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Abstract. This paper presents a tableau calculus for two semantic interpretations
of public announcements over monotone neighbourhood models: the intersection
and the subset semantics, developed by Ma and Sano. We show that, without
employing reduction axioms, both calculi are sound and complete with respect to
their corresponding semantic interpretations and, moreover, we establish that the
satisfiability problem of this public announcement extensions is NP-complete in
both cases. The tableau calculi has been implemented in Lotrecscheme.

1 Introduction

Public announcement logic (PAL; [7,21]) studies the effect of the most basic com-
municative action on the knowledge of epistemic logic agents (EL; [12,6]), and it has
served as the basis for the study of more complex announcements [3] and other forms of
epistemic changes [27,25]. Under the standard EL semantic model, relational models,
PAL relies on a natural interpretation of what the public announcement of a formula ϕ
does: it eliminates those epistemic possibilities that do not satisfy ϕ. Despite its sim-
plicity, PAL has proved to be a fruitful field for interesting research, as the characteri-
sation of successful formulas (those that are still true after being truthfully announced:
[28,14]), the characterisation of schematic validities [13] and many others [24].

However, relational models are not the unique structures for interpreting EL for-
mulas, and recently there have been approaches that, using the so called minimal or
neighborhood models [23,18,19,4], have studied not only epistemic phenomena but
also their dynamics [31,26,17,30]. The set of EL validities under neighborhood models
is smaller than that under relational models, so the agent’s knowledge has less ‘built-in’
properties, which allows a finer representation of epistemic notions and their dynamics
without resorting to ‘syntactic’ awareness models [5].

In [17], the authors presented two ways of updating (monotone) neighborhood mod-
els and thus of representing public announcements: one intersecting the current neigh-
borhoods with the new information (∩-semantics, already proposed in [31]), and an-
other preserving only those neighborhoods which are subsets of the new information
(⊆-semantics). The two updates behave differently, as their provided sound and com-
plete axiom systems show. The present work continues the study of such updates, first,
by extending the tableau system for monotone neighborhood models of [15] with rules
for dealing with its public announcement extensions, and second, by showing how the
satisfiability problem is NP-complete for both the intersection and the subset semantics.



2 Preliminaries

This section recalls some basic concepts from [17]. We work on the single agent case,
but the results obtained can be easily extended to multi-agent scenarios.

Throughout this paper, let Prop be a countable set of atomic propositions. The lan-
guage LEL extends the classical propositional language with formulas of the form 2ϕ,
read as “the agent knows that ϕ”. Formally,

ϕ ::= p | ¬ϕ | ϕ ∧ ψ | 2ϕ

with p ∈ Prop. Other propositional connectives (∨,→ and↔) are defined as usual. The
dual of 2 is defined as 3ϕ := ¬2¬ϕ.

A monotone neighborhood frame is a pair F = (W, τ) where W , ∅ is the domain, a
set of possible worlds, and τ : W → ℘(℘(W)) is a neighborhood function satisfying the
following monotonicity condition: for all w ∈ W and all X,Y ⊆ W, X ∈ τ(w) and X ⊆ Y
implies Y ∈ τ(w). A monotone neighborhood model (MNM)M = (F ,V) is a monotone
neighborhood frame F together with a valuation function V : Prop → ℘(W). Given a
M = (W, τ,V) and a LEL-formula ϕ, the notion of ϕ being true at a state w in the model
M (writtenM, w |= ϕ) is defined inductively as follows:

M, w |= p iff w ∈ V(p), M, w |= ϕ ∧ ψ iffM, w |= ϕ andM, w |= ψ,
M, w |= ¬ϕ iffM, w 6|= ϕ, M, w |= 2ϕ iff JϕKM ∈ τ(w).

where JϕKM := {u ∈ W | M, u |= ϕ} is the truth set of ϕ inM. SinceM is a MNM, the
satisfaction clause for � can be equivalently rewritten as follows:

M, w |= 2ϕ iff X ⊆ JϕKM for some X ∈ τ(w).

The languageLPAL extendsLEL with the public announcement operator [ϕ], allow-
ing the construction of formulas of the form [ϕ]ψ, read as “ψ is true after the public
announcement of ϕ”. (Define 〈ϕ〉ψ := ¬[ϕ]¬ψ.) For the semantic interpretation, we re-
call the intersection and subset semantics of [17].

Definition 1. Let M = (W, τ,V) be a MNM. For any non-empty U ⊆ W, define the
function VU : Prop→ U by VU(p) := V(p) ∩ U for each p ∈ Prop.

– The intersection submodel of M induced by U, M∩U = (U, τ∩U ,VU), is given by
τ∩U(u) := {P ∩ U | P ∈ τ(u)}, for every u ∈ U.

– The subset submodel ofM induced by U,M⊆U = (U, τ⊆U ,VU), is given by τ⊆U(u) :=
{P ∈ τ(u) | P ⊆ U}, for every u ∈ U.

IfM is monotone, then so areM∩U andM⊆U , as shown in [17].
Given a MNMM = (W, τ,V), formulas ϕ, ψ in LPAL, the notion of a formula being

true at a state of a model extends that for formulas in LEL with the following clauses:

– M, w |=∩ [ϕ]ψ iffM, w |=∩ ϕ impliesM∩ϕ, w |=∩ ψ,
– M, w |=⊆ [ϕ]ψ iffM, w |=⊆ ϕ impliesM⊆ϕ, w |=⊆ ψ;

where M∩ϕ abbreviates M∩JϕKM and M⊆ϕ abbreviates M⊆JϕKM . If we use the symbol
∗ ∈ {∩,⊆} to denote either semantics then, from 〈ϕ〉ψ’s definition,



– M, w |=∗ 〈ϕ〉ψ iffM, w |=∗ ϕ andM∗ϕ, w |=∗ ψ.

The subscript ∗ ∈ {∩,⊆} will be dropped from |=∗ when its meaining is clear from the
context. A sound and complete axiomatization for LPAL w.r.t. the provided semantics
under MNMs can be found in [17]. The purpose of this paper is to develop tableau sys-
tems for both logics. The following proposition is a generalization of the monotonicity
of 2 under MNMs (JϕKM ⊆ JψKM implies J2ϕKM ⊆ J2ψKM) to the public announce-
ments extensions and it will be key for providing �’s rules for both intersection and
subset semantics.

Proposition 1. Let ρi (1 ≤ i ≤ n), θ j (1 ≤ j ≤ m) and ϕ be LPAL-formulas andM =

(W, τ,V) be a MNM.

(i) J[ρ1] · · · [ρn]ϕKM ⊆ J[θ1] · · · [θm]ψKM implies J�ϕKM∩ρ1;··· ;∩ρn ⊆ J�ψKM∩θ1;··· ;∩θm

(ii) J〈ρ1〉 · · · 〈ρn〉ϕKM ⊆ J〈θ1〉 · · · 〈θm〉ψKM implies J�ϕKM⊆ρ1;··· ;⊆ρn ⊆ J�ψKM⊆θ1;··· ;⊆θm

Proof. For (i), assume J[ρ1] · · · [ρn]ϕKM ⊆ J[θ1] · · · [θm]ψKM. Now fix any w ∈ W
with M∩ρ1;··· ;∩ρn , w |=∩ �ϕ. By semantic interpretation, there is X ∈ τ∩ρ1;··· ;∩ρn (w)
s.t. X ⊆ JϕKM∩ρ1;··· ;∩ρn ; then, by the definition of τ∩ρ1;··· ;∩ρn (w), there is Y ∈ τ(w) s.t.
(Y ∩ Jρ1KM ∩ · · · ∩ JρnKM∩ρ1;··· ;∩ρn−1 ) ⊆ JϕKM∩ρ1;··· ;∩ρn , i.e., Y ⊆ J[ρ1] · · · [ρn]ϕKM and hence,
by assumption, Y ⊆ J[θ1] · · · [θm]ψKM. Thus, Y ⊆ JψKM∩θ1;··· ;∩θm for Y ∈ τ∩θ1;··· ;∩θm (w) so
M∩θ1;··· ;∩θm , w |=∩ �ψ, as needed.

For (ii), assume J〈ρ1〉 · · · 〈ρn〉ϕKM ⊆ J〈θ1〉 · · · 〈θm〉ψKM. Now fix any w ∈ W with
M⊆ρ1;··· ;⊆ρn , w |=⊆ �ϕ. Then there is X ∈ τ⊆ρ1;··· ;⊆ρn (w) s.t. X ⊆ JϕKM⊆ρ1;··· ;⊆ρn and, by
definition of τ⊆ρ1;··· ;⊆ρn (w), both X ∈ τ(w) and X ⊆ (Jρ1KM ∩ · · · ∩ JρnKM⊆ρ1;··· ;∩ρn−1 ∩

JϕKM⊆ρ1;··· ;∩ρn ), i.e., X ⊆ J〈ρ1〉 · · · 〈ρn〉ϕKM and hence, by assumption, X ⊆ J〈θ1〉 · · · 〈θm〉ψKM.
Thus, X ∈ τ⊆θ1;··· ;⊆θm (w) and X ⊆ JψKM⊆θ1;··· ;⊆θm soM⊆θ1;··· ;⊆θm , w |=⊆ �ψ, as needed.

3 Tableaux for non-normal monotone (static) epistemic logic

There are several works on tableau calculus of non-normal modal logic. Kripke [16]
proposed a calculus based on Kripke semantics which allow the notion of normal world,
and [8] constructed a uniform framework for tableau calculi for neighborhood seman-
tics employing labels for both a states and set of states. More recently, Indrzejczak [15]
avoided the label for set of states while presenting tableau calculi for several non-normal
logics over neighborhood semantics.

As a prelude to our contribution, here we recall the tableau method for non-normal
monotone modal logic of Indrzejczak [15], of which our proposal is an extension, as
well as the argument for soundness and completeness. Then we recall why the satisfia-
bility problem for non-normal monotone modal logic is NP-complete [29].

(σ : ϕ ∧ ψ)
(σ : ϕ)(σ : ψ)

(∧)
(σ : ¬(ϕ ∧ ψ))

(σ : ¬ϕ) | (σ : ¬ψ)
(¬∧)

(σ : ¬¬ϕ)
(σ : ϕ)

(¬¬)
(σ : �ϕ)(σ : ¬�ψ)

(σnew : ϕ)(σnew : ¬ψ)
(�)

Fig. 1. Tableau rules for non-normal monotone logic [15]



The terms in the tableau rules (Figure 1), of the form (σ : ϕ), indicate that formula
ϕ is true in state (prefix) σ. Rules (∧), (¬∧) and (¬¬) correspond to propositional rea-
soning, and rule (�) is the prefix generating rule. There are two general constraints on
the construction of tableaus: (1) The prefix generating rule is never applied twice to the
same premise on the same branch; (2) A formula is never added to a tableau branch
where it already occurs.

As usual, a tableau is saturated when no more rules that satisfy the constraints can
be applied. A branch is saturated if it belongs to a saturated tableau, and it is closed if
it contains formulas (σ : ϕ) and (σ : ¬ϕ) for some σ and ϕ (otherwise, the branch is
open). A tableau is closed if all its branches are closed, and it is open if at least one of
its branches is open.

Rule (�) might surprise readers familiar with tableaux for normal modal logic, but
it states a straightforward fact: if both �ϕ and ¬�ψ hold in a world σ, then while �ϕ im-
poses the existence of a neighborhood in τ(σ) containing only ϕ-worlds, ¬�ψ imposes
a ¬ψ-world in every neighborhood in τ(σ). The world σnew denotes exactly that.

3.1 Soundness and Completeness

Definition 2. Given a branch Θ, Prefix(Θ) is the set of all its prefixes. We say that Θ is
faithful to a MNM M = (W, τ,V) if there is a mapping f : Prefix(Θ) → W such that
(σ : ϕ) ∈ Θ impliesM, f (σ) |= ϕ for all σ ∈ Prefix(Θ).

Lemma 1. Let Θ be any branch of a tableau andM = (W, τ,V) a MNM. If Θ is faithful
toM, and a tableau rule is applied to it, then it produces at least one extension Θ′ such
that Θ′ is faithful toM.

For the proof, see Appendix A.1.

Theorem 1 (Soundness). Given any formula ϕ, if there is a closed tableau for
(σinitial : ¬ϕ), then ϕ is valid in the class of all MNMs.

Proof. We show the contrapositive. Suppose that¬ϕ is satisfiable, i.e., there is a MNMM
= (W, τ,V) and a w ∈ W s.t.M, w 6|= ϕ. Then the initial tableau Θ = {(σinitial : ¬ϕ)} is
faithful toM and hence, by Lemma 1, only faithful tableau to MNM will be produced.
A faithful branch cannot be closed. Hence (σinitial : ¬ϕ) can have no closed tableau.

Lemma 2. Given an open saturated branch Θ, define the model MΘ = (WΘ, τΘ,VΘ)
as WΘ := Prefix(Θ), VΘ(p) := {σ ∈ WΘ | (σ : p) ∈ Θ} and, for every σ ∈ WΘ,

X ∈ τΘ(σ) iff there is ϕ s.t.(σ : �ϕ) ∈ Θ and {σ′ ∈ WΘ | (σ′ : ϕ) ∈ Θ} ⊆ X

Then, for all formulas ϕ and all prefix σ, (i) (σ : ϕ) ∈ Θ impliesMΘ, σ |= ϕ and (ii)
(σ : ¬ϕ) ∈ Θ impliesMΘ, σ 6|= ϕ.

Note that τΘ is clearly monotone and thus, if Θ is non-empty,MΘ is a MNM. For
the proof, see Appendix A.2.

Theorem 2 (Completeness). Given any formula ϕ, if there is an open saturated tableau
for (σinitial : ϕ), then ϕ is satisfiable in a MNM.

Proof. If there is an open saturated branch Θ containing (σinitial : ϕ), Lemma 2 yields
MΘ, σinitial |= ϕ so ϕ is satisfiable in a MNM.



3.2 Complexity

Normal modal logics as K and KT are PSPACE-complete, and negative introspection
¬�p → �¬�p makes any modal logics between K and S4 NP-complete [11]. Tableau
systems for such logics have been given in [10].

The satisfiability problem (deciding whether a given ϕ is satisfiable) for non-normal
monotone modal logic is NP-complete [29]. A known method is to build a tableau from
{(σinitial : ϕ)}; at each step, the process adds non-deterministically a term of the form
(σ : ψ) with σ is a symbol and ψ is a subformula or a negation of a subformula of ϕ.

Proposition 2. When executing the tableau method from {(σinitial : ϕ)}, the number of
terms (σ : ψ) that can be added is polynomial in the length of ϕ.

Proof. As ψ is a subformula or a negation of a subformula of ϕ, the number of possible
ψ is linear in the size of ϕ. The number of possible world symbols σ is polynomial
in the size of ϕ, as they are created only for pairs of the form �ψ1, ¬�ψ2. Thus, the
number of such σ is bounded by |ϕ|2, and hence the number of possible terms (σ : ψ)
is bounded by |ϕ|3.

Corollary 1. The satisfiability problem in non-normal monotone modal logic is NP-
complete.

Proof. NP-hardness comes from the fact that the satisfiability problem for classical
propositional logic is polynomially reducible to the satisfiability problem for non-normal
monotone modal logic. Now let us figure out why it is in NP. In the non-deterministic
algorithm shown below, the size of Θ is polynomial in the length of ϕ (Proposition 2).
Testing that Θ is saturated or non-deterministically applying a rule can be implemented
in polynomial time in the size of Θ; then, these operations are polynomial in the length
of ϕ. As we add a term to Θ at each iteration of the while loop, there are at most a
polynomial number of iterations. Therefore, the tableau method can be implemented in
polynomial time on a non-deterministic machine.

procedure sat(ϕ)
Θ := {(σinitial : ϕ)}
while Θ is not saturated

Θ := result of the (non-deterministic) application of a rule on Θ
if Θ is closed then reject

accept

4 Tableaux for non-normal public annoucement logics

Tableaux for public announcements for normal modal logic already appeared in [2],
where the tableau formalism needed to represent the information of accessibility rela-
tion. Since we are concerned with non-normal modal logic characterized by neighbor-
hood models, our tableau calculus will not introduce any formalism for accessibility
relation. In this sense, our work is not a trivial generalization of [2]. For non-normal
monotone modal logic, this section adapts the tableau method of Section 3 to deal with
public announcements under both the ∩- and the ⊆-semantics. Here, terms in the tableau
rules can be either



– of the form (σ :L ϕ) with σ a world symbol, L a list of announced formulas (ε is
the empty list) and ϕ a formula, indicating that σ survives the successive announce-
ments of the elements of L and afterwards it satisfies ϕ, or

– of the form (σ :L ×), indicating that σ does not survive successive announcements
of the elements of L.

Figure 2 shows the tableau rules for non-normal public annoucement logics. We
define the rule set for the ∩-semantics as all the common rules plus (�∩), while the rule
set for the ⊆-semantics as all the common rules plus (�⊆).

Common rules:
(σ :L p)
(σ :ε p)

(↓ ε)
(σ :L ¬p)
(σ :ε ¬p)

(↓ ε¬)
(σ :L;ϕ ×)

(σ :L ¬ϕ) | (σ :L ×)
(×Back)

(σ :L ϕ ∧ ψ)
(σ :L ϕ)(σ :L ψ)

(∧)
(σ :L ¬(ϕ ∧ ψ))

(σ :L ¬ϕ) | (σ :L ¬ψ)
(¬∧)

(σ :L ¬¬ϕ)
(σ :L ϕ)

(¬¬)

(σ :L;ϕ ψ)
(σ :L ϕ)

(Back)
(σ :L [ϕ]ψ)

(σ :L ¬ϕ) | (σ :L;ϕ ψ)
([·])

(σ :L ¬[ϕ]ψ)
(σ :L;ϕ ¬ψ)

(¬[·])

For ∩-semantics:
(σ :L �ϕ)(σ :L′ ¬�ψ)

(σnew :L ϕ)(σnew :L′ ¬ψ) | (σnew :L ×)(σnew :L′ ¬ψ)
(�∩)

For ⊆-semantics:
(σ :L �ϕ)(σ :L′ ¬�ψ)

(σnew :L′ ¬ψ)(σnew :L ϕ) | (σnew :L′ ×)(σnew :L ϕ)
(�⊆)

Fig. 2. Tableau rules for handling public announcements

Rules (∧), (¬∧) and (¬¬) deal with propositional reasoning. Rules (↓ ε), (↓ ε¬)
indicate that valuations do not change after a sequence of announcements. Rule (¬[·])
states that if ¬[ϕ]ψ holds in σ after a sequence of announcements L then ¬ψ must hold
in σ after the sequence of announcements L;ϕ. Rule ([·]) states that if [ϕ]ψ holds in
σ after a sequence of announcements L, then either ϕ fails in σ after a sequence of
announcements L or else ψ holds in σ after the sequence of announcements L;ϕ. Rule
(Back) deals with a world surviving a sequence of announcements, and rule (×Back)
deals with a world not surviving it.

The rule of (�∩) is a rewriting of the first item of Proposition 1 into the rule of
tableau calculus. For simplicity, let us assume that L ≡ ρ; ρ′ and L′ ≡ θ. By taking the
contrapositive implication of Proposition 1.(i), we obtain the following rule:

(σ :ρ;ρ′ �ϕ)(σ :θ ¬�ψ)
(σnew :ε [ρ][ρ′]ϕ)(σnew :ε ¬[θ]ψ)

While (σnew :ε ¬[θ]ψ) generates (σnew :θ ¬ψ) by the rule (¬[·]), we have two cases
for expanding (σnew :ε [ρ][ρ′]ϕ). First, assume that σnew survives after the successive
updates of ρ and ρ′. Then, we may add (σnew :ρ:ρ′ ϕ) to the branch. Second, sup-
pose that σnew does not survive after the successive updates of ρ and ρ′. Then, we add
(σnew :ρ;ρ′ ×) to the branch. This also explains the soundness of (�∩) for ∩-semantics.



Rule (�⊆) can also be explained in terms of the second item of Proposition 1. Let
L and L′ as above. By taking the contrapositive implication of Proposition 1.(ii) and
rewriting the diamond 〈γ〉 in terms of the dual [γ], we obtain the following:

(σ :ρ;ρ′ �ϕ)(σ :θ ¬�ψ)
(σnew :ε ¬[ρ][ρ′]¬ϕ)(σnew :ε [θ]¬ψ)

By a procedure similar to the used for (�∩) we can justify the rule (�⊆).
As before, there are two constraints on the construction of tableaus: A prefix gen-

erating rule is never applied twice to the same premise on the same branch; A formula
is never added to a tableau branch where it already occurs. The notions of saturated
tableau and saturated branch are as before. In order to deal with terms of the form
(σ :L ×), the notion of closed branch is extended as follows: a branch of a tableau is
closed when (1) it contains terms (σ :L ϕ) and (σ :L ¬ϕ) for some σ, L and ϕ, or
(2) it contains (σ :ε ×) for some σ; otherwise, the branch is called open. The notions of
closed and open tableau are defined as before.

4.1 Soundness

We start with the ∩-semantics. As before, given a branch Θ, Prefix(Θ) denotes the set
of all prefixes in Θ.

Definition 3. Given a branch Θ and a MNMM = (W, τ,V), Θ is faithful toM if there
is a mapping f : Prefix(Θ)→ W such that, for all σ ∈ Prefix(Θ),

– (σ :ψ1;··· ;ψn ϕ) ∈ Θ impliesM∩ψ1;··· ;∩ψn , f (σ) |= ϕ, and
– (σ :ψ1;··· ;ψn ×) ∈ Θ implies that f (σ) is not inM∩ψ1;··· ;∩ψn ’s domain.

Lemma 3. Let Θ be any branch of a tableau andM = (W, τ,V) a MNM. If Θ is faithful
toM, and a tableau rule is applied to it, then it produces at least one extension Θ′ such
that Θ′ is faithful toM.

Proof. We only show the case for rule (�∩). For the cases of rules (↓ ε), ([·]), (×Back),
(Back), see Appendix A.3. Throughout this proof, let L ≡ ρ1; · · · ; ρn. Let L′ ≡ θ1; · · · ; θm

in the rule (�∩) of Table 2. Since (σ :L �ϕ), (σ :L′ ¬�ψ) ∈ Θ, there is an f s.t.
f (σ) ∈ J�ϕKM∩ρ1;··· ;∩ρn and f (σ) < J�ψKM∩θ1;··· ;∩θm . Thus, J�ϕKM∩ρ1;··· ;∩ρn * J�ψKM∩θ1;··· ;∩θm

and hence, by Proposition 1, J[ρ1] · · · [ρn]ϕKM * J[θ1] · · · [θm]ψKM: there is u inM such
that u ∈ J[ρ1] · · · [ρn]ϕKM but u < J[θ1] · · · [θm]ψKM. From the latter it follows that u
survives the successive intersection updates of θ1, . . ., θn butM∩θ1;··· ;∩θm , u 6|= ψ. From
the former, suppose (1) u is in the domain ofM∩ρ1;··· ;∩ρn ; thenM∩ρ1;··· ;∩ρn , u |= ϕ and
we can take Θ′ := Θ ∪ {(σnew :L ϕ), (σnew :L′ ¬ψ)} and extend the original f into
f ′ : Prefix(Θ′)→ W by defining f ′(σnew) := u. It follows thatM∩ρ1;··· ;∩ρn , f (σnew) |= ϕ
andM∩θ1;··· ;∩θm , f (σnew) 6|= ψ, and so Θ′ is faithful toM. Otherwise, (2) u is not in the
domain ofM∩ρ1;··· ;∩ρn , an a similar argument shows that Θ′ = Θ∪{(σnew :L ×), (σnew :L′

¬ψ)} is faithful toM.

Theorem 3. Given any formula ϕ and any list L ≡ ρ1; · · · ; ρn, if there is a closed
tableau for (σinitial :L ¬ϕ), then ϕ is valid inM∩ρ1;··· ;∩ρn for all MNMsM.



Proof. We show the contrapositive. Suppose that there is a MNM M = (W, τ,V) and
a w ∈ W such thatM∩ρ1;··· ;∩ρn , w 6|= ϕ. Then the initial tableau Θ = {(σinitial :L ¬ϕ)} is
faithful toM and hence, by Lemma 3, only faithful tableau to MNM will be produced.
A faithful branch cannot be closed. Hence (σinitial :L ¬ϕ) can have no closed tableau.

Now, for the ⊆-semantics, we have the following.

Lemma 4. Let Θ be any branch of a tableau andM = (W, τ,V) a MNM. If Θ is faithful
toM, and a tableau rule is applied to it, then it produces at least one extension Θ′ such
that Θ′ is faithful toM.

Proof. We only show the case for the rule (�⊆). Let L ≡ ρ1; · · · ; ρn and L′ ≡ θ1; · · · ; θm

in the rule (�⊆) of Table 2. Since (σ :L �ϕ), (σ :L′ ¬�ψ) ∈ Θ, there is an f s.t.
f (σ) ∈ J�ϕKM⊆ρ1;··· ;⊆ρn and f (σ) < J�ψKM⊆θ1;··· ;⊆θm . Thus, J�ϕKM⊆ρ1;··· ;⊆ρn * J�ψKM⊆θ1;··· ;⊆θm

and hence, by Proposition 1, J〈ρ1〉 · · · 〈ρn〉ϕKM * J〈θ1〉 · · · 〈θm〉ψKM. Then, there is u in
M such that u ∈ J〈ρ1〉 · · · 〈ρn〉ϕKM but u < J〈θ1〉 · · · 〈θm〉ψKM. From the former it fol-
lows that u survives the successive subset updates of ρ1, . . . , ρn andM⊆ρ1;··· ;⊆ρn , u |= ϕ.
From the latter, suppose (1) u is in the domain ofM⊆θ1;··· ;⊆θm ; thenM⊆θ1;··· ;⊆θm , u |= ¬ψ
and we can take Θ′ := Θ ∪ {(σnew :L′ ¬ψ), (σnew :L ϕ)} and extend the original f into
f ′ : Prefix(Θ′)→ W by defining f ′(σnew) := u. It follows thatM⊆θ1;··· ;⊆θm , f (σnew) 6|= ψ
and M⊆ρ1;··· ;⊆ρn , f (σnew) |= ϕ, and so Θ′ is faithful to M. Otherwise, (2) u is not in
the domain of M⊆θ1;··· ;⊆θm , and a similar argument shows that Θ′ := Θ ∪ {(σnew :L′

×), (σnew :L ϕ)} is faithful toM.

Theorem 4. Given any formula ϕ and any list L ≡ ρ1; · · · ; ρn, if there is a closed
tableau for (σinitial :L ϕ), then ϕ is valid inM⊆ρ1;··· ;⊆ρn for all MNMsM.

4.2 Completeness

We start with the ∩-semantics. Define the function len : LPAL ∪ {×, L} → N as

len(×) := 1, len(¬ϕ) := len(ϕ) + 1, len(ϕ ∧ ψ) := len(ϕ) + len(ψ) + 1,
len(p) := 1, len(�ϕ) := len(ϕ) + 1, len([ϕ]ψ) := len(ϕ) + len(ψ) + 1,

len(L) := len(ϕ1) + · · · + len(ϕn) for L ≡ ϕ1; · · · ;ϕn.

Lemma 5. Given an open saturated branch Θ, define the model MΘ = (WΘ, τΘ,VΘ)
as WΘ := Prefix(Θ), VΘ(p) := {σ ∈ WΘ | (σ :ε p) ∈ Θ} and, for every σ ∈ WΘ,
X ∈ τΘ(σ) iff there are ϕ and L such that

(σ :L �ϕ) ∈ Θ and {σ′ ∈ WΘ | (σ′ :L ×) ∈ Θ or (σ′ :L ϕ) ∈ Θ} ⊆ X.

Then, for all lists L = ρ1; · · · ; ρn and all formulas ϕ,

(i) (σ :L ϕ) ∈ Θ implies (MΘ)∩ρ1;···∩ρn , σ |= ϕ

(ii) (σ :L ¬ϕ) ∈ Θ implies (MΘ)∩ρ1;···∩ρn , σ 6|= ϕ

(iii) (σ :L ×) ∈ Θ implies σ is not in the domain of (MΘ)∩ρ1;···∩ρn .



Proof. All of (i), (ii) and (iii) are proved by simultaneous induction on len(∗) + len(L),
where ∗ is a formula ϕ or ×. We show the cases (i) and (ii) for �γ. In Appendix A.4, the
reader can find arguments for case (iii) fully and the cases for ϕ of the form p, [ψ]γ.

Let ϕ ≡ �γ. For (i), assume (σ :ρ1;··· ;ρn �γ) ∈ Θ; we show that JγK(MΘ)∩ρ1;··· ;∩ρn ∈

(τΘ)∩ρ1;··· ;∩ρn (σ) or, equivalently, J[ρ1] · · · [ρn]γKMΘ ∈ τΘ(σ). It suffices to show both

– (σ :L �γ) ∈ Θ,
– {σ′ ∈ WΘ | (σ′ :L ×) ∈ Θ or (σ′ :L γ) ∈ Θ} ⊆ J[ρ1] · · · [ρn]γKMΘ .

The first is the assumption; the second holds by induction hypothesis. For (ii), assume
(σ :L ¬�γ) ∈ Θ; we show that JγK(MΘ)∩ρ1;··· ;∩ρn < (τΘ)∩ρ1;··· ;∩ρn (σ) or, equivalently,
J[ρ1] · · · [ρn]γKMΘ < τΘ(σ), i.e., for all ϕ and L′,

(σ :L′ �ϕ) ∈ Θ implies {σ′ ∈ WΘ | (σ′ :L′ ×) ∈ Θ or (σ′ :L′ ϕ) ∈ Θ} * J[ρ1] · · · [ρn]γKMΘ

Thus, take any ϕ and L′ such that (σ :L′ �ϕ) ∈ Θ. By the saturatedness of Θ and rule
(�∩) we obtain, for some fresh σnew, either

(σnew :L′ ϕ), (σnew :L ¬γ) ∈ Θ or (σnew :L′ ×), (σnew :L ¬γ) ∈ Θ.

In either case, it follows from (σnew :L ¬γ) ∈ Θ and induction hypothesis that γ is false
at σnew in (MΘ)∩ρ1;··· ;∩ρn , which is equivalent toMΘ, σnew 6|= [ρ1] · · · [ρn]γ. This finishes
establishing our goal; {σ′ ∈ WΘ | (σ′ :L′ ×) ∈ Θ or (σ′ :L′ ϕ) ∈ Θ} * J[ρ1] · · · [ρn]γKMΘ .

Theorem 5. Given any formula ϕ, if there is an open saturated tableau for (σinitial :ε ϕ),
then ϕ is satisfiable in the class of all MNMs for intersection semantics.

Proof. By assumption, there is an open saturated branch Θ containing (σinitial :ε ϕ).
By Lemma 5, MΘ, σinitial |= ϕ, which implies the satisfiability of ϕ in the class of all
MNMs for intersection semantics.

Now, let us move to the ⊆-semantics.

Lemma 6. Given an open saturated branch Θ, define the model MΘ = (WΘ, τΘ,VΘ)
as in Lemma 5 except that, for every σ ∈ WΘ, X ∈ τΘ(σ) iff

(σ :L �ϕ) ∈ Θ and {σ′ ∈ WΘ | (σ′ :L ϕ) ∈ Θ} ⊆ X for some ϕ and L.

Then, for all lists L = ρ1; · · · ; ρn and all formulas ϕ,

(i) (σ :L ϕ) ∈ Θ implies (MΘ)⊆ρ1;··· ;⊆ρn , σ |= ϕ
(ii) (σ :L ¬ϕ) ∈ Θ implies (MΘ)⊆ρ1;··· ;⊆ρn , σ 6|= ϕ
(iii) (σ :L ×) ∈ Θ implies σ is not in the domain of (MΘ)⊆ρ1;··· ;⊆ρn .

Proof. All of (i), (ii) and (iii) are proved by simultaneous induction on len(∗) + len(L),
where ∗ is a formula ϕ or ×. We show cases (i) and (ii) for ϕ of the form �γ.

For (i), assume (σ :L �γ) ∈ Θ; we show that (MΘ)⊆ρ1;··· ;⊆ρn , σ |= �γ, i.e., JγK(MΘ)⊆ρ1;··· ;⊆ρn ∈

(τΘ)⊆ρ1;··· ;⊆ρn (σ) or, equivalently, J〈ρ1〉 · · · 〈ρn〉γKM ∈ τΘ(σ). It suffices to show

(σ :L �γ) ∈ Θ and {σ′ ∈ WΘ | (σ′ :L γ) ∈ Θ} ⊆ J〈ρ1〉 · · · 〈ρn〉γKMΘ



The first conjunct is the assumption. For the second conjunct, suppose (σ′ :L γ) ∈ Θ;
we show thatMΘ, σ′ |= 〈ρ1〉 · · · 〈ρn〉γ, i.e.,

MΘ, σ′ |= ρ1, . . . , (MΘ)⊆ρ1;··· ;⊆ρn−1 , σ′ |= ρn and (MΘ)⊆ρ1;··· ;⊆ρn , σ′ |= γ.

These can be derived from (σ′ :L γ) ∈ Θ, the rule (Back) and induction hypothesis.
Therefore,MΘ, σ′ |= 〈ρ1〉 · · · 〈ρn〉γ, as required.

For (ii), assume (σ :L ¬�γ) ∈ Θ; we show that (MΘ)⊆ρ1;··· ;⊆ρn , σ 6|= �γ, i.e.,
J〈ρ1〉 · · · 〈ρn〉γKM < τΘ(σ). It suffices to show that, for all L′ and all ϕ,

(σ :L′ �ϕ) ∈ Θ implies {σ′ ∈ WΘ | (σ′ :L′ ϕ) ∈ Θ} * J〈ρ1〉 · · · 〈ρn〉γKMΘ .

Thus, take any L′ and ϕ such that (σ :L′ �ϕ) ∈ Θ. Since (σ :L′ �ϕ), (σ :L ¬�γ) ∈ Θ,
Θ’s saturatedness and rule (�⊆) imply, for some fresh σnew, either

(σnew :L ¬γ), (σnew :L′ ϕ) ∈ Θ or (σnew :L ×), (σnew :L′ ϕ) ∈ Θ

In either case, it follows from induction hypothesis that eitherσnew is not in (MΘ)⊆ρ1;··· ;⊆ρn ,
or else (MΘ)⊆ρ1;··· ;⊆ρn , σnew 6|= γ, which is equivalent with MΘ, σnew 6|= 〈ρ1〉 · · · 〈ρn〉γ.
This finishes establishing our goal; {σ′ ∈ WΘ | (σ′ :L′ ϕ) ∈ Θ} * J〈ρ1〉 · · · 〈ρn〉γKMΘ .

Theorem 6. Given any formula ϕ, if there is an open saturated tableau for (σinitial :ε ϕ),
then ϕ is satisfiable in the class of all MNMs for subset semantics.

Proof. Similar to Theorem 5, using Lemma 6 instead.

4.3 Termination and complexity

The same argument works for both semantics. In order to check ϕ’s satisfiability, start
the tableau method from the set of terms {(σinitial :ε ϕ)} where σinitial is the initial sym-
bol. At each step, add non-deterministically at least one term of the form (σ :L ∗)
where σ is a symbol, L is a list of subformulas or negation subformulas of ϕ and ∗ is a
subformula or a negation of a subformula of ϕ or the symbol ×.

Proposition 3. When executing the tableau method from {(σinitial :ε ϕ)}, the number of
terms {(σ :L ∗)} that can be added is polynomial in the length of ϕ.

Proof. As ∗ is a subformula or a negation of a subformula of ϕ or the symbol ×, the
number of possible ∗ is linear in the size of ϕ. The number of possible L is linear in
the size of ϕ since each entry corresponds to an occurrence of an operator [ψ] in ϕ.
The number of possible σ is polynomial in the size of ϕ since new world symbols σ are
created for 4-tuple of subformulas of the form �ψ1, ¬�ψ2. Thus, the number of possible
terms (σ : ψ) is bounded by a polynomial in |ϕ|.

Corollary 2. The satisfiability problem in non-normal monotone public announcement
logic is NP-complete.

Proof. The proof is similar to the proof of Corollary 1 except that we use Proposition
3 instead of Proposition 2 and that we start with Θ := {(σinitial :ε ϕ)} instead of Θ :=
{(σinitial : ϕ)}.



4.4 Implementation

We implemented the tableau method for both ∩-semantics and ⊆-semantics in Lotrec-
scheme [22]. The tool and the files for logics are available, respectively, at:

http://people.irisa.fr/Francois.Schwarzentruber/lotrecscheme/

http://people.irisa.fr/Francois.Schwarzentruber/publications/ICLA2015/

Appendix A.5 shows an output of Lotrecscheme.

5 Conclusion

We develop tableau system for both intersection and subset PAL based on monotone
modal logic. Here we present some problems for future work.

– We may generalize our tableau systems to the general dynamic epistemic logic set-
ting. Intersection DEL is already proposed in [31] and subset DEL is also proposed
in [17]. Our idea for developing tableau system for PALs is to take finite sequences
of public announcements into consider. In the DEL setting, we may consider his-
tories of actions in the action model. Thus we may develop the tableau rules for
operations as it is done in [1] for the DEL extension of modal logic K.

– It is well-known that modal formulas corresponds to conditions on neighborhood
frames ([19]). Thus we may consider how tableau systems can be developed for ex-
tensions of monotone modal logic with additional modal axioms, and then consider
their dynamics extensions. The problem is to take those special frame conditions
into account in the tableau rules for modal operations.

– As the satisfiability problems for both intersection and subset PAL are in NP, they
are reducible to the satisfiability problem for classical propositional logic [20]. We
aim at finding elegant reductions for obtaining efficient solvers for both intersection
and subset PAL.
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A Appendix

A.1 Proof of Lemma 1

Proof. We work only with (�). AssumeΘ is faithful toM; applying (�) to (σ : �ϕ) and
(σ : ¬�ψ) inΘ yieldsΘ′ := Θ∪{(σnew : ϕ), (σnew : ¬ψ)}. Since {(σ : �ϕ), (σ : ¬�ψ)} ⊆
Θ, the assumption implies both M, f (σ) |= �ϕ and M, f (σ) |= ¬�ψ; then f (σ) <
J�ϕ → �ψKM , W and hence Jϕ → ψKM , W, so there is v ∈ W s.t. v ∈ JϕKM and
v < JψKM. Now, since Θ is faithful toM, there is f s.t.M, f (σ) |= γ for all (σ : γ) ∈ Θ.
The function f ′ : Prefix(Θ′) → W, extending f by defining f ′(σnew) := v (and thus
yieldingM, f ′(σnew) |= ϕ,M, f ′(σnew) |= ¬ψ), is a witness showing that Θ′ is faithful
toM.

A.2 Proof of Lemma 2

Proof. Both (i) and (ii) are proved by simultaneous induction on ϕ. We only check the
cases where ϕ is atomic and of the form �ψ. First, if ϕ is an atom p, (i) is immediate
from the definition of VΘ. For (ii), assume (σ : ¬p) ∈ Θ; since Θ is open, (σ : p) < Θ,
and hence it follows from VΘ’s definition thatMΘ, σ 6|= p.

Second, suppose ϕ is �ψ. For (i), assume (σ : �ψ) ∈ Θ. In order to show JψKMΘ ∈

τΘ(σ), our candidate for a witness of JψKMΘ ∈ τΘ(σ) is, of course, ψ. Thus, it suffices
to show that {σ′ ∈ WΘ | (σ′ : ψ) ∈ Θ} ⊆ JψKMΘ , so suppose (σ′ : ψ) ∈ Θ; by induction
hypothesis, we obtain σ′ ∈ JψKMΘ .

For (ii), suppose (σ : ¬�ψ) ∈ Θ; we show that JψKMΘ < τΘ(σ), i.e., for all formulas
γ, (σ : �γ) ∈ Θ implies {σ′ ∈ WΘ | (σ′ : γ) ∈ Θ} * JψKMΘ . So take any γ such that
(σ : �γ) ∈ Θ. Since Θ is saturated, it follows from the rule (�) that there is a prefix
σnew ∈ WΘ such that (σnew : γ), (σnew : ¬ψ) ∈ Θ. Then σnew ∈ {σ

′ ∈ WΘ | (σ′ : γ) ∈ Θ}
but, by induction hypothesis, σnew < JψKMΘ .

A.3 Proof of Lemma 3

Here we provide arguments for the remaining cases in the proof of Lemma 3.

(↓ ε): Since (σ :L p) ∈ Θ, we obtain M∩ρ1;··· ;∩ρn , f (σ) |= p so M, f (σ) |= p. Hence,
Θ ∪ { (σ :ε p) } is faithful toM.

([·]): Since (σ :L [ϕ]ψ) ∈ Θ, we obtain M∩ρ1;··· ;∩ρn , f (σ) |= [ϕ]ψ. Thus, either
M∩ρ1;··· ;∩ρn , f (σ) 6|= ϕ or elseM∩ρ1;··· ;∩ρn;∩ϕ, f (σ) |= ψ, so either Θ∪ { (σ :L ¬ϕ) } or
else Θ ∪ { (σ :L;ϕ ψ) } is faithful toM.

(×Back): Since (σ :L;ϕ ×) ∈ Θ, f (σ) is not in the domain ofM∩ρ1;··· ;∩ρn;∩ϕ. If f (σ) is in
the domain ofM∩ρ1;··· ;∩ρn , then ϕ fails at f (σ) inM∩ρ1;··· ;∩ρn , so Θ ∪ {(σ :L ¬ϕ)} is
faithful toM. Otherwise, f (σ) is not in the domain ofM∩ρ1;··· ;∩ρn , so Θ∪{(σ :L ×)}
is faithful toM.

(Back): Since (σ :L;ϕ ψ) ∈ Θ, we obtain M∩ρ1;··· ;∩ρn;∩ϕ, f (σ) |= ψ, which implies
M∩ρ1;··· ;∩ρn , f (σ) |= ϕ. Hence, Θ ∪ {(σ :L ϕ)} is faithful toM.



A.4 Remaining Proof of Lemma 5

Here we show case (iii) fully and the cases for ϕ of the form p, [ψ]γ of Lemma 5.
First consider the case (iii). If L is empty, the statement of (iii) becomes vacuously

true since Θ is open. Otherwise, L ≡ ρ1; · · · ; ρn, and the saturatedness of Θ and the rule
(×Back) imply either (σ :ρ1;··· ;ρn−1 ¬ρn) ∈ Θ or else (σ :ρ1;··· ;ρn−1 ×) ∈ Θ. By induction
hypothesis, either (MΘ)∩ρ1;···∩ρn−1 , σ 6|= ρn or else σ is not in (MΘ)∩ρ1;···∩ρn−1 . In both
cases, σ is not in (MΘ)∩ρ1;···∩ρn .

Second, let ϕ ≡ p. For (i), suppose (σ :L p) ∈ Θ; since Θ is saturated, rule (↓ ε)
implies (σ :ε p) ∈ Θ so, by definition, σ ∈ VΘ(p). Moreover, rule (Back) and induction
hypothesis imply that σ is in (MΘ)∩ρ1;···∩ρn ; hence, (MΘ)∩ρ1;···∩ρn , σ |= p. For (ii), use a
similar argument now with (↓ ε¬) and (Back).

Third, let ϕ ≡ [ψ]γ. For (i), suppose (σ :ρ1;··· ;ρn [ψ]γ) ∈ Θ and, further, that
(MΘ)∩ρ1;···∩ρn , σ |= ψ; we show (MΘ)∩ρ1;···∩ρn;∩ψ, σ |= γ. Since Θ is saturated, rules ([·])
and (Back) imply either (σ :L ¬ψ) ∈ Θ or else both (σ :L ψ) ∈ Θ and (σ :L;ψ γ) ∈ Θ.
But from assumption and induction hypothesis, (σ :L ¬ψ) < Θ and thus (σ :L ψ) ∈ Θ
and (σ :L;ψ γ) ∈ Θ. Then, again by induction hypothesis, (MΘ)∩ρ1;···∩ρn;∩ψ, σ |= γ.
For (ii), suppose (σ :ρ1;··· ;ρn ¬[ψ]γ) ∈ Θ. Since Θ is saturated, rule (¬[·]) implies both
(σ :L ψ) ∈ Θ and (σ :L;ψ ¬γ) ∈ Θ. By induction hypothesis, both (MΘ)∩ρ1;···∩ρn , σ |= ψ
and (MΘ)∩ρ1;···∩ρn;∩ψ, σ 6|= γ so (MΘ)∩ρ1;···∩ρn , σ 6|= [ψ]γ.

A.5 Execution of the tableau method

When we run Lotrecscheme with the tableau method for intersection semantics for the
formula (p→ �[p]q) ∧ ¬[p]�q we obtain the following closed branch at some point:

The branch contains two world symbols (that are the two nodes above). As the node n1
contains lf () p means that the term (n1 :ε p) is in the current branch.
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