
2. |=©a> → (©aϕ↔ ¬©a ¬ϕ)
3. |= ¬©a > → [ψ]©a Kaψ
4. |= ¬©a > → [ψ]©a Ka(¬©b > → Kbψ)

Proof. We prove the first validity and the other three are left to the reader.
Suppose that we have M⊗A, (w, σ, c) |= ©a ©b ϕ. By Figure 3, this means that

c(1) < |σ| and M ⊗ A, (w, σ, c+a) |= ©bϕ, and the latter implies that c+a(b) < |σ|
and M ⊗ A, (w, σ, (c+a)

+b
) |= ϕ. Now, because (c+a)

+b
=
(
c+b
)+a

, we obtain that
M⊗A, (w, σ, c+b) |= ©aϕ, and therefore M⊗A, (w, σ, c) |= ©b ©a ϕ. The proof for
the other direction is symmetric.

Let us comment on these validities. The first one says that it is possible to permute
the order of agents that receive next announcements in their respective queues. The
second one says that if an agent has an announcement to read, then reading it is a
deterministic operation. The third one says that if an agent has no pending announce-
ment and some propositional formula is announced, then after reading his next pending
announcement, the agent will know that formula. Intuitively, this is because the truth
value of a propositional formula does not change, and the agents know this. The last
validity illustrates the fact that in our framework, the behaviour of the public channel is
common knowledge. Indeed it says that if, in a situation where agent a has read all the
announced messages, a propositional formula ψ is announced and agent a reads it, then
agent a knows that if agent b has read all the announced messages (and in particular the
last one, which is ψ), then agent b also knows ψ. In some sense, it means that initially
agent a knows that agent b will receive the same messages as herself. In the last two
validities we restrict to propositional formulas in order to avoid Moore’s paradox [van
Ditmarsch et al., 2007].

We also establish the following proposition, which says that if all the ©a operators
in a formula ϕ are under the scope of a knowledge operator, then its truth value is
left unchanged by the announcement of any formula ψ. Indeed, the knowledge operator
considers all possibilities for the content of the agent’s channel, so that the possibility
that ψ is in the channel is considered, whether ψ was actually announced or not.
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In the following, in addition to the assumption that models and announcement proto-
cols are restricted to classes for which the semantics is defined, we consider announcement
protocols in which each announcement can be made infinitely many times. We call such
protocols free protocols.

Proposition 3. Let ϕ be a formula in ABL, in which every ©a is under the scope of
some Kb, and let A∞ be a free protocol. For every initial model M and consistent state
S = (w, σ, c) ∈M⊗A∞, for every ψ ∈ A∞, we have M⊗A∞, S |= 〈ψ〉ϕ↔ ψ ∧ ϕ.

This result follows immediately from the following lemma:

Lemma 1. Let ϕ be a formula in ABL, in which every ©a is under the scope of some
Kb, and let A∞ be a free protocol. For every initial model M and for every consistent
state (w, σ, c) ∈M⊗A∞, for every ψ ∈ A∞ such that (w, σ::ψ, c) is consistent, we have
M⊗A∞, (w, σ::ψ, c) |= ϕ iff M⊗A∞, (w, σ, c) |= ϕ.

Proof. By induction on ϕ. The Boolean cases are trivial.
Case ϕ = Kaϕ

′: Since (w, σ, c) is a state, c(a) ≤ |σ|. It is then easy to check that
{S | (w, σ::ψ, c)RaS} = {S | (w, σ, c)RaS}, and the result follows.

Case ϕ = 〈ψ′〉ϕ′: If ψ′ /∈ A∞, the formula ϕ trivially does not hold in both states.
Otherwise, because ψ′ has infinite multiplicity in A∞, σ::ψ′ ∈ Seq(A∞). We therefore
have (w, σ::ψ, c) |= 〈ψ′〉ϕ′ iff (w, σ::ψ, c) |= ψ′ and (w, σ::ψ::ψ′, c) |= ϕ′.

Assume that (w, σ::ψ, c) |= 〈ψ′〉ϕ′, we prove that (w, σ, c) |= 〈ψ′〉ϕ′. We have that
(w, σ::ψ, c) |= ψ′ (hence (w, σ::ψ::ψ′, c) is consistent) and (w, σ::ψ::ψ′, c) |= ϕ′. Because
ψ′ is a subformula of ϕ, each ©a in it is in the scope of some Kb; we can thus apply the
induction hypothesis for (w, σ::ψ, c) |= ψ′, obtaining that (w, σ, c) |= ψ′. By induction
hypothesis on (w, σ::ψ::ψ′, c) |= ϕ′, we get first that (w, σ::ψ, c) |= ϕ′, then (w, σ, c) |= ϕ′

and finally (w, σ::ψ′, c) |= ϕ′ (observe that (w, σ::ψ′, c) is consistent since (w, σ, c) |= ψ′).
We have proved that (w, σ, c) |= 〈ψ′〉ϕ′.

The other direction is treated the same way.
Finally, the case ϕ =©aϕ

′ is not possible as ©a is not under the scope of any Kb.

6. Model checking

Here we address the model checking problem when A is a finite multiset, that is,
when the support set of A is finite and the multiplicity of each element is an integer.
More precisely, we consider the following decision problem:

• input: an initial pointed model (M, w), a finite multiset of formulas A (where
multiplicities are written in unary), a formula ϕ0;

• output: yes if M⊗A, (w, ε,0) |= ϕ0, no otherwise.

In practice, model checking is used to check a scenario described by A and ϕ0 from
a given initial situation (M, w).
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6.1. Propositional announcements

In this section, we suppose that formulas in A are propositional. Note that in this
case (which is a particular case of existential announcements) the circularity problem
does not exist, as consistency of a state (w, σ, c) can be trivially checked by verifying
that all propositional formulas in σ hold in world w of the initial model, according to the
classic semantics of propositional logic.

We consider the model checking problem for ABL where inputs (M, w,A, ϕ0) are such
that A only contains propositional formulas. We call this problem the model checking
problem for propositional protocols.

Theorem 2. The model checking problem for propositional protocols is in Pspace.

Proof. Figure 5 presents an algorithm that takes a pointed model (M, w), a finite multiset
A, a sequence σ ∈ Seq(A), a cut c on σ and a formula ϕ as an input. To check the
consistency of a state (w, σ, c), we call checkconsistency(M,A, w, σ, c) which verifies that
every (propositional) formula ψ occurring in σ evaluates to true with the valuation Π(w).

It is easily proven by induction that, for all ψ, the following property P (ϕ) holds:

M,A, (w, σ, c) |= ϕ iff mc(M,A, w, σ, c, ϕ) returns true.

This establishes the correctness of the algorithm. We now analyze its complexity.
First, observe that because A is finite and each element has finite multiplicity, we have

that Seq(A) only contains sequences of length linear in |A| (recall that multiplicities are
written in unary). It is therefore easy to see that the consistency check (∗X) is done in
polynomial time in the size of the input and thus requires a polynomial amount of space.
Now, the number of nested calls of mc is bounded by the size of the formula to check,
and each call requires a polynomial amount of memory for storing local variables, so that
the algorithm runs in polynomial space.

Theorem 3. The model-checking problem for propositional protocols is Pspace-hard.

Proof. See Appendix C.

6.2. Finite tree initial model

In this section, we restrict the set of inputsM,A, w, ϕ0 of the model checking problem
to those where the initial pointed models (M, w) are finite trees rooted in w.

Theorem 4. The model-checking problem when we restrict initial models to finite trees
is in Pspace.

Proof. We consider the algorithm of Figure 5 again but now the consistency checking
(∗X) consists of calling the following procedure:

function checkconsistency(M,A, w, σ, c)
if c = 0

return true
else

for c′ < c do
if mc(M,A, w, σ, c′,X) then

return true

return mc(M,A, w, σ′, c,X) and mc(M,A, w, σ′, c, ψ) where σ = σ′::ψ
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function mc(M,A, w, σ, c, ϕ)
match ϕ do

case p: return p ∈ V (w);
case X: return checkconsistency(M,A, w, σ, c) (∗X)
case ¬ψ: return not mc(M,A, w, σ, c, ψ);
case (ψ1 ∧ ψ2): return mc(M,A, w, σ, c, ψ1) and mc(M,A, w, σ, c, ψ2);
case Kaψ :

for (u, σ′, c′) such that w →a u, σ′ ∈ Seq(A) and c′ is a cut on σ′ do
if σ′[1..c(a)] = σ[1..c′(a)] and mc(M,A, u, σ′, c′,X) then

if not mc(M,A, u, σ′, c′, ψ) then

return false
return true

case 〈ψ〉χ :
if σ::ψ ∈ Seq(A) and mc(M,A, w, σ, c, ψ) then

return mc(M,A, w, σ::ψ, c, χ);
else

return false;
case ©aψ: return c(a) < |σ| and mc(M,A, w, σ, c+a, ψ)

Figure 5: Model checking algorithm

Soundness and completeness are proven by induction on inputs using the order ≺
defined in Section 4.1.

Concerning the complexity, the argument given in the proof of Theorem 2 no longer
holds. In order to bound the number of nested calls of mc, we have to remark that from
a call of mc to a sub-call of mc:

(1) either we change the current world w in the initial model for a successor u in the
finite tree;

(2) or the quantity |σ|+ |ϕ|+
∑
a∈Ag c(a) is strictly decreasing, where |ϕ| is the length

of ϕ and if σ = [ϕ1, . . . , ϕk] then |σ| =
∑k
i=1 |ϕi|.

Now, the number of times (1) occurs is bounded by the depth depth(M, w) of the finite
treeM, w. As each ϕ is either a subformula of the input formula ϕ0 or a subformula of a
formula in A, |ϕ| ≤ |ϕ0|+ |A| where |A| :=

∑
ψ∈A |ψ|, and where each single formula ψ is

counted as many times as it occurs in the multiset A. Furthermore, |σ| ≤ |A| and c(a) ≤
|A|. Thus, the quantity |σ|+|ϕ|+

∑
a∈Ag c(a) is bounded by (|Ag |+2)|A|+|ϕ0|. Therefore,

the number of nested calls to mc is bounded by depth(M, w)× ((|Ag |+ 2)|A|+ |ϕ0|). So
the algorithm requires a polynomial amount of memory in the size of the input (recall
that the multiplicity of A is encoded in unary).

6.3. Existential announcements

In this subsection, we design an exponential-time algorithm for the model checking
problem in the case of existential announcements.

Given an input M,A, w, ϕ0, the algorithm first computes the least fixed point Γ∗ of
the function f defined in Section 4.2. Because the number of possible sequences in Seq(A)
is exponential in |A|, the set B of pairs (S, ϕ) where S ∈M⊗A and ϕ ∈ A ∪ {X} is of
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size exponential in the size of the input, and therefore computing the fixed point requires
exponential time in the size of the input. This gives us the semantics of consistency for
states of M⊗A.

Then, to evaluate ϕ0, we use the procedure mc of Figure 5 where line (∗X), which
checks the consistency of a state (w, σ, c), is replaced by checking whether (w, σ, c,X) ∈
Γ∗. The algorithm mc also requires exponential time. To sum up:

Theorem 5. The model-checking problem for existential announcements is in Exptime.

7. Satisfiability for propositional announcements

In this section, we address the satisfiability problem when A is a finite multiset of
propositional formulas, that is, when the support set of A is finite, the multiplicity of
each element is an integer and formulas in A are propositional. More precisely, we say
that a formula ϕ0 is A-satisfiable if there exists an initial pointed model (M, w) such
that M⊗A, (w, ε,0) |= ϕ0. We consider the following decision problem:

• input: a finite multiset of propositional formulas A (where multiplicities are written
in unary), a formula ϕ0;

• output: yes if ϕ0 is A-satisfiable, no otherwise.

In practice, a typical application of the satisfiability problem would be to check that
a class of systems described by a formula ϕ satisfies a property ψ. To do so, one checks
whether ϕ ∧ ¬ψ is satisfiable. If it is not, then indeed all ϕ-systems satisfy ψ. If it
is satisfiable, then the algorithm we present here (like all tableau methods) produces a
counter-example, i.e., a model (M, w) such that M⊗A, (w, ε,0) |= ϕ ∧ ¬ψ, or in other
words, a ϕ-system that does not satisfy ψ.

7.1. Tableau method description

Our tableau method manipulates terms that we call tableau terms, which are of the
following kind:

• (w σ c ϕ): w is a world symbol that represents a world of the model M being
constructed, σ is a sequence of formulas in Seq(A), c is a cut for σ and ϕ is a
sub-formula of ϕ0 that should be true in M⊗A, (w, σ, c).

• (w→a u): w and u are two world symbols such that w→a u in the modelM being
constructed.

• ⊥: Denotes an inconsistency.

A tableau rule is represented by a numerator N above a line and a finite list of
denominators D1, . . . ,Dk below this line, separated by vertical bars, representing non-
deterministic choice:

N
D1 | . . . | Dk

The numerator and the denominators are finite sets of tableau terms.
A tableau for input (A, ϕ0) is a finite tree with a set of tableau terms at each node,

whose root is:
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Γ0 = {(w0 ε 0 ϕ0)}.

A rule with numerator N is applicable to a node carrying a set Γ if Γ contains an instance
of N for which the rule has not yet been applied. If no rule is applicable, Γ is said to
be saturated. We call a node n an end node if the set of tableau terms Γ it carries is
saturated, or if ⊥∈ Γ. The tableau is extended the following way:

1. Choose a leaf node n carrying Γ where n is not an end node, and choose a rule
applicable to n.

2. For each denominator Di of the rule, create one successor node for n carrying the
union of Γ with an appropriate instanciation of Di.

A branch in a tableau is a path from the root to an end node. A branch is closed
if its end node contains ⊥, otherwise it is open. A tableau is closed if all its branches
are closed, otherwise it is open. A pair (A, ϕ0) is said to be consistent if no tableau for
(A, ϕ0) is closed.

The tableau rules are described in Figure 6, in which we write (σ, c) ∼a (σ′, c′) for
σ|c(a) = σ′|c′(a).

Remark 3. Rule ch for choosing valuations is necessary for checking consistency of
states in rules Kaϕ and X. For this reason, rule ch is always applied in priority before
rules Kaϕ and X. In a node carrying Γ and saturated for rule ch, if w is a world symbol
in Γ, we say that σ is true in w if the valuation ν, defined by ν(p) = 1 if (w ε 0 p) ∈ Γ
and ν(p) = 0 if (w ε 0 ¬p) ∈ Γ, satisfies every formula in σ (recall that in this section
announcements are propositional).

7.2. Tableau method soundness and completeness

In this section we prove that the tableau method is sound and complete. Note that
we will establish that every tableau is finite in the complexity analysis of the tableau
method (see Theorem 6).

Proposition 4. If (A, ϕ0) is consistent, then ϕ0 is A-satisfiable.

Proof. Suppose that (A, ϕ0) is consistent, and consider a tableau t for (A, ϕ0). By
assumption, this tableau is open, which means that it has an open branch. Consider one
such open branch, and let Γ be the set of tableau terms carried by its end node. We
define the model M = (W, {→a}a∈Ag ,Π), where

• W = {w | (w σ c ϕ) ∈ Γ for some σ, c and ϕ},
• →a = {(w,u) | (w →a u) ∈ Γ} and
• for each w ∈W , Π(w) = {p | (w ε 0 p) ∈ Γ}.

We prove that for all (w σ c ϕ) ∈ Γ, it holds that M⊗A, (w, σ, c) |= ϕ. Because
(w0 ε 0 ϕ0) is in Γ0 ⊆ Γ, it follows that ϕ0 is A-satisfiable.

If ϕ = p, by saturation of rule p we have (w ε 0 p) ∈ Γ, thus p ∈ Π(w) by
construction of M, and M⊗A, (w, σ, c) |= p.

If ϕ = ¬p, by saturation of rule ¬p we have (w ε 0 ¬p) ∈ Γ. We cannot have
(w ε 0 p) ∈ Γ, otherwise the branch would be closed by saturation of rule ⊥. Therefore
p /∈ Π(w), and M⊗A, (w, σ, c) |= ¬p.
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(w σ c ϕ)

(w ε 0 p) | (w ε 0 ¬p) ch
for all atomic propositions p appearing in ϕ0 and A

(w σ c (ϕ ∧ ψ))

(w σ c ϕ) (w σ c ψ)
∧

(w σ c ¬(ϕ ∧ ψ))

(w σ c ¬ϕ) | (w σ c ¬ψ)
¬∧

(w σ c p)

(w ε 0 p)
←p (w σ c ¬p)

(w ε 0 ¬p)
←¬p (w σ c ¬¬ϕ)

(w σ c ϕ)
¬¬

where p ∈ AP

(w σ c ©a ϕ)

(w σ c+a ϕ)
©a

if c(a) < |σ|
(w σ c ©a ϕ)

⊥ ©a if c(a) = |σ|

(w σ c ¬©a ϕ)

(w σ c+a ¬ϕ)
¬©a

if c(a) < |σ|

(w σ c 〈ψ〉ϕ)

(w σ c ψ)(w σ::ψ c ϕ)
〈ψ〉

if σ::ψ ∈ Seq(A)

(w σ c 〈ψ〉ϕ)

⊥ 〈ψ〉
if σ::ψ 6∈ Seq(A)

(w σ c ¬〈ψ〉ϕ)

(w σ c ¬ψ) | (w σ c ψ)(w σ :: ψ c ¬ϕ)
¬〈ψ〉

if σ::ψ ∈ Seq(A)

(w σ c Kaϕ)(w→a u)

(u σ′ c′ ϕ)
Kaϕ

for all (σ′, c′) ∼a (σ, c) and σ′ true in u (see Remark 3)

(w σ c ¬Kaϕ)

(u σ′1 c′1 ¬ϕ)(w→a u) | · · · | (u σ′n c′n ¬ϕ)(w→a u)
¬Kaϕ where (σ′i, c

′
i) ∼a (σ, c)

and u is fresh

(w σ c ϕ)

⊥ X
if σ is not true in w

(w ε 0 p)(w ε 0 ¬p)
⊥ ⊥

for p ∈ AP

Figure 6: Tableau rules

24



For boolean connectives, the result follows by saturation of the appropriate tableau
rule, plus application of the induction hypothesis.

If ϕ =©aϕ
′, we have that c(a) < |σ|, otherwise Γ would contain ⊥ by saturation of

rule ©a and the branch would be closed. Therefore, again by saturation of rule ©a, Γ
contains (w σ c+a ϕ′). By induction hypothesis we get that M⊗A, (w, σ, c+a) |= ϕ′,
and thus M⊗A, (w, σ, c) |=©aϕ

′.
If ϕ = ¬©a ϕ

′ we apply similar reasoning, except for the case c(a) = |σ| in which ϕ
trivially holds.

If ϕ = 〈ψ〉ϕ′, then σ::ψ ∈ Seq(A), otherwise the branch would be closed. It follows
by saturation of rule 〈ψ〉 that (w σ c ψ) and (w σ::ψ c ϕ′) are in Γ, and we conclude
by applying the induction hypothesis.

If ϕ = ¬〈ψ〉ϕ′, in case σ::ψ is not in Seq(A), ϕ trivially holds. Otherwise, by satura-
tion of rule ¬〈ψ〉, either (w σ c ¬ψ) is in Γ, or both (w σ c ψ) and (w σ::ψ c ¬ϕ′)
are in Γ. In both cases, we conclude by induction hypothesis.

If ϕ = Kaϕ
′, let (u, σ′, c′) be such that (w, σ, c)Ra(u, σ′, c′) andM⊗A, (u, σ′, c′) |= X,

i.e. σ′ is true in u (see Remark 3). We have that w →a u, so by construction of M,
(w →a u) ∈ Γ. Also, since (w, σ, c)Ra(u, σ′, c′) we have that (σ, c) ∼a (σ′, c′). By
saturation of rule Kaϕ we thus have that (u σ′ c′ ϕ′) ∈ Γ, and by induction hypothesis
M⊗A, (u, σ′, c′) |= ϕ′, which concludes.

If ϕ = ¬Kaϕ
′, by saturation of rule ¬Kaϕ there exist (σ′, c′) ∼a (σ, c) and a world

symbol u such that Γ contains (u σ′ c′ ¬ϕ) and (w→a u). It follows that (w, σ, c)→a

(u, σ′, c′). We also have that M⊗ A, (u, σ′, c′) |= X (or in other words, σ′ is true in
u), otherwise the branch would be closed by rule X. Finally, by induction hypothesis,
M⊗A, (u, σ′, c′) |= ¬ϕ′, and thus M⊗A, (w, σ, c) |= ¬Kaϕ

′.

Proposition 5. If ϕ0 is A-satisfiable, then (A, ϕ0) is consistent.

Proof. Suppose that there is a pointed model (M0, w0) such thatM0⊗A, (w0, ε,0) |= ϕ0.
We must prove that every tableau for (A, ϕ0) has an open branch.

We let WΓ denote the set of world symbols appearing in a set of tableau terms Γ.
Such a set Γ is said to be interpretable if, first, it does not contain ⊥ and, second, there
is an initial model M = (W, {→a }a∈Ag ,Π) and a mapping f : WΓ →W such that:

• for each (w→a u) ∈ Γ, f(w)→a f(u) and
• for each (w σ c ϕ) ∈ Γ, M⊗A, (f(w), σ, c) |= X and M⊗A, (f(w), σ, c) |= ϕ.

We write M, f |= Γ if these two conditions are met.
Observe that Γ0 = {(w0 ε 0 ϕ0)} does not contain ⊥, and by assumption there is

a pointed model (M0, w0) such that M0 ⊗A, (w0, ε,0) |= ϕ0. So M0, [w0 7→ w0] |= Γ0,
and Γ0 is interpretable. We now prove that when a tableau rule is applied in a node
that carries an interpretable set of tableau terms and is not an end node, then one of
its successors carries an interpretable set. This implies that every tableau for (A, ϕ0)
has a branch whose end node carries an interpretable set; in particular, this set does not
contain ⊥, so the branch is open, which concludes.

In the following, Γ is the interpretable set of tableau terms in which the rule is applied,
and M = (W, {→a }a∈Ag ,Π) and f : WΓ →W are such that M, f |= Γ.

We do not treat the case of rules for propositional logic as it is straightforward.
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Rule ch for atomic proposition p, on numerator {(w σ c ϕ)}: If p ∈ Π(f(w)),
then M⊗A, (f(w), ε,0) |= p, and thus M, f |= Γ ∪ {(w ε 0 p)}; otherwise M, f |=
Γ ∪ {(w ε 0 ¬p)}. So one of the successors is interpretable.

Rule ©aϕ on numerator {(w σ c ©a ϕ)}: by assumption, M⊗A, (f(w), σ, c) |=
©aϕ. Thus, according to the semantics, we necessarily have that c(a) < |σ|. So the only
successor in the tableau carries the set Γ ∪ {(w σ c+a ϕ)}. Since (w σ c ©a ϕ) ∈ Γ
and M, f |= Γ, M⊗ A, (f(w), σ, c) |= X, and thus also M⊗ A, (f(w), σ, c+a) |= X.
Besides, because M⊗A, (f(w), σ, c) |= ©aϕ, we have that M⊗A, (f(w), σ, c+a) |= ϕ.
It follows that M, f |= Γ ∪ {(w σ c+a ϕ)}, and the successor is interpretable.

Rule ¬©a ϕ on numerator {(w σ c ¬©a ϕ)}: the application of this rule requires
that c(a) < |σ| hold. So the fact that M ⊗ A, (f(w), σ, c) |= ¬ ©a ϕ holds implies
M⊗A, (f(w), σ, c+a) |= ¬ϕ. The consistency aspect is treated like for rule ©aϕ, and
we obtain that M, f |= Γ ∪ {(w σ c+a ¬ϕ)}, hence the successor is interpretable.

Rule 〈ψ〉ϕ on numerator {(w σ c 〈ψ〉ϕ)}: We have thatM⊗A, (f(w), σ, c) |= 〈ψ〉ϕ,
so σ::ψ ∈ Seq(A), which implies that it is the first version of the rule that is applied. We
also have thatM⊗A, (f(w), σ, c) |= ψ andM⊗A, (f(w), σ::ψ, c) |= ϕ. From the former
and the fact thatM, f |= Γ 3 (w σ c 〈ψ〉ϕ), we obtain thatM⊗A, (f(w), σ::ψ, c) |= X.
It follows that M, f |= Γ ∪ {(w σ c ψ), (w σ::ψ c ϕ)}, and thus the only possible
successor is interpretable.

Rule ¬〈ψ〉ϕ on numerator {(w σ c ¬〈ψ〉ϕ)}: First, because {(w σ c ¬〈ψ〉ϕ)} ∈
Γ, we have M⊗ A, (f(w), σ, c) |= X. Also, the application of this rule requires that
σ::ψ ∈ Seq(A). So the fact that M⊗A, (f(w), σ, c) |= ¬〈ψ〉ϕ holds implies that either
M⊗A, (f(w), σ, c) |= ¬ψ orM⊗A, (f(w), σ::ψ, c) |= ¬ϕ. IfM⊗A, (f(w), σ, c) |= ¬ψ, we
obtain thatM, f |= Γ∪{(w σ c ¬ψ)}, and the first successor is interpretable. Otherwise
we have bothM⊗A, (f(w), σ::ψ, c) |= ¬ϕ andM⊗A, (f(w), σ, c) |= ψ. The latter implies
thatM⊗A, (f(w), σ::ψ, c) |= X; we obtain thatM, f |= Γ∪ {(w σ::ψ c ¬ϕ)}, and the
second successor is interpretable.

Rule Kaϕ on numerator {(w σ c Kaϕ), (w →a u)}, for some (σ′, c′) ∼a (σ, c)
and σ′ true in u: First, since rule ch has the priority over rule Kaϕ, we know that Γ is
saturated for rule ch. Also, since (w→a u) ∈ Γ and tableau terms of this form can only
be introduced by rule ¬Kaϕ together with a tableau term of the form (u σ′′ c′′ ϕ′),
then there is one such tableau term in Γ. By saturation of rule ch, it follows that for
each p appearing in ϕ0 and A, either (u ε 0 p) or (u ε 0 ¬p) is in Γ. This defines a
valuation ν for u that, by assumption, makes σ′ true (see Remark 3). BecauseM, f |= Γ,
we have that Π(f(u)) agrees with ν on all atomic propositions in A. Since by assumption
ν satisfies all formulas in σ′, so does Π(f(u)), and therefore M⊗A, (f(u), σ′, c′) |= X.
Now, since M, f |= Γ and (w →a u) ∈ Γ, we have that f(w) →a f(u), and because
(w σ c Kaϕ) ∈ Γ, it holds that M⊗ A, (f(w), σ, c) |= Kaϕ. Since f(w) →a f(u)
and (σ, c) ∼a (σ′, c′), we have that (f(w), σ, c)Ra(f(u), σ′, c′). As we have seen that
M⊗A, (f(u), σ′, c′) |= X, we finally have that M⊗A, (f(u), σ′, c′) |= ϕ, thus M, f |=
Γ ∪ {(u σ′ c′ ϕ)}, and the successor is interpretable.

Rule ¬Kaϕ on numerator {(w σ c ¬Kaϕ)}: since M⊗A, (f(w), σ, c) |= ¬Kaϕ,
there exist u ∈ W , σ′ and c′ such that (f(w), σ, c)Ra(u, σ′, c′), M⊗A, (u, σ′, c′) |= X
and M⊗A, (u, σ′, c′) |= ¬ϕ. Recall that (f(w), σ, c)Ra(u, σ′, c′) means that f(w)→a u
and (σ, c) ∼a (σ′, c′). Clearly, M, f [u 7→ u] |= {(u σ′ c′ ¬ϕ)(w →a u)}, and because
u is fresh, f [u 7→ u] coincides with f on all world symbols appearing in Γ, so that
M, f [u 7→ u] |= Γ. Finally, the denominator corresponding to σ′, c′ is interpretable
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(there are only finitely many possible σ′ and c′, see proof of Theorem 6).
Rule X on numerator {(w σ c ϕ)}: because Γ is interpretable, this rule cannot

be applied. Indeed, assume it is applied. Because rule ch is applied in priority, Γ is
saturated for rule ch. With reasoning similar to that followed for rule Kaϕ, we obtain
that the valuation ν defined by Γ for w coincides with Π(f(w)) on all atomic propositions
appearing in ϕ0 and A, and thus they agree on all formulas in σ. Yet on the one hand,
since (w σ c ϕ) ∈ Γ and M, f |= Γ, we have that M⊗A, (f(w), σ, c) |= X and thus
Π(f(w)) satisfies all formulas in σ. On the other hand, because the rule X is applied, ν
does not satisfy all formulas in σ, and we have a contradiction.

Rule ⊥ on numerator {(w ε 0 p), (w ε 0 ¬p)}: because M, f |= Γ this cannot
happen, as otherwise we would have both p ∈ Π(f(w)) and p /∈ Π(f(w)).

Theorem 6. The satisfiability problem for finite propositional protocols is in NExptime.

Proof. Let A be a propositional and finite protocol and ϕ0 be the formula to check. The
algorithm to check whether ϕ0 is A-satisfiable consists of non-deterministically applying
tableau rules of Figure 6 from the initial tableau {(w ε 0 ϕ0)}.

Each world symbol w except w0 is created by rule ¬Ka with a formula ϕw, and the
number of times this rule is applied to terms with w as world symbol is linear in ϕw.
These world symbols can be ordered in a tree structure (a world symbol created by
applying rule ¬Ka in a tableau term with world symbol w is a child of w), and the modal
depth of ϕw formulas is strictly decreasing in the tree. So the number of created world
symbols w is exponential in the size of ϕ0.

In addition, recall that the number of possible sequences of announcements σ is
exponential in the size of A, and the number of possible cuts c is |A||Ag|. Therefore, the
number of different tableau terms (w σ c ψ) is exponential in |ϕ0|+ |A|.

At each step, the algorithm is executing a rule that adds at least one term. As the
number of terms is exponential, the number of rule applications is exponential, and thus
the running time of the (non-deterministic) algorithm is exponential. So the satisfiability
problem when the protocol is finite and propositional is in NExptime.

We now establish the matching lower bound.

Theorem 7. The satisfiability problem for finite propositional protocols with at least two
agents is NExptime-hard.

Proof. See Appendix D.

8. Related work

We review several research areas related to different aspects of the present work.

8.1. Existing logics for asynchrony

As far as we know, there has not been much work on the relationship between knowl-
edge, announcements and asynchrony. In [Dégremont et al., 2011], asynchrony in dy-
namic epistemic logic is studied, with the notion of asynchrony being that an agent
cannot tell whether an event has occurred if her epistemic state is unchanged. This no-
tion of asynchrony is different from the one we consider in this work: indeed in Dégremont
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et al. [2011], different agents can have a different idea of how many events have occurred
so far, because some events might be completely unnoticed by some agents. So in one
setting asynchrony is due to events being completely unobserved, while in the other (the
one considered in this work) it is due to a delay between the occurrence of an event (the
announcement) and its observation (the reception).

A logic dealing with knowledge and asynchrony is also developed in [Panangaden and
Taylor, 1992], but in this setting, messages do not have logical content: for example,
the logic does not allow for announcements about knowledge or about the effect of other
announcements. [Fagin et al., 1992] is concerned with knowledge in multi-agent, dynamic
systems which may be asynchronous, but does not explicitly model communication, and
in particular the effects of asynchronous sending and receiving of true announcements,
which is the focus of our work.

Recently, van Ditmarsch developed a logic of asynchronous announcements in [van
Ditmarsch, 2017]. The major difference between our framework and that one is our third
basic principle, that agents are able to imagine all possible pending messages. In van
Ditmarsch’s work, agents in fact do not consider any pending or future announcements
possible; they only consider a message possible after they have received it. So in our work,
an agent a has three sources of uncertainty: first, uncertainty about the state arising
from the underlying Kripke model; second “past uncertainty,” that is, uncertainty about
which of the messages that a has received have already been received by other agents;
and third, “future uncertainty,” uncertainty about what messages are pending in the
channel but unread by a, or which messages may be broadcast in the future. In van
Ditmarsch’s work, agents only have the first two sources of uncertainty: uncertainty
arising from the underlying Kripke model, and “past uncertainty.” This means that
agents may not consider the current state possible, and may even have false knowledge.
For example, if agents a and b initially do not know true proposition p, and then p is
broadcast, in van Ditmarsch’s framework, if a has received broadcast p and b has not, b
considers it impossible that a knows p, even though a does indeed know p. Symbolically,
Kap ∧ Kb¬Kap. In our logic this is not the case: even when b has not received the
broadcast of p, b considers it possible that p has been broadcast and received by a, so
the formula Kap ∧Kb¬Kap can never hold in our models. In general, Kaϕ −→ ϕ in our
logic, while this is not the case in van Ditmarsch’s logic.

8.2. Semi-private announcements and dynamic epistemic logic

On first glance, asynchronous broadcast logic has some similarities with semi-private
announcement logic, [Gerbrandy and Groeneveld, 1997; Baltag et al., 1998; Baltag and
Moss, 2004; Baltag et al., 2008]. Logics with semi-private announcements follow the same
basic idea as public announcement logic, but rather than announcements being received
by the entire group of agents, each message is announced to a subset of agents, while
the rest of the agents know the message was announced to that group, but do not know
what the content of the message was. In the general setting, group A receives message
m and updates their knowledge accordingly, while the agents not in group A know that
A received either m or its negation, ¬m, and update their knowledge accordingly. The
identity of the group receiving each message is common knowledge for everyone. On the
surface, this logic has some similarities with asynchronous broadcast logic: at any time,
a certain group of agents has received each message, while others have not. However, like
other variants of public announcement logic, logics of semi-private announcements are

28



synchronous: a message is sent and received simultaneously, and thus common knowledge
is achieved immediately by the group of agents receiving the message. Furthermore, even
the group of agents who do not receive the message have synchronous information, since
they immediately know that the other agents have received some message. Overall, in
this setting, the agents have less uncertainty about one another’s knowledge than in the
asynchronous setting. In fact, the issues of semi-private messages and asynchrony are
orthogonal; one could imagine an asynchronous logic of semi-private announcements,
where each member of group A eventually receives announcement m, and the rest of the
agents eventually receive the information that group A has been asynchronously sent
either m or ¬m.

8.3. Arbitrary public announcement logic

Arbitrary public announcement logic (APAL) [Balbiani et al., 2007] has some simi-
larities to our approach. In this logic, one can ask whether some formula holds after any
possible announcement ; this is not possible in our logic, but because agents can imag-
ine pending messages, our knowledge operator considers any possible future sequence
of announcements that follows the protocol, which is a related idea. Interestingly, the
satisfiability problem for APAL is undecidable, but decidability can be achieved by con-
sidering a constraint similar to our restriction to existential announcements [French and
van Ditmarsch, 2008; van Ditmarsch et al.].

8.4. Distributed systems

The systems we consider are closely related to the notion of total order broadcast in
distributed systems [Raynal, 2013, p. 154]:

1. if a message is received, then it means that it has been broadcast;
2. no message is received twice;
3. if an agent received ϕ before ϕ′, they all receive ϕ before ϕ′ ;
4. ϕ causally precedes ϕ′ implies that no agent receives ϕ′ before ϕ;
5. if a message is broadcast, all agents will eventually receive it.

The first point holds in our system since a message (a formula) is only received if it is
in the queue, which is the list of broadcast messages. The second point holds because
a message is received when an agent’s cut is increased to include that message from the
queue, which only occurs once for each message. The third point holds because we have
FIFO channels, and thus agents all receive messages in the same order, the order in
which they are announced. The fourth point follows from the fact that in our systems
we only consider a state (w, σ::ψ, c) consistent if (w, σ, c) |= ψ, and because messages are
received in order. The fifth point is not directly modelled in our systems since we only
consider finite histories, but it is a kind of liveness constraint that we will probably be
led to consider when we extend the logic with temporal operators (see next section).

More recently, [Griesmayer and Lomuscio, 2013] studies the model checking of dis-
tributed systems with respect to epistemic specifications. Although this work is in a
synchronous setting, it is quite close to our approach in spirit, and shows that epistemic
issues in distributed systems have practical implications, and a logical approach to these
concerns can be fruitful.

Finally, we note that our definition of asynchronous models M⊗A, especially the
notion of cuts, is in the spirit of [Lamport, 1978].
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9. Future work

This work is a first attempt to develop an epistemic logic for reasoning about asyn-
chronous announcements. In the future, we would like to overcome the circularity prob-
lem, and define the semantics for the most general case (removing the finite tree and
existential conditions). Using coinduction to define the set of consistent states may be
one approach to this problem. Once we have defined the semantics for the general case,
if possible, we hope to provide a complete axiomatization and a general model-checking
algorithm. We also plan to implement the model-checking algorithms. Actually, we
believe that the model checking of our logic could be reduced to recently proposed suc-
cinct languages for Dynamic epistemic logic [Charrier and Schwarzentruber, 2015, 2017].
Therefore, we could use symbolic techniques as presented in [van Benthem et al., 2015].

Second, we would like to model more general situations of asynchronous communica-
tion. We plan to consider the case where messages are not read in FIFO order, but are
received and read in arbitrary order. We also plan to model the origin of the messages,
allowing formulas such as “After agent a broadcasts ϕ, ψ holds”. In our current setting,
when the external broadcaster makes a new announcement, the only effect is to queue it
in the channel without affecting anyone’s epistemic state. However, in the case where the
agents themselves make the announcements, agent a making an announcement should
impact her knowledge: after the announcement she should know, for instance, that the
channel is not empty. She should also know that after another agent checks their channel,
that agent will know that ψ has been announced.

Third, it would be interesting to add temporal operators to our language, in order to
express properties like “After p is announced and agent a receives it, eventually she will
know that agent b knows p” (assuming that agents are forced to read announcements
eventually).

Finally, we would like to model not only asynchronous broadcasts on a public channel
but also private asynchronous communications between agents in the system. In essence,
this amounts to defining a complete asynchronous version of dynamic epistemic logic
[van Ditmarsch et al., 2007].

Acknowledgements. We would like to thank Hans van Ditmarsch who hosted the three
authors in Nancy and who was the initiator of studying asynchrony in DEL.
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Appendix A.

Here we prove that, in the example of Section 3.5, we indeed have that

(w, ε,0) |= 〈p〉〈¬KCp〉 ©B ©B(KB¬q ∧ ¬KBKCp ∧ ¬KB¬KCp)

1. (w, ε,0) |= 〈p〉〈¬KCp〉 ©B ©B(KB¬q ∧ ¬KBKCp ∧ ¬KB¬KCp) iff (w, ε,0) |=
p, which is clearly true, and (w, p,0) |= 〈¬KCp〉 ©B ©B(KB¬q ∧ ¬KBKCp ∧
¬KB¬KCp).

2. (w, p,0) |= 〈¬KCp〉©B©B(KB¬q ∧¬KBKCp∧¬KB¬KCp) iff (w, p,0) |= ¬KCp
and (w, p ::¬KCp,0) |=©B ©B (KB¬q ∧ ¬KBKCp ∧ ¬KB¬KCp).

(a) (w, p,0) |= ¬KCp iff (w, p,0) 6|= KCp.
(b) (w, p,0) 6|= KCp iff there exists S′ s.t. (w, p,0)RCS

′, S′ |= X and S′ 6|= p.
We notice that (v, ε,0) meets the requirements for S′, so we conclude that
(w, p,0) |= ¬KCp.

3. (w, p ::¬KCp,0) |=©B©B(KB¬q∧¬KBKCp∧¬KB¬KCp) iff (w, p ::¬KCp,B 7→1
C 7→0) |=

©B(KB¬q ∧ ¬KBKCp ∧ ¬KB¬KCp).
4. (w, p ::¬KCp,B 7→1

C 7→0) |=©B(KB¬q∧¬KBKCp∧¬KB¬KCp) iff (w, p ::¬KCp,B 7→2
C 7→0) |=

(KB¬q ∧ ¬KBKCp ∧ ¬KB¬KCp).
5. (w, p ::¬KCp,B 7→2

C 7→0) |= (KB¬q ∧ ¬KBKCp ∧ ¬KB¬KCp) iff (w, p ::¬KCp,B 7→2
C 7→0) |=

KB¬q and (w, p ::¬KCp,B 7→2
C 7→0) |= ¬KBKCp and (w, p ::¬KCp,B 7→2

C 7→0) |= ¬KB¬KCp.
6. (w, p ::¬KCp,B 7→2

C 7→0) |= KB¬q iff for all S′ s.t. (w, p ::¬KCp,B 7→2
C 7→0)RBS

′, if S′ |= X
then S′ |= ¬q. We see that if (w, p ::¬KCp,B 7→2

C 7→0)RB(w, σ, c) then w = t, because
if the initial state were s, ¬KCp would never be announcable. So indeed S′ |= ¬q,
and (w, p ::¬KCp,B 7→2

C 7→0) |= KB¬q.
7. (w, p ::¬KCp,B 7→2

C 7→0) |= ¬KBKCp iff (w, p ::¬KCp,B 7→2
C 7→0) 6|= KBKCp.

(a) (w, p :: ¬KCp,B 7→2
C 7→0) 6|= KBKCp iff ∃S′ s.t. (w, p :: ¬KCp,B 7→2

C 7→0)RBS
′ and

S′ |= X and S′ 6|= KCp.
(b) S′ 6|= KCp iff ∃S′′ s.t. S′RCS

′′ and S′′ |= X and S′′ 6|= p. We can choose S′ =
(w, p ::¬KCp,B 7→2

C 7→0) and S′′ = u, ε,0 and we have that (w, p ::¬KCp,B 7→2
C 7→0)RBS

′,
S′ |= X, S′RCS

′′, S′′ |= X and S′′ 6|= p.

8. (w, p ::¬KCp,B 7→2
C 7→0) |= ¬KB¬KCp iff (w, p ::¬KCp,B 7→2

C 7→0) 6|= KB¬KCp.
9. (w, p ::¬KCp,B 7→2

C 7→0) 6|= KB¬KCp iff ∃S′ s.t. (w, p ::¬KCp,B 7→2
C 7→0)RBS

′ and S′ |= X
and S′ 6|= ¬KCp, i.e. S′ |= KCp.

10. Thus, (w, p :: ¬KCp,B 7→2
C 7→0) 6|= KB¬KCp iff ∃S′ s.t. (w, p :: ¬KCp,B 7→2

C 7→0)RBS
′ and

∀S′′ if S′RCS
′′ and S′′ |= X, then S′′ |= p. We can choose S′ = (w, p ::¬KCp,B 7→2

C 7→1)
and then we see that for any consistent S′′, if S′RS′′ then S′′ |= p. This shows that
(w, p ::¬KCp,B 7→2

C 7→0) |= ¬KB¬KCp.

Appendix B.

We consider the notion of (non-)Zeno behaviours, from the field of timed and hybrid
systems. We describe how, modulo the adoption of a form of asynchrony weaker than the
one considered in this work, this notion of non-Zeno behaviour could allow us to solve the
circularity problem for the semantics of the full language, for arbitrary announcements
and initial models.
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In timed and hybrid systems, a behaviour of a system is a Zeno behaviour if countably
infinitely many discrete events occur in a finite time [Zhang et al., 2001; Corradini et al.,
2003]. This is of course impossible in real systems, but such behaviours can occur in
models of systems due to abstraction, and many works either study how to detect such
behaviours, eliminate them, or directly consider only non-Zeno models, i.e., models that
do not present Zeno behaviours.

Similarly, let us here assume that our systems are non-Zeno: only a finite number
of discrete events (announcements/reception of formulas) occur in a finite time interval.
In fact, we make the stronger assumption that the number of messages sent during one
unit of time is bounded. Without loss of generality, we suppose that the number of
messages sent during one unit of time is at most one (otherwise, change the time unit).
We also suppose that reading a formula takes one unit of time. These assumptions are
somewhat idealistic, since the time necessary to send or read a message may be influenced
by many factors, such as the length of the message. However, it may be achievable in
some circumstances, for example by waiting after sending or receiving a message, in order
to use a uniform amount of time.

Note that in the rest of the paper we never mentioned time in our systems. Here
we need to for the notion of non-Zeno systems to make sense. We thus assume a global
clock, and in addition we make the rather strong assumption that all agents have access
to this clock, and that this is common knowledge.

Fagin et al. [1992, p. 333] wrote:

Is the system synchronous? That is, is there a “global clock” that every
process can “see,” so that every process “knows the time”?

With the assumption that agents have access to a global clock, our systems are not
asynchronous according to this definition. However we argue that this definition does
not apply here, and that even with the global clock assumption our framework remains
asynchronous in spirit. The first reason is that communication remains asynchronous:
the delay between sending of an announcement and reception by each agent is unbounded.
The second reason is that even though agents have access to a global clock and thus know
the time, they cannot talk about it and synchronize. However, knowing the time and
the fact that at most one announcement is made per time unit allows agents to refine
their pre-accessibility relation by removing all possible states that contain too many
announcements. This is enough to solve the problem of circular definition, as we detail
now.

First, we introduce the time of the global clock in the states of the models, so that
formulas are now evaluated on states of the form (w, σ, c, t) where (w, σ, c) is as before
and t is the time represented as a positive integer. Note that because we assumed that
sending of an announcement takes one time unit, we always have that |σ| ≤ t.
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We define the satisfaction relation (w, σ, c, t) |= ϕ by induction as follows:

(w, σ, c, t) |= p if p ∈ Π(w)
(w, σ, c, t) |= (ϕ1 ∧ ϕ2) if (w, σ, c, t) |= ϕ1 and (w, σ, c, t) |= ϕ2

(w, σ, c, t) |= ¬ϕ if (w, σ, c, t) 6|= ϕ
(w, σ, c, t) |= Kaϕ if for all S′ s.t. (w, σ, c)Ra(w′, σ′, c′), |σ′| ≤ t

and (w′, σ′, c′, t) |= X, (w′, σ′, c′, t) |= ϕ
(w, σ, c, t) |= 〈ψ〉ϕ if σ::ψ ∈ Seq(A), (w, σ, c, t) |= ψ and (w, σ::ψ, c, t+1) |= ϕ
(w, σ, c, t) |=©aϕ if c(a) < |σ| and (w, σ, c+a, t+ 1) |= ϕ

where c+a(b) =

{
c(b) if b 6= a
c(b) + 1 if b = a

(w, ε,0, t) |= X
(w, σ, c, t) |= X if either there is c′ < c such that (w, σ, c′, t) |= X

or σ = σ′::ψ and there is t′ < t such that
(w, σ′, c) ∈ S, (w, σ′, c, t′) |= X
and (w, σ′, c, t′) |= ψ

The definition is by induction on the lexicographical order on (t, |ϕ|). Observe that
in the last clause, where (w, ε,0, t) |= X requires (w, σ′, c, t′) |= ψ to be defined, we have
t′ < t. Also, in the clause for the knowledge operator, we restrict the pre-accessibility
relation to those states that do not contain more messages than what can have been
announced since the beginning. These two observations suffice to see that the induction
is well-founded.

So in a sense, our strong non-Zeno assumption together with the common knowledge
of a global clock tames the effect of the agents’ power to imagine pending messages.
We already described in Section 3.4 how removing this assumption on agents’ power to
imagine solves the circularity problem. In this section we have shown that it is enough
to forbid them to imagine too much.

Finally we show with an example that even with common knowledge of a global clock
our framework remains asynchronous.

Example 9. In synchronous public announcement logic, common knowledge4 of formula
p is achieved when p is announced. For example, in a two-agent system the following
formula is always true: 〈p〉

PAL
Ca,bp. In our systems, message sending and reception

are separate, and there is no common knowledge operator, but if systems with common
knowledge of a global clock were equivalent to synchronous systems, we would expect
〈p〉©a©b(KaKbp ∧KbKap) to hold always, since Ca,bp −→ KaKbp ∧KbKap. However,
it is easy to see that this does not always hold. Consider for instance a system with two
states, u and v, where p holds at u and not at v, and u and v are equivalent for agents
a and b. It is straightforward to see that (u, ε,0, 0) |= ¬〈p〉 ©a ©b(KaKbp ∧ KbKap).
Furthermore, it can be shown that for any sequence of formulas ϕ1, ..., ϕk, there exists n
such that 〈ϕ1〉 . . . 〈ϕk〉(©a©b)

k(¬(KaKb)
np∧¬(KbKa)np), which strongly suggests that

common knowledge is not attainable in these systems.

4In an S5 system, common knowledge of p is the formalization of “everybody knows p, everybody
knows that everybody knows p, and so on.” In particular, C{a,b}p = p∧Kap∧Kbp∧KaKbp∧KbKap∧...
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Appendix C.

Theorem 3. The model checking problem for propositional protocols is Pspace-hard.

Proof. We give a polynomial-time reduction from the quantified boolean formula (QBF)
satisfiability problem [Sipser, 1997] to the model checking problem for propositional pro-
tocols.

Reduction definition. Let ∃p1∀p2 . . . ∀p2nχ(p1, . . . , p2n) be a quantified boolean formula
where n is an integer. We define an instance (M, w0,A, ϕ0) of the model checking
problem for propositional protocols.

First we consider fresh atomic propositions p>i and p⊥i for i ∈ {1, . . . , 2n}, whose
intuitive meanings are respectively ‘pi is true’ and ‘pi is false’.

1. We define the model M = (W, {→a}a∈Ag ,Π) such that:

• W = {wp>1 , . . . , wp>2n , wp⊥1 , . . . , wp⊥2n};
• for all a ∈ Ag , →a= W ×W ;
• Π(wα) = {α}.

2. The world w0 is wp⊥1 (but it could be any other world in W ).

3. The announcement protocol A is {¬p>1 , . . . ,¬p>2n,¬p⊥1 , . . . ,¬p⊥2n}.
Now we define the following abbreviations:

- isdefa(pi) := (K̂ap
>
i ∧Ka¬p⊥i ) ∨ (K̂ap

⊥
i ∧Ka¬p>i ), to be read “pi is defined”;

- istruea(pi) := (K̂ap
>
i ), to be read “pi is true”.

4. The formula ϕ0 is ψ1 where the sequence (ψ`)`:=1..2n+1 is defined by induction:

• Base case: ψ2n+1 := χ(istruea(p1), . . . , istruea(p2n));
• Inductive case: for all ` ∈ {1, . . . , 2n},

– ψ` := K̂a(
∧̀
j=1

isdefb(pj)∧
2n∧

j=`+1

¬isdefb(pj) ∧ ψ`+1) if ` is odd;

– ψ` := Kb((
∧̀
j=1

isdefa(pj)∧
2n∧

j=`+1

¬isdefa(pj))→ψ`+1) if ` is even.

We claim that ∃p1∀p2 . . . ∀p2nχ(p1, . . . , p2n) is true if, and only ifM⊗A, (w0, ε,0) |= ψ1.

Reduction correctness. We prove by recurrence on ` the following property P (`), for all
` ∈ {1, . . . , 2n+ 1}:

For all valuations ν, for all w ∈W such that (w, σν,`, cν,`) is consistent,

ν |=QBF Q`p` . . . ∀p2nχ(p1, . . . , p2n) iff M⊗A, (w, σν,`, cν,`) |= ψ`

where

• Q` = ∀ if ` is even and Q` = ∃ if ` is odd;
• σν,` is any sequence σ of Seq(A) such that the prefix σ|` is

[¬p¬ν(p1)
1 , . . . ,¬p¬ν(p`−1)

`−1 ];
• cν,1 = 0;

• if ` > 1, cν,` = a 7→ `− 2
b 7→ `− 1 if ` is even and cν,` = a 7→ `− 1

b 7→ `− 2 if ` is odd.
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The following picture shows a branch of states reached in the asynchronous model
M⊗A when we evaluate formula ψ1:

w1, ε,0

w2, [¬p?1], a 7→ 0
b 7→ 1

w3, [¬p?1;¬p?2; ], a 7→ 2
b 7→ 1

...

w2n, [¬p?1;¬p?2; . . . ;¬p?2n−1],
a 7→ 2n− 2
b 7→ 2n− 1

w2n+1, [¬p?1;¬p?2; . . . ;¬p?2n−1¬p?2n], a 7→ 2n
b 7→ 2n− 1

ψ1

ψ2

ψ3

ψ2n

ψ2n+1

a

b

a

a

b

where ? stands for either > or ⊥.
P (2n+ 1) One can check that for all i, ν |= pi iff w, σν,2n+1, cν,2n+1 |= istruea(pi).

Using this, one can prove the base case by induction on χ:

ν |=QBF χ(p1, . . . , p2n) iff w, σν,2n+1, cν,2n+1 |= χ(istruea(p1), . . . , istruea(p2n)).

P (`+ 1)⇒ P (`) Suppose that P (`+ 1) holds and let us prove that P (`) holds. We
consider the case when ` is odd (the case when ` is even is similar). Let ν be a valuation
and w a world such that (w, σν,`, cν,`) is consistent.

ν |=QBF ∃p` . . . ∀p2nχ(p1, . . . , p2n)
iff there exists v ∈ {0, 1} s.t. ν[p` := v] |=QBF ∀p`+1 . . . ∀p2nχ(p1, . . . , p2n)

iff there exists v ∈ {0, 1} s.t. for all u ∈ W , if (u, σν[p`:=v],`+1, cν[p`:=v],`+1) is
consistent then M⊗A, (u, σν[p`:=v],`+1, cν[p`:=v],`+1) |= ψ`+1 (by P (`+ 1))

iff there exists v ∈ {0, 1} and a world u ∈ W s.t. (u, σν[p`:=v],`+1, cν[p`:=v],`+1) is
consistent and M⊗A, (u, σν[p`:=v],`+1, cν[p`:=v],`+1) |= ψ`+1

(because the choice of the world does not matter as long as it satisfies the
announcements in σν[p`:=v],`+1, and there always are at least 2n such worlds.)

iff M⊗A, (w, σν,`, cν,`) |= ψ`

(because
∧̀
j=1

isdefb(pj)) ∧
2n∧

j=`+1

¬isdefb(pj) in ψ` restricts the states that agent

a considers possible to those in which agent b has received either p>` or p⊥` .)

Conclusion By P (1), ∃p1∀p2 . . . ∀p2nχ(p1, . . . , p2n) is true iffM⊗A, wp⊥1 , ε,0 |= ψ1.
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Appendix D.

Theorem 7. The satisfiability problem when the protocol is finite and propositional and
if the number of agents is greater than 2 is NExptime-hard.

Proof. The proof follows the same idea as the proof of NExptime-hardness of the sat-
isfiability problem in dynamic epistemic logic [Aucher and Schwarzentruber, 2013]: we
prove that the satisfiability problem when the protocol is finite and propositional is
NExptime-hard by reducing a NExptime-hard tiling problem [van Emde Boas, 1997]
to it. Let C be a countable and infinite set of colors. A tile type t is a 4-tuple of colors,
denoted t = (left(t), right(t), up(t), down(t)) ∈ C4. We consider the following tiling
problem:

Input: a finite set T of tile types, t0 ∈ T and a natural number k written in its
binary form.
Output: yes iff there exists a function f from {0, . . . , k − 1}2 to T satisfying:

(t0) f(0, 0) = t0;
(v) for all x ∈ {0, ..., k − 1} and y ∈ {0, ..., k − 2}: up(f(x, y)) = down(f(x, y+1));
(h) for all x ∈ {0, ..., k − 2} and y ∈ {0, ..., k − 1}: right(f(x, y)) = left(f(x+1, y)).

In other words, the problem is to decide whether we can tile a k × k grid with the
tile types of T , t0 being placed onto (0, 0) (Figure 7a shows a 4× 4 tiling).

(a) 0 1 2 3

0

1

2

3

w

u
a

binary
decision

b-tree

(x1, y1, x2, y2), 1t1 , 2t2 (3, 1, 0, 2), 1 , 2
(b)

Figure 7: A 4× 4 tiling (k = 4) and an idea of the initial Kripke model

Let us consider an instance (T, t0, k) of the tiling problem, and without loss of
generality, assume that k = 2n. We define the instance of our satisfiability problem
tr(T, t0, k) = 〈A, ϕ〉 where A = {B0, . . . ,B4n−1, b0, . . . , b4n−1}, where each Bi and bi is
an atomic proposition, and ϕ is the conjunction of formulas of Figure 8. Observe that
this reduction is computable in polynomial time in the size of (T, t0, k). We prove that
(T, t0, k) is a positive instance of the tiling problem iff ϕ is A-satisfiable.

General idea. Formula ϕ enforces an encoding of two identical 2n × 2n-tilings into a
single tree (see Figure 7b). Each leaf of the tree represents both a position (x1, y1) in
the first tiling and a position (x2, y2) in the second one. Encoding two copies allows us
to compare a tile with the ones around it locally, in leaves coding for adjacent positions,
and thus without having to compare different leaves of the tree. This greatly simplifies
the task of verifying whether a tree represents a valid tiling.
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∧
j<4n

(Bj ∧ bj) (1)

K̂a

∧
`<4n

K`
b

(∧
j≥`

(Bj∧bj) ∧ K̂b(B`∧¬b`) ∧ K̂b(¬B`∧b`) ∧Kb((B`∧¬b`) ∨ (b`∧¬B`))∧∧
i<`

((Bi → KbBi) ∧ (¬Bi → Kb¬Bi) ∧ (bi → Kbbi) ∧ (¬bi → Kb¬bi))
)

(2)

KaK
4n
b

(∨
t∈T

1t ∧
∨
t∈T

2t ∧
∧{

(1t → ¬1t′) ∧ (2t → ¬2t′) | t, t′ ∈ T, t 6= t′
})

(3)

KaK
4n
b

(
(x1 = x2) ∧ (y1 = y2) →

∧
t∈T

(1t ↔ 2t)

)
(4)

Ka(

2n∧
i=1

Ki
b(KbBi ∨Kbbi) →

∨
t∈T

K4n
b 1t) (5)

Ka(

4n∧
i=2n+1

Ki
b(KbBi ∨Kbbi) →

∨
t∈T

K4n
b 2t) (6)

KaK
4n
b (((x1 = 0) ∧ (y1 = 0)) → t0) (7)

KaK
4n
b

(
(x1=x2) ∧ (y2=y1+1) →

∧
t∈T

(
1t →

∨
t′∈T,down(t′)=up(t)

2t′

))
(8)

KaK
4n
b

(
(x2=x1+1) ∧ (y1=y2) →

∧
t∈T

(
1t →

∨
t′∈T,left(t′)=right(t)

2t′

))
(9)

Figure 8: Clauses in ϕ
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The tile types of the first tiling are represented by atomic propositions 1t and the
tile types of the second tiling are represented by atomic propositions 2t′ , where t and t′

range over T . They hold at a leaf of the tree whose coordinates correspond to (x1, y1)
and (x2, y2) when the tile type of the first tiling at coordinate (x1, y1) is t and the tile
type of the second tiling at coordinate (x2, y2) is t′.

We enforce the consistency of the binary tree: for instance, all (x1, y1, ∗, ∗)-leaves
should be tagged with the same proposition 1t. To this aim, we need to select all
(x1, y1, ∗, ∗)-leaves; this is performed by an “arbitrary” announcement of coordinates in
the first tiling. This announcement is imagined by agent a, reason why the tree starts in
an a-child of the initial world w (the same technique applies for selecting (∗, ∗, x2, y2)-
leaves).

Encoding coordinates. The coordinates (x1, y1) and (x2, y2) of the two tilings are repre-
sented by a valuation over atomic propositions B0, . . . ,B4n−1, b0, . . . , b4n−1. More pre-
cisely, the set X1 = {B0, ...,Bn−1, b0, ..., bn−1} contains the atomic propositions encoding
the binary representation of the integer x1 as follows:

• Bi means that the ith bit of x1 is 1; bi means that the ith bit of x1 is 0;
• if Bi and bi are both true it means that the ith bit is not set yet;
• valuations where Bi and bi are both false are never considered.

Similarly, Y1 = {Bn, ...,B2n−1, bn, ..., b2n−1}, X2 = {B2n, ...,B3n−1, b2n, ..., b3n−1}
and Y2 = {B3n, ...,B4n−1, b3n, ..., b4n−1} contain the atomic propositions encoding binary
representations of integers y1, x2 and y2, respectively. For instance, for n = 4, the
coordinates (x1, y1) = (4, 3) and (x2, y2) = (12, 2) are represented at a leaf of the tree by
the valuation (we recall that in binary notation, 4 is represented by 0100, 3 is represented
by 0011, 12 is represented by 1100 and 2 is represented by 0010):

¬B0, b0 , ¬b1,B1 , ¬B2, b2 , ¬B3, b3︸ ︷︷ ︸
4

¬B4, b4 , ¬B5, b5 , ¬b6,B6 , ¬b7,B7︸ ︷︷ ︸
3

¬b8,B8 , ¬b9,B9 , ¬B10, b10 , ¬B11, b11︸ ︷︷ ︸
12

¬B12, b12 , ¬B13, b13 , ¬b14,B14 , ¬B15, b15︸ ︷︷ ︸
2

In order to ensure constraints (v) and (h) in the definition of a tiling, we need to
compare tiles that are adjacent in a tiling. Boolean formulas encode the properties
x1=x2, x2=x1+1, y1=y2 or y2=y1+1. For instance:

(x1=x2) ,
∧
i<n

(Bi↔Bi+2n)∧(bi↔bi+2n)

(x2=x1+1) ,
∨
i<n

(∧
j<i

(Bj↔Bj+2n)∧(bj↔bj+2n)∧bi ∧ Bi+2n∧
∧

i<j<n

(Bj+2n∧bj)
)

Announcements. WithA, we can announce bit values of coordinates in the first or second
tiling and Formula 1 ensures that all formulas in A are true and hence can be successfully
announced.
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Tree structure. Formula 2 ensures that there exists an a-successor u such that the epis-
temic model pointed at u is bisimilar up to modal depth 4n to a binary tree (with
b-relation between nodes) whose leaves’ valuations represent all possible pairs of posi-

tions (x1, y1, x2, y2) ∈ {0, . . . , 2n − 1}4. Subformula
∧
j>`(Bj ∧ bj) means that at level `,

the j-bits for j > ` are not set yet. Informally, a leaf corresponds to a pair of one cell in
the first tiling and one cell in the second tiling. In Formula 2, modality K̂a imposes the
existence of a new world which is the root of the tree (the root is not the initial world
directly because we use agent a to imagine possible announcements). This modality K̂a

also considers states in which b has received announcements; but as we require the state
imagined by agent a to be related to states that verify B` ∧ ¬b` and states that verify
¬B`∧b` for all `, we rule out the possibility that agent b has received any announcement.

Encoding two (unconstrained) tilings. Formulas 3 encodes that, at each leaf of the tree,
there is exactly one tile type for the first tiling and exactly one tile type for the second
tiling. Formula 4 encodes the fact that when these two pairs of coordinates coincide,
that is when x1=x2 and y1=y2, then the tile type of the first tiling and the tile type of
the second tiling are identical.

It may be the case that in the tree, two different leaves with the same valuation
have different tile types. Therefore, we also have to constrain the tree so that the leaves
denoting the same position in the first tiling (resp. second tiling) contain the same tile
type for the first tiling (resp. second tiling). This is expressed by formulas 5 and 6.

In Formula 5, modality Ka universally picks a sequence of announcements. The guard∧2n
i=1K

i
b(KbBi∨Kbbi) ensures that all bits of (x1, y1) have been announced: at each step

i ≤ 2n either Bi or bi has been announced and read by b (checked by the fact that either
b knows Bi or b knows bi). Maybe more has been announced: for instance B2n+1. In
particular, b considers sequences of announcements where only coordinates (x1, y1) have
been announced (and no more). It selects the branches where valuations on the branch
respect the announcement:

• either bits are not yet defined (and then it respects the announcements);
• or a bit of (x1, y1) is set and it should respect the announcement.

All leaves in selected branches correspond to the announced value of (x1, y1). Then, the
formula

∨
t∈T K

4n
b 1t checks that these leaves are of the same tile type t. Likewise with

Formula 6 for the second tiling.
So, with formulas 3-6, we encode in the tree two identical (unconstrained) tilings in

a single tree. It remains to enforce that this tiling is valid.

Encoding constraints (t0), (v) and (h). They are expressed respectively by formulas 7-9.
As we said at the beginning of the proof, the latter two constraints motivate the encoding
of two tilings. Comparing adjacent positions would not be possible with our epistemic
language if the tree encoded a single tiling.

One can then check that there exists a tiling for the instance (T, t0, k) of the tiling
problem iff formula ϕ is A-satisfiable.
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