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Abstract

This paper provides a coherent framework for studying longitudinal manifold-valued data. We introduce a
Bayesian mixed-effects model which allows estimating both a group-representative piecewise-geodesic tra-
jectory in the Riemannian space of shape and inter-individual variability. We prove the existence of the
maximum a posteriori estimate and its asymptotic consistency under reasonable assumptions. Due to the
non-linearity of the proposed model, we use a stochastic version of the Expectation-Maximization algorithm
to estimate the model parameters. Our simulations show that our model is not noise-sensitive and succeeds
in explaining various paths of progression.

Keywords: Bayesian estimation, EM like algorithm, Longitudinal data, MCMC methods, Nonlinear
mixed-effects model, Spatiotemporal analysis

1. Introduction
Beyond transversal studies, temporal evolution of phenomena is a field of growing interest. Indeed, to

understand a phenomenon, it appears more suitable to compare the evolution of its markers over time than
to do so at a given stage.

Chemotherapy monitoring is based on the follow-up of scores over time to report on the progression of the
disease. Actually, rather than tumors aspect or size, oncologists asses that a given treatment is efficient from
the moment it results in a decrease of tumor volume. The same applies to neurodegenerative disorders, such
as Alzheimer’s disease or Parkinson’s disease: rather than neuronal degeneration itself which is a natural
consequence of cerebral aging, the pathological nature of such diseases lies in the rate of progression of this
senescence. The study of longitudinal data is not restricted to medical applications and proves successful in
various fields of application such as computer vision, automatic detection of facial emotions, social sciences,
etc.

Recent advances in medical imaging offer new opportunities for follow-ups. We can now carry out
patients’ monitoring free of invasive measures, such as biopsies. Hence, to provide everyone with the best
possible treatment, there is a need for prediction methods that allow to grasp quickly the efficiency of a
possible treatment based solely on image-type data. Consequently, designing models that deal with medical
images and more generally extracted features and shapes from these images is very important for application-
related uses. This paper provides a coherent framework for studying such longitudinal structured data.
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1.1. The Use of Riemannian Geometry for the Study of Longitudinal Data
Anatomical data – and most of structured data – have been successfully modeled as points on a Rieman-

nian manifold, i.e. as points on a smooth manifold equipped with a Riemannian metric tensor. These spaces
are often called shape spaces. The choice of the shape space and its metric tensor is driven by the type of
data in the study (Charlier et al., 2017; Charon and Trouvé, 2013; Klassen et al., 2004; Trouvé and Younes,
2015; Vaillant and Glaunès, 2005). Geometrical properties of shape manifolds have been properly defined
over the last decades. Moreover, according to the Whitney embedding theorem (Gallot et al., 2004), as the
shape spaces are second-countable, they are always embedded in a real d-dimensional Euclidean space, the
space of measurements, which leads us to consider the shape manifold as a submanifold of this Euclidean
space.

Formally, we call shape space the unique orbit of the transitive action of a group G of deformations on a
setM ⊂ Rd of shapes. Then all the shapes can be obtained by deformation of a template shape. Most of the
time, G is nothing more than the group C1(Rd) of the C1-diffeomorphisms of Rd. Due to the construction
by group action, we can endow this manifold with a distance that quantifies the cost of deformation from
a shape to another (Younes, 2010). More precisely, if we assume that G is endowed with a right-invariant
metric dG , then we can endow M with the pseudo-metric defined by

∀x, y ∈M, dM (x, y) = inf
g∈G
{dG(Id, g) | g · x = y} .

One method (among others like the diffeomorphic demons algorithm (Vercauteren et al., 2009)) which allows
such a framework is the large deformation diffeomorphic metric mapping (LDDMM) (Beg et al., 2005; Dupuis
et al., 1998) that we will use in this paper. The main idea of LDDMM is to allow for, accordingly to their
name, large deformations of space while keeping control over them, particularly through smoothness. To do
so, we restrict the group of deformations G to a sub-group GV ⊂ G of well-behaving deformations, in a sense
we are going to specify.

Let V be a set of vector fields over Rn, whose norms correspond to the cost of deformation. We assume
that V can be endowed with a Hilbert space structure and is continuously embedded into the space C1

0(Rn)
of the diffeomorphisms that decay at infinity and whose differentials decay at infinity. Let L2

V = L2 ([0, 1], V )
the set of all time-dependent vector fields v = (vt)t∈[0,1] which are L2-integrable with respect to t. We then
define the group GV referred to above by setting GV = {φv1 | v ∈ L2

V }, where φv1 is the flow at time t = 1
associated with the differential equation ∂tφvt = vt ◦ φvt , φv0 = Id (Younes, 2010). We want to emphasize
here that the application t 7→ φvt does not have a priori its values in Rd but rather in the Riemannian
manifold of shapes M . Note that φv1 ∈ C1(Rn) and that the differential equation above admits a unique
solution for each initial condition (Younes, 2010). Lastly, there exists a vector field v able to transport a
configuration of the shape space into another while minimizing the cost of deformation (Younes, 2010), i.e.
the following minimum is reached for a certain v in L2

V , and the cost of deformation from a shape x to
another shape y is given by

∀x, y ∈M, dM (x, y) = inf
v∈L2

V

{(∫ 1

0
‖vt‖2V dt

)1/2 ∣∣∣ φv1 · x = y

}
.

Therefore, the temporal evolution of empirical data may be modeled as a parametric curve in the space
of measurements and more precisely as a noisy version of an underlying curve living on the Riemannian
shape submanifold. Given a cohort of individuals followed over a given period, we thus observe discreet
samples of such a curve for each subject. We call this set of observations a longitudinal data set. Figure 1
illustrates this understanding of the data.

1.2. Models with a Medical Focus for the Study of Longitudinal Data
Reaction-diffusion based tumor growth models have demonstrated their efficiency for cancer monitoring

(Konukoglu et al., 2010; Rekik et al., 2013). The idea of these methods is to model the tumor growth with
a “simple" PDE model, involving few parameters which are estimated from series of CT-scan or MRI (Colin
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et al., 2010; Saut et al., 2014). For therapy planning purposes, such methods can reinforce the decision to
wait without specific treatment, in case of slow progression of the tumor, thus preventing heavy treatment.
However, such methods cover images but not shapes or whatever else type of data, e.g. scores. Besides,
even for images, as these models rely on reaction-diffusion equations, they can only apply for situations in
which the observed phenomenon is linked to diffusion dynamics. As a consequence, these models can apply
to untreated cancer but not to treated-one nor to multiple sclerosis monitoring, neurodegenerative disease
follow-up, like Alzheimer’s or Parkinson’s diseases, or more complicated framework. Last, they cannot
predict the response to a given molecule and so help in the choice of the appropriate one, nor in the choice
of an appropriate sequence of molecules.

Mixed-effects models have proved to be effective for the study of longitudinal data sets (Laird and Ware,
1982), especially for medical purposes (Comets et al., 2010; Milliken and Edland, 2000; Ribba et al., 2014).
Indeed, mixed-effects models provide a general and flexible framework to study complex data which depends
on unobserved variables, such as longitudinal data sets. They consist of two parts: fixed effects which describe
the data at the population level and random effects that are associated with individual experimental units.
In the framework of longitudinal analysis, through mixed-effects models, one can explain in two steps, both
a representative path of the evolution of the whole population and individual-specific progressions. Given a
longitudinal data set, a representative trajectory and its variability are first estimated. Then, we can define
subject-specific trajectories with respect to global progression.

Building on the geodesic regression model (Fletcher, 2011), the generative and hierarchical model (Mu-
ralidharan and Fletcher, 2012) allows for the analysis of longitudinal Riemannian manifold-valued data.
Each individual is assumed to follow a geodesic trajectory, which is itself a random perturbation of a mean
geodesic trajectory. The geodesic hierarchical model for diffeomorphisms (Singh et al., 2013, 2014) exploits
the close link between groups of deformations and shape spaces and consists in estimating a geodesic tra-
jectory of diffeomorphisms at the population scale. However, random effects of both models depend heavily
on the first time of observation, and thus a change in this first time involves a corresponding change in the
estimated value for these effects. The first time of acquisition does not have insofar any meaningful place in
the modeling process and there is thus a need for a model robust to changes in the time origin.

Discriminating spatial deformations, linked with the intrinsic geometry of observed shapes, from temporal
deformations, related to acquisition constraints, is a mean of freeing oneself from this limitation. The idea
of spatio-temporal atlas (Durrleman et al., 2009, 2013) is to estimate a continuous trajectory of shapes such
that each observation corresponds to the evaluation at a given time of a spatio-temporal deformation of this
template scenario. To our knowledge, this model is the first to break spatial and temporal deformations
up. Moreover, it can handle massive and heterogeneous data such as low dimensional anatomic shapes.
Several other models are also based on the concept of time warp (Delor et al., 2013; Yang et al., 2011).
However, since the temporal parameterization introduced in these models is statistically non-parametric, it
is difficult to estimate. In the same vein and based on the notion of time warps, a kind of generalization of
the geodesic hierarchical model (Muralidharan and Fletcher, 2012) has been proposed by Kim et al. (2017):
the Riemannian nonlinear mixed-effects model. However, due to the high complexity of the model, it is
impossible to estimate the parameters accurately.

Specifically for the study of brain senescence processes, Lorenzi et al. (2015) propose to distinguish natural
aging due to anatomical age from pathological aging. However, despite appealing features, this model is not
easy to extend to other scope of applications. The temporal alignment in longitudinal data analysis is also
an efficient way to geometrically compare trajectories (Su et al., 2014a,b). Here, the authors propose to use
the temporal registration to align the different trajectories. Despite good results for comparing trajectories,
the interpretation of the temporal parameterization is lost. However, within medical applications, the time
parametrization reveals information on the data patient’s state of health and has to be considered.

The recent generic spatio-temporal model (Schiratti et al., 2015, 2017) takes into account all the problems
raised above. This model was built to grant temporal and spatial inter-subject variability through individual
variations of a common time-line and parallel shifting of a representative trajectory. Each individual tra-
jectory has its own intrinsic geometric pattern through spatial variability and its own time parametrization
through time variability. In terms of modeling, the time variability allows some individuals to follow the
same progression path but at a different age and with possibly a different pace. This model was notably
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applied to early detection of Alzheimer’s disease and proved thereat to be efficient (Bilgel et al., 2016).
Morevoer, this model was recently improved in order to increase its applicability (Bône et al., 2018; Koval
et al., 2017, 2018) and is still the subject of intensive research (Debavelaere et al., 2019). However, whether
it is the original model or its extensions, they all make a strong hypothesis to build their model as they
assume the characteristic evolution to be geodesic, i.e. that the characteristic trajectory is the shortest path
between the initial representative state and the final one. This hypothesis helps for the parametrization
of the model which becomes both generic, i.e. allowing for many different types of data, and numerically
estimable. However, such an assumption significantly reduces the effective framework of their model. Like
the described-above PDEs based models, such a model can be applied to situations with a unique dynamic
like neurodegenerative disease, but not to situations in which the dynamic can fluctuate. For instance, this
model cannot be used for multiple sclerosis monitoring in which the disease progression is accompanied by
recession nor for monitoring tumor regression or recurrence in response to treatments.

1.3. Contributions and Paper Organization
In this paper, we relax the geodesic assumption made by Schiratti et al. (2015) to make the model

applicable to a wider variety of situations and data sets: we address each situation in which the evolution
can fluctuate several times.

We propose in this paper a coherent and generic statistical framework which includes the generic spatio-
temporal model (Schiratti et al., 2015) and all its extensions. Following their approach, we define a nonlinear
mixed-effects model for the definition and estimation of spatiotemporal piecewise geodesic trajectories from
longitudinal manifold-valued data. We estimate a representative piecewise geodesic trajectory of the global
progression and together with spacial and temporal inter-individual variability. Particular attention is paid
to the estimation of the correlation between the different phases of evolution.

Estimation is formulated as a well-defined maximum a posteriori (MAP) problem which we prove to be
consistent under mild assumptions. In particular, this framework contains our high-dimensional nonlinear
mixed-effects model and all its instantiation in specific cases. Numerically, the MAP estimation of the
parameters is performed through the Markov chain Monte Carlo stochastic approximation expectation max-
imization (MCMC-SAEM) algorithm (Dempster et al., 1977; Lavielle, 2014). Theoretical results regarding
its convergence have been proved by Allassonnière et al. (2010) and Delyon et al. (1999) and its numerical
efficiency has been demonstrated for these types of models (Schiratti et al. (2015), Monolix, Chan et al.
(2011); Lavielle and Mentré (2007)).

Due to the versatility of the Riemannian geometry, the proposed model provides comprehensive support
for a wide range of practical situations, from unidimensional data to shape analysis. Indeed, Riemannian
geometry allows us to derive a method that makes light assumptions about the data and applications we
can handle. Moreover, the same algorithm can be used in all these situations.

The paper is organized as follows: In Section 2 we define our generic nonlinear mixed-effects model for
piecewise geodesically distributed data. In Section 3, we explain how to use the MCMC-SAEM algorithm to
produce MAP estimates of the parameters. We also prove a consistency theorem, whose proof is postponed
to the supplementary materials (SM1). We then make the generic formulation explicit for one-dimension
manifolds and piecewise logistically distributed data in Section 4.1 and for shape analysis in Section 4.2.
These two particular cases are built in the target of chemotherapy monitoring. In Section 5, some experi-
ments are performed for the piecewise logistic model and for the piecewise geodesic shape model: both on
synthetic data and on real data from the Hôpital Européen Georges Pompidou (HEGP, Georges Pompidou
European Hospital) for the piecewise logistic one. These experiments highlight the robustness of our model
to noise and its performance in understanding individual paths of progression.

This paper is built from the NeurIPS proceeding (Chevallier et al., 2017) which introduced the generic
nonlinear mixed-effects model remains naturally unchanged. However, the contributions of this paper are
the following (i) a more detailed construction of our model, (ii) more advanced numerical experiments and
a (iii) new instantiation of our generic model for the study of 3D anatomical shapes. Besides, (iv) the main
improvement concerns the theoretical guarantees we obtained for our model: In (Chevallier et al., 2017), we
had only demonstrated the existence of MAP for unidimensional scores monitoring; here, we demonstrate the
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Figure 1: The generic piecewise geodesic curve model. The observed data (crosses) consist of noisy samples along manifold-
valued trajectories. Each individual path γi (solid colored lines) is a spatiotemporal variation of a piecewise geodesic represen-
tative trajectory γ0 (bold black line). In particular, the individual trajectories are not necessarily piecewise geodesic.

existence and, above all, the consistency of the MAP in the general framework. Thus, the model introduced
in NeurIPS has been proved to be both theoretically and practically more robust.

2. Generic mixed effects Model for Piecewise-Geodesically Dis-
tributed Data on a Riemannian Manifold

In the following, we describe a generic method to build mixed-effects models for piecewise-geodesically
distributed data. This leads us to a large variety of possible situations that we will be able to deal with
within the same framework. We propose in Section 4 instantiations of this model for scores and shapes as
first examples.

We consider a longitudinal data set y obtained by repeating multivariate measurements of n ∈ N∗
individuals. Each individual i ∈ J1, nK is observed ki ∈ N∗ times, at the time points ti = (ti,j)j∈J1,kiK, and
we denote yi = (yi,j)j∈J1,kiK the sequence of observations for this individual. We also denote k =

∑n
i=1 ki

the total numbers of observations and assume that each observation yi,j is a point of Rd, where d ∈ N
can be considered as the dimension of the problem. Thus, our observed data consists in a sequence in Rkd,
y = (yi,j)(i,j)∈J1,nK×J1,kiK, where J1, nK×J1, kiK denotes for compactness the set {(i, j)|i ∈ J1, nK∧j ∈ J1, kiK}.

We generalize the idea of Schiratti et al. (2015) and hierarchically build our model. Our data points
are seen as noisy samples along trajectories and we suppose that each individual trajectory derives from
a group-representative scenario through spatiotemporal transformations. The key to our model is that
the group-representative trajectory in no longer assumed to be geodesic but piecewise-geodesic. Thus, the
characteristic trajectory is no more the shortest path between the initial and the final representative states
but a concatenation of shortest paths between several intermediate states. In particular, this allows us to
consider situations in which evolution can fluctuate. An example of a situation that can be addressed by
our generic model is presented in Figure 1.

To ensure that the optimization of those trajectories can be computationally performed in a reasonable
amount of time, we build a parametric model. That is to say that the trajectories depend on a finite
number of variables. In the following (see Section 2.3), we will denote zpop the variables driving the group-
representative scenario and zi those associated to the individual i. For the sake of clarity, we first detail the
construction of the trajectories from a geometrical point of view. Then, we state our generative model from
a statistical perspective.

2.1. The Group-Representative Trajectory
Let m ∈ N∗ and a subdivision of R tR =

(
−∞ < t1R < . . . < tm−1

R < +∞
)
, called the breaking-up times

sequence. In order for the representative trajectory γ0 to be geodesic on each of the m sub-intervals of tR,
we build γ0 component by component.
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2.1.1. A Piecewise-Geodesic Curve
In this context, let M0 be a geodesically complete submanifold of Rd,

(
γ̄`0
)
`∈J1,mK a family of geodesics

on M0 and
(
φ`0
)
`∈J1,mK a family of isometries defined on M0. For all ` ∈ J1,mK, we set M `

0 = φ`0(M0)
and γ`0 = φ`0 ◦ γ̄0

`. The isometric nature of the mapping φ`0 ensures that the manifolds (M `
0)`∈J1,mK remain

Riemannian and that the curves γ`0 : R→M `
0 remain geodesic. In particular, each γ`0 remains parametrizable

(Gallot et al., 2004). We define the representative trajectory γ0 by

γ0 : t ∈ R 7−→ γ1
0(t)1]−∞,t1

R
](t) +

m−1∑

`=2
γ`0(t)1]t`−1

R
,t`
R

](t) + γm0 (t)1]tm−1
R

,+∞[(t) .

In other words, given a manifold-template of the geodesic componentsM0, we build γ0 so that the restriction
of γ0 to each sub-interval of tR is the deformation of a geodesic curve γ̄`0 living on M0 by the corresponding
isometry φ`0. In practice, M0 is chosen to catch the geometric nature of the observed data: if we are
studying a score as in Section 4.1, M0 will be the standard finite segment ]0, 1[ for instance. The choice of
the isometries φ`0 and the geodesics γ̄`0 must be made in order to have a curve γ0 “as regular as possible"
(at least continuous) at the breaking-up time points t`R. In the following section, we propose a way to meet
this criterion in one dimension and within the shape framework. However, the freedoms in the choice of φ`0
and γ̄`0 induce a wide range of models.

2.1.2. Boundary Conditions
Due to the piecewise nature of our representative trajectory γ0, constraints must be formulated on each

interval of the subdivision tR. Following the formulation of the local existence and uniqueness theorem
(Gallot et al., 2004), constraints on geodesics are generally formulated by forcing a value and a tangent
vector at a given time-point. However, as soon as there is more that one geodesic component, i.e. m > 1,
such an approach cannot ensure the curve γ0 to be at least continuous. That is why we re-formulate these
constraints in our model as boundary conditions. Let Ā = (Ā0, . . . , Ām) ∈ (M0)m+1. Let t0 ∈ R be a
real value representing an initial time and t1 ∈ R representing a final one. We impose that γ̄1

0(t0) = Ā0,
γ̄m0 (t1) = Ām and that

∀` ∈ J1,m− 1K, γ̄`0(t`R) = Ā` and γ̄`+1
0 (t`R) = Ā` .

Note that we can apply the constraints on γ`0 instead of γ̄`0 by defining A` = φ`0(Ā`) for each `. Notably,
the 2m constraints are defined step by step. In the case where the geodesics could be written explicitly,
such constraints do not complicate the model. In more complicated cases, like the one shown for shapes in
Section 4.2, we use shooting or matching methods (Allassonnière et al., 2005; Miller et al., 2006) to enforce
these constraints.

From this representative curve, we derive a modeling of the individual trajectories that mimics the
individual evolution of the subjects and best fits the individual observations.

2.2. Individual Trajectories: Space and Time Warping
We want the individual trajectories to represent a wide variety of behaviors and to derive from the group

characteristic path by spatiotemporal transformations. To do that, we define for each component of the
piecewise-geodesic curve γ0 a couple of transformations: the diffeomorphic component deformations and the
time component reparametrizations which characterize respectively the spatial and the temporal variability
of propagation among the population. Moreover, we decree as few constraints as possible in the construction:
at least continuity and control of the slopes at the (individual) breaking-up points.

2.2.1. Time Component Reparametrizations
For compactness, we denote t0 by t0R from now on.
To allow different paces in the progression and different rupture times for each individual, we introduce

some temporal transformations ψ`i : R → R, called time-warp. Most applications run for relatively short
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periods of time. Thus, the difference in the rate of progression between different individuals is circumscribed
and a just affine reparametrization can explain this variability. Moreover, affine reparametrization has the
advantage of being easy to equate and easy to interpret. Hence, for the subject i ∈ J1, nK and for the geodesic
component ` ∈ J1,mK, we define the time-warp ψ`i by

ψ`i : t ∈ R 7−→ ψ`i (α`
i
,τ`
i
)(t) = α`i(t− t`−1

R − τ `i ) + t`−1
R ,

where (α`i , τ `i ) ∈ R+×R. The parameters τ `i correspond to the time-shifts between the representative and the
individual progression onset ; the α`i are the acceleration factors that describe the pace of individuals, being
faster or slower than the population characteristic. For all individuals i ∈ J1, nK, let tR,i = (t`R,i)`∈J1,m−1K
denote the individual sequence of rupture times which is the subdivision of R such that for all ` ∈ J1,m−1K,
ψ`i (t`R,i) = t`R, i.e. the sequence defined as

∀` ∈ J1,m− 1K , t`R,i = t`R,i(α`
i
,τ`
i
) = t`−1

R + τ `i + t`R − t`−1
R

α`i
.

To ensure good adjunction at the rupture times, we demand that for all ` ∈ J1,mK, ψ`i (t`−1
R,i ) = t`−1

R .
Hence the time reparametrizations are constrained and only the acceleration factors α`i and the first time
shift τ1

i are free: all other time shifts, ` ∈ J2,mK, are recursively defined by τ `i = t`−1
R,i − t`−1

R .
In the following, we will sometimes refer to the individual initial and final times which are defined, for

all i ∈ J1, nK, by ti0 = t0 + τ1 and ti1 = tmR,i = tm−1
R + τmi + t1−tm−1

R

αm
i

.

2.2.2. Diffeomorphic Component Deformations
Concerning the space variability, we introducem diffeomorphisms φ`i : M `

0 → φ`i(M `
0) to allow the different

components of the individual trajectories to vary irrespectively of each other. We enforce the adjunctions
to be at least continuous and therefore the mappings φ`i to satisfy

∀` ∈ J1,m− 1K, φ`i ◦ γ`0(t`R) = φ`+1
i ◦ γ`+1

0 (t`R) .

Note that, as the individual paths are no longer required to be geodesic, the mappings φ`i do not need to be
isometric.

For all individuals i ∈ J1, nK and all component ` ∈ J1,mK, we set γ`i = φ`i ◦ γ`0 ◦ ψ`i and define the
corresponding individual curve γi by

γi : t ∈ R 7−→ γ1
i (t)1]−∞,t1

R,i
](t) +

m−1∑

`=2
γ`i (t)1]t`−1

R,i
,t`
R,i

](t) + γmi (t)1]tm−1
R,i

,+∞[(t) .

Finally, the observations yi = (yi,j)j∈J1,kiK are assumed to be distributed along the curve γi and perturbed
by an additive Gaussian noise εi ∼ N (0, σ2Ikid) where σ ∈ R+:

∀(i, j) ∈ J1, nK× J1, kiK, yi,j = γi(ti,j) + εi,j ,

where εi,j ∼ N (0, σ2Id). By construction, for each (i, j) ∈ J1, nK × J1, kiK, there exist ` ∈ J1,mK such that
γi(ti,j) lies on the submanifold φ`i(M `

0) of Rd. Thus, the previous sum is well-defined. In particular, we do
not assume that the noisy-observation remain on the manifold.

The choice of the isometries φ`0 and the diffeomorphisms φ`i induces a large range of piecewise-geodesic
models. For example, if m = 1, φ1

0 = Id and if φ1
i denotes the application that maps a curve onto its parallel

curve for a given non-zero tangent vector wi, we feature the model proposed by Schiratti et al. (2015). In
Section 4, we propose two other specific models which can be used for chemotherapy monitoring, as a first
example of fluctuate dynamic.
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2.3. Toward a Coherent and Tractable Statistical Generative Model
Now that we have presented the geometrical objects that we will process, we set up a comprehensive

statistical framework to estimate the different parameters that control the trajectories.
We first introduce some notations to clearly state our statistical generative model. Let zψi = (α`i , τ `i )`∈J1,mK

denote the individual temporal variables and similarly zφi denote the individual spatial variables, i.e. the
variables associated to the variation of the m diffeomorphic deformations φ`i . Likewise, let zpop denote the
population variable, i.e. the variable associated to the variation of the m isometric mappings φ`0.

Let pind ∈ N be the dimension of each vector zi = (zψi , z
φ
i ) such that ∀i ∈ J1, nK, Zi ⊂ Rpind denotes

the space of random effects. Similarly, let ppop ∈ N be the dimension of zpop and Zpop ⊂ Rppop denotes the
space of fixed effects.

To cover many situations, we do not explicit here the individual spatial variables zφi . However, for
example, we propose an instantiation of this generic model for one dimension manifolds and piecewise
logistically distributed data at Section 4.1 and for shape analysis at Section 4.2. Moreover, our generic
approach encompass a large variety of models including those proposed by Bône et al. (2018), Debavelaere
et al. (2019), Koval et al. (2018) and Schiratti et al. (2015).

2.3.1. Modeling Constraints...
From a modeling perspective, we are interested in understanding the individual behaviors with respect to

the characteristic one. Thus, we focus on the variance of the random effects zi = (zψi , z
φ
i ) rather than their

distributions. Moreover, as we want the representative path to characterize the pattern of behavior of the
individual trajectories, we have to slightly modify the individual parameters zi in such a way that for all i,
E(zi) = 0. In particular, if our model were linear, the representative trajectory would have been the average
(in the statistical sense) of the individual trajectories. Concerning the individual temporal variables for
instance, the acceleration parameters (α`i)`∈J1,mK have to be positive and equal to one on average while the
time shifts (τ `i )`∈J1,mK are of any signs and must be zero on average. For these reasons, we set α`i = eξ`i and
consider the “new" temporal variable, still denoted zψi for compactness, zψi = (ξ`i , τ `i )`∈J1,mK. We proceed in
the same way for the individual spatial variables zφi , when required (for centered or positive variables).

To sum up, we assume that there exists a symmetric positive definite matrix Σ ∈ S +
pind(R) such that

zi ∼ N (0,Σ), and we now want to estimate Σ. Therefore, the parameters we are interested in are θ =
(zpop,Σ, σ) ∈ Zpop ×S +

pind(R)× R+.

2.3.2. ...and Computational Feasibility
Given a n-sample, we target θ̂n an estimation of our parameters. Following the classical approach for

maximum likelihood estimation in nonlinear mixed-effects models, we use the MCMC-SAEM algorithm.
However, the theoretical convergence of this algorithm is only proved for models belonging to the curved
exponential family (Allassonnière et al., 2010; Delyon et al., 1999). This framework is also important for
numerical performances. Without further hypothesis, our model does not satisfy this constraint. Therefore,
we proceed as in (Kuhn and Lavielle, 2005): We assume that zpop is the realization of independent Gaussian
random variables with fixed small variances and estimate the means of these variables. So, the parameters we
want to estimate are θ = (zpop,Σ, σ), defined on the set of admissible parameters Θ = Rppop×S +

pind(R)×R+.
The fixed and random effects z = (zpop, zi)i∈J1,nK are considered as latent variables, i.e. as hidden

variables that are not directly observed but can be inferred by the observations. Our model writes in a
hierarchical way as

y | z, θ ∼
n⊗

i=1

ki⊗

j=1
N
(
γi(ti,j) , σ2 ) and z | θ ∼ N

(
zpop , D−1

pop
) n⊗

i=1
N (0,Σ) ,

where σpop ∈ Rppop
+ is an hyperparameter of the model and Dpop = σ2

popIppop ∈ Mppop(R) is the diagonal
matrix of size ppop whose diagonal entries are given by the vector σ2

pop. The products ⊗ mean that the

8
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corresponding entries are considered to be independent. In other words, we assume that each of the mea-
surement noises is independent of all the others. Of course, it may not be the case in practice. But, since all
the observations for a given subject come from a single curve, this assumption is reasonable in our context.
Moreover, this assumption leads us to a more computationally tractable algorithm.

3. Parameters Estimation
As said just above, we want to estimate θ = (zpop,Σ, σ) ∈ Rppop×S +

pind(R)×R+. As we want our model
to be consistent with low sample size high-dimensional data analysis, we consider a Bayesian framework and
assume the following priors

(Σ, σ) ∼ W−1 (V,mΣ)⊗W−1 (v,mσ) ,

where V ∈ S +
pind(R), v,mΣ,mσ ∈ R and where W−1 (V,mΣ) denotes the inverse Wishart distribution with

scale matrix V and degrees of freedom mΣ. Regularization has indeed proved its fruitfulness in this context
(Giraud, 2014). In order for the inverse Wishart to be non-degenerate, the degrees mΣ and mσ must satisfy
mΣ > 2pind and mσ > 2. In practice, we yet use degenerate priors but with well-defined posteriors. In
the spirit of the one-dimension inverse Wishart distribution, we define the density function distribution of
higher dimension as

fW−1(V,mΣ)(Σ) = 1
Γpind

(
mΣ
2
)
( √

|V |
2
pind

2
√
|Σ|

exp
(
−1

2 tr
(
V Σ−1)

))mΣ

,

where Γpind is the multivariate gamma function and, for all matrices A, |A| denotes the determinant of the
matrix A.

The estimates are obtained by maximizing the posterior density on θ conditionally on the observations
y = (yi,j)(i,j)∈J1,nK×J1,kiK.

In the following paragraphs, we first show that the model is well-posed i.e. that for any finite sample
the maximum we are looking for exists. We then prove a consistency theorem which ensures that the set of
parameters that well-explain the observations is non-empty and that the MAP estimator converges to this
set. Last, we explain how to use the MCMC-SAEM algorithm to produce MAP estimates.

3.1. Existence of the Maximum a Posteriori Estimator
The inverse Wishart priors on the variances not only regularize the log-likelihood of the model, they also

ensure the existence of the MAP estimator.

Theorem 1 (Existence of the MAP estimator). Given a piecewise geodesic model and the choice of probability
distributions for the parameters and latent variables of the model, for any data set (ti,j , yi,j)(i,j)∈J1,nK×J1,kiK,
there exists

θ̂MAP ∈ argmax
θ∈Θ

q
(
θ|y
)
.

The demonstration of the theorem uses the following lemma.

Lemma 1. Given a piecewise geodesic model and the choice of a probability distribution for the parameters
and latent variables of the model, the posterior θ 7→ q

(
θ|y
)
is continuous on the parameter space Θ.

Proof. Let Z = Zpop ×
∏n
i=1Zi denote the space of latent variables. Using Bayes rule, for all θ ∈ Θ,

q
(
θ |y

)
= 1
q(y)

(∫

Z
q
(
y | z, θ

)
q
(
z | θ

)
dz
)
qprior(θ) .

9
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The density functions θ 7→ qprior(θ) and θ 7→ q
(
y|z, θ

)
q
(
z|θ
)
are continuous on Θ for all z ∈ Z. Moreover,

for all θ ∈ Θ and all z ∈ Z,

q
(
y | z, θ

)
= 1

(σ
√

2π)k
exp

(
− 1

2σ2

n∑

i=1

ki∑

j=1

(
yi,j − γi(ti,j)

)2
)

and so, for all θ ∈ Θ and z ∈ Z,

q
(
y|z, θ

)
q
(
z|θ
)
6 1

(σ
√

2π)k
q
(
z|θ
)

which is positive and integrable as a probability distribution. As a consequence, for all θ ∈ Θ z 7→
q
(
y|z, θ

)
q
(
z|θ
)
is integrable (and positive) on Z and θ 7→ q

(
y|θ
)
is continuous.

Proof: Theorem 1 – Existence of the MAP. We use the Alexandrov one-point compactification Θ = Θ∪{∞}
of the parameters space Θ, where a sequence (θn)n∈N converges toward the point∞ if and only if it eventually
steps out of every compact subset of Θ. Thus, given the result of Lemma 1, it suffices to prove that
limθ→∞ log q

(
θ|y
)

= −∞. We keep the notations of the previous proof and proceed similarly. In particular,
for all θ ∈ Θ,

log q
(
θ|y
)

6 − log q(y)− k log(
√

2π)− k log(σ) + log qprior(θ) .
By computing the prior distribution qprior, we remark that there exists λ which does not depend on the
parameter θ such as

log q
(
θ|y
)

6 λ(y)− (k +mσ) log(σ)− mσ

2

( v
σ

)2
− mΣ

2

[
log(|Σ|) + mΣ

2 tr
(
V Σ−1)] .

Let µ(V ) denote the smallest eigenvalue of V , ρ(Σ−1) the largest eigenvalue of Σ−1, which is also its
operator norm, and

〈
Σ
∣∣ V

〉
F
the Frobenius inner product of Σ with V . As

log(|Σ−1|)− tr
(
V Σ−1) 6 pind log

(
‖Σ−1‖

)
− µ(V ) ‖Σ−1‖

it comes that
lim

‖Σ‖+‖Σ−1‖→+∞

{mΣ
2
[
log(|Σ−1|)− tr

(
V Σ−1)]} = −∞ .

Likewise,
lim

σ+σ−1→+∞

{
−(k +mσ) log(σ)− mσ

2

( v
σ

)2
}

= −∞

hence the result.

We have detailed the previous proof to emphasize the necessity of prior distributions on the variances Σ
and σ to ensure the existence of the maximum a posteriori: They provide log-likelihood control when θ hits
the boundary of the compact set. Θ.

3.2. Consistency of the Maximum a Posteriori Estimator
We are now interested in the consistency of the MAP estimator without making strong assumptions on

the distribution of the observations y. In particular, we do not assume that the observations are generated
by the model. Thus, we can quantify the quality of the estimation, without knowing the model at the
generation of the data, which is the practical case of application.

We denote P (dy) the distribution governing the observations and Θ∗ the set of admissible parameters
inducing a model distribution close to P (dy):

Θ∗ =
{
θ∗ ∈ Θ

∣∣ EP (dy) [ log q(y|θ∗) ] = sup
θ∈Θω

EP (dy) [ log q(y|θ) ]
}
.
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The MAP estimator is said consistent if it converges to the set Θ∗ (on every compact of Θ possibly).
Classical results of consistency assume that the space Θ∗ is non-empty (see the Wald’s consistency theorem
(van der Vaart, 2000)). However, such a hypothesis is not entirely satisfactory: We have no guarantee that
Θ∗ is actually non-empty. We propose below a reasonable framework in which the convergence of the MAP
estimator toward the corresponding non-empty set Θ∗ is guaranteed.

3.2.1. Two Kinds of Latent Variables
To this end and for any ω ∈ R+, we define the space Θω of admissible parameters such that on average,

the fixed effects are bounded by ω:

Θω = {θ = (zpop,Σ, σ) ∈ Θ | ‖zpop‖2 6 ω} ,

where Θ = Rppop ×S +
pind(R)×R+. As the assumption only concern the average behavior of the population

variable zpop, it is not restrictive. Moreover, fixed effects are most often bounded (but potentially with high
bounds) in applications. In this new framework, for all ω ∈ R+, we consider

Θω
∗ =

{
θ ∈ Θω

∣∣ EP (dy) [ log q(y|θ) ] = E∗(ω)
}
, where E∗(ω) = sup

θ∈Θω
EP (dy) [ log q(y|θ) ] .

To state the consistency of the MAP estimator, we first have to give some notations. For all i ∈ J1, nK,
we assume the existence of two subsets of Zi, Zreg

i and Zcrit
i , such that Zi = Zreg

i × Zcrit
i . In other

words, we assume that each component of each individual latent variable zi may be of two sorts: regular or
critical. We will respectively denote zregi and zcriti this sub-variables leading to write, up to permutations,
zi = (zregi , zcriti ). Likewise, we assume that the components of the population latent variables can be regular
or critical, i.e. that there exists Zreg

pop,Zcrit
pop ⊂ Zpop such that zpop = (zregpop, z

crit
pop) ∈ Zreg

pop × Zcrit
pop. To stay

consistent with the previous notations, we denote pregind, pcritind , pregpop and pcritpop the dimension of the ambient
space of the matching sets: Zreg

i ⊂ Rp
reg
ind and so on.

3.2.2. Consistency of the Maximum a Posteriori Estimator
In the following, we want to study the effect of the variables (zpop, zi) on the trajectories. To this end,

we introduce for all i the notation ~γi(zpop, zi) = (γi(ti,j))j∈J1,kiK ∈ Rki and more generally the functions
~γi : Zpop ×Zi → Rki . Let ` ∈ J1, nK, consider a `-tuple of individuals and denote by k` =

∑`
i=1 ki the total

number of measures for this `-tuple. Let y` = (yi)i∈J1,`K ∈ Rk` and z` = (zpop, zi)i∈J1,`K ∈ Rppop+` pind be the
vectors made up of the ` corresponding vectors. As in the one-by-one case, we define by ~γ` : Zpop×Z`i → Rk`

the function which maps the vector z` to the one (~γi(zpop, zi))i∈J1,`K.
For all vectors of the form (a, b) ∈ Rpa ×Rpb , where pa and pb are any integer number and for all indices

v ∈ J1, pa + pbK, (a, b)v and (a, b)−v refer respectively to

(a, b)v =
(

(a1, . . . , apa) , (b1, . . . , bpb)
)
v

=
{
av if v 6 pa

bv−pa else

and (a, b)−v =
{(

(a1, . . . , av−1, av+1, . . . , apa), b
)

if v 6 pa(
a , (b1, . . . , bv−pa−1, bv−pa+1, . . . , bpb)

)
else

.

Last, for all k ∈ N, Lk refers to the Lebesgue measure on Rk.

Theorem 2 (Consistency of the MAP estimator). Assume there exists ` ∈ J1, nK such that:

(H1) The number of observations is higher than the one of latent variables: p` < k`, where k` =
∑`
i=1 ki

and p` = ppop + ` pind ;

(H2) The times of acquisition ti = (ti,j)j∈J1,kiK are independent and identically distributed;

11
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(H3) The density P (dy`) is continuous with polynomial tail decay of degree bigger than the dimension of
the truncated space of latent variables, i.e. bigger than p` + 1, apart from a compact subset K of
Rk` ;

(H4) The individual trajectories grow super-linearly with respect to the regular variables: For all individ-
uals i ∈ J1, nK and for all v ∈ J1, preg

pop + preg
indK, there exists two functions ai,v, bi,v : Rpreg

pop+preg
ind−1 → R

which depend only on (zreg
pop, z

reg
i )−v and such that

∀(zpop, zi) ∈ Zpop ×Zi,





ai,v

(
(zreg

pop, z
reg
i )−v

)
> 0 ,

ai,v

(
(zreg

pop, z
reg
i )−v

)
= 0 iff (zreg

pop, z
reg
i )−v = 0 ,

and ‖~γi(zpop, zi)‖∞ > ai,v

(
(zreg

pop, z
reg
i )−v

) ∣∣∣(zreg
pop, z

reg
i )

v

∣∣∣ + bi,v

(
(zreg

pop, z
reg
i )−v

)
;

(H5) Critical variables induce critical trajectories: For all individuals i ∈ J1, nK and for all v ∈ J1, pcrit
pop +

pcrit
ind K, there exists a critical trajectory γcrit

i,v such that

lim
|(zcrit

pop ,z
crit
i

)v|→+∞
~γi(zpop, zi) = γcrit

i,v and Lki({yi = γcrit
i,v }) = 0 .

Let (θ̂n)n∈N denote any MAP estimator. Then Θω
∗ 6= ∅ and for any ε ∈ R∗+,

lim
n→∞

P
[
δ(θ̂n,Θω

∗ ) > ε
]

= 0 ,

where δ in any metric compatible with the topology on Θω.

For the sake of brevity, the proof is postponed in the supplementary materials (SM1).
This proof is based on the corresponding one of Allassonnière et al. (2010). However, we have lightened

the requirements on the tail of the distribution of the observations, allowing for a greater variety of data
sets. Besides, thanks to the introduction of the duality regular versus critical variables, we have adapted
the initial demonstration to a much more complex study setting. Thus, we provide theoretical guarantees
for articles already published (Bône et al., 2018; Debavelaere et al., 2019; Koval et al., 2018; Schiratti et al.,
2015) and even used in practice (Bilgel et al., 2016).

Sketch of the proof. The main difficulty is to prove that the set of admissible parameters is non-empty, i.e.
that Θω

∗ 6= ∅. Given this assertion, we follow the classical analysis of van der Vaart (2000).
To do so, we first remark that θ 7→ EP (dy`) [ log q(y|θ) ] is continuous on Θω. So, if for any sequence

(θκ)κ such that limκ→∞ θκ ∈ Θω \ Θω, limκ→+∞ EP (dy`)

[∑`
i=1 log q(yi|θκ)

]
= −∞ then Θω

∗ 6= ∅. This is
achieved by treating the negative and positive parts independently.

1. Positive part (Lemma 2): Using the super-linear growth of the regular variables, we demonstrate
that EP (dy`)

[
supθ∈Θ

(∑`
i=1 log q(yi|θ)

)+ ]
< +∞ . So, according to the dominated convergence

theorem, limκ→+∞ EP (dy`)
[ (
fκ(y`)

)+ ] = 0 ;

2. Negative part (Lemma 3): Since our model belongs to the curved exponential family, we prove that
limκ→∞

∑`
i=1 log q (yi|θκ) = −∞ P (dy`) almost surely for any sequence (θκ)κ as described above.

From the monotone convergence theorem we then have that lim infκ→+∞ EP (dy`)
[ (
fκ(y`)

)− ] =
+∞ .
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If the times of observations ti are identically distributed, the individual numbers of measurements ki are
in particular all equal. Thus, under (H2), Assumption (H1) writes in a more concise manner as p` < `k1.
However, as (H2) is not required for all intermediate results (see the proof in Supplementary Material
SM1), we keep the more general statement for (H1). The condition (H2) is for instance met if we assume
that the times ti are regularly spaced, that is to say that for all individuals i ∈ J1, nK and all measure-
ments j ∈ J1, k1K, ti,j follows the uniform distribution U ([Tj−1, Tj ]), where T is a maximum of the set
{ti,j |i ∈ J1, nK, j ∈ J1, k1K} and (T0 = 0 < T1 < . . . < Tk1 = T ) is a subdivision of [0, T ].

The condition p` < k` means that without enough observations for at least some individuals, we cannot
build a consistent model. Such an assumption is quite reasonable as we have no chance to catch the
trajectories behavior with certitude with fewer observations than the constraints over them. The assumption
on the distribution P (dy) is really weak and always fulfilled in practice. Moreover, as the theorem holds for
all ω ∈ R+, the boundary over the average of the population latent variable zpop is not restrictive.

For compactness, we have stated the theorem by considering that a latent variable may be of only one
kind: regular or critical. Actually, a single latent variable can be of two kinds: critical in the neighbourhood
of +∞ and regular around −∞, and vice-versa (see the proof for details). This remark is all the more
important given some applications and Section 4 but is treated by our proof.

3.3. Estimation with the MCMC-SAEM Algorithm
As explained in the paragraph 2.3.2, a stochastic version of the EM algorithm is adopted, namely the

SAEM algorithm. As the conditional distribution q(z|y, θ) involves the renormalization constant which is our
target function, the simulation step is replaced using a sampling algorithm, leading to consider the MCMC-
SAEM algorithm (Allassonnière et al., 2010; Kuhn and Lavielle, 2005). It alternates between simulation,
stochastic approximation, and maximization steps until convergence. The simulation step is achieved using
a symmetric random walk Hasting-Metropolis within Gibbs sampler (Robert and Casella, 1999).

The complete log-likelihood of our model writes

log q
(
y, z, θ

)
= − 1

2σ2

n∑

i=1

ki∑

j=1

(
yi,j − γi(ti,j)

)2 − k log(σ)− 1
2

n∑

i=1

(
tzi Σ−1 zi

)

− n

2 log(|Σ|)− 1
2 tr

(
V Σ−1)− 1

2
t
(
zpop − zpop

)
D−1( zpop − zpop

)
− 1

2 log(|D|)

+ mΣ
2
(

log(|V |)− log(|Σ|)
)

+mσ log
( v
σ

)
− mσ

2

( v
σ

)2
+ csts .

It is clear to see that this model belongs to the curved exponential family: Up to a multiple constant, the
sufficient statistics are defined as

S1(y, z) = zpop ∈ Rppop , S2(y, z) = 1
n

n∑

i=1

tzizi ∈Mpind(R)

and S3(y, z) = 1
k

n∑

i=1

ki∑

j=1

(
yi,j − γi(ti,j)

)2 ∈ R .

By denoting iter the increment, z(iter) the current sample and S(iter)
u the current approximation of the

uth sufficient statistics, the stochastic approximation step is defined as

S(iter)
u = S(iter)

u + εiter
(
Su(y, z(iter))− S(iter)

u

)
,

where (εiter) is a sequence positive step size (see below) and u ∈ {1, 2, 3}.
The maximization step is straightforward given the sufficient statistics of our exponential model: We

update the parameters by taking a barycentre between the corresponding stochastic approximation and the
prior (when they exist). In other words:

zpop
(iter+1) = S1(y, z(iter)) , Σ(iter+1) = nS2(y, z(iter)) +mΣV

n+mΣ

13



J.Chevallier, V.Debavelaere & S.Allassonnière A coherent framework for longitudinal manifold-valued data

and σ2(iter+1) = kS3(y, z(iter)) +mσv
2

k +mσ
.

Finally, given an adapted sampler and the sequence (εiter)iter defined by

∀ iter > 1, εiter = 1iter6 Nburnin + (iter− Nburnin)−0.65 1iter> Nburnin ,

our algorithm writes as Algorithm 1 . Some experimental results are presented in Section 5.

4. Application to Chemotherapy Monitoring
Understanding the global disease progression is the key to chemotherapy monitoring. Indeed, physicians

have to choose the best possible treatment and sequence of molecules for each of their patients, in the
shortest possible time. Here, we propose two instantiations of the generic piecewise geodesic model, both
in view of chemotherapy monitoring: the piecewise logistic curve model and the piecewise geodesic shape
model.

We recall that patients are treated and that the evolution of the tumoral growth will therefore fluctuate.
Hence, reaction-diffusion based tumor growth models do not apply in this context. Moreover, the two
proposed models allow us to bring a representative of the whole population comportment out for any kind
of input data: scores, images, shapes, etc.

4.1. The Piecewise Logistic Curve Model: Chemotherapy Monitoring through
RECIST Score

In this section, we explicit the generic model with logistic geodesics and M = ]0, 1[. This is motivated
by the study of the RECIST score monitoring, which leads to consider one-dimension manifold, with one
rupture point. As this explicit model is designed with our target application in mind, we first give a brief
description of RECIST score.

4.1.1. The RECIST Score
Patients suffering from metastatic kidney cancer, take a drug each day and should regularly check their

tumor evolution. Indeed, during the past few years, the way renal metastatic cancer is monitored was
profoundly changed: A new class of anti-angiogenic therapies targeting the tumor vessels instead of the
tumor cells has emerged and drastically improved survival by a factor of three (Escudier et al., 2016). These
new drugs, however, do not cure cancer and only succeed in delaying the tumor growth, requiring the use
of successive therapies that have to be continued or interrupted at the appropriate moment according to
the patient’s response. Thus, the new medicine process has also created a new scientific challenge: How
to choose the most efficient drug therapy given the first monitoring times of the response profile of a given
patient?

Algorithm 1: Overview of the SAEM for the generic piecewise geodesic model.
Require: θ∗ = (zpop ∗,Σ∗, σ∗), (V,mΣ), (v,mσ), maxIter, Nburnin.
Ensure: θ = (zpop,Σ, σ).

# Initialization: θ ← θ∗ ; S ← 0 ; (εiter)iter>0 ; zpop ← zpop ; (zi)i ← 0

for iter = 1 to maxIter do
# Simulation: (zpop, (zi)i)← sampler(zpop, (zi)i)
# Stochastic Approximation: S1 ← S1 + εiter (zpop − S1) S2 ← S2 + εiter

(
1
n

∑
i
tzizi − S2

)

S3 ← S3 + εiter

(
1
k

∑n

i=1

∑ki
j=1 ( yi,j − γi(ti,j) )2 − S3

)

# Maximization: zpop ← S1 ; Σ← nS2+mΣV
n+mΣ

; σ ←
√

kS3+mσv2
k+mσ

end for
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The RECIST (Response Evaluation Criteria In Solid Tumors) score (Therasse et al., 2000) is a set
of published rules that measures the tumoral growth. Physicians select a maximum of five lesions, with a
sufficient diameter, and sum the longest diameter for all target lesions. This leads them to determine whether
the tumors in cancer patients respond (completely or partially), stabilize or progress during treatment.

The response to a given treatment usually consists of two distinct phases: First, the size of the tumor
reduces; then, the tumor develops again. Hence, we must build a model that allows us to catch these
behaviors. Moreover, a practical question is to quantify the correlation between both phases and to determine
as accurately as possible the individual rupture times tiR that are related to an escape of the patient’s response
to treatment.

4.1.2. The Piecewise Logistic Curve Model
Our observations consist of patient RECIST score over time, i.e. of sequences of bounded one-dimension

measures. As explained above, we could make out two phases in the evolution of RECIST scores: a
decreasing and a growing one. So, we set m = 2 and d = 1, which leads us to propose a way to build
models for chemotherapy monitoring. This model has been designed after discussions with oncologists of
the Hôpital Européen Gorges-Pompidou (HEGP – Georges Pompidou European Hospital).

4.1.3. The Group-Representative Trajectory
Let M0 be the open interval ]0, 1[, endowed with the logistic metric: ∀x ∈M0, ∀ξ, ζ ∈ TxM0 ' R,

gx(ξ, ζ) = ξ G(x) ζ with G(x) = 1
x2(1− x2) .

Given three real numbers γinit0 , γescap0 and γfin0 we define two affine functions by setting down φ1
0 : x 7→

(γinit0 − γescap0 )x+γescap0 and φ2
0 : x 7→

(
γfin0 − γescap0

)
x+γescap0 . This allows us to mapM0 onto the intervals

]γescap0 , γinit0 [ and ]γescap0 , γfin0 [ respectively: if γ̄0 refers to the sigmoid function, φ1
0 ◦ γ̄0 will be a logistic curve,

growing from γescap0 to γinit0 . For compactness, we note tR the single breaking-up time at the population
level and tiR at the individual one. Moreover, due to our target application, we force the first logistic to be
decreasing and the second one increasing (this condition may be easily relaxed for other frameworks).

Logistics are defined on open intervals, with asymptotic constraints. We want to formulate our constraints
on some non-infinite time-points, as explained in paragraph 2.1.2. So, we set a positive threshold ν, close to
zero, and demand the logistics γ1

0 and γ2
0 to be ν-near from their corresponding asymptotes. More precisely,

we impose the trajectory γ0 to be of the form γ0 = γ1
0 1]−∞,tR] + γ2

0 1]tR,+∞[, where, for all times t ∈ R,

γ1
0 : t 7→ γinit0 + γescap0 e(at+b)

1 + e(at+b) ; γ2
0 : t 7→ γfin0 + γescap0 e−(ct+d)

1 + e−(ct+d)

and a, b, c and d are some positive numbers given by the following constraints

γ1
0(t0) = γinit0 − ν , γ1

0(tR) = γ2
0(tR) = γescap0 + ν and γ2

0(t1) = γfin0 − ν .

In order the previous logistics to be well-defined, we also have to enforce γescap0 +2ν 6 γinit0 and γescap0 +2ν 6
γfin0 . Thus, ppop = 5 and

Zpop =
{(
γinit0 , γescap0 , γfin0 , tR, t1

)
∈ R5 ∣∣ γescap0 + 2ν 6 γinit0 ∧ γescap0 + 2ν 6 γfin0

}
.

In our context, the initial time of the process is known: it is the beginning of the treatment. So, we
assume that the representative initial time t0 is equal to zero.

4.1.4. Individual trajectories
For each i ∈ J1, nK, given (α1

i , α
2
i , τi) ∈ R2

+ × R, the time-warps (cf. 2.2.1) write

ψ1
i (t) = α1

i (t− t0 − τi) + t0 and ψ2
i (t) = α2

i (t− tR − τ2
i ) + tR ,
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Figure 2: The piecewise logistic curve model. Figure 2a: A typical representative trajectory in bold and several individual
ones, for different vectors zi. The rupture times are represented by diamonds and the initial/final times by stars. Figure 2b:
Illustration of the non-standard constraints for γ0 and the transition from the representative trajectory to an individual one: the
trajectory γi is subject to a temporal and a spacial warp. In other “words", γi = φ1

i ◦γ
1
0 ◦ψ

1
i 1]−∞,ti

R
] + φ2

i ◦γ
2
0 ◦ψ

2
i 1]ti

R
,+∞[.

where τ2
i = τi +

(
1−α1

i

α1
i

)
(tR − t0).

In the same way as the time-warp, the diffeomorphisms φ1
i and φ2

i (cf. 2.2.2) are chosen to allow different
amplitudes and rupture values: for each i ∈ J1, nK, given the two scaling factors r1

i and r2
i and the space-shift

δi, we define
∀` ∈ {1, 2}, φ`i : x ∈ R 7−→ r`i (x− γ0(tR)) + γ0(tR) + δi .

Other choices are conceivable but in the context of our target applications, this one is the most appropriate:
as we want to study the correlation between growth and decrease phase, none of the portions of the curves
have to be favoured and affine functions allow us to put the same weight on the whole curves. Mathematically,
any regular and injective function defined on ]γescap0 , γinit0 [ (respectively ]γescap0 , γfin0 [) works.

To sum up, each individual trajectory γi depends on the representative curve γ0 through zpop =(
γinit0 , γescap0 , γfin0 , tR, t1

)
fixed and zi =

(
α1
i , α

2
i , τi, r

1
i , r

2
i , δi

)
random effects. This leads to a non-linear

mixed-effects model. More precisely, we set for all individuals i ∈ J1, nK

∀` ∈ {1, 2}, γ`i = φ`i ◦ γ`0 ◦ ψ`i and tiR = t0 + τi + tR − t0
α1
i

,

which leads us to write for all measurements j ∈ J1, kiK,
yi,j = γ1

i (ti,j)1]−∞,ti
R

](ti,j) + γ2
i (ti,j)1]ti

R
,+∞[(ti,j) + εi,j .

Figure 2 provides illustrations of the model. On each subfigure, the bold black curve represents the charac-
teristic trajectory γ0 and the color curves several individual trajectories.

We proceed as in the paragraph 2.3.1 and set α`i = eξ`i for ` ∈ {1, 2}. Likewise, the scaling parameters r`i
have to be positive and equal to one on average while the space shifts δi can be of any signs and must be zero
on average. So, we set r`i = eρ`i for ` ∈ {1, 2} leading to zi =

(
ξ1
i , ξ

2
i , τi, ρ

1
i , ρ

2
i , δi

)
. In particular, pind = 6

and we assume that there exists Σ ∈ S +
pind(R) such that zi ∼ N (0,Σ) for all i. In view of our target

application, this assumption is really important: Usually, the random effects are studied independently.
Here, we are interested in correlations between the two phases of patient’s response to treatment in order to
answer question like: Does a fast response induce a fast reprogression after the rupture time, which would
mean that a fast response would decrease the susceptibility to this drug?

4.1.5. Theoretical Analysis of the Piecewise Logistic Curve Model
Theorem 1 applies as is leading to a well-defined MAP estimator for the piecewise logistic model. More-

over, at the risk of assuming some restrictions concerning the distribution of our observations, the piecewise
logistic model is consistent.
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More precisely, let Θpl be the space of the admissible parameters for the piecewise logistic model, i.e.

Θpl =
{

(γinit0 , γescap0 , γfin0 , tR, t1,Σ, σ) ∈ Rppop ×S +
pind(R)× R+} .

We define
Θω,pl = { θ ∈ Θpl | ‖(γinit0 , γescap0 , γfin0 , tR, t1)‖ 6 ω }

the space of the parameters associated to bounded on average fixed effects, for the piecewise logistic model
and, as in the generic framework, the space

Θω,pl
∗ = {θ ∈ Θω,pl | EP (dy`)

[
log q(y`|θ)

]
= E∗(ω)} ,

where E∗(ω) = supθ∈Θω,pl EP (dy`)
[
log q(y`|θ)

]
.

Theorem 3 (Consistency of the MAP, piecewise logistic). Assume that

(H1) The number of observations is bigger than the one of latent variables: There exists ` ∈ J1, nK such
that p` < k`, where k` =

∑`
i=1 ki and p` = ppop + ` pind ;

(H2) The times of acquisition ti = (ti,j)j∈J1,kiK are independent and identically distributed;

(H3) The density P (dy`) is continuous with polynomial tail decay of degree bigger p` + 1 apart from a
compact subset K of Rk` ;

Then, the piecewise logistic model satisfies the hypothesis of Theorem 2. In particular, if (θ̂n)n∈N denote
any MAP estimator, Θω,pl

∗ 6= ∅ and for any ε ∈ R∗+,

lim
n→∞

P
[
δ(θ̂n,Θω,pl

∗ ) > ε
]

= 0 ,

where δ in any metric compatible with the topology on Θω,pl.

Proof. We demonstrate that, for all i ∈ J1, nK, the variables
(
γinit0 , γescap0 , γfin0 , ρ1

i , ρ
2
i , δi

)
are regular, that

the variables
(
tR, t1, ξ

1
i , ξ

2
i , τi

)
are critical, and that

(
ρ1
i , ρ

2
i

)
are regular in the neighbourhood of +∞ and

critical near −∞. See the remark after Theorem 2.

(H4) Let i ∈ J1, nK. By definition of ~γi,

‖~γi(zpop, zi)‖∞ = max
{
| γescap0 + ν + δi + eρ

1
i (γinit0 − γescap0 − 2ν) | ;

| γescap0 + ν + δi | ; | γescap0 + ν + δi + eρ
2
i (γfin0 − γescap0 − 2ν) |

}
.

And we can check that for γinit0 , γescap0 , γfin0 , ρ1
i , ρ2

i and δi and that for ρ1
i and ρ2

i as soon as
|ρ1
i |, |ρ2

i | > 1 there exists two functions ai and bi as in [Theorem 2 (H4)].

(H5) Let i ∈ J1, nK and j ∈ J1, kiK. By definition of ~γi,

lim
tR→+∞

~γi(zpop, zi)j =
[

eρ
1
i
(
γinit0 − γescap0 − 2ν

)
+ γescap0 + ν + δi

]
1[t0,+∞[(ti,j) ,

where ~γi(zpop, zi)j denotes the jth coordinate of the vector ~γi(zpop, zi) ∈ Rki . However, by con-
struction, γinit0 − γescap0 and γescap0 follow a normal distribution so

Lki

({
yi,j = eρ

1
i
(
γinit0 − γescap0 − 2ν

)
+ γescap0 + ν + δi

})
= 0 .

Likewise for tR → −∞. The same argument holds when t1, ξ1
i , ξ2

i or τi become infinite and when
ρ1
i or ρ2

i go to −∞.
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4.2. The Piecewise Geodesic Shape Model: Chemotherapy Monitoring through
3D Anatomical Shape

A more accurate way to follow-up cancer is to focus on the evolution of the tumors as anatomical shape.
For this purpose, the tumors are segmented and transformed into a surface mesh or a curvilinear paths
depending on the type of data we consider, typically depending on the number of layers in scanner we have
access. Let d ∈ {2, 3} be the dimension of the ambient space.

As explained in Paragraph 1.1, anatomical shapes can be modeled as points on a Riemannian shape
manifold. One of the peculiarities of shape spaces is their close link with deformation groups and defor-
mation vector fields via the LDDMM framework. The numerical cost of the estimation can be lightened
by considering a parsimonious representation of vector fields, through the introduction of control points
(Durrleman et al., 2011). Shape trajectories within the geodesic-framework developed by Schiratti et al.
(2015) has already been addressed (Bône et al., 2018). We explain here quickly how to adapt this model
to the piecewise geodesic framework. In particular, we use consistent notations and admit the notion of
exp-parallelism.

4.2.1. The Piecewise Geodesic Shape Model
In the same way as the piecewise logistic curve model, we aim for chemotherapy monitoring with two

distinct phases in the evolution of the tumoral growth and we have therefore setm = 2. We keep the notation
tR for the single breaking-up time at the population level and tiR at the individual one. We consider only
two geodesic components, so an easy way to enforce the representative path to be continuous is to define the
first component in the past and the second one in the future, from the rupture time tR. Thus, provided that
we follow forward the first component, we can use exactly the same construction that the one introduced by
Bône et al. (2018). As a consequence, the following is applicable either for currents (Vaillant and Glaunès,
2005) or varifolds (Charon and Trouvé, 2013), allowing to consider shapes without any point correspondence.

4.2.2. The Group-Representative Trajectory
Let yR ∈ M ⊂ Rd be the rupture shape, i.e. the representative shape of the population at the rupture

time tR, and likewise cR ∈ Rncpd be a set of ncp rupture control points. Let m1
R ∈ Rncpd and m2

R ∈ Rncpd
be respectively the backward and forward momenta at the rupture time. We define the representative path
by:

γ0 : t 7−→ ExpcR,tR,−t(m1
R) ◦ yR 1]−∞,tR](t) + ExpcR,tR,t(m2

R) ◦ yR 1[tR,+∞[(t) ,

where t 7→ ExpcR,tR,t(mR) denotes the exponential operator associated to the manifold of diffeomorphisms
underlying the shape space (See (Beg et al., 2005; Bône et al., 2018; Miller et al., 2006) for details about the
construction of the shape space). In particular, the resulting backward and forward velocity vectors at the
rupture time are respectively define by v1

R = cR ·m1
R =

∑ncp
q=1 cR,qm

1
R,q and v2

R = cR ·m2
R. Figure 3 sums

up this construction.

4.2.3. Individual Trajectories
At the individual level, as the initial representative time is not explicitly defined in this framework, we

slightly modify the first time component reparametrization leading to ψ1
i (t) = eξ1

i (t − tR − τi) + tR and
ψ2
i (t) = eξ2

i (t − tR − τi) + tR. The individual rupture time are given by tiR = tR + τi and we check that
ψ1
i (tiR) = ψ2

i (tiR) = tR.
The diffeomorphic component deformations consist of exp-parallelism of the representative path (Schiratti

et al., 2015). Given a vector w, to define the exp-parallel of a curve γ in the direction of w, we first
transport the vector w along the curve γ and then compute the flow given by the transported vector. We
note Pt : Rncpd → Rncpd the parallel transport operator, which transport any vector w ∈ Rncpd along the
curve γ0 from γ0(tR) to γ0(t) and we set: ηw : t 7→ Expc(t),0,1 (Pt(w)), where c(t) is the set of control points
for γ0, at the time t:

c(t) = ExpcR,tR,−t(m1
R) ◦ cR 1]−∞,tR](t) + ExpcR,tR,t(m2

R) ◦ cR 1[tR,+∞[(t) .
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Figure 3: The piecewise geodesic shape model: Construction of the group-representative trajectory. Let tR be the rupture
time and yR ∈ M the rupture shape, i.e. the shape of the representative path at the rupture time. We define the path γ0 as
the concatenation of the two geodesics starting at the rupture time tR and the point yR, in the directions associated to m1

R

the backward and m2
R the forward momenta respectively and where the first is followed backward.

Thus, given a space shift momenta wi for all individuals, the space deformation of the curve γ0 is given by
t 7→ ηwi(t) ◦ yR.

Last, for all individuals i ∈ J1, nK, we define a subject-specific trajectory by setting:

γi : t 7−→ ηwi(ψ1
i (t)) ◦ yR 1]−∞,ti

R
](t) + ηwi(ψ2

i (t)) ◦ yR 1[ti
R
,+∞[(t) .

4.2.4. Space-shift momenta and identifiability
Following Bône et al. (2018) and in the spirit of Independent Component Analysis (Hyvärinen et al.,

2004), we assume that each space-shift momenta wi is a linear combination of ns sources si ∈ Rns , i.e. that
wi = Am⊥

R
si, where Am⊥

R
∈Mncpd,ns(R) calls modulation matrix. As argued in (Bône et al., 2018; Schiratti

et al., 2015), we have to ensure the orthogonality between mR and wi in order to ensure the identifiability of
the model. This orthogonality condition prevents a confusion between the space shifts and the acceleration
factors and can be achieved through projection techniques that we do not detail here.

To sum up, the population random effects are given by zpop = (yR, cR,m1
R,m

2
R, tR, Am⊥R

) and the indi-
vidual ones by zi = (ξ1

i , ξ
2
i , τi, si). To place ourselves in the hierachical framework detailed at the paragraph

2.3.2, we assume that there exists Σ ∈ S +
3 (R) such that zi ∼ N (0,Σ)⊗N (0, 1) and that there exists small

fixed variances such that the population latent variable follow a tight Gaussian distribution.

4.2.5. Theoretical Analysis of the Piecewise Geodesic Shape Model
As for the piecewise logistic curve model, Theorem 1 applies and the MAP estimator for the piecewise

geodesic shape model is well-defined. We therefore focus on the consistency of this model.
Like previously, we define the space of admissible parameters associated to bounded on average fixed

effects:
Θω,ps = { θ ∈ Θps | ‖(γinit0 , γescap0 , γfin0 , tR, t1)‖ 6 ω }

for all ω ∈ R, where

Θps =
{

(yR, cR,m1
R,m

2
R, tR, Am⊥R

Σ, σ) ∈ Rppop ×S +
pind(R)× R+} .

As in the generic and piecewise-logistic framework, we also define the space

Θω,ps
∗ = {θ ∈ Θω,ps | EP (dy`)

[
log q(y`|θ)

]
= E∗(ω)} ,
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where E∗(ω) = supθ∈Θω,pl EP (dy`)
[
log q(y`|θ)

]
.

Theorem 4 (Consistency of the MAP, piecewise shapes). Assume that

(H1) The number of observations is bigger than the one of latent variables: There exists ` ∈ J1, nK such
that p` < k`, where k` =

∑`
i=1 ki and p` = ppop + ` pind ;

(H2) The times of acquisition ti = (ti,j)j∈J1,kiK are independent and identically distributed;

(H3) The density P (dy`) is continuous with polynomial tail decay of degree bigger p` + 1 apart from a
compact subset K of Rk` ;

(H4) For all individuals i ∈ J1, nK, t 7→ ‖γi(t)‖ grows super-linearly or t 7→ γi(t) converges uniformly w.r.t
the variable yR toward a function t 7→ γ ∗i (t);

(H5) For all individuals i ∈ J1, nK, the variables cR, m1
R, m2

R, Am⊥R and si are either regular or critical,
in the sens of Theorem 2.

Then, the piecewise geodesic shapes model satisfies the hypothesis of Theorem 2. In particular, if (θ̂n)n∈N
denote any MAP estimator, Θω,ps

∗ 6= ∅ and for any ε ∈ R∗+,

lim
n→∞

P
[
δ(θ̂n,Θω,ps

∗ ) > ε
]

= 0 ,

where δ in any metric compatible with the topology on Θω,ps.

Proof. Let us demonstrate that the variables yR, tR, ξ1
i , ξ2

i and τi are either regular of critical for all
individuals i ∈ J1, nK.

1. Let i ∈ J1, nK and (zpop, zi) ∈ Zpop ×Zi. By continuity of the parallel transport and the trajectory
γ0, there exists a ∈ R+ such that

‖~γi(zpop, zi)‖∞ > a ‖yR = γ0(tR)‖

and so, yR is regular.

2. By continuity of the geodesic flow, for all times t ∈ R, γi(t) depends continuously of γi(tR). Thus,
for all t ∈ R, by continuity of the parallel transport, γi(t) depends continuously of yR. If γ ∗i exists,
since the convergence of γi toward γ ∗i is uniform w.r.t the variable yR, γ ∗i is also continuous w.r.t
yR = γ0(tR) ∼ N (yR, ∗ ) and so is a continuous distribution.
For all i ∈ J1, nK, all ` ∈ {1, 2} and all t ∈ R, we have limξ`

i
→−∞ ψ`i (t) = tR. Therefore,

limξ`
i
→−∞ γ`i (t) = γi(tR) which is a continuous distribution. So, for all j ∈ J1, kiK, Lki ({yi,j = γi(tR)}) =

0.
Last, since limψ`i (t) = ±∞ when |tR|, |τi| or ξ`i converge toward +∞, we get the result with
Assumption (H4).

Proving (H5) is a very interesting issue but outside of the scope of this paper. Our conjecture is that a
positive and restricted curvature for the shape space M will guarantee that, for all individuals i ∈ J1, nK,
cR, m1

R, m2
R, Am⊥R and si are regular. Indeed, we guess that in geodesic shooting, sufficient initial momenta

will enforce the trajectory to “go away", provided that the underlying manifold is “kind" enough. Note that
the computation of the curvature for both currents and varifolds is still an open problem.
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5. Experimental Results
Experimentations are carried out for both models introduced above: the piecewise logistic curve model

and the piecewise geodesic shape model. To validate our model and numerical scheme, we first run exper-
iments on synthetic data for the piecewise logistic model. We then test our estimation algorithm on real
data from the Hôpital Europén Georges Pompidou (HEGP – Georges Pompidou European Hospital). A
medical paper is under progress to provide a more accurate interpretation of these results. Then, we run
experiments on synthetic data for the piecewise geodesic shape model to confirm the performance of our
model on more complicated data. Real data for this framework are being collected and preprocessed.

5.1. Univariate Synthetic Data
We generate four types of data set, to put our algorithm in different situations. More precisely, we want

to quantify its sensitivity to initialization, sample size, and noise.

5.1.1. Influence of the Initialization
The estimation is performed through the SAEM algorithm (Algorithm 1). This iterative algorithm is

proved to converge toward a critical point of the observed likelihood. Therefore, as our model does not
imply a convex likelihood, one may end up with a local maximum depending on the initialization point and
the dynamic of our iterations. This choice of initialization appears crucial. In particular the choice of the
initial mean population parameters zpop init.

If our model were linear, the representative curve γ0 would exactly be the one induced by the mean of
the individual trajectories γi, i.e. the one where zpop = meani∈J1,nK zi. Following this idea, we set in our
experiments

γinit0
init

= mean
i∈J1,nK

yi,1 ; γescap0
init

= mean
i∈J1,nK

min
j∈J1,kiK

yi,j ; γfin0
init

= mean
i∈J1,nK

yi,ki

tR
init = 1

2 mean
i∈J1,nK

tki and t1
init = mean

i∈J1,nK
tki .

Note that the choice of the initial covariance matrix Σ init and the residual noise σ init does not seem to be
very influential. We just demand Σ init to be definite positive.

5.1.2. Influence of the Proposal Variances
The SAEM algorithm is very sensitive to the choice of the proposal variances in the sampling step. Thus,

we have to carefully tune these variances so that the mean acceptance ratio remains around the optimal
rate, i.e. 24% as we are using a symmetric random walk sampler. To decrease the influence of a bad
calibration, we adapt the proposal variances over the iterations in the way of Roberts and Rosenthal (2007,
2009): Every sth batch of 50 iterations, we increase or decrease the logarithm of the proposal variances by
δ(s) = min

(
0.001, 1√

s

)
depending on whether the mean associated variable acceptance rate is higher or

lower than the optimal one. Note that we have also tried to adapt the proposal variances as in (Atchadé,
2006) but the results we obtained were not satisfactory. Actually, it appears numerically that if we want
the adaptive procedure to increase the efficiency of our algorithm, we must modify the proposal variance
neither too often nor with a too big amplitude of change.

5.1.3. Construction of the Data Sets
For each type of data set, given the corresponding ground truth parameters θ true, we generate three

data sets of respective sizes 50, 100 and 250. Last, to put our algorithm on a more realistic situation, the
synthetic individual times are non-periodic and individual sizes vary between 12 and 18.

The first type – A – is said weakly Riemannian in the sense that, for these data sets, the representative
trajectory γ0 is “close" to the mean curve described above (see Paragraph 5.1.1), i.e. from the mean
curve in the Euclidean setting. Hence, we put our algorithm in a favorable situation where the optimal
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Table 1: Four types of data sets. Relative errors (expressed as a percentage) for the initial population parameters zpop init,
according to the type of data set and the sample size n.

n δR(γinit0 ) δR(γescap0 ) δR(γfin0 ) δR(tR) δR(t1)

A 50 7.08 17.01 5.94 1.97 1.98
100 2.93 22.33 3.66 2.40 2.42
250 2.16 24.06 2.12 3.52 3.54

A∗ 50 5.63 283.14 1.51 1.03 1.01
100 3.38 259.25 0.07 4.75 4.76
250 3.67 269.42 0.41 3.94 3.95

B 50 80.47 2.77 39.78 35.04 35.09
100 88.17 4.39 51.83 36.14 36.19
250 83.52 12.91 47.90 33.23 33.27

B∗ 50 59.25 201.98 33.46 28.85 28.89
100 74.94 213.96 43.50 30.74 30.78
250 79.14 229.40 47.30 34.39 34.44

Table 2: The piecewise logistic curve model – Fixed effects. Mean (standard deviation) relative errors (expressed as a
percentage) over 50 runs for the estimated population parameters zpop estim according to the data set and the sample size n.

n γinit0 γescap0 γfin0 tR t1

A 50 6.03 (0.32) 10.25 (0.50) 3.69 (0.25) 1.95 (0.13) 2.43 (0.18)
100 2.19 (0.17) 3.28 (0.22) 2.07 (0.18) 1.69 (0.11) 1.86 (0.17)
250 1.30 (0.10) 1.96 (0.13) 1.53 (0.08) 0.78 (0.06) 1.67 (0.09)

A∗ 50 3.74 (0.26) 25.73 (1.64) 6.84 (0.40) 3.32 (0.26) 3.73 (0.26)
100 2.35 (0.15) 12.20 (0.64) 1.35 (0.09) 2.98 (0.22) 2.29 (0.18)
250 1.70 (0.12) 3.94 (0.29) 1.33 (0.09) 1.36 (0.10) 1.51 (0.10)

B 50 71.13 (1.33) 100.24 (8.09) 90.73 (2.54) 7.78 (0.56) 46.39 (1.32)
100 58.73 (0.98) 58.88 (3.00) 84.99 (1.42) 8.13 (0.57) 42.06 (1.04)
250 67.49 (0.47) 23.12 (1.54) 57.82 (0.74) 6.01 (0.33) 38.09 (0.36)

B∗ 50 41.61 (1.26) 29.86 (2.53) 46.38 (1.60) 9.04 (0.58) 29.90 (0.58)
100 60.39 (0.81) 28.43 (2.06) 58.35 (1.07) 8.11 (0.54) 29.75 (0.50)
250 55.89 (0.74) 15.56 (0.98) 59.90 (0.58) 3.26 (0.25) 39.28 (0.43)

representative trajectory is close to the initial one. The second type –A∗ – is a noisy version of A. The noise
level is approximately 20% (against 2% for the non-noisy data set A).

On the contrary, the thirds type – B – is built in order to be “strongly Riemannian": The representative
trajectory γ0 is “far" from the curve built by zpop init. Likewise, the fourth type – B ∗ – is a noisy version of
B, with a 20 % noise level.

To measure the strength the data set “is" Riemannian, we introduce the ratio δR(zpop) which is the
relative error of zpop init:

δR(zpop) = ‖zpop
init − zpop true‖
‖zpop true‖ .

Table 1 compiles this ratio for every data set, and every parameter in zpop. In particular, the initialization
of γescap0 is in itself a challenge and very sensitive to the noise in the data set: Even in the quasilinear case,
γescap0

init
is quite far from γescap0

true
.

5.1.4. Estimation of the Fixed Effects
Table 3 displays the relative errors for the estimated population parameters. In most cases, these errors

decrease with the size of the data set. More specific to our model, we observe that these errors are correlated
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Table 3: The piecewise logistic curve model – Variability and residual noise. Mean (standard deviation) of Kullback–Leibler
divergences from Σ estim to Σ true, mean (standard deviation) relative errors (expressed as a percentage) for the individual
rupture times tiR

estim and mean estimated residual noise σestim according to the data set and the sample size n. All over 50
runs.

n Σ tiR σ

A 50 15.54 (5.17) 0.49 (0.04) 2.03
100 8.45 (2.26) 0.63 (0.06) 1.97
250 9.29 (3.13) 0.57 (0.60) 2.06

A∗ 50 16.52 (19.45) 4.66 (0.45) 19.81
100 12.86 (4.26) 3.85 (0.32) 19.03
250 6.72 (2.44) 3.98 (0.32) 20.07

B 50 16.53 (7.72) 5.89 (3.45) 3.07
100 13.59 (5.42) 4.44 (1.93) 2.14
250 22.24 (9.77) 4.96 (1.93) 2.49

B∗ 50 27.62 (17.71) 14.32 (4.06) 19.93
100 23.98 (18.07) 13.97 (3.71) 20.56
250 17.70 (5.35) 11.57 (2.42) 21.38

to the subjective strength with which the data set “is" Riemannian. With the exception of γescap0 , the errors
for estimating population parameters grow linearly with the ratio δR(zpop). We suppose that the difference
of scale between γescap0 and the others can, at least partly, explain this phenomena: γescap0 is about a few
tens of units ; γinit0 , γfin0 and tR about a few hundreds and t1 about one thousand. Thus, a same absolute
error will lead to markedly different relative error.

As Table 1 displays the relative error for the initial population parameters zpop init and Table 3 the
relative errors for the estimated population parameters zpop estim, by comparing this two tables, we are able
to quantify the contribution of the estimation-procedure in the knowledge of population parameters. The
first point to note is that this relative error generally decreases. Specifically, the population parameters are
well-learned in weakly Riemannian cases (data sets A and A∗) and in particular in large data set (n = 250).
Then, the algorithm we propose is not noise-sensitive: Errors for non-noisy and noisy versions of the same
type of data set are notably the same. And even better, for the strongly Riemannian data sets, the estimation
is better performed in the noisy case than in the non-noisy one. It seems that the presence of noise helps
the algorithm not to get stuck in potential well.

Hence, the way the data set “is" Riemannian seems to play a significant role in the estimation of popula-
tion parameters. To make sure that the poor estimation of zpop when the ratio δR(zpop) is too high is due
to the strongly Riemannian nature of the data set and not to a wrong initialization, we have also performed
estimations by assigning θinit = θtrue. The results were better but not so significant.

Last, note that the representative rupture time tR is well-estimated, no matter the data set is subjectively
Riemannian. In the view of chemotherapy monitoring, well-estimating the rupture time, which corresponds
to an escapement from the treatment, is very important.

5.1.5. Estimation of the Inter-Individual Variability
In the target of our application, the covariance matrix Σ gives a lot of information on the health status

of a patient: pace and amplitude of tumor progression, individual rupture times, etc. Therefore, we have to
pay special attention to the estimation of Σ.

Much as the representative trajectory is not always good-estimated, our algorithm always allows a well-
understanding of the inter-individual variability. We present at Table 3 the Kullback-Leibler divergence from
Σ estim to Σ true, the relative error of the individual rupture times and the estimated residual noise. As for
the estimation of the population parameters, errors decrease with the sample size n and are not significantly
different between noisy and non-noisy versions of a same type of data set. Moreover, in that case, the errors
seem to not rely on the Riemannian nature of the data set. Furthermore, the individual rupture times tR
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Figure 4: The piecewise logistic curve model: Distribution of the individual rupture times. Each subfigure compares the
distribution of the (mean of the) estimated individual rupture times tiR

estim and the distribution of the true individual rupture
times tiR

true. In bold line, the estimated average rupture time tRestim and the true average rupture time tRtrue are relatively
close to each other. n = 250.
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Figure 5: The piecewise logistic curve model: Qualitative performance of the estimation and robustness to noise of the MAP
estimator. On both figures, the estimated trajectories are in plain lines and the target curves in dashed lines. The (noisy)
observations are represented by crosses. The representative path is in bold black line, the individuals in color. n = 250.

and the residual noise σ are always well-estimated.

5.1.6. Reconstruction of the Individual Trajectories
Figure 4 illustrates the well understanding of variance within the population, including for the strongly

Riemannian data. Determining accurate individual rupture time tiR is all the most important as, in the aim
of chemotherapy monitoring, they are related to an escape of patients’ response to treatment.
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Figure 6: RECIST score of patients from the HEGP. We keep conventions of the previous figures. Figure 6a is the result of a
600 iterations run. We represent here only the first 8 patients among the 176. Figure 6b is the histogram of the rupture times
tiR for this run. In black bold line, the estimated average rupture time tR is a good estimate of the average of the individual
rupture times although there is a large range of escape.

An important point was to allow a large number of different individual behaviors. In our synthetic
example, Figure 2a illustrates this variability. From a single representative trajectory (γ0 in bold plain line),
we can generate individuals who are healed at the end (dot-dashed lines: γ3 and γ4), some with a poor
response to treatments (dashed lines: γ5 and γ6), some who only escape (no positive response to treatments,
dotted lines: γ7). Likewise, we can generate “patients" with only positive responses or no response at all.
The case of individual 4 is interesting in practice: The tumor still grows but so slowly that the growth is
negligible, at least in the short-run.

Figure 5 illustrates the qualitative performance of the estimation. We are notably able to understand
various behaviors and fit subjects that are far from the characteristic path. Moreover, the noise does not
seem to reduce the quality of the estimation. We represent only five people but 250 subjects have been used
to perform the estimate.

5.2. Metastatic Kidney Cancer Monitoring
The algorithm is now run on RECIST score of real patients suffering from kidney cancer. The estimation

is performed over a cohort of 176 patients of the HEGP. There is an average of 7 visits per subjects (min:
3, max: 22), with an average duration of 90 days between consecutive visits. We present here a run with a
low residual standard variation with respect to the amplitude of the trajectories and complexity of the data
set: σ = 9.10.

Figure 6a illustrates the qualitative performance of the model on ten patients. Although not all progres-
sion paths can be explained, the algorithm succeeds in fitting various types of curves: from the curve γ6
which is flat to the curve γ3 which is spiky. From Figure 6b, it seems that the rupture times occur early in
the progression in average.

In Figure 7, we plot the individual estimates of the random effects (obtained from the last iteration) in
comparison to the individual rupture times. Even though the parameters which lead the space warp, i.e.
ρ1
i , ρ2

i and δi are correlated, the correlation with the rupture time is not clear. In other words, the volume
of the tumors seems to not be relevant to evaluate the escapement of a patient. On the contrary, which is
logical, the time warp strongly impacts the rupture time.

5.3. Shape Synthetic Data
The data set consists of 20 synthetic sequences of 3D-shapes built according to the piecewise geodesic

shape model described at Paragraph 4.2, in the context of varifolds (Charon and Trouvé, 2013). Figure 8
shows the template shape used to construct the data set, which is considered to be a tumor that varies in
size over time. The estimation is still performed through the MCMC-SAEM algorithm (Algorithm 1). Real
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Figure 7: Individual random effects. Log-acceleration factors ξ1
i and ξ2

i against times shifts τi and llog-amplitude factors ρ1
i

and ρ2
i against space shifts δi. In both figures, the color corresponds to the individual rupture time tiR. These estimates hold

for the same run as Figure 6.

Figure 8: The piecewise shape model: Template used to construct the data set. Evolution of the template over time. The
color corresponds to the gradient of the deformation.

Table 4: The piecewise geodesic shape model. Relative errors for the representative rupture shape yR and the representative
rupture times tR. Mean (standard deviation) relative errors for the individual rupture time tiR

estim, within the population.
Error of reconstruction for the template and mean (standard deviation) os the error of reconstruction for the individuals. All
expressed as a percentage and for a typical run.

yR tR
Template

tiR
Individuals

reconstruction reconstruction

1.30 0.01 9.72 0.31 (0.41) 7.94 (5.91)

data are not yet available as the segmentation of the tumor has to be done manually, which is complex
and time-consuming. This study will motivate new segmentations for future works. However, a similar
experiment was conducted over hippocampi from the Alzheimer’s Disease Neuroimaging Initiative database
in (Debavelaere et al., 2019), with good results.

The control points used to construct the data are selected to be regularly distributed. Thus, the algo-
rithm has no reason to return the same control points: On the contrary, it returns more relevant control
points. As momenta and control points share a single dynamic, we rather evaluate the performances on the
reconstruction relative error that summarizes our algorithm’s goodness of fit.

Table 4 displays the relative errors for the estimated representative rupture shape, representative rupture
time and individual rupture times. We emphasize the well-estimation of the rupture times tR and (tiR)i∈J1,nK,
which is critical in the target to our application to chemotherapy monitoring. We also provide the relative
errors of reconstruction, i.e. the relative residual distances between the estimated trajectories and their
corresponding paths in the data set for both the representative path and the individual ones. We postponed
to the supplementary materials (SM2) illustrations of the qualitative performance of the reconstruction.
Mainly, the reconstruction turns out to be very efficient.
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6. Discussion and Perspective
We have proposed a coherent statistical framework for the spatio-temporal analysis of piecewise geodesic

manifold valued data. This model allows each individual to have his own intrinsic geometry and his own
time parametrization. Unlike previous similar works (Schiratti et al., 2015), it allows for piecewise geodesic
trajectories. Relaxing the classical geodesic assumption broadens the application scope of the model in
biology and medicine. The model is built hierarchically as a non-linear mixed-effects model whose fixed
effects define a representative trajectory of the global evolution in the space of measurements and random
effects account for the spatio-temporal variability of the paths at the individual level.

Estimation was formulated as a well-defined MAP problem and numerically performed through the
MCMC-SAEM algorithm. Experimentations have highlighted the robustness of our model to noise and
its performance in catching individual behaviors. We believe that the complexity of our model ensures its
practical identifiability, even if it is not structurally identifiable (Lavielle and Aarons, 2016). Besides, as
the posterior likelihood is not convex, the MAP could be difficult to determine numerically. Future work
focuses on exploring some possible improvements to the numerical scheme.

Our model can be applied to a wide variety of situations and data sets. In particular, we can ad-
dress medical follow-ups such as neurodegenerative diseases or chemotherapy monitoring. The example of
chemotherapy monitoring is especially interesting in a modeling perspective as the patients are treated and
tumors may respond, stabilize or progress during the treatment, with different behaviors for each phase.
In the age of personalized medicine, it is very important to provide physicians with decision support sys-
tems. Therefore learning correlations between phases is crucial. This has been taken into account in our
experimentations. More generally, the inter-individual variability allows us to personalize the model to new
patients and thus perform predictive medicine.
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For the sake of brevity, we have postponed to the supplementary materials the demonstration of the con-
sistency of the MAP estimator (Theorem 2, Section 3.2) and some illustrations of the qualitative performance
of the estimation in the case of the piecewise geodesic shape model (Section 5.3).

1. Proof of the Consistency Theorem for Bounded Population Vari-
able

The proof of the theorem relies on several lemmas. Lemma 3 is the heart of the proof: we control here
the behavior of the log-likelihood at the boundary points of the parameters space Θω

∗ and prove that this set
is non-empty. It is based on Lemma 2 which states the integrability of the supremum over the parameter
space of the positive part of the log-likelihood. Lemma 1 is derived from (Allassonnière et al., 2007). We
transpose the proof of the cited article here (with few more details) as this lemma is critical in the proof of
Lemma 2 and not such classical.

In the following, we freely (and without reminder) use the notations introduced in Section 3.2. Moreover,
(H1), (H2), (H3), (H4) and (H5) refer to the hypothesis of the consistency theorem (Theorem 2, page 11),
namely there exists ` ∈ J1, nK such that:

(H1) p` < k`, where k` =
∑`
i=1 ki and p` = ppop + ` pind ;

(H2) The times of acquisition ti = (ti,j)j∈J1,kiK are independent and identically distributed;

(H3) The density P (dy`) is continuous with polynomial tail decay of degree bigger than p`+1 apart from
a subset compact K of Rk` ;

(H4) For all subjects i ∈ J1, nK, ‖εi‖2 6 ‖~γi(zpop, zi)‖2 ;

(H5) For all individuals i ∈ J1, nK and for all v ∈ J1, preg
pop+preg

indK, there exists two functions ai,v, bi,v : Rpreg
pop+preg

ind−1 →
R which depends only on (zreg

pop, z
reg
i )−v and such that for all (zpop, zi) ∈ Zpop ×Zi,

ai,v

(
(zreg

pop, z
reg
i )−v

)
> 0 where ai,v

(
(zreg

pop, z
reg
i )−v

)
= 0 iff (zreg

pop, z
reg
i )−v = 0

and
‖~γi(zpop, zi)‖∞ > ai,v

(
(zreg

pop, z
reg
i )−v

) ∣∣∣(zreg
pop, z

reg
i )

v

∣∣∣+ bi,v

(
(zreg

pop, z
reg
i )−v

)
;
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and by the Fondation de la recherche médicale, under contract number DBI20131228564.
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(H6) For all individuals i ∈ J1, nK and for all v ∈ J1, pcrit
pop + pcrit

ind K, there exists a critical trajectory γcrit
i,v

such that

lim
|(zcrit

pop,z
crit
i

)v|→+∞
~γi(zpop, zi) = γcrit

i,v and Lki({yi = γcrit
i,v }) = 0 .

1.1. Lemmas
We first recall that the minimal number of balls of radius r ∈ R∗+ required to cover a compact set K ∈ Rp

is bounded from above by
(
Diam(K)

r

)p
.

Lemma 1 (Preliminary of measure theory). Let p < q be two integers. Then, for any differentiable map
f : Rp → Rq and any compact subset K of Rp, there exists a constant λ which depends only on p and q such
that ∫

Rq\f(K)
log+ 1

d
(
y, f(K)

) dy < λ

(
sup
K
‖Df‖+ 2

)q
Diam(K)p ,

where d is the euclidean distance on Rq, Df the differential of f and Diam(K) the diameter of the compact
K. Especially, ∫

Rq\f(K)
log+ 1

d(y, f(K)) dy < +∞ .

Proof. For all ρ, ρ1, ρ2 ∈ R∗+, ρ1 < ρ2, let

Mρ1,ρ2 =
{
y ∈ Rq | ρ1 6 d

(
y, f(K)

)
6 ρ2

}
and Mρ = M0,ρ .

For all ρ ∈ R∗+, due to the compactness of K, there exists a finite set Λρ ⊂ K such that K ⊂ ⋃x∈Λρ B(x, ρ)

and |Λρ| 6
(
Diam(K)

ρ

)p
. Let τ = supK‖Df‖. According to the mean value theorem,M0,ρ ⊂ B

(
f(x), (τ+2)ρ

)

and
Lq(Mρ) 6

∑

x∈Λρ

Lq

(
B
(
f(x), (τ + 2)ρ

))
6
√
π
p (τ + 2)p

Γ
(
p
2 + 1

) ×
(
Diam(K)

)p × ρq−p .

Let s ∈ ]0, 1[. Then, from the Abel transformation,

∫

Rq\f(K)
log+ 1

d
(
y, f(K)

) dy =
+∞∑

n=0

∫

Msn+1,sn

log+ 1
d
(
y, f(K)

) dy

6
+∞∑

n=0
log 1

sn+1 [Lq(Msn)−Lq(Msn+1)]

6 − log(s)
+∞∑

n=0
Lq(Msn) .

Hence the result as s ∈ ]0, 1[.

Lemma 2. Assume (H1), (H3), (H4) and

(H’5) Bounded regular variables implies bounded trajectories: For all individuals i ∈ J1, nK, if there exists
b ∈ R such that ‖(zreg

pop, z
reg
i )‖∞ < b then there exists R ∈ R∗+ such that ‖~γi(zpop, zi)‖∞ < R.

Then, for any such `,

EP (dy`)


 sup
θ∈Θ

(∑̀

i=1
log q(yi|θ)

)+ 
 < +∞ .

2
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Proof. Let i ∈ J1, `K, Γi = Im(~γi) and Γ` =
∏`
i=1 Γi. For all θ ∈ Θω,

q(yi|θ) = 1
(σ
√

2π)ki

∫

Zi
exp

(
− 1

2σ2 ‖yi − ~γi(zpop, zi)‖22
)
q(zpop, zi|θ) d(zpop, zi)

6 1
(σ
√

2π)ki
exp

(
− 1

2σ2 d(yi,Γi)2
)
,

where d denotes the Euclidean distance on Rki . Thus for all θ ∈ Θω,

∑̀

i=1
log q(yi|θ) 6 − k`

2 log(2πσ2)− 1
2σ2 d(y`,Γ`)2 ,

where d denotes now the Euclidean distance on Rk` , k` =
∑`
i=1 ki. As the right hand side is maximized for

σ2 = 1
k`
d(y`,Γ`)2, there exists a constant λ ∈ R∗+ such that

sup
θ∈Θ

(∑̀

i=1
log q(yi|θ)

)+

6 λ+ k` log+ 1
d(y`,Γ`) .

1. Assume there exists i0 ∈ J1, nK such that that ‖(zreg
pop, z

reg
i0

)‖∞ > b for all b ∈ R.
For all r1, r2 ∈ R we define a compact subset Γ`r1,r2 of Γ` by setting

Ā(r1, r2) =
{
z` ∈ Rp

` | r1 6 ‖(zreg
pop, z

reg
i )i∈J1,`K‖∞, ‖(zcrit

pop, z
crit
i )i∈J1,`K‖∞ 6 r2

}

and
Γ`r1,r2 =

{
~γ`(z`) | z` ∈ Ā(r1, r2)

}
.

Especially, limr2→∞ Γ`0,r2 = Γ`. Moreover, ~γ` is differentiable a.e., at least one-side differentiable
everywhere and there exists τ ∈ R such that supRp`‖Dz`~γ

`‖ < τ . So, according to Lemma 1, for
all r1, r2 ∈ R, there exists µ ∈ R which depends only on p` and k` such that E

[
log+ 1

d(y`,Γ`r1,r2 )

]
<

µ (τ + 2)k
`

r2
p` . As in the proof of Lemma 1, we set Γ`r1,r2 = {y` ∈ Rk` | d(y`,Γ`r1,r2) 6 1} and we

have for all r1, r2 ∈ R,
∫

Rk`
log+ 1

d(y`,Γ`r1,r2)P (dy`) =
∫

Γ`r1,r2

log+ 1
d(y`,Γ`r1,r2)P (dy`)

6 µ̄ r2
p` sup

Γ`r1,r2

P (y`) ,

where µ̄ = µ (τ + 2)k
`

∈ R. Let R1, R2 ∈ N such that K ⊂ B̄(0, R1) and R1 < R2. By definition of
the distance to a subset, it comes that

EP (dy`)

[
log+ 1

d(y`,Γ`0,R2
)

]
6 µ̄ R1

p` sup
Γ`0,R1

P (y`) + µ̄

R2−1∑

r=R1

(r + 1)p
`

sup
Γ`r,r+1

P (y`) .

The first term is finite as P (dy) is continuous. Besides, if y` ∈ Γ`r,r+1, there exists z` ∈ Ā(r, r + 1)
such that ‖~γ`(z`)−y`‖∞ 6 1. Let i ∈ J1, nK and v ∈ J1, preg

pop +preg
indK so that ‖(zreg

pop, z
reg
i )i∈J1,nK‖∞ =

|(zreg
pop, z

reg
i )v|. Such a couple exists due to the existence of i0. Moreover, there exists ai,v

(
(zreg

pop, z
reg
i )−v

)

and bi,v
(
(zreg

pop, z
reg
i )−v

)
as in (H4) and by definition of z` and the infinite norm,

‖y`‖∞ > ‖~γ`(z`)‖∞ − 1 > ‖~γi(zpop, zi)‖∞ − 1
> ai,v |(zreg

pop, z
reg
i )v| + bi,v − 1 > ai,v × r + bi,v − 1 .

3
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Consequently,
sup

Γ`r,r+1

P (y`) 6 sup{P (y`) | ‖y`‖∞ > ai,v × r + bi,v − 1}

and the series
∑

(r+1)p` supΓ`r,r+1
P (y`) converge since P (dy) has a polynomial decay tail of degree

bigger than p` + 1 apart from K by assumption (H3).

2. Assume that there exists b ∈ R such that ‖(zreg
pop, z

reg
i )‖∞ 6 b for all i ∈ J1, nK. Then, by assumption

(H’5), there exists R ∈ R∗+ such that for all i, ‖~γi(zpop, zi)‖∞ < R. In particular, ‖~γ`(z`)‖∞ < R

and Γ` ⊂ B̄(0, R). Thus,

EP (dy`)

[
log+ 1

d(y`,Γ`)

]
6 EP (dy`)

[
log+ 1

d
(
y`, B̄(0, R)

)
]
.

Yet, by still denoting B̄(0, R) = {y` ∈ Rk` | d
(
y`, B̄(0, R)

)
6 1} and applying Lemma 1 to the

compact K = B̄(0, R) and f = Id, there exists µ ∈ R such that

EP (dy`)

[
log+ 1

d
(
y`, B̄(0, R)

)
]

=
∫

B̄(0,R)
log+ 1

d
(
y`, B̄(0, R)

)P (dy`)

6 µ 3k
`

R p` sup
B̄(0,R)

P (y`) < +∞ .

Finally, in both cases, EP (dy`)

[
supθ∈Θ

(∑`
i=1 log q(yi|θ)

)+
]
< +∞.

Lemma 3. Assume (H1), (H3), (H4) and (H5). Let

S +
pind(R) = S +

pind(R) ∪ {∞}

be the one point Alexandrov compactification of S +
pind(R) and consider the compactification of the parameter

space Θω

Θω =
{
θ = (zpop,Σ, σ) ∈ Rppop ×S +

pind(R)× R+ | ‖zpop‖ 6 ω
}
,

where R+ = [0,+∞[ ∪ {+∞}. Then, we have for all ω ∈ R,

(C1) P (dy`) almost surely, for any sequence θκ =
(
zpop κ , Σκ , σκ

)
of elements from Θω such that

limκ→∞ θκ ∈ Θω \Θω,

lim
κ→∞

∑̀

i=1
log q (yi|θκ) = −∞ ;

(C2) For any sequence (θκ) ∈ ΘωN such that limκ→∞ θκ ∈ Θω \Θω,

lim
κ→∞

EP (dy`) [ log q(y|θκ) ] = −∞ ;

(C3) The mapping θ 7→ EP (dy`) [ log q(y|θ) ] is continuous on Θω and Θω
∗ 6= ∅.

Proof. We recall that a sequence (Σκ)κ∈N of S +
pind(R) converge toward the point ∞ if it eventually steps

out of every compact subset of S +
pind(R). Let prove the three points in order.

4
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1. As

Θω \Θω =
{

(Σ, σ) ∈ S +
pind(R)× R+

∣∣∣ ‖Σ‖ = +∞ ∧ ‖Σ−1‖ = +∞ ∧ σ ∈ {0,+∞}
}

we proceed by disjunction. Let

∀κ ∈ N, θκ = (zpop κ,Σκ, σκ) ∈ Θω .

(i) Assume that, up to extraction of a subsequence, ‖Σκ‖ → ∞ or ‖Σ−1
κ ‖ → ∞.

Let M = ‖y`‖∞. For all individuals i ∈ J1, nK and all κ ∈ N, the marginal density of yi given θκ is
given by :

q(yi|θκ) = 1
(σκ
√

2π)ki

∫

Zpop×Zi
exp

(
− 1

2σ2
κ

‖yi − ~γi(zpop, zi)‖22
)

q(zpop, zi|θκ) d(zpop, zi) .

Let x > 1, Zreg
i,−1 =

{(
zreg
i,2 , . . . ,z

reg
i,preg

ind

)
| zreg

i ∈ Zreg
i

}
and likewise Zreg

pop,−1. Let B̄xi,1 be the closed
ball defined by

B̄xi,1 = B̄xi,1
(

(zreg
pop, z

reg
i )−1

)
= B̄

(
0 ,

xM − bi,1
(
(zreg

pop, z
reg
i )−1

)

ai,1
(
(zreg

pop, z
reg
i )−1

)
)
,

where ai,1
(
(zreg

pop, z
reg
i )−1

)
and bi,1

(
(zreg

pop, z
reg
i )−1

)
are defined as in (H4). Thus, by slicing the

integral in half and bounding the exponential on B̄xi,1 by 1,

q(yi|θκ) 6 1
(σκ
√

2π)ki

∫

B̄x
i,1×Zi,−1

q(zpop, zi|θκ) d(zpop, zi)

+ 1
(σκ
√

2π)ki

∫

B̄x
i,1

{×Zi,−1

exp
(
− 1

2σ2
κ

‖yi − ~γi(zpop, zi)‖22
)

q(zpop, zi|θκ) d(zpop, zi) ,

where Zi,−1 = Zreg
pop,−1 ×Zcrit

pop ×Zreg
i,−1 ×Zcrit

i . Moreover, by conditioning,
∫

B̄x
i,1×Zi,−1

q(zpop, zi|θκ) d(zpop, zi) =
∫

B̄x
i,1

q(zreg
pop,1, z

reg
i,1 |θκ) d(zreg

pop,1, z
reg
i,1 ) .

By continuity of (zreg
pop,1, z

reg
i,1 ) 7→ q(zreg

pop,1, z
reg
i,1 |θκ) and compactness of B̄xi,1,

∫

B̄x
i,1×Zi,−1

q(zpop, zi|θκ) d(zpop, zi) 6 sup
B̄x
i,1

q(zreg
pop,1, z

reg
i,1 |θκ) L1(B̄xi,1) .

Since the marginal of a multivariate distribution is a multivariate distribution whose mean vector and
covariance matrix are obtained by dropping the irrelevant variables, lim‖Σκ‖→∞ q(zreg

pop,1, z
reg
i,1 |θκ) =

0 and the first integral goes to zero as ‖Σκ‖ → ∞.
In the same way of the proof of Theorem 1, the marginal density q(zreg

pop,1, z
reg
i,1 |θκ) is controlled by

the operator norm of the covariance matrix Σ−1
κ from which we have drop the irrelevant variables.

Hence, as ‖Σ−1
κ ‖ → ∞, the first integral converges toward zero as well.

The second integral is maximized at σ2
κ = 1

ki
‖yi−~γi(zpop, zi)‖2. Thus, due to the Cauchy-Schwarz

inequality, there exists a constant c ∈ R∗+ such that for all (zpop, zi) ∈ B̄xi,1{ ×Zi,−1,

‖yi − ~γi(zpop, zi)‖22 > c
(
ai,1 ×

xM − bi,1
ai,1

+ bi,1 − ‖yi‖∞
)2

> c
(
(x− 1)M

)2

5
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and by bounding the marginal density q(zpop, zi|θκ) on B̄xi,1{ × Zi,−1 by 1, the second integral is
bounded from above by

(
ki
2π

) ki
2

e−
ki
2

1
(√
c (x− 1)M

)ki .

Therefore,

lim sup
κ→∞

∑̀

i=1
log q(yi|θκ) 6 − k`

2

[
1 + log(2π) + log

(√
c (x− 1)M

)]
+ 1

2
∑̀

i=1
ki log ki .

Since x can be chosen arbitrarily large, we obtain the result for the case ‖Σκ‖ → +∞ as well as
‖Σ−1

κ ‖ → +∞.

(ii) Assume that, up to extraction of a subsequence, σκ → 0 or σκ →∞.
Let M = ‖y`‖∞. With the same notations as in the proof of Lemma 2, for all κ ∈ N,

∑̀

i=1
log q(yi|θκ) 6 − k`

2 log(2πσ2
κ)− 1

2σ2 d(y`,Γ`)2 ,

where Γ` = Im(~γ`) and d denotes the Euclidean distance on Rk` . Let us prove that d(y`,Γ`) > 0
a.s. : the result will go along whatever σκ → 0 or σκ → +∞ with the previous inequality. Let
Z` = Zpop ×

∏`
i=1Zi.

Due to (H4), for all i ∈ J1, nK,

lim
‖(zreg

pop,z
reg
i

)‖∞→∞
‖γi(zpop, zi)‖∞ = +∞ ,

and so for all ε ∈ R∗+ non-negative, there exists R ∈ R such as for all z` ∈ Z` satisfying ‖z`‖ > R,
‖~γ`(z`)‖ > M + ε. In particular, by definition of M , ‖y` − ~γ`(z`)‖∞ > 0 for ‖(zreg

pop, z
reg
i )i∈J1,`K‖∞

sufficiently large.
On the other hand, if at least a critical variable blows up, then by (H5) there exists a critical
trajectory γcrit

i such that

lim
‖(zcrit

pop,z
crit
i

)‖∞→∞
‖~γi(zpop, zi)‖∞ = γcrit

i

and as soon as this variable becomes sufficiently large, yi 6= γcrit
i a.s. Thus ‖y`−~γ`(z`)‖∞ > 0 a.s.

for ‖(zcrit
pop, z

crit
i )i∈J1,`K‖∞ sufficiently large.

In other words, there exists R ∈ R∗+ such that for all z` ∈ Z`, if ‖z`‖∞ > R, then ‖y`−~γ`(z`)‖∞ > 0
a.s. So, by contraposition, if there exists z` ∈ Z` such that ‖y`−~γ`(z`)‖∞ = 0 (at least a.s.) then
‖z`‖∞ 6 R. Especially, {z` ∈ Z` | y` = ~γ`(z`) a.s.} ⊂ B̄(0, R) . Since (H3) assumes that P (dy)
has a continuous density and since ~γ`

(
B̄(0, R)

)
is a sub-manifold of dimension p` < k`, it comes

that P
[
z` ∈ B̄(0, R)

]
= 0. Hence,

Lk`
({
y` | d(y`, Im(~γ`)) = 0

})
= 0

2. Let fκ(y`) =
∑`
i=1 log q(yi|θκ). From (C1), we deduce that, up to extraction, the negative part(

fκ(y`)
)− is almost surely a non-decreasing and non-negative sequence converging to +∞. From

the monotone convergence theorem we then have

lim inf
κ→+∞

EP (dy`)

[(
fκ(y`)

)−] = +∞

6
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and so
lim

κ→+∞
EP (dy`)

[(
fκ(y`)

)−] = +∞ .

Concerning the positive part
(
fκ(y`)

)+, using the dominated convergence theorem, Lemma 2 and
the point (C1), we get

lim
κ→+∞

EP (dy`)

[(
fκ(y`)

)+] = 0 .

Actually, for all i ∈ J1, nK the application (zreg
pop, z

reg
i ) 7→ γcrit

i is continuous by continuity of the
function ~γi and so (H’5) holds.
Finally, we have proved that

lim
κ→+∞

EP (dy`)

[∑̀

i=1
log q(yi|θκ)

]
= −∞

and (C2) follows immediately.

3. The continuity statement is straightforward. If Θω
∗ is empty, any maximizing sequence θκ of

EP (dy`)
[
log q(y`|θ)

]
satisfies (up to extraction of a subsequence) θκ ∈ Θω, ‖Σκ‖ → +∞, ‖Σ−1x

κ ‖ →
+∞, σκ → 0 or σκ → +∞, which is on contradiction with conclusion (C2).

1.2. Proof of the Consistency Theorem
We follow in the following proof the classical approach of van der Vaart (2000).

Proof. As in Lemma 3, let Θω denote the one point Alexandrov compactification of the parameter space
Θω. We have already proved at [Lemma 3 (C3)] that Θω

∗ 6= ∅. To achieve the proof, let us first demonstrate
that for all θ∞ ∈ Θω such that δ (θ∞,Θω

∗ ) > ε there exists an open set U ⊂ Θω such that

1
`
EP (dy`)

[
sup

θ∈U∩Θω

∑̀

i=1
log q(yi|θ)

]
< E∗(ω) . (0)

Let ε > 0, (Uh) ⊂ ΘωN be a non-increasing sequence of open subsets of Θω for which
⋂
h>0 Uh = {θ∞} and

fh be the function defined by

fh(y`) = 1
`

sup
θ∈Uh

∑̀

i=1
log q(yi|θ) .

1. If θ∞ ∈ Θω, through the continuity of the map θ 7→ ∑`
i=1 log q(yi|θ) and the definition of the

sequence (Uh),

lim
h→+∞

fh(y`) = 1
`

∑̀

i=1
log q(yi|θ∞) .

So, according to the monotone convergence theorem, Lemma 2 and since θ∞ /∈ Θω
∗ ,

lim
h→+∞

EP (dy`)
[
fh(y`)

]
= 1

`

∑̀

i=1
EP (dy`) [log q(yi|θ∞)] < E∗(ω) .

7
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2. If θ∞ /∈ Θω, i.e. if θ∞ ∈ Θω \Θω, we can prove that for all observations y` ∈ Rk` limh→∞ fh(y`) =
−∞ P (dy`) a.s. We proceed by contradiction : assume that there exists a measurable set A ∈
B(Rk`) such that P(y` ∈ A) > 0 and for all y` ∈ A, infh∈N fh(y`) > −∞. Then, by definition of
the infimum, for all y` ∈ A there exists a sequence (hn) ∈ RN such as lim infn→+∞ fhn(y) > −∞.
However for all y` ∈ A, h 7→ fh(y`) is non-increasing and reaches its infimum limit for h = +∞
and thus limn→+∞ Uhn = U∞ = {θ∞}. Finally, up to considering a sequence (θn,n′) ∈ UN

hn
for all

subsets Uhn ⊂ Θω such that for all n ∈ N,

lim
n′→+∞

∑̀

i=1
log q(yi|θn,n′) = sup

θ∈Un

∑̀

i=1
log q(yi | θ) ,

concatenating, reindexing those sequences and using the continuity of the map θ 7→∑`
i=1 log q(yi|θ)

we know that there exists a sequence (θn) ∈ ΘωN such that

lim
n→∞

θn = θ∞ and lim inf
n→+∞

∑̀

i=1
log q(yi|θn) > −∞ .

Moreover, θ∞ =
(
zpop∞,Σ∞, σ∞

)
∈ Θω \ Θω and thus ‖Σ∞‖ = +∞, ‖Σ−1

∞ ‖ = +∞ or σ∞ ∈
{0,+∞} in contradiction to [Lemma 3 (C1)]. So for all observations y, limh→∞ fh(y`) = −∞
P (dy) a.s. As in the proof of Lemma 3, Hypothesis (H5) implies (H’5) and according to Lemma 2
and the monotone convergence theorem,

lim
h→+∞

EP (dy`)
[
fh(y`)

]
= −∞ < E∗(ω) .

That is, in both cases limh→+∞ EP (dy`)
[
fh(y`)

]
< E∗(ω) and there exists an open set U ⊂ Θω such that

1
`
EP (dy`)

[
sup

θ∈U∩Θω

∑̀

i=1
log q(yi|θ)

]
< E∗(ω)

as announced.
Let Kε = {θ ∈ Θω | δ(θ,Θω

∗ ) > ε}. Through the compactness of Kε, there exists an open finite cover
(Uα)α∈J1,AK of Kε satisfying (0). Thus, denoting qn = bn` c and rn = n− qn` the quotient and the rest of the
euclidean division of n by ` , we get for all θ ∈ Kε,

sup
θ∈Kε∩Θω

n∑

i=1
log q(yi|θ) 6 sup

α∈J1,AK

(
qn∑

q=0
sup

θ∈Uα∩Θω

∑̀

r=1
log q(yq`+r|θ)

+ sup
θ∈Uα∩Θω

rn∑

r=`+1
log q(yqn`+r|θ)

)
.

However, according to the strong law of large numbers, Assumption (H2) and (0),

lim
qn→∞

1
qn

qn∑

q=0
sup

θ∈Uα∩Θω

∑̀

r=1
log q(yq`+r|θ) 6 `E∗(ω)

hence, since limn→+∞ qn = +∞ and rn < ` for all n ∈ N,

lim sup
n→∞

[
qn
n

sup
α∈J1,AK

(
1
qn

qn∑

q=0
sup

θ∈Uα∩Θω

∑̀

r=1
log q(yq`+r|θ)

) ]

= 1
`
× sup

α∈J1,AK

(
EP (dy`)

[
sup

θ∈Uα∩Θω

∑̀

r=1
log q(yqn`+r|θ)

])
< E∗(ω) .
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Otherwise, for all r ∈ J`+ 1, `nK, log q(yqn`+r|θ) 6 −k` log q(σ
√

2π) so

1
n

sup
α∈J1,AK

(
sup

θ∈Uα∩Θω

rn∑

r=`+1
log q(yqn`+r|θ )

)
6 k`(rn − 1)

n
log(σ

√
2π) .

Thereafter

lim sup
n→∞

[
1
n

sup
α∈J1,AK

(
sup

θ∈Uα∩Θω

rn∑

r=`+1
log q(yqn`+r|θ )

)]
6 0

and
lim sup
n→∞

1
n

sup
θ∈Kε∩Θω

n∑

i=1
log q(yi|θ) < E∗(ω) . (1)

By definition of Θω
∗ and according to the strong law of large numbers and (H2), for all θ∗ ∈ Θω

∗
limn→∞ 1

n

∑n
i=1 log q(yi|θ∗) = E∗(ω) a.s. Moreover for all i ∈ J1, nK,

q(yi|θ̂n) = q(θ̂n | yi) q(yi)
qprior(θ̂n)

> q(θ∗ | yi) q(yi)
qprior(θ̂n)

= q(yi|θ∗) qprior(θ∗)
qprior(θ̂n)

and so
n∑

i=1
log q(yi|θ̂n) >

n∑

i=1
log q(yi|θ∗) +

(
log qprior(θ∗)− log qprior(θ̂n)

)
.

Since qprior is upper-bounded on Θω, there exists M ∈ R+ such that

1
n

(
log qprior(θ∗)− log qprior(θ̂n)

)
> 1

n
log
(
qprior(θ∗)

M

)

i.e. lim infn→+∞ 1
n

(
log qprior(θ∗)− log qprior(θ̂n)

)
> 0 and

lim inf
n→+∞

1
n

n∑

i=1
log q(yi|θ̂n) > E∗(ω) . (2)

The result follows from Equations 1 and 2 by contradiction : Assume that for all n ∈ N, θ̂n ∈ Kε i.e.
that δ(θ̂n,Θω

∗ ) > ε. Then
n∑

i=1
log q(yi|θ̂n) 6 sup

θ∈Kε∩Θω

n∑

i=1
log q(yi|θ)

and by taking the limit superior, we get

E∗(ω)
(2)
6 lim sup

n→∞

1
n

n∑

i=1
log q(yi|θ̂n)

(1)
< E∗(ω)

i.e. E∗(ω) < E∗(ω). Hence limn→∞ P
[
δ(θ̂n,Θω

∗ ) > ε
]

= 0.

2. Visual Results of Experiments on the Piecewise Geodesic Shape
Model

The following figures are related to the experiments conducted at Section 5.3 for the piecewise geodesic
shape model. Figure 1 illustrates the qualitative performance of the reconstruction of the template and
Figure 2 the qualitative performance of the reconstruction of a subject type.
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(a) Template used to generate the data set

(b) Template estimated after 600 iterations

Figure 1: The piecewise shape model: Reconstruction of the template. Evolution of the template over time. In purple (Figure
1a), the template used for the generation of the data set; In red (Figure 1b), the one estimated by the algorithm.

(a) Samples of the data set: an observed individual trajectory

(b) Estimation of the same individual trajectory, 600 iterations

Figure 2: The piecewise shape model: Reconstruction of the individual trajectories. Evolution of a standard subject over
time. We keep the same convention as in Figure 1: Figure 2a (in purple) shows the shooting of an individual evolution path
and Figure 2b (in red)) the corresponding reconstructed one.
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