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Exploiting symmetries when proving equivalence properties

for security protocols (Technical report
1
)

Vincent Cheval, Steve Kremer, Itsaka Rakotonirina
INRIA Nancy Grand-Est & LORIA

ABSTRACT

Veri�cation of privacy-type properties for cryptographic protocols
in an active adversarial environment, modelled as a behavioural
equivalence in concurrent-process calculi, exhibits a high compu-
tational complexity. While undecidable in general, for some classes
of common cryptographic primitives the problem is coNEXP-
complete when the number of honest participants is bounded.

In this paper we develop optimisation techniques for verifying
equivalences, exploiting symmetries between the two processes
under study. We demonstrate that they provide a signi�cant (sev-
eral orders of magnitude) speed-up in practice, thus increasing the
size of the protocols that can be analysed fully automatically.

1 INTRODUCTION

Security protocols are distributed programs transmitting data be-
tween several parties. The underlying messages may be sensitive—
for economical, political, or privacy reasons—and communications
are usually performed through an untrusted network such as the
Internet. Therefore, such protocols need to guarantee strong secu-
rity requirements in an active adversarial setting, i.e., when con-
sidering an adversary that has complete control over the com-
munication network. Formal, symbolic methods, rooted in the
seminal work of Dolev and Yao [DY81], have been successful in
analysing complex protocols, including for instance the recent
TLS 1.3 proposal [BBK17, CHH+17] and the upcoming 5G stan-
dard [BDH+18b].

While some security properties can be formalised as reachabil-
ity statements, privacy related properties are generally de�ned as
the indistinguishability of two situations where the value of a pri-
vate attribute di�ers. This is why privacy-type properties such as
anonymity, (strong �avors of) secrecy, unlinkability, or privacy in
e-voting are often modelled as behavioural equivalences in con-
current process calculi, such as the applied pi-calculus [ABF18].
The problem of verifying such equivalences is undecidable in the
full, Turing-complete, calculus. Still, decidability results and fully
automated analysers exist when the number of protocol sessions
is bounded.

Unfortunately, recent results [CKR18a] show that the prob-
lem has a high computational worst-case complexity (coNEXP-
complete). Yet, other results show that the problem is exponen-

1This is the technical report of the conference paper [CKR19]. It con-
tains technical proofs and generalised results, including the features of the
DeepSec 2.0 release (Jan. 2020). Signi�cant experimental improvements
can thus be observed compared to [CKR19], mostly due to the new optimi-
sations and a more e�cient implementation of the data structures. We also
provide a di�erent running example for a complementary presentation.

tially simpler (coNP-complete) for a class of practical scenarios
(determinate processes) [CD09]. This gap is all the more striking
in practice as, for determinate processes, the veri�cation time can
e�ectively be reduced by several orders of magnitude using partial-
order reductions [BDH15, CKR18b]. This highlights the gap be-
tween the general, pessimistic complexity bound and what can be
achieved by exploiting speci�cities of given instances. In practice,
the processes that are analysed show a great amount of symme-
tries as they often consist of several copies (sessions) of the same
protocol executed in parallel. Exploiting this helps factoring out
large, redundant parts of equivalence proofs, and making theoret-
ically hard veri�cation feasible in practice.

Contributions

We present optimisations for the veri�cation of trace equivalence
in the applied pi-calculus. For that we exploit the symmetries of
the two processes to be shown equivalent. More speci�cally, our
contributions are as follows.

(1) We introduce equivalence by session, a new process equiva-
lence that implies the classical trace equivalence. Intuitively, it
is a re�nement of trace equivalence designed for two processes
sharing a similar structure, making veri�cation easier.

(2) We show how partial-order reductions, some of which being
presented in [BDH15] for determinate processes, can be used
for proving equivalence by session for any processes.

(3) We give a group-theoretic characterisation of internal process
redundancy, inspired by classical formalisations of symmetries
in model checking [ES96], and use it to reduce further the com-
plexity of deciding equivalence by session.

(4) We design a symbolic version of the above equivalence and op-
timisations, based on the constraint solving techniques of the
DeepSec prover [CKR18b], a state-of-the-art tool for verifying
equivalence properties in security protocols. This allowed us
to implement our techniques in DeepSec and evaluate the gain
in veri�cation time induced by our optimisations.

Note that, while we designed equivalence by session as an e�-
cient proof technique for trace equivalence it is also of independent
interest: to some extent, equivalence by session models attackers
that can distinguish di�erent sessions of a same protocol. This may
be considered realistic when servers allocate a distinct ephemeral
port for each session; in other contexts, e.g. RFID communication
this may however be too strong. When equivalence by session is
used as a proof technique for trace equivalence, false attacks are
possible, as it is a sound, but not complete, re�nement. However,
on the existing protocols we experimented on, when equivalence
by session was violated, trace equivalence was violated as well.
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Our prototype is able to successfully analyse various security
protocols that are currently out of scope—in terms of expressivity
or exceeding a 12h timeout—of similar state-of-the-art analysers.
We observe improvements of several orders of magnitude in terms
of e�ciency, compared to the original version of DeepSec. Among
the case studies that we consider are

the Basic Acces Control (BAC) protocol [For04] implemented in
European e-passports. In previous work, veri�cation was lim-
ited to merely 2 sessions, while we scale up to 5 sessions.
theHelios e-voting protocol [Adi08]. Automated analyses of this
protocol exist when no revote is allowed, or is limited to one
revote from a honest voter [ACK16, CKR18a]. In this paper, we
analyse several models covering revote scenarios for 7 emitted
honest ballots.

Related work

Partial-order reductions (por) for the veri�cation of cryptographic
protocols were �rst introduced by Clark et al. [CJM03]: while well
developed in veri�cation of reactive systems these existing tech-
niques do not easily carry over to security protocols, mainly due
to the symbolic treatment of attacker knowledge. Mödersheim et
al. [MVB10] proposed por techniques that are suitable for symbolic
methods based on constraint solving. However, both the tech-
niques of Clark et al. [CJM03] and Mödersheim et al. [MVB10] are
only correct for trace properties.

Partial order reductions for equivalence properties were only
introduced more recently by Baelde et al. [BDH14, BDH15]: im-
plementing these techniques in the APTE tool resulted in spec-
tacular speed-ups. Other state-of-the-art tools, AKISS [CCCK16]
and DeepSec [CKR18a], integrated these techniques as well. How-
ever, these existing techniques are limited in scope as they require
protocols to be determinate. Examples of protocols that are typi-
cally not modelled as determinate processes are the BAC protocol,
and the Helios e-voting protocol mentioned above. In recent work,
Baelde et al. [BDH18a] propose por techniques that also apply to
non-determinate processes (but do not support private channels)
and implement these techniques in the DeepSec tool. Unfortu-
nately, these techniques introduce a computational overhead, that
tends to limit the e�ciency gain. As our experiments will show,
our techniques, although including some approximations, signi�-
cantly improve e�ciency.

There exist other tools for the veri�cation of equivalence prop-
erties in the case of a bounded number of sessions. The SAT-
Eqiv tool [CDD17] is extremely e�cient, but its scope is more
narrow: it does not support user-de�ned equational theories and
is restricted to determinate processes. As shown in [CKR18a],
AKISS [CCCK16] and SPEC [TNH16] were already less e�cient
(by orders of magnitude) than DeepSec before our current work.
We also mention the less recent S3A tool [DSV03] that veri�es test-
ing equivalence in the SPI calculus and integrates some symmetry
(but no partial-order) reductions [CDSV04]. The tool however only
supports a �xed equational theory and no else branches. We are
not aware of a publicly available implementation.

Our approach can also be compared to tools for an unbounded
number of sessions. The ProVerif [BAF08], Tamarin [BDS15]

and Maude-NPA [SEMM14] tools all show a process equivalence
that is more �ne-grained than trace equivalence. The resulting
equivalence is often referred to as di�-equivalence in that it re-
quires that equivalent processes follow the same execution �ow
and only di�er on the data. As a result these techniques may fail
to prove equivalence of processes that are trace equivalent. Our
approach goes in the same direction but equivalence by session is
less �ne-grained, for example capturing equivalence proofs for the
BAC protocol. A detailed comparison between these two equiva-
lences is given in Section 3.1. Besides, the restriction to a bounded
number of sessions allows us to decide equivalence by session,
while termination is not guaranteed in the unbounded case.

2 MODEL

We �rst present our model for formalising privacy-type proper-
ties of security protocols, represented by trace equivalence of pro-
cesses in the applied-pi calculus [ABF18].

2.1 Messages and cryptography

In order to analyse protocols, we rely on symbolic models rooted
in the seminal work of Dolev and Yao [DY81]. Cryptographic op-
erations are modelled by a �nite signature, i.e., a set of function
symbols with their arity F = {f/n, g/m, . . .}. Atomic data such as
nonces, random numbers, or cryptographic keys are represented
by an in�nite set of names

N = {a,b,k, . . .} = Npub ∪ Npriv

partitioned into public and private names. We also consider an in-
�nite set of variablesX = {x,y, z, . . .}. Protocol messages are then
modelled as terms obtained by application of function symbols to
names, variables or other terms. If A ⊆ N ∪ X, T(F ,A) refers to
the set of terms built from atoms in A.
Example 2.1. The following signature models the classical primi-
tives of pairs, randomised symmetric encryption, and their inverse:

F = { 〈·, ·〉/2, proj1/1, proj2/1, senc/3, sdec/2 }

For example, let m ∈ Npub , and k, r ∈ Npriv modelling a private
key and a random nonce, respectively. The term

c = senc(m, r ,k)

models a ciphertext obtained by encrypting m with the key k and
randomness r , and sdec(c,k) models its decryption. 4

An equational theory is a binary relation E on terms. It is ex-
tended to an equivalence relation =E that is the closure of E by
re�exivity, symmetry, transitivity, substitution and applications of
function symbols. All the optimisations we present in this paper
are sound for arbitrary equational theories although, obviously,
the implementation in DeepSec naturally inherits the restrictions
of the tool (limited to destructor subterm convergent rewriting sys-
tems). The following equations characterise the behaviour of the
primitives introduced in Example 2.1:

proji (〈x1, x2〉) =E xi sdec(senc(x,y, z), z) =E x

That is, a message encrypted with a key k can be recovered by de-
crypting using the same key k . With the notations of Example 2.1,
we can derive from these equations that sdec(c,k) =E m.
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A substitution σ is a mapping from variables to terms, homo-
morphically extended to a function from terms to terms. We use
the classical post�x notation tσ instead of σ (t), and the set nota-
tion σ = {x1 7→ x1σ , . . . , xn 7→ xnσ }.

2.2 Protocols as processes

Syntax Protocols are modelled as concurrent processes that ex-
change messages (i.e. terms). We de�ne the syntax of plain pro-
cesses by the following grammar:

P,Q := 0 null
P | Q parallel
if u = v then P else Q conditional
c 〈u〉.P output
c(x).P input

where u,v are terms, x ∈ X, and c ∈ Ch where Ch denotes a set of
channels. We assume a partition Ch = Chpub ∪ Chpriv of channels
into public and private channels: while public channels are under
the control of the adversary, private channels allow con�dential,
internal communications. The 0 process is the terminal process
which does nothing, the operator P | Q executes P and Q concur-
rently, c 〈u〉 sends a message u on channel c , and c(x) receives a
message (and binds it to the variable x ).

We highlight the two restrictions compared to the calculus
of [ABF18]: we only consider a bounded number of protocol ses-
sions (i.e. there is no operator for unbounded parallel replication)
and channels are modelled by a separate datatype (i.e. they are
never used as parts of messages). The �rst restriction is neces-
sary for decidability [CCCK16, TNH16, CKR18a] but still allows
to detect many �aws since attacks tend to require a rather small
number of sessions. Our optimisations also rely on an invariant
that private channels remain unknown to the adversary, hence the
restriction to disallow channel names in messages.

Example 2.2. We describe a toy protocol that will serve as a run-
ning example throughout the paper. This is a simpli�cation of the
BAC protocol implemented in the European e-passports. The sys-
tem builds upon the signature and equational theory introduced in
Example 2.1. In a preliminary phase, a reader obtains the private
key k of a passport, and then they communicate as follows:

Reader → Passport : get_challenge

Passport → Reader : n

Reader → Passport : senc(n, r ,k) bound as x
Passport → Reader : ok if sdec(x,k) = n

error otherwise

where n, r ∈ Npriv and get_challenge, ok, error ∈ Npub . In par-
ticular, the passport triggers an error when it receives a commu-
nication originated from a reader that has not the right key k , i.e.
a reader that has been paired with an other passport during the
preliminary phase. In the applied pi-calculus, they are modelled
by the following processes

R(k, r ) = c 〈get_challenge〉.

c(xn ). c 〈senc(xn, r ,k)〉. 0

P(k,n) = c(x0). if x0 = get_challenge then

c 〈n〉. c(x).

if sdec(x,k) = n then c 〈ok〉. 0
else c 〈error〉. 0 4

Semantics The behaviour of protocols is de�ned by an opera-
tional semantics on processes. Its �rst ingredients are simplifying
rules to normalise processes from non-observable, deterministic
actions (Figure 1).

P | 0 P 0 | P  P (P | Q) | R P | (Q | R)

P | Q  P ′ | Q
Q | P  Q | P ′

}
if P  P ′

if u = v then P elseQ  
{

P if u =E v
Q otherwise

Figure 1: Simpli�cation rules for plain processes

These simplifying rules get rid of 0 processes, and evaluate con-
ditionals at toplevel. We say that a process on which no more rule
applies is in -normal form. By convergence, we will denote by
P

 

the unique -normal form of P .
The operational semantics then operates on extended processes

(P,Φ), where P is a multiset of plain processes (in  -normal
form) and Φ is a substitution, called the frame. Intuitively, P is
the multiset of processes that are ready to be executed in parallel,
and Φ is used to record outputs on public channels. The domain of
the substitution Φ is a subset of a set AX of axioms, disjoint from
X: they record the raw observations of the attacker, that is, they
are the axioms in intruder deduction proofs. The semantics (Fig-
ure 2) takes the form of a labelled transition relation

α
−→ between

extended processes, where α is called an action and indicates what
kind of transition is performed.

The output rule (Out) models that outputs on a public channel
are added to the attacker knowledge, i.e., stored in Φ in a fresh ax-
iom. The axioms thus provide handles for the attacker to refer to
these outputs. The input rule (In) reads a term ξ , called a recipe
provided by the attacker, on a public channel. This term ξ can
be e�ectively constructed by the attacker as it is built over public
names and elements of dom(Φ), i.e. previous outputs. The resulting
term is then bound to the input variable x . Rule (Comm) models
internal communication on a private channel and rule (Par) adds
processes in parallel to the multiset of active processes. These last
two actions are internal actions (label τ ), unobservable by the at-
tacker.

Traces A trace of an extended process A is a sequence of reduc-
tion steps starting from the extended process A

t : A
α1
−−→ A1

α2
−−→ · · ·

αn
−−→ An .

When the intermediate processes are not relevant we write

t : A
α1 · · ·αn
======⇒ An .
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(Out) ({{c 〈u〉.P}} ∪ P,Φ)
c 〈ax〉
−−−−−→ ({{P

 

}} ∪ P,Φ ∪ {ax 7→ u}) c ∈ Chpub, ax ∈ AX r dom(Φ)

(In) ({{c(x).P}} ∪ P,Φ)
c(ξ )
−−−→ ({{P[x 7→ ξΦ]

 

}} ∪ P,Φ) c ∈ Chpub, ξ ∈ T (F ,Npub ∪ dom(Φ))

(Comm) ({{c 〈u〉.P, c(x).Q}} ∪ P,Φ)
τ
−→ ({{P,Q[x 7→ u]}} ∪ P,Φ) c ∈ Chpriv

(Par) ({{P1 | . . . | Pn }} ∪ P,Φ)
τ
−→ ({{P1, . . . , Pn }} ∪ P,Φ)

Figure 2: Operational semantics of the applied pi-calculus

We de�ne tr(t) to be the word of actions α1 · · ·αn (including τ ’s),
and Φ(t) to be the frame of An . The set of the traces of A is written
T(A), and the notation is extended to plain processes by writing
T(P) for T({{P}},�).

Example 2.3. Consider again the access-control protocol described
in Example 2.2. Let S = ({{P(k,n),R(k ′, r )}}, �), with k,k ′,n, r ∈
Npriv , a system consisting of a passport and a reader in parallel.
The system has the following trace:

S
c 〈ax0 〉
−−−−−→ ({{P(k,n),R0(k

′, r )}},Φ0)

c(get_challenge)
−−−−−−−−−−−−−−−−−→ ({{P0(k,n),R0(k

′, r )}}, Φ0)

c 〈ax1 〉
−−−−−→ ({{P1(k,n),R0(k

′, r )}}, Φ0 ∪ Φ1)

c(ax1)
−−−−−→ ({{P1(k,n), c 〈senc(n, r ,k ′)〉}}, Φ0 ∪ Φ1)

c 〈ax2 〉
−−−−−→ ({{P1(k,n), 0}}, Φ0 ∪ Φ1 ∪ Φ2)

c(ax2)
−−−−−→ ({{c 〈α〉, 0}}, Φ0 ∪ Φ1 ∪ Φ2)})

with

Φ0 = {ax0 7→ get_challenge}

Φ1 = {ax1 7→ n}

Φ2 = {ax2 7→ senc(n, r ,k ′)}

P(k,n) = c(x0). if x0 = get_challenge then P0(k,n)

P0(k,n) = c 〈n〉. P1(k,n)

R(k ′, r ) = c 〈get_challenge〉.R0(k
′, r )

and α = ok if k = k ′, and α = error if k , k ′. Note that the input
action c(get_challenge) could be replaced by c(ax0). 4

2.3 Security properties

Many security properties can be expressed in terms of indistin-
guishability (from the attacker’s viewpoint). The preservation of
anonymity during a protocol execution can for example be mod-
elled as the indistinguishability of two instances of the protocol
with di�erent participants. Strong �avors of secrecy can also be
expressed: after interacting with the protocol, the attacker is still
unable to distinguish between a secret used during the protocol
and a fresh random nonce. Our case studies also include such mod-
ellings of unlinkability or vote privacy.

Static equivalence The ability to distinguish or not between
two situations lies on the attacker’s observations, i.e. the frame.

Indistinguishability of two frames is captured by the notion of
static equivalence. Intuitively, we say that two frames are stati-
cally equivalent if the attacker cannot craft an equality test that
holds in one frame and not in the other.

Definition 2.1 . Two frames Φ1 and Φ2 are statically equivalent,
written Φ1 ∼ Φ2 when dom(Φ1) = dom(Φ2) and, for any recipes
ξ1, ξ2 ∈ T (F ,Npub ∪ dom(Φ1)),

ξ1Φ1 =E ξ2Φ1 ⇔ ξ1Φ2 =E ξ2Φ2

We lift static equivalence to traces and write t0 ∼ t1 when
Φ(t0) ∼ Φ(t1) and tr0 = tr1, where tri is obtained by removing
τ ’s from tr(ti ). Removing τ actions re�ects that these actions are
unobservable by the attacker.

Trace equivalence While static equivalence models the (pas-
sive) indistinguishability of two sequences of observations, trace
equivalence captures the indistinguishability of two processes P
and Q in the presence of an active attacker. Intuitively, we require
that any sequence of visible actions executable on P is also exe-
cutable on Q and yields indistinguishable outputs, i.e., statically
equivalent frames.

Definition 2.2 . Let P,Q be plain processes in -normal form. P
is trace included in Q , written P vtr Q , when

∀t ∈ T(P), ∃t ′ ∈ T(Q), t ∼ t ′ .

We say that P and Q are trace equivalent, written P ≈tr Q , when
P vtr Q and Q vtr P .

Example 2.4. Consider again the model of passport and reader in-
troduced in Example 2.2, and let us write

S(k,n, r ) = P(k,n) | R(k, r )

a system consisting of a passport and a reader in parallel with a
shared key k . The unlinkability property can be stated by the in-
ability for the attacker to distinguish between two copies of the
same passport interacting with readers, and two di�erent pass-
ports. That is,

S(k,n, r ) | S(k,n′, r ′) ≈tr S(k,n, r ) | S(k
′,n′, r ′)

with k,k ′,n,n′, r , r ′ ∈ Npriv pairwise distinct. The inclusion
S(k,n, r ) | S(k,n′, r ′) vtr S(k,n, r ) | S(k ′,n′, r ′) indeed holds.
However, this model of unlinkability is violated in that the con-
verse inclusion does not hold. Indeed in the right-hand-side pro-
cess, making a reader interact with the wrong passport produces
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an error message, which is not the case in the left-hand side (since
the two systems share the same key). Formally, T(S(k,n, r ) |
S(k ′,n′, r ′)) contains a trace t such that

tr(t) = τ c 〈ax0〉 c(ax0) c 〈ax1〉 c(ax1) c 〈ax2〉 c(ax2) c 〈ax3〉

Φ(t) = {ax0 7→ get_challenge, ax1 7→ n,

ax2 7→ senc(n, r ′,k ′), ax3 7→ error} 4

3 OPTIMISING VERIFICATION

The problem of verifying trace equivalence in the presented model
is coNEXP-complete for equational theories represented as sub-
term convergent destructor rewrite systems [CKR18a]. Despite
this high theoretical complexity, automated analysers can take
advantage of the speci�cities of practical instances. One no-
table example is the class of determinate processes that encom-
passes many practical scenarios and has received quite some atten-
tion [CD09, BDH15, CCCK16, CKR18b]. It allows for partial-order
reductions [BDH15], speeding up the veri�cation time by several
orders of magnitude. Our approach, similar in spirit but applicable
in a more general setting, consists in guiding the decision proce-
dure with the structural similarities of the two processes that we
aim to show equivalent.

3.1 Equivalence by session

We introduce a new equivalence relation, equivalence by session:
the main idea is that, when proving the equivalence of P andQ , ev-
ery action of a given parallel subprocess of P should be matched by
the actions of a same subprocess inQ . This is indeed often the case
in protocol analysis where a given session (the execution of an in-
stance of a protocol role) on one side is matched by a session on the
other side. By requiring to match sessions rather than individual
actions, this yields a more �ne-grained equivalence and e�ectively
reduces the combinatorial explosion. Moreover, thanks to the op-
timisations that exploit the structural properties of equivalence by
session (presented in the following sections), we obtain signi�cant
speed-ups during the veri�cation of case studies that are neither
determinate nor in scope of the (even more �ned-grained) di�-
equivalence of ProVerif and Tamarin.

Twin processes To formalise session matchings we use a notion
of twin-process, that are pairs of matched processes that have the
same action at toplevel, called their skeleton.

Definition 3.1 . A twin-process is a pair of plain processes in -
normal form (P,Q) such that skel(P) = skel(Q), where

if c ∈ Chpub: skel(c(x).Q)= {{inc }} skel(c 〈x〉.Q)= {{outc }}
if d ∈ Chpriv : skel(d(x).Q)= {{in}} skel(d 〈x〉.Q)= {{out}}

skel(P1 | · · · | Pn ) = skel(P1) ∪ . . . ∪ skel(Pn )

An extended twin-process A2 = (P2,Φ0,Φ1) is then a triple
where P2 is a multiset of twin-processes and Φ0,Φ1 are frames.
This thus models two extended processes with identical skeletons,
matched together. We retrieve the original extended processes by

projection,

fst(A2) = ({{P0 | (P0, P1) ∈ P
2}},Φ0)

snd(A2) = ({{P1 | (P0, P1) ∈ P
2}},Φ1)

The semantics of twin-processes is de�ned in Figure 3 and
mostly requires that the two projections follow the same reduction
steps in the single-process semantics. The rule (Par) is however
replaced by a rule that allows to match each parallel subprocess
from the left with a parallel process from the right. We underline
that, by de�nition of twin-processes, a transitionA2 α

−→s (P
2,Φ) is

possible only if for all (P,Q) ∈ P2, it holds that skel(P) = skel(Q).
Similarly to extended processes, we use T(A2) to denote the set

of reduction steps from an extended twin-process A2. Besides if

t2 : A2 α1
−−→s A

2
1 · · ·

αn
−−→s A

2
n ∈ T(A2

1) ,

we also lift the projection functions by writing

fst(t2) : fst(A2)
α1
−−→s fst(A2

1) · · ·
αn
−−→s fst(A2

n+1)

and similarly for snd(t2). Note that fst(t2) ∈ T(fst(A2)).

Equivalence by session Equivalence by session is similar to
trace equivalence but only considers the traces of Q matching the
structure of the trace of P under study. This structural requirement
is formalised by considering traces of the twin-process (P,Q). For-
mally speaking, given two plain processes P and Q in -normal
form having the same skeleton, we write P vs Q when

∀t ∈ T(P), ∃t2 ∈ T(P,Q), t = fst(t2) ∼ snd(t2) .

We say that P and Q are equivalent by session, referred as P ≈s Q ,
when P vs Q and Q vs P .

While equivalence by session has been designed to increase e�-
ciency of veri�cation procedures, it is also of independent interest.
Equivalence by session captures a notion of indistinguishability
against an adversary that is able to distinguish actions which orig-
inate from di�erent protocol sessions. Such an adversarial model
may for instance be considered realistic in protocols where servers
dynamically allocate a distinct ephemeral port to each session. An
attacker would therefore observe these ports and always di�eren-
tiate one session from another. When considering equivalence by
session, this allocation mechanism does not need to be explicitly
modelled as it is already re�ected natively in the de�nition. On
the contrary for trace equivalence, an explicit modelling within
the processes would be needed. For example equivalence by ses-
sion of two protocol sessions operating on a public channel c ,

P(c) | P(c) ≈s Q(c) | Q(c)

could be encoded by relying on dynamically-generated private
channels that are revealed to the attacker. This can be expressed
in the original syntax of the applied pi-calclulus [ABF18] as:

Pfresh | Pfresh ≈tr Qfresh | Qfresh

where Pfresh = new e . c 〈e〉. P(e), Qfresh = new e . c 〈e〉.Q(e). Such
encodings however break determinacy and are thus incompati-
ble with the partial-order reductions of [BDH15]. Our dedicated
equivalence o�ers similar-in-spirit optimisations that are applica-
ble on all processes .
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({{Pi }},Φi )
α
−→ ({{P ′i }},Φ

′
i ) by rule (In) or (Out) for all i ∈ {0, 1}

({{(P0, P1)}} ∪ P
2,Φ0,Φ1)

α
−→s ({{(P

′
0, P
′
1)}} ∪ P

2,Φ′0,Φ
′
1)

(IO)

({{Pi ,Qi }},Φi )
τ
−→ ({{P ′i ,Q

′
i }},Φi ) by rule (Comm) for all i ∈ {0, 1}

({{(P0, P1), (Q0,Q1)}} ∪ P
2,Φ0,Φ1)

τ
−→s ({{(P

′
0, P
′
1), (Q

′
0,Q
′
1)}} ∪ P

2,Φ0,Φ1)
(Comm)

π permutation of n1,no
({{(P1 | · · · | Pn, Q1 | · · · | Qn )}} ∪ P

2,Φ0,Φ1)
τ
−→s ({{(Pi ,Qπ (i))}}

n
i=1 ∪ P

2,Φ0,Φ1)
(Match)

Figure 3: Semantics on twin-processes

3.2 Comparison to other equivalences

Relation to trace equivalence We �rst show that equivalence
by session is a sound re�nement of trace equivalence.

Proposition 3.1 . If P ≈s Q then P ≈tr Q .

This is immediate as t2 ∈ T(P,Q) entails snd(t2) ∈ T(Q). The
converse does not hold in general, meaning that two processes that
are not equivalent by session might be trace equivalent. The sim-
plest example is, for n ∈ Npub ,

P = c 〈n〉. c 〈n〉 Q = c 〈n〉 | c 〈n〉

We call false attacks traces witnessing a violation of equivalence
by session, but that can still be matched trace-equivalence-wise.
In this example even the empty trace is a false attack since the two
processes fail to meet the requirement of having identical skele-
tons. Such extreme con�gurations are however unlikely to occur
in practice: privacy is usually modelled as the equivalence of two
protocol instances where some private attributes are changed. In
particular the overall structure in parallel processes remains com-
mon to both sides.

More realistic false attacks may arise when the structural re-
quirements of equivalence by session are too strong, i.e. when
matching the trace requires mixing actions from di�erent sessions.
Consider for example the two processes

P = s 〈n〉. a〈n〉 | s(x).b〈n〉 Q = s 〈n〉.b〈n〉 | s(x). a〈n〉

with a,b ∈ Chpub and s ∈ Chpriv . These processes �rst synchro-
nise on a private channel s by the means of an internal communi-
cation, and then perform two parallel outputs on public channels
a,b. They are easily seen trace equivalent. However the skeletons
at toplevel constrain the session matchings, i.e. the application of
rule (Match). Hence any trace executing an output on a or b is a
false attack.

Finally false attacks cannot happen for determinate processes,
i.e. the class of processes for which the partial-order reductions of
[BDH15] were designed. A plain process P is determinate if it does
not contain private channels and,

∀P
tr
=⇒ ({{P1, . . . , Pn }},Φ), ∀i , j, skel(Pi ) , skel(Pj ) .

Proposition 3.2 . If P,Q are determinate plain processes such that
P ≈tr Q then P ≈s Q .

The core argument is the uniqueness of session matchings; that
is, there is always at most one permutation that can be chosen
when applying the rule (Match) to a pair of determinate processes.
The proof can be found in Appendix B: thanks to the structural re-
quirements imposed by skeletons, we even prove that trace equiv-
alence (≈tr ) and inclusion by session (vs) coincide for determinate
processes.

Relation to di�-equivalence ProVerif, Tamarin and Maude-
NPA are semi-automated tools that can provide equivalence proofs
for an unbounded number of protocol sessions. For that they rely
on another re�nement of trace equivalence, called di�-equivalence
(≈d ). It relies on a similar intuition as equivalence by session,
adding (much stronger) structural requirements to proofs. To
prove di�-equivalence of P and Q , one �rst requires that P and
Q have syntactically the same structure and that they only di�er
by the data (i.e. the terms) inside the process. Second, any trace of
P must be matched in Q by the trace that follows exactly the same
control �ow. Consider for example

P = c 〈u〉 | c 〈v〉 | R Q = c 〈u ′〉 | c 〈v ′〉 | R′

For P and Q to be di�-equivalent, traces of P starting with c 〈u〉
need to be matched by traces of Q starting with c 〈u ′〉.

In the original de�nition of di�-equivalence in [BAF05] the con-
ditional branchings were also required to result into the same
control-�ow. This condition has however been relaxed within
[CB13]: the resulting di�-equivalence can be de�ned in our for-
malism as equivalence by session in which the rule (Match) only
performs the identity matching. That is, if we write Td (P,Q) for
the subset of traces of T(P,Q) where rule (Match) is replaced by

({{(P1 | · · · | Pn,Q1 | · · · | Qn )}} ∪ P
2,Φ0,Φ1)

τ
−→s ({{(Pi ,Qi )}}

n
i=1 ∪ P

2,Φ0,Φ1)

then we de�ne P vd Q as the statement

∀t ∈ T(P), ∃t2 ∈ Td (P,Q), t = fst(t2) ∼ snd(t2) .

We say that P and Q are di�-equivalent, written P ≈d Q , when
P vd Q and Q vd P . By de�nition Td (P,Q) ⊆ T(P,Q) and
di�-equivalence therefore re�nes equivalence by session. The con-
verse does not hold in general, e.g.

P = c 〈a〉 | c 〈b〉 Q = c 〈b〉 | c 〈a〉 a,b ∈ Npub distinct
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This example is extreme as a pre-processing on parallel operators
would make the processes di�-equivalent. Such a pre-processing is
however not possible for more involved, real-world examples such
as the equivalences we prove on the BAC protocol in Section 7. The
reason is that the matchings have to be selected dynamically, that
is, di�erent session matchings are needed to match di�erent traces.
Relation to observational equivalence As a side result we
also compare equivalence by session to observational equivalence
≈o , or technically to the equivalent notion of labelled bisimilar-
ity as described in [ABF18, CKR18a]. Just as equivalence by ses-
sion, it is known to be an intermediate re�nement between di�-
equivalence and trace equivalence [CD09]:

Lemma 3.3 . ≈d ⊆ ≈o ⊆ ≈tr . Besides, ≈o and ≈tr coincide for de-
terminate processes.

In particular by Proposition 3.2 we obtain that the trace, ses-
sion, and observational equivalences coincide for determinate pro-
cesses. However they are incomparable in general:

Lemma 3.4 . ≈s and ≈o are incomparable.

Proof. If we write P = c(x).c(x) andQ = c(x) | c(x), then P ≈o Q
but P 6≈s Q . Besides, if k0,k1,k2 ∈ Npriv we de�ne

R(t0, t1, t2) = c 〈k0〉 | c 〈k1〉 | c 〈k2〉 |
c(x). if x = k0 then c 〈t0〉

else if x = k1 then c 〈t1〉
else if x = k2 then c 〈t2〉

If a,b ∈ Npub distinct, we have R(a,b,b) ≈s R(b,a,a) but
R(a,b,b) 6≈o R(b,a,a). �

To sum up the relations between all equivalences:

Proposition 3.5 . If ≈ ∈ {≈o,≈s} then ≈d ( ≈ ( ≈tr and, for
determinate processes, ≈ = ≈tr .

3.3 Trace refinements

We present an abstract notion of optimisation, based on trace re-
�nements. This comes with several properties on how to compose
them, providing a uni�ed way of presenting di�erent concrete op-
timisations for the decision of equivalence by session.

Definition 3.2 . An optimisation is a pair O = (O∀,O∃) with O∀ a
set of traces of extended processes (universal optimisation), andO∃
a set of traces of extended twin-processes (existential optimisation).

Intuitively, an optimisation reduces the set of traces that are
considered when verifying equivalence: when proving P vs Q ,
only traces of T(P) ∩ O∀ and T(P,Q) ∩ O∃ will be studied. That is,
we de�ne the equivalence ≈O =vO ∩ wO where P vO Q means

∀t ∈ T(P) ∩ O∀, ∃t2 ∈ T(P,Q) ∩ O∃, t = fst(t2) ∼ snd(t2) .

Note that for a few of our re�nements (Section 5), the de�nition of
O∀ may depend on both P and Q .

In particular ≈Oall is the equivalence by session, where Oall =
(O∀all,O

∃

all) contains all traces. Of course, such re�nements may in-
duce di�erent notions of equivalence, hence the need for correct-
ness arguments speci�c to each layer of optimisation. We specify

this as follows: if Oα = (O∀α ,O∃α ) and Oβ = (O∀β ,O
∃

β ), we say that
Oα is a correct re�nement of Oβ when

O∀α ⊆ O
∀

β and O∃α ⊆ O
∃

β and ≈Oα = ≈Oβ .

Correct re�nements contribute to reducing the complexity of
deciding equivalence.

Properties The remainder of this section provides elementary
properties useful when constructing, and composing optimisa-
tions. First we show that they can be constructed stepwise.

Proposition 3.6 (transitivity) . IfO1 is a correct re�nement ofO2,
and O2 is a correct re�nement of O3, then O1 is a correct re�ne-
ment of O3.

Moreover, we can prove universal and existantial optimisations
in a modular way:

Proposition 3.7 (combination) . If (O∀opt,O
∃) and (O∀,O∃opt ) are

correct re�nements of (O∀,O∃), then (O∀opt,O
∃

opt ) is a correct re-
�nement of (O∀,O∃).

Proof. Let ≈××, ≈◦×, ≈×◦ and ≈◦◦ the equivalences induced by
(O∀,O∃), (O∀opt,O

∃), (O∀,O∃opt ) and (O∀opt,O
∃

opt ), respectively.
As ≈◦× =≈×× =≈×◦ by hypothesis, the result follows from the
straightforward inclusions ≈◦◦ ⊆ ≈◦× and ≈×◦ ⊆ ≈◦◦. �

Relying on this result, we see a universal optimisation O∀ (resp.
existential optimisations O∃) as the optimisation (O∀,O∃all) (resp.
(O∀all,O

∃)). This lightens presentation as we can now meaningfully
talk about universal (resp. existential) optimisations being correct
re�nements of others. Finally, when implementing such optimisa-
tions in tools, deciding the membership of a trace in the sets O∀ or
O∃ may sometimes be ine�cient or not e�ective. In these cases we
may want to implement these optimisations partially, using for ex-
ample su�cient conditions. The following proposition states that
such partial implementations still result into correct re�nements.

Proposition 3.8 (partial implementability) . Let us consider the
optimisations O∀opt ⊆ O

∀

part ⊆ O
∀ and O∃opt ⊆ O

∃

part ⊆ O
∃. If O∀opt

is a correct re�nement of O∀ and O∃opt is a correct re�nement of
O∃, then (O∀part,O

∃

part ) is a correct re�nement of (O∀,O∃).

In the rest of the paper we assume the reader familiar with group
theory (group actions, stabilisers), in particular the group of per-
mutations (written in cycle notation). Most of our optimisations
are indeed expressed using this terminology.

4 PARTIAL-ORDER REDUCTIONS

In this section we present partial-order reductions for equivalence
by session. They are inspired by similar techniques developed for
proving trace equivalence of determinate processes [BDH15], al-
though they di�er in their technical development to preserve cor-
rectness in our more general setting. In particular the optimisa-
tions we present account for non determinacy and private chan-
nels which will be useful when analysing e-voting protocols.
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4.1 Labels and independence

Labels Partial-order reduction techniques identify commutativ-
ity relations in a set of traces and factor out the resulting redun-
dancy. Here we exploit the permutability of concurrent actions
without output-input data �ow. For that we introduce labels to
reason about dependencies in the execution:

Plain processes P are labelled [ P ]` , with ` a word of integers
re�ecting the position of P within the whole process.
Actions α are labelled [α ]L to re�ect the label(s) of the pro-
cess(es) they originate from. That is, L is either a single integer
word ` (for inputs and outputs) or a pair of such, written `1 | `2
(for internal communications).
Labels can be bootstrapped arbitrarily, say, by the empty word

ε , and are propagated as follows in the operational semantics. The
(Par) rule extends labels:

({{[ P1 | · · · | Pn ]
`}} ] P,Φ)

[ τ ]`
−−−−→s ({{[ Pi ]

`.i }}ni=1 ] P,Φ)

the rules (In) and (Out) preserve labels:

({{[ P ]`}} ] P,Φ)
[α ]`
−−−−→s ({{[ P

′ ]`}} ] P,Φ′)

and so does (Comm), however producing a double label:

({{[ P ]`, [Q ]`
′

}} ] P,Φ)
[ τ ]` |`

′

−−−−−−→ ({{[ P ′ ]`, [Q ′ ]`
′

}} ] P,Φ) .

In particular, we always implicitly assume the invariant preserved
by transitions that extended processes contain labels that are pair-
wise incomparable w.r.t. the pre�x ordering.

Independence Labels materialise �ow dependencies. Two ac-
tions α = [a ]L and α ′ = [a′ ]L

′

are said sequentially dependent if
one of the (one or two) words constituting L, and one of those con-
stituting L′, are comparable w.r.t. the pre�x ordering. Regarding
input-output dependencies, we say that α and α ′ are data depen-
dent when {a,a′} = {c 〈ax〉, c(ξ )} with ax appearing in ξ .

Definition 4.1 (independence) . Two actions α and α ′ are said in-
dependent, written α || α ′, when they are sequentially independent
and data independent.

There is some redundancy in the trace space in that, intuitively,
swapping adjacent, independent actions in a trace has no sub-
stantial e�ect. Still, this is rather weak: for example the recipe
proj1(〈n, ax〉) is arti�cially dependent in the axiom ax, preventing
optimisations. Such spurious dependencies can be erased using the
following notion:

Definition 4.2 (recipe equivalence) . Two input transitions

(P,Φ)
[ c(ξ1) ]

`

−−−−−−−→ A (P,Φ)
[ c(ξ2) ]

`

−−−−−−−→ A

are said recipe equivalent when ξ1Φ =E ξ2Φ. Two traces are recipe
equivalent if one can be obtained from the other by replacing some
transitions by recipe-equivalent ones.

The rest of this section formalises the intuition that equiva-
lence by session can be studied up to recipe-equivalent rewriting
of traces, and arbitrary permutation of their independent actions.
Proofs can be found in Appendix C.1.

Correctness of por techniques If tr = α1 · · ·αn and π is a per-
mutation of n1,no, we write

π .tr = απ (1) · · ·απ (n) .

This is an action of the group of permutations of n1,no on action
words of size n. We say that π permutes independent actions of tr
if either π = id, or π = π0 ◦ (i i + 1) with αi || αi+1 and π0
permutes independent actions of (i i +1).tr. Such permutations
preserve the group structure of permutations, in the sense of these
two straightforward propositions:

Proposition 4.1 (composition) . If π permutes independent ac-
tions of tr, and π ′ permutes independent actions of π .tr, then π ′◦π
permutes independent actions of tr.

Proposition 4.2 (inversion) . If π permutes independent actions
of tr, then π−1 permutes independent actions of π .tr.

We will use these two properties implicitly in many proofs. But
more importantly, the action of permutations on trace words can
be lifted to traces:

Proposition 4.3 . If t : A
tr
=⇒ B and π permutes independent ac-

tions of tr, then A
π .tr
===⇒ B. This trace is unique if we take labels

into account, and will be referred as π .t .

Together with recipe equivalence, this is the core notion for
de�ning partial-order reductions. We gather them into ≡por the
smallest equivalence relation over traces containing recipe equiv-
alence and such that t ≡por π .t when π permutes independent
actions of t . The result below justi�es that quotients by ≡por result
in correct re�nements.

Proposition 4.4 (correctness of por) . Let O∀1 ⊆ O
∀

2 be universal
optimisations. We assume that for all t ∈ O∀2, there exists text such
that t is a pre�x of text , and t ′ ∈ O∀1 such that t ′ ≡por text . Then O∀1
is a correct re�nement of O∀2.

4.2 Compression optimisations

We �rst present a compression of traces into blocks of actions of
a same type (inputs, outputs and parallel, or internal communi-
cations) by exploiting Proposition 4.4. We formalise this idea by
using reduction strategies based on polarity patterns.

Polarities and phases We assign polarities to processes de-
pending on their toplevel actions: public inputs are positive (+1),
public outputs and parallels are overwhelmingly negative (−∞),
and others are null.

polar(c(x).P) = 1 polar(c 〈u〉.P) = −∞ c ∈ Chpub

polar(d(x).P) = 0 polar(d 〈u〉.P) = 0 d ∈ Chpriv
polar(0) = 0 polar(P | Q) = −∞

This notion is lifted to extended processes by summing:

polar((P,Φ)) =
∑
R∈P

polar(R) .

In particular, extended processes containing an executable parallel
operator or output has polarity −∞, and executing public inputs
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makes polarity nonincreasing. We then identify the trace patterns
at the core of our partial-order reductions. We say that a trace

t : A0
[a1 ]

L1
−−−−−−→ · · ·

[an ]Ln
−−−−−−→ An

is a negative phase when all transitions are outputs or parallels,
and polar(An ) , −∞.
is a null phase when polar(A0) > 0, n = 1 and the transition is
an internal communication.
is a positive phase when polar(A0) > 0, all transitions are inputs,
all Li ’s are equal, and polar(A0) > polar(An ).
Rephrasing, a negative phase executes all available outputs and

parallels, a null phase is one internal communication, and a posi-
tive phase executes a whole chain of inputs. Note that only nega-
tive phases may be empty.

Basic compression The �rst optimisation is to only consider
traces that can be decomposed into phases. Formally we writeO∀c,b
the set of traces of the form

t : b−0 · b
+
1 · b

−
1 · b

+
2 · b

−
2 · · ·b

+
n · b

−
n

where each b+i is a positive or null phase, and each b−i is a negative
phase. We show in Appendix C.3 that any maximal trace can be de-
composed this way after application of a well-chosen permutation
of independent actions. Hence by Proposition 4.4:

Proposition 4.5 . O∀c,b is a correct re�nement of O∀all.

Determinism of negative phases Negative phases are non-
deterministic by essence, but the underlying combinatorial explo-
sion is arti�cial in that most of the actions within negative phases
are independent: we show that they can actually be executed
purely deterministically.

We �x an arbitrary total ordering 4 on labelled actions. A neg-
ative phase b−, with tr(b−) = α1 · · ·αn , is said consistent when for
all i < n such that αi || αi+1, we have αi 4 αi+1. We write O∀c the
subset of O∀c,b of traces whose negative phases are all consistent.

Proposition 4.6 . O∀c is a correct re�nement of O∀c,b .

Proof. By Proposition 4.4, it su�cies to prove that for all neg-
ative phases b−, there exists π permuting independent actions
of b− such that π .b− is consistent. This follows from a well-
founded induction on tr(b−)w.r.t the lexicographic extension of
4 on words of actions. �

Blocks We have established that, to prove equivalences by ses-
sion, it is su�cient to consider traces of a certain shape, namely,
traces alternating between nonnegative and negative phases. The
rest of our partial-order reductions reason at the granularity of
these phases, by reordering so-called blocks.

A block is a positive or null phase followed by a negative phase.
Any trace of O∀c is therefore composed of an initial negative phase
and a sequence of blocks. Two blocks b and b ′ are said indepen-
dent, written b || b ′, if all actions of the former are independent of
all actions of the latter. Analogously to actions, we refer to permu-
tations π permuting independent blocks of traces ofO∀c. All related
notations and results can be cast to blocks by using:

Proposition 4.7 . Let t : bp · · · bn a sequence of blocks, tri =
tr(bi ). If π permutes independent blocks of tr = tr(t), then there is
π ′ permuting independent actions of tr s.t.

π ′.tr = π .tr = trπ (p) · · · trπ (n) .

Note in particular the following corollary of Proposition 4.4 that
will be at the core of the results of the next sections, where ≡b-por
is the analogue of ≡por where permutation of independent actions
is replaced by permutation of independent blocks:

Corollary 4.8 . LetO∀1 ⊆ O
∀

2 ⊆ O
∀
c. We assume that for all t ∈ O∀2,

there exists text ∈ O∀c such that t is a pre�x of text , and t ′ ∈ O∀1 such
that t ′ ≡b-por text . Then O∀1 is a correct re�nement of O∀2.

4.3 Improper positive phases

We now introduce improper blocks: intuitively, they conclude the
execution of a process but do not bring new knowledge to the at-
tacker. Such blocks can always be relegated to the end of traces
because they are not essential to execute other blocks. Formally,
we say that a block

b : (P,Φ)
tr
=⇒ (Q,Φ ∪ {ax1 7→ t1, . . . , axn 7→ tn })

is improper if
(1) it starts with an input, i.e. tr = c(ξ ) · tr′ for some ξ , tr′; and
(2) all labels appearing in tr do not appear in Q, except maybe on

null processes; and
(3) for all i ∈ n1,no, ti is deducible from Φ, that is, there exists a

recipe ξi such that ξiΦ =E ti .
This takes inspiration, but generalises, the notion of improper

blocks used in [BDH15, CKR19] that requires n = 0. Our �ner
optimisation captures for example outputs of public error codes in
the model of the e-passport in Example 2.2 (error, ok). Let us also
highlight the �rst item of the de�nition discarding improper blocks
starting with an internal communication: although the correctness
statement below would still hold without this restriction, this is
not the case when combined with the optimisations of the next
sections. They advance the execution of some blocks starting with
an internal communication: we shall therefore ensure that such
blocks are never deemed improper since, as such, they would also
have to be delayed.

Formally we write O∀c+i the subset of O∀c of traces not contain-
ing an improper block followed by a proper block. The following
results, proved in Appendix C.4, justify its correctness.

Proposition 4.9 . For all t ∈ O∀c, there exists t ′ ≡b-por t such that
t ′ ∈ O∀c+i and t ′ has the same number of improper blocks t .

The fact that t ′ has the same number of improper blocks as t is
not necessary to apply Corollary 4.8, but it will help establishing
further optimisations on improper blocks in the next section.

Corollary 4.10 . O∀c+i is a correct re�nement of O∀c.

Note that when restricting the de�nition to n = 0, we obtain a
weaker optimisation than the one presented in [BDH15] for deter-
minate processes. The latter indeed considers traces with at most
one improper block. This, however, relies on determinate-speci�c
arguments that are unsound for equivalence by session in general.
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4.4 Stabilising proper blocks

We introduce in this section a re�nementO∀c+i∗ ⊆ O
∀

c+i of improper
blocks. It is not included in our prototype as we found it quite hard
to implement; it should rather be seen as a convenient proof tool
in that, for incoming optimisations O∀, it will be easier to prove
the correctness of O∀ ∩ O∀c+i∗ rather than O∀ directly.

Intuitively, it solves the problem that properness is not stable
by permutation of independent blocks. For example consider pro-
cesses built from signatures and names

F = {h/1,a/0} c ∈ Chpub k ∈ Npriv

modelling a hash function h and a constant a, and the process

P = c(x).c 〈h(k)〉.0 | c(x).c 〈k〉.0

The traces of P can contain two blocks, one outputting h(k) and
one outputting k : the former may be improper or not depending
on whether it is executed second or �rst. This highlights that per-
mutations of independent, proper blocks of a trace t ∈ O∀c+i may
lead to a trace π .t < O∀c+i. To get around this issue we let O∀c+i∗ the
set of traces of the form u · v where u,v ∈ O∀c and

for all π permuting independent blocks of u, π .u does not con-
tain any improper blocks;
v only contains improper blocks.
In particular this optimisation has the important property of be-

ing stable under permutation of proper blocks:

Proposition 4.11 . Let t ∈ O∀c+i∗ with t = u · v and u containing
only proper blocks and v , only improper blocks. Then for all π
permuting independent blocks of u, (π .u · v) ∈ O∀c+i∗ .

We then prove the correctness of this optimisation.

Proposition 4.12 . For all t ∈ O∀c+i, there exists t ′ ≡b-por t such
that t ′ ∈ O∀c+i∗ .

Proof. We proceed by induction on the number of proper blocks
of t . If t ∈ O∀1 (which subsumes the case where t has no proper
blocks) it su�cies to choose t ′ = t . Otherwise let us write
t = u · v with u containing only proper blocks and v improper
blocks, and let π permuting independent blocks of u such that
π .u contains an improper block. By Proposition 4.9 there exists
u ′ ≡b-por π .u such thatu ′ ∈ O∀c+i andu ′ contains the same num-
ber of improper blocks as π .u. In particular if we write s = u ′ ·v ,
we have s ∈ O∀c+i, s has less proper blocks than t , and s ≡b-por t .
Hence the conclusion by induction hypothesis applied to s . �

Corollary 4.13 . O∀c+i∗ is a correct re�nement of O∀c+i.

4.5 High-priority null phases

In this section we introduce a condition for prioritising the execu-
tion of some internal communications. Consider for example

c(x).P1 | d 〈u〉.P2 | d 〈v〉.P3 | d(x).P4

where c ∈ Chpub and d ∈ Chpriv . Assuming that the channel d
does not appear in P1, all (maximal) traces will contain an inter-
nal communication on d between the rightmost three processes,

regardless of the potential prior execution of c(x).P1. Our opti-
misation will typically execute such internal communications in
priority. Formally let A be an extended process with polar(A) > 0

A = ({{[ P1 ]
`1 , . . . , [ Pn ]

`n }},Φ) .

If d ∈ Chpriv is a private channel, we write LA(d) ⊆ {`1, . . . , `n }
the set of labels `i such that Pi starts with an input or output on
d . When an internal communication is possible on d ∈ Chpriv , we
say that d is high-priority (in A) if for all traces of the form

A
tr
=⇒ B where no labels of LA(d) appear in tr

we have LA(d) = LB (d). This formalises that, in all traces ofA, the
�rst internal communication on d needs be between an input and
an output that were already available in A.

By extension, a transition is high-priority when it is an internal
communication on the minimal high-priority channel w.r.t. an ar-
bitrary total ordering 4Ch on Chpriv . Rephrasing, it is a null phase
on one, deterministically-chosen, high-priority channel. We then
de�ne O∀0 the subset of traces of O∀c that do no contain non-high-
priority transitions from processes from which a high-priority
transition is possible. To combine it with the previous optimisa-
tions we let O∀c+i∗+0 the set of traces of the form

b− · tp · ti ∈ O
∀

c+i∗

where b− is a negative phase, tp ∈ O∀0 only contains proper blocks,
and ti ∈ O

∀
c only contains improper blocks. The following propo-

sitions state the correctness of this optimisation; their proofs are
detailed in Appendix C.5 and rely as usual on Corollary 4.8.

Proposition 4.14 . Let t = u · v a maximal trace, where u,v ∈ O∀c
and v does not contain any high-priority transitions. Then there
exists π permuting independent blocks of u such that π .u ∈ O∀0.

Corollary 4.15 . O∀c+i∗+0 is a correct re�nement of O∀c+i∗ .

4.6 Reduction of independent blocks

Finally, as sequences of independent blocks can be permuted ar-
bitrarily, we de�ne an optimisation that �xes their order. For that
we let 4 an ordering on words of actions such that two words of
independent actions are always strictly comparable (≺). We then
de�ne a predicate Minimal(t,b), ensuring that it is not possible to
obtain an action word lexicographically-smaller than tr(t · b) by
inserting b inside t using permutations of independent blocks.

Minimal(b1 · · ·bn,b) if n = 0
or ¬(bn || b)
or b can follow bn (see below)

and Minimal(b1 · · ·bn−1,b)

Intuitively, we say that a blockb can follow an other blockbn when
tr(bn ) ≺ tr(b), but this test may be ignored in some cases to ensure
compatibility prior optimisations. Formally, b can follow bn when
(1) tr(bn ) ≺ tr(b); or
(2) bn starts with a high-priority transition but not b; or
(3) both bn and b start with a high-priority transition, but on dif-

ferent private channels.
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We de�neO∀r the smallest subset ofO∀c containing the empty trace,
and such that t ∈ O∀r and Minimal(t,b) implies t · b ∈ O∀r . To
account for improper blocks, we let O∀por the set of traces

b− · tp · ti ∈ O
∀

c+i∗+0

where b− is a negative phase, tp ∈ O∀r only contains proper blocks,
and ti ∈ O∀r only contains improper blocks. The correctness of this
optimisation is proved in Appendix C.6.

Proposition 4.16 . For all maximal traces t ∈ O∀c+i∗+0, there exists
π permuting independent blocks of t such that π .t ∈ O∀por. Besides
π .t ≺lex t if t < O∀por, with 4lex the lexicographic extension of 4.

The decreasing argument w.r.t. 4lex is not necessary to obtain
correctness, but will be important to prove the compatibility with
the symmetry-based optimisations presented in the next section.

Corollary 4.17 . O∀por is a correct re�nement of O∀c+i∗+0.

5 REDUCTIONS BY SYMMETRY

In this section, we show how to exploit process symmetries for
equivalence by session. Such symmetries often appear in practice
when we verify multiple sessions of a same protocol as it results
into parallel copies of identical processes, up to renaming of fresh
names. We �rst provide a group-theoretical characterisation of in-
ternal process redundancy, and then design two optimisations. In
spirit, this approach shares some similarities with classical work
in model checking modelling symmetries by the group of the au-
tomorphisms of the system to be analysed [ES96].

5.1 Structural equivalence

We exhibit an equivalence identifying processes that have an iden-
tical structure (up to associativity and commutativity of parallel
operators) and whose data are equivalent w.r.t. the equational the-
ory and alpha-renaming of private names. This will be the basis of
our symmetry-based re�nements. We de�ne structural equivalence
≡ac on plain processes as the smallest equivalence such that

P | Q ≡ac Q | P (P | Q) | R ≡ac P | (Q | R)

and that is closed under context (that is, composition of equiva-
lent processes with either a same process in parallel, or an input,
output, or conditional instruction at toplevel). To account for the
equational theory, we extend it to ≡E de�ned by

σ ,σ ′ substitutions P ≡ac Q ∀x ∈ X, xσ =E xσ ′

Pσ ≡E Qσ ′

Besides we add alpha equivalence of private names and chan-
nels; intuitively, two agents executing the same protocol are be-
having similarly even though they use their own session nonces.
Formally we de�ne structural equivalence ≡ on extended processes
by the following inference rule

∀i, Pi ≡E Qi ϱ α-renaming

({{[ P1 ]
`1 , . . . , [ Pn ]

`n }},Φ) ≡ ({{[Q1 ]
`1 , . . . , [Qn ]

`n }},Φ) ϱ

where an α-renaming is a substitution for channels and names ϱ =
ϱN ◦ ϱCh for some permutations ϱN and ϱCh of Npriv and Chpriv .

5.2 Group actions and process redundancy

Let a labelled extended process (as de�ned in Section 4.1) and a
labelled extended twin process

A = ({{[ P1 ]
`1 , . . . , [ Pn ]

`n }},Φ) `1 < · · · < `n

A2 = ({{([ P1 ]
`1 ,Q1), . . . , ([ Pn ]

`n ,Qn )}},Φ0,Φ1)

where 6 is an arbitrary total ordering on labels. We also let π ∈ Sn
where Sn denotes the the group of all permutations of n1,no. We
de�ne the following group action of Sn on extended (twin) process:

π .A = ({{[ Pπ (1) ]
`1 , . . . , [ Pπ (n) ]

`n }},Φ)

π .A2 = ({{([ Pπ (1) ]
`1 ,Q1), . . . , ([ Pπ (n) ]

`n ,Qn )}},Φ0,Φ1)

In the case of twin processes, this notation is only well de�ned if for
all i ∈ n1,no, skel(Pπ (i)) = skel(Qi ), i.e. if skel(Qi ) = skel(Qπ (i)).
The labels are only used as a way to �x the ordering of the pro-
cesses within the multiset. They will often be omitted for succinct-
ness, assuming an implicit ordering.

Process redundancy within an extended process is then simply
captured by the group stabiliser

Stab(A) = {π ∈ Sn | π .A ≡ A} .

Example 5.1. Stab({{P, . . . , P}},Φ) = Sn models the case where all
parallel subprocesses are identical. On the contrary, the case where
Stab(A) = {id} models that there is no redundancy at all between
parallel processes. Intermediate examples model partial symme-
tries: the larger the stabiliser, the more redundancy. For example
Stab({{P, P,Q,Q,Q}},Φ) will contain at least the subgroup of Sn
generated by the permutations (1 2), (3 4) and (3 5). 4

If ϱ is a permutation of Chpub , we also generalise the de�nition
of Stab(A) as follows:

Stabϱ (A) = {π ∈ Sn | π .A ≡ Aϱ} .

This characterises symmetries up to renaming of public channels.
Indeed such channels only a�ect the skeletons and the labels of
the trace, not the execution �ow: therefore two processes that are
structurally-equivalent but di�er on their public channels still have
a similar set of traces. Typically to prove the equivalence of P(c) |
P(d) andQ(c) | Q(d)where P(x),Q(x) are processes operating on a
single channel x , matching a trace starting with an action of either
P(c) or P(d) results into a similar analysis, provided c,d ∈ Chpub .

5.3 Universal symmetry optimisations

We �rst present a universal optimisation that reduces the number
of possibilities when applying rules (In) and (Comm) at the start of
a nonnegative phase. It captures the idea that, when considering
the traces of several parallel protocol sessions, starting the trace
by an action from one session or an other does not make a sub-
stantial di�erence, even when they use distinct public channels.
To formalise this idea, let us consider a labelled trace t ∈ O∀c:

t : [ P ]ε
tr
=⇒ ({{[ Pi ]

`i }}ni=1,Φ0) = A .

The goal is to exhibit conditions discarding some of the possible
transitions directly following t .
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5.3.1 Characterisation using stabilisers
We de�ne two sets Sym1 and Sym2 characterising symmetries (and
prove in Appendix D.2 that they are permutation groups). They
model that the symmetries in P shall be re�ected in one way or an
other in T(P,Q) to be exploited.

Symmetry by matching We �rst de�ne a notion of symmetry
within P that is re�ected in the matching with Q . The set of sym-
metries we consider is the group Sym1 = SymP

1 ∩ Sym
Q
1 where

SymP
1 = Stab(A)

SymQ
1 =

⋂
t 2:(P ,Q )

tr
=⇒A2

t=fst(t 2)∼snd(t 2)

{π ∈ Sn | (P,Q)
tr
=⇒ π .A2}

In the de�nition of SymQ
1 , the labels are taken into account in tr

(i.e. the trace leading to π−1.A2 should have t as a �rst projection).
Intuitively π ∈ SymP

1 means that for all a, Pa and Pπ (a) have the
same traces, and π ∈ SymQ

1 means that they can be matched by the
same sessions of Q . In particular if π ∈ Sym1, executing �rst an
action from Pa or Pπ (a) results into symmetric equivalence proofs.

Simultaneous symmetry We now de�ne a notion of symmetry
capturing redundancy occurring at the same time in P and Q , up
to bijective renaming of public channels. For ϱ permutations of
Chpub , we de�ne Sym2 =

⋃
ϱ Sym

P
2 (ϱ) ∩ Sym

Q
2 (ϱ) where

SymP
2 (ϱ) = Stabϱ (A)

SymQ
2 (ϱ) =

⋂
t 2:(P ,Q )

tr
=⇒A2

t=fst(t 2)∼snd(t 2)

Stabϱ (snd(A2))

Intuitively π ∈ SymP
2 means that for all a, Pa and Pπ (a) have the

same traces, and π ∈ SymQ
2 means that all matching traces of Q

have this symmetry as well. Hence, like Sym1, π ∈ Sym2 captures
a process symmetry re�ected in the equivalence proof.

5.3.2 De�nition of the optimisation
In the following, Sym is the group generated by Sym1 and Sym2.

For input transitions We write I ⊆ n1,no the set of indexes i
such that an input transition is applicable from Pi in O∀c+i∗+0. If
i ∈ I we consider the orbit of i w.r.t. the action of the group Sym:

Orb(i) = {π (i) | π ∈ Sym} ∩ I .

Intuitively starting a trace of A by an action of Pi or Pj results into
a similar analysis if i and j are on the same orbit. Thus a correct op-
timisation is to consider only one index per orbit when listing the
possible transitions fromA. Yet this representant should be chosen
carefully for compatibility with prior optimisations, namely O∀por
that discards traces that are not minimal w.r.t. an ordering 4 on
blocks. We should pick a representant i such that the execution of
Pi induces a minimal block w.r.t. 4. For that we assume that the
ordering 4 is entirely determined by the label of the �rst action of
the block. Hence the following extension of 4 to I is well-de�ned:

i 4 j ⇐⇒ tr(bi ) 4 tr(bj )

wherebi (resp. bj ) is an arbitrary block starting with an input from
Pi (resp. Pj ). An input transition on process Pa following the trace
t is said well-formed if a is minimal w.r.t. 4 within Orb(a).

For internal communications The optimisation is the same as
the one above, except that the symmetries should apply to the in-
put and output processes at the same time. We write IO ⊆ n1,no2

the set of pairs of indexes (i, j) such that an internal communica-
tion is possible between (Pi , Pj ) in O∀c+i∗+0, where the input is at
the start of Pi . If (i, j) ∈ IO we consider

Orb(i, j) = {(π (i), π (j)) | π ∈ Sym} ∩ IO .

Intuitively starting a trace of A by an internal communication be-
tween processes Pi , Pj or Pk , Pl results into a similar analysis if
(i, j) and (k, l) are on the same orbit. Then similarly to inputs we
extend the ordering 4 on blocks to IO by writing

(i, j) 4 (k, l) ⇐⇒ tr(b) 4 tr(b ′)

where b (resp. b ′) is the block starting with the internal commu-
nication between Pi and Pj (resp. Pk and Pl ). We thus qualify an
internal communication between Pa and Pb following the trace t
as well-formed if (a,b) is minimal w.r.t. 4 within Orb(a,b).

Correctness We say that a trace is well-formed when all its tran-
sitions (In) and (Comm) at the start of nonnegative phases are well-
formed. We then de�ne the optimisation O∀sym as the set of well-
formed traces ofO∀c+i∗+0. Its correctness is proved in Appendix D.2.

Proposition 5.1 . O∀por ∩ O∀sym is a correct re�nement of O∀por.

5.4 Existential symmetry optimisation

The goal of this optimisation is to exploit symmetries when ap-
plying the matching rule: when several processes are structurally
equivalent then we do not need to consider redundant matchings.
For instance, suppose that we need to match P1 | P2 with Q | Q .
Just considering the identity permutation would be su�cient, and
the permutation (1 2) should be considered as redundant. For-
mally, let us consider an instance of the rule (Match)

({{(P,Q)}}∪P2,Φ0,Φ1)
τ
−→s ({{(Pi ,Qπ (i))}}

n
i=1∪P

2,Φ0,Φ1) = π
−1.A2

with P = P1 | · · · | Pn , Q = Q1 | · · · | Qn and π ∈ Sp where
p = n + |P2 |. We only consider Sp instead of the usual Sn for
convenience as it will make the formalisation of the optimisation
lighter, in particular the de�nition of the following relation on Sp :

π ∼ π ′ i� ∃u ∈ Stab(snd(A2)), π ′ = π ◦ u .

Proposition 5.2 . ∼ is an equivalence relation on Sp .

Proof. It su�cies to prove that Stab(snd(A2)) is a group (Re�ex-
ivity: a group of permutations contains the identity; symmetry:
a group is closed by inverse; transitivity: a group is closed by
composition). Consider the function (π ,A) 7→ π .A. It is a group
action of Sp on the set of extended processes quotiented by ≡.
Such an action is well-de�ned since for allA,B containing p pro-
cesses such that A ≡ B and all π ∈ Sp , we have π .A ≡ π .B. The
set Stab(A) is a stabiliser of this action, hence the conclusion. �
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We say that an instance of rule (Match) is well-formed when
the underlying permutation π is minimal within its equivalence
class for ∼, w.r.t. an arbitrary total ordering on permutations. We
denote byO∃sym the set of traces of extended twin-processes whose
instances of rule (Match) are all well-formed. The correctness of
this optimisation is stated below and proved in Appendix D.3.

Proposition 5.3 . O∃sym is a correct re�nement of O∃all.

6 SYMBOLIC SETTING

Even though we do not consider unbounded replication, the se-
mantics of our process calculus de�nes an in�nite transition sys-
tem due to the unbounded number of possible inputs that can be
provided by the adversary. To perform exhaustive veri�cation of
such in�nite systems, it is common to resort to symbolic tech-
niques abstracting inputs by symbolic variables and constraints.
We brie�y describe in this section how our optimisations are inte-
grated in the symbolic procedure underlying the DeepSec tool.

6.1 DeepSec’s baseline procedure

Symbolic se�ing In the DeepSec tool [CKR18b] and its under-
lying theory [CKR18a], the deduction capabilities of the attacker
are represented by so-called deduction facts X `? u, intuitively
meaning that the attacker is able to deduce the termu by the means
of a recipe represented by the variableX . Additionally, conditional
branching, e.g. if u = v then . . . else . . ., is represented by equa-
tions u =? v and disequations u ,? v .

To represent in�nitely many processes, [CKR18a] relies on sym-
bolic processes (P,Φ, C)whereP andΦ are, as in our setting, a mul-
tiset of processes and a frame respectively. The di�erence is that
the processes and frame may contain free variables: they model
the variables bound by inputs and are subject to constraints in C.
These constraints are a conjunction of deduction facts, equations
and disequations. For example, if we consider the process

P = c(x). if proj1(x) = t then c 〈h(x)〉

then after executing symbolically the input and the positive branch
of the test, we reach the symbolic process

({{0}}, {ax 7→ h(x)}, X `? x ∧ proj1(x) =
? t)

A concrete extended process is thus represented by any ground
instantiation of the free variables of the symbolic process that sat-
is�es the constraints in C. Such instantiations are called solutions,
and therefore form an abstraction of concrete traces treated as
symbolic objects and constraint solving.

Example 6.1. Let us consider again the simpli�ed model of BAC
of Example 2.2. When executing the passport process P(k,n) until
reaching the success token ok, the constraints aggregate as

C = X0 `
? x0 ∧ x0 =

? get_challenge ∧

X `? x ∧ sdec(x,k) =? n

The constraint solver will gradually deduce that solutions to this
constraint need to map x to a term of the form senc(y1,y2,y3), and
will add the equations y1 =? n and y3 =? k . 4

Partition tree To decide trace equivalence between two plain
processes P and Q , the procedure underlying DeepSec builds a re-
�ned tree of symbolic executions of P andQ , called a partition tree.
This �nite, symbolic tree intuitively embodies all scenarios of (po-
tential violations of) equivalence, and the �nal decision criterion
is a simple syntactic check on this tree.

More technically, nodes of the partition tree contain sets of sym-
bolic processes derived from P orQ ; that is, a branch is a symbolic
abstraction of a subset of T(P) ∪ T(Q). It is constructed in a way
that each node contains all—and only—equivalent processes reach-
able from P orQ with given trace actions tr. When generating this
tree, trace equivalence holds if and only if each node contains at
least one symbolic process derived from P and one from Q .

6.2 Symbolic matching

Subprocess matchings To make the integration into DeepSec
easier, we used an alternative characterisation of equivalence by
session that is closer to trace equivalence. In essence, it expresses
the structural constraints imposed by twin processes as explicit bi-
jections between labels (as de�ned in Section 4.1) that we call ses-
sion matchings. A precise de�nition is given in Appendix A, with a
proof that this is equivalent to the twin-process-based de�nition.

In practice, our implementation consists of keeping track of
these session matchings into the nodes of the partition tree gener-
ated by DeepSec. The set of all these bijections is then updated at
each new symbolic transition step in the partition tree, among oth-
ers to satisfy the requirement that matched subprocesses should
have the same skeleton.

Example 6.2. Consider two initial processes

P = c(x).P0 | c(x).P1 | c 〈u〉.P2

Q = c(x).Q0 | c 〈u
′〉.Q1 | c(x).Q2 .

In the root of the partition tree, P and Q will be labeled by 0, i.e.
the root will contain the two symbolic processes

({[ P ]0},�,�) ({[Q ]0},�,�) .

There is only a single bijection between their labels, i.e. the iden-
tity 0 7→ 0. Upon receiving this initial node, DeepSec applies the
symbolic transition corresponding to our rule (Par), hence gener-
ating the two symbolic processes

({{[ c(x).P0 ]0.1 ; [ c(x).P1 ]0.2 ; [ c 〈u〉.P2 ]0.3}},�,�)
({{[ c(x).Q0 ]0.1; [ c 〈u ′〉.Q1 ]0.2; [ c(x).Q2 ]0.3}},�,�)

There are then only two possible bijection of labels that respect
the skeleton requirement of twin processes:

0.1 7→ 0.1 0.1 7→ 0.3
0.2 7→ 0.3 and 0.2 7→ 0.1
0.3 7→ 0.2 0.3 7→ 0.2 4

These bijections are kept within the node of the partition tree
and updated along side the other transformation rules of DeepSec.
For obvious performance reasons, we cannot represent them by a
naive enumeration of all process permutations. Fortunately, the
skeleton requirement ensures an invariant that the set S of session
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matchings between two processes A and B is always of the form

S = {π | ∀i,∀` ∈ Ci , π (`) ∈ Di }

where the sets C1, . . . ,Cn form a partition of the labels of A and
D1, . . . ,Dn a partition of the labels of B. In particular, S can suc-
cinctly be stored as a simple association list of equivalence classes.

Decision of equivalence Finally, as our trace re�nements de-
pend on two sets O∀ and O∃, we annotate each symbolic process
in the node by ∀, ∃ or ∀∃ tags. They mark whether the trace from
the root of the partition tree to the tagged process is determined
to be in O∀, O∃ or both respectively. For instance, the two initial
symbolic processes in the root of the partition tree are labeled by
∀∃. We also provide a decision procedure for inclusion by session
vs that consists of tagging one of the initial processes as ∀ and the
other one as ∃.

The decision criterion for equivalence is then strenghtened. For
equivalence to hold, not only each node of the partition tree should
contain at least one process originated from P and one process
originated from Q , but each of them that has the tag ∀ should be
paired with at least one other process of the node with the tag ∃.

6.3 Integration

From a high-level of abstraction, the integration of the universal
optimisations described in sections Sections 4 and 5 prune some
branches of the partition tree—those that abstract traces that do
not belong to O∀c+r+s . For instance in Section 4.2, we showed that
to prove equivalence by session, we can always perform non-input
actions in priority. Therefore on a process c 〈u〉.P | c(x).Q , we pre-
vent DeepSec from generating a node corresponding to the execu-
tion of the input due to the presence of the output.

The integration of other optimisations is more technical in a
symbolic setting, in particular the lexicographic reduction O∀c+r de-
scribed in Section 4.6. Remember that it discards traces that do
not satisfy the predicateMinimal, that identi�es lexicographically-
minimal traces among those obtained by permutation of indepen-
dent blocks. Unfortunately, the de�nition of independence (De�-
nition 4.1) is only de�ned for ground actions—and not their sym-
bolic counterpart, that intuitively abstracts a set of ground actions.
A branch may therefore be removed only if all its solutions violate
the predicate Minimal. However, by Proposition 3.8, it is correct
to only partially implement such optimisations.

7 EXPERIMENTS

In practice Based on the high-level description of the previous
section, we extended the implementation of DeepSec to decide
equivalence by session of P and Q . Upon completing an analysis,
two cases can arise:
(1) The two processes are proved equivalent by session. Then they

are also trace equivalent by Proposition 3.1.
(2) The two processes are not equivalent by session and DeepSec

returns an attack trace t , say, in P , as a result.
In the second case, when using equivalence by session as a heuris-
tic for trace equivalence, the conclusion is not straightforward. As
discussed in Section 3.2, the witness trace t may not violate trace

equivalence (false attack). We integrated a simple test to our proto-
type, that checks whether this is the case or not. For that we lever-
age the internal procedure of DeepSec by, intuitively, restricting
the generation of the partition tree for checking P vtr Q to the
unique branch corresponding to the trace t .

If this trace t appears to violate trace equivalence, which is the
case for example in our analysis of two sessions of the BAC pro-
tocol, we naturally conclude that P 6≈tr Q . Otherwise, the false at-
tack may guide us to discover a real attack: our analysis of session
equivalence consider traces with a speci�c shape (see Sections 4
and 5). Thus, we implemented a simple heuristic that, whenever a
false attack is discovered, also checks whether di�erent permuta-
tions of actions of this false attack could lead to a true attack. For
instance, this heuristic allowed us to disprove trace equivalence in
some analyses ofn > 3 sessions of BAC. When our heuristic cannot
discover a true attack, the result is not conclusive: the processes
may well be trace equivalent or not. We leave to future work the
design of a complete decision procedure for trace equivalence that
builds on a preliminary analysis of equivalence by session.

Experimental se�ing We report experiments (Figure 4) com-
paring the scope and e�ciency of the following two approaches
for proving trace equivalence:

The original version of DeepSec as a baseline;
The analysis leveraging our contributions (preliminary analysis
of equivalence by session, test of false attack if it fails, and then
the heuristic attempting to reconstruct a true attack).
We describe the benchmarks below in more details. The column

# roles is an indicator of the intricacy of the system (number of
parallel processes that the model �le exhibits).

Benchmarks were carried out on 20 Intel Xeon 3.10GHz cores,
with 50 Gb of memory. We ran the toy example described in this
paper on a single core to illustrate simply the algorithmic improve-
ments compared to DeepSec. As DeepSec supports parallelisation,
we distributed the computation of the other, bigger proofs over 20
cores. The implementation and the speci�cation �les are available
at https://deepsec-prover.github.io/.

Running example: toy BAC We modelled the simpli�ed anal-
ysis of unlinkability in the BAC protocol described in Examples 2.2
and 2.4 as a simple instance to compare our prototype and DeepSec
in terms of scope and e�ciency. We gather several variants:

2 sessions: both DeepSec and our prototype are able to �nd an
attack trace
3 sessions: DeepSec times out and our prototype �nds a false
attack. This is due to the fact that, by executing outputs in pri-
ority (recall the por in Section 4), more intermediate actions are
available to match the trace. However our heuristic manages to
reconstruct a true attack trace by delaying some output actions.
we also consider a variant where we remove the get_challenge

message from the protocol description. Our prototype now re-
ports a false attack for 3 sessions and fails to conclude.
The failure in the last variant is not a limitation of our heuris-

tic: by pushing the limits of the baseline version of DeepSec, we
actually obtained that trace equivalence held (about 8 days of com-
putation on a version of DeepSec prior to 2.0.0). This is intuitively
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Protocol scenario # roles

DeepSec DeepSec
baseline eq. by session

Toy BAC 2 identical 4 E <1s E <1s
2 identical + 1 fresh 6 � E <1s

Toy BAC
no get_challenge

2 identical 4 E <1s E <1s
2 identical + 1 fresh 6 (3) � 7 <1s

BAC

1 identical + 1 fresh 4 E <1s E <1s
2 identical + 1 fresh 6 � E <1s
3 identical + 1 fresh 8 � E <1s
2 identical + 2 fresh 8 � 3 19s
4 identical + 1 fresh 10 � E 2s
3 identical + 2 fresh 10 � E 9m31s
2 identical + 3 fresh 10 � 3 2h56m

Helios
vote swap

no revote 6 3 <1s 3 <1s
2 × A 1 × B 11 3 7min29 3 6s
3 × A 1 × B 12 3 1h38m 3 14s
3 × A 2 × B 13 � 3 36s
4 × A 2 × B 14 � 3 1m20s
7 × A 3 × B 18 � 3 17m54

Helios 2 honest + 1 dishonest 9
� 3

1m14s
(total)BPRIV 7 ballots (19 scenarios) (each)

Scytl vote privacy 5 3 29s 3 <1s

AKA anonymity 8 3 <1s 3 <1s

3 trace equivalence veri�ed E trace equivalence violated � timeout (12 hours)
7 false attack (disproves session equivalence but unable to conclude for trace equivalence)

Figure 4: Experimental evaluation (DeepSec v2.0.0, Apr. 2020)

because the attacker cannot statically distinguish between a fresh
nonce n (as output by passports) and a cipher senc(n′, r ,k) (as out-
put by readers). In particular, without the get_challenge, each
passport can perform at toplevel an output action that is indistin-
guishable from a reader output, leaving much more possibilities
for matching traces.

On the contrary if we assume that the adversary can distinguish
between passport and reader actions (which is achieved in the
model by using distinct channels for the passport and the reader
processes), our prototype manages to disprove trace equivalence.

BAC We also studied a more realistic model of BAC [For04]. The
baseline version of DeepSec still fails to analyse 3 or more sessions,
while our prototype reaches up to 5 sessions. On one side of the
equivalence all n systems are distinct (fresh), while on the other
side a same system may appear several times: our analysis indi-
cates that, depending on the precise setting, the security property
may be violated in the model or not. This is due to the error codes
raised when a passport communicates with a wrong reader: de-
pending on how many identical systems the process contains, the
same number of errors may not be observable.

Although not present in the result table, we also implemented

inclusion by session (see Section 6.2) as it is sometimes used to
de�ne other �avours of unlinkability.

Helios We also consider the Helios protocol for electronic vot-
ing [Adi08]. We analyse vote privacy of a version that uses zero-
knowledge proofs to ensure the voter knows the plaintext of her
vote, thus avoiding copy-attacks [CS13]. Vote privacy is formalised
using a classical vote-swapping model, that is, we want to prove
the equivalence of two situations where two honest votes have
been exchanged.

A reduction result of Arapinis et al. [ACK16] ensures that, for
such models, it is su�cient to consider two honest voters and one
dishonest voter (that is implicit in the model, embedded in the
intruder capabilities) to obtain a proof of the system for an un-
bounded number of sessions. Such scenarios could already be han-
dled by automated analysers, e.g. DeepSec [CKR18a]. However,
when revoting is allowed, as it is the case for Helios, one needs to
consider all scenarios when the tally accepts 7 ballots. In particu-
lar, it is not su�cient to consider only re-votes by the adversary,
but also arbitrary revotes of the two honest voters. In Figure 4 we
listed several scenarios, indexed by how many times the honest
voters A and B are sending revotes.
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This kind of analysis is out of the scope of many automated
analysers. For example, Figure 4 shows that DeepSec fails to prove
after 12h of computation any scenarios where more than one hon-
est revote is emitted. In [ACK16] the ProVerif proofs are limited
to dishonest revotes. We compiled several intermediary scenarios
to give an overview of the veri�cation-time growth using our pro-
totype, but all are subsumed by the last scenario were we allow A
to revote 7 times and B 3 times. Indeed, using a simple symmetry
argument on A and B this covers all scenarios where honest voters
cast a total of 7 ballots. Note however that, strictly speaking, the
reduction result of [ACK16] does not bound the number of emitted
honest revotes (that may not be e�ectively received by the ballot
box) that have to be considered during an analysis of vote privacy;
extensions of this reduction should be considered in the future.

We also experimented an other model of voting privacy inspired
by the game-based de�nition BPRIV [BCG+15]. In this de�nition
the (re)votes are dicted to honest voters by the adversary, which
permits to e�ectively model revotes of arbitrary values. As re-
ported in Figure 4 the prototype handles the 19 queries modelling
all revote scenarios for 7 emitted ballots, in a total of a few minutes.

About the modelling of mixnets. The version of Helios we anal-
yse relies on a mixnet, which can be represented in several ways
that may trigger or not a false attack. Mixnets are usually modelled
as processes receiving the values to mix, and then outputing them
in an arbitrary order induced by the inherent non-determinism of
concurrency. However this can be performed using two models
(where c ∈ Chpriv ):

MixSeq = c(x). c(y). (c 〈x〉 | c 〈y〉)

MixPar = (c(x). c 〈x〉) | (c(y) | c 〈y〉)

In the second case, subprocess-matching constraints arise earlier
in the trace, triggering a false attack. However, the natural mod-
elling of MixSeq allows to complete a security proof. We observed
the same behaviour on other experimentation on voting protocols
with mixnets.

Other case studies As side experiments, we also tried our pro-
totype on other model �les of similar tools that we could �nd in the
literature. We performed for example an analysis of vote privacy
of an e-voting protocol by Scytl deployed in the Swiss canton of
Neuchâtel, based on the ProVerif �le presented in [CGT18]. We
also studied anonymity in a model of the AKA protocol deployed
in 3G telephony networks [AMR+12] (without XOR), presented in
the previous version of DeepSec [CKR18a].

8 CONCLUSION AND FUTURE WORK

In this paper we introduce a new process equivalence, the equiv-
alence by session. We show that it is a sound proof technique
for trace equivalence which allows for several optimisations when
performing automated veri�cation. This includes powerful par-
tial order reductions, that were previously restricted to the class
of determinate processes, and allows to exploit symmetries that
naturally arise when verifying multiple sessions of a same proto-
col. In addition to the theoretical basis we have implemented these
techniques in the DeepSec tool and evaluated their e�ectiveness

in practice. The optimisations indeed allowed for e�cient veri�-
cation of non-determinate processes that were previously out of
scope of existing techniques.

We also discussed how to handle the false attacks, that are a nat-
ural consequence of the fact that equivalence by session is a strict
re�nement of trace equivalence. We implemented a test to verify
automatically, when equivalence by session is disproved, whether
the underlying attack is genuine with respect to trace equivalence.
When this is not the case, as part of future work it would be inter-
esting to re�ne the part of the proof that failed, while exploiting
that some parts of the system has already been shown to satisfy
equivalence.
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A EXPLICIT SESSION MATCHINGS

In this section we present an alternative characterisation of equiv-
alence by session. The process matchings modelled by twin pro-
cesses are here represented by an explicit permutation with prop-
erties mirroring the structure of twin processes. This formalisa-
tion makes closer link with the de�nition of trace equivalence and
is more convenient convenient for some proofs (see e.g. Appen-
dices B and D). Besides, note that this is the characterisation we
use in the implementation, �tting better to the existing procedure
of the DeepSec prover for trace equivalence.

Session matchings We �rst characterise the condition under
which, given two traces t, t ′, there exists t2 such that fst(t2) = t
and snd(t2) = t ′. For that we rely on the notion of labels intro-
duced in Section 4.1 to make reference to subprocess positions. In
the rest of the paragraph, we refer to two labelled extended pro-
cessesA0,B0 such that skel(A0) = skel(B0), and as usual we assume
that neither of them contains two labels such that one is the pre�x
of the other. We also let t ∈ T(P), t ′ ∈ T(Q)

t : A0
[a1 ]

`1
−−−−−−→ · · ·

[an ]`n
−−−−−−→ An t ′ : B0

[b1 ]
`′1

−−−−−→ · · ·
[bn ]`

′
n

−−−−−−→ Bn

We write L and L′ the sets of labels appearing in t and t ′.

Definition A.1 . A session matching for t and t ′ is a bijection π :
L→ L′ verifying the following properties
(1) for all i ∈ n0,no, π de�nes a bijection from the labels of Ai to

the labels of Bi . Besides if Ai and Bi contain processes [ P ]`
and [Q ]π (`) respectively then skel(P) = skel(Q)

(2) for all i ∈ n1,no, π (`i ) = `′i
(3) ∀` · p ∈ dom(π ), ∃q, π (` · p) = π (`) · q

Proposition A.1 . The following two points are equivalent:
(1) tr(t) = tr(t ′) (labelled removed) and there exists a session

matching for t and t ′.
(2) ∃t2, fst(t2) = t and snd(t2) = t ′.
Besides in the ith extended twin process of t2, the process labelled
` in Ai is paired with the process labelled π (`) in Bi .

Proof of (1)⇒ (2). The trace t2 can be easily constructed by in-
duction on the length of t :

Item (1) of De�nition A.1 ensure that the twin processes in t2

are composed of pairs of processes with the same skeleton,
Item (2) ensures that pairs of transitions of P and Q can be
mapped into transitions of twin-processes, and
The permutations that are required by applications of the rule
(Match) can be inferred from Item (3). Indeed, consider two
instances of the rule (Par) in t and t ′:

({{[ P1 | . . . | Pn ]
`}} ∪ P,Φ)

τ
−→ ({{[ Pi ]

` ·i }}ni=1 ∪ P,Φ)

({{[Q1 | . . . | Qn ]
`′}} ∪ Q,Ψ)

τ
−→ ({{[Qi ]

`′ ·i }}ni=1 ∪ Q,Ψ)

Given π a session matching for t and t ′, we consider the per-
mutation of n1,no mapping i ∈ n1,no to the (unique) j such
that π (` · p) = `′ · j. This permutation can be used to con-
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struct the instance of rule (Match) corresponding to these
two (Par) transitions. �

Proof of (2)⇒ (1). Let t2 be a trace given by Item (2). We lift the
labellings of t = fst(t2) and t ′ = snd(t2) to the twin processes
appearing in t2. Then as explicited in the theorem statement
it su�cies to consider π the mapping from L to L′ such that
π (`) = `′ for all twin process ([ P ]`, [Q ]`

′

) appearing in t2. A
quick induction on the length of t2 shows that π is well de�ned
and is a session matching for t and t ′. We recall in particular
the invariant that each Ai or Bi only contains labels that are
incomparable w.r.t. the pre�x ordering. �

Important properties As a direct corollary, we give an alterna-
tive characterisation of equivalence by session.

Proposition A.2 . Let P,Q be plain processes in -normal form
such that skel(P) = skel(Q). The following points are equivalent:
(1) P vs Q
(2) for all t ∈ T(P), there exist t ′ ∈ T(Q) and a session matching

for t and t ′ such that t ∼ t ′ (note: in “t ∼ t ′” the comparison
of tr(t) and tr(t ′) does not take the labels into account)

Besides the relation ∼s on traces de�ned by t ∼s t ′ i� there
exists t2 such that fst(t2) = t and snd(t2) = t ′, is an equivalence
relation. More precisely:

Proposition A.3 . For all traces t1, t2, t3:
(1) id is a session matching for t1 and t1
(2) if π is a session matching for t1 and t2 then π−1 is a session

matching for t2 and t1
(3) if π is a session matching for t1 and t2, and π ′ for t2 and t3,

then π ′ ◦ π is a session matching for t1 and t3

B FALSE ATTACKS AND DETERMINACY

In this section we give a detailed proof of the claim of Section 3
that false attacks cannot arise for determinate processes, i.e.:

Proposition 3.2 . If P,Q are determinate plain processes such that
P ≈tr Q then P ≈s Q .

In the proof, by slight abuse of notation, we may say that an ex-
tended process is determinate. We also cast the notion of skeleton
to extended processes by writing

skel((P,Φ)) = skel(P) =
⋃
P ∈P skel(P) ,

and to traces with

skel(A0
α1
−−→ · · ·

αn
−−→ An ) = skel(A0) · skel(A1) · . . . · skel(An ) .

That is, the skeleton of a trace is the sequence of the skeletons of
the processes of which it is composed. Thus, if

t : A0
α1
−−→ · · ·

αn
−−→ An t ′ : B0

β1
−−→ · · ·

βp
−−→ Bp

we have skel(t) = skel(t ′) i� n = p and for all i ∈ n0,no, skel(Ai ) =
skel(Bi ).

Simplifying equivalence First we simplify the problem by
forcing the application of (Par) rules in priority in traces.

Definition B.1 . If P is a plain process in  -normal form, we
write Tτ (P) the set of traces where the rule (Par) is always per-
formed in priority, i.e. where the rules (In) and (Out) are never ap-
plied to extended processes (P,Φ) such that P contains a process
with a parallel a its root (i.e. a process P such that |skel(P)| > 1).

Proposition B.1 . If P,Q are plain processes in  -normal form
such that skel(P) = skel(Q):

P vtr Q i� ∀t ∈ Tτ (P), ∃t ′ ∈ Tτ (Q), t ∼ t ′

P vs Q i� ∀t ∈ Tτ (P), ∃t2 ∈ T(P,Q), t = fst(t2) ∼ snd(t2)

Proof. The �rst point is standard. The proof of the second point
can be seen as a corollary of the compression optimisations of
equivalence by session (see Section 4.2). �

Definition B.2 . An extended process A = ({{P1, . . . , Pn }},Φ) is τ -
deterministic if there is at most one i ∈ n1,no such that Pi has a
parallel operator at its root (i.e. |skel(Pi )| > 1).

The τ -determinism will be an invariant in proofs by induction
on the length of traces. More precisely, if A,B are extended pro-
cesses we call Inv(A,B) the property stating

(i) Ai ,Bi are determinate
(ii) skel(Ai ) = skel(Bi )

(iii) Ai ∼ Bi
(iv) Ai ,Bi are τ -deterministic, and Ai contains a process with

a parallel operator at its root (i.e. a process Pi such that
|skel(Pi )| > 1) i� Bi does.

Equivalence and inclusion We prove that trace equivalence
coincides with a notion of trace inclusion strengthened with iden-
tical actions and skeleton checks.

Proposition B.2 . If P,Q are determinate plain processes in -
normal form s.t. skel(P) = skel(Q), then the following points are
equivalent
(1) P ≈tr Q

(2) ∀t ∈ Tτ (P), ∃t ′ ∈ Tτ (Q),


tr(t) = tr(t ′)
Φ(t) ∼ Φ(t ′)
skel(t) = skel(t ′)

Proof of (2)⇒ (1). Given A,B two determinate extended pro-
cesses we write φ(A,B) the property stating that

∀t ∈ Tτ (A), ∃t
′ ∈ Tτ (B),


tr(t) = tr(t ′)
Φ(t) ∼ Φ(t ′)
skel(t) = skel(t ′)

.

Note that φ(A,B) implies skel(A) = skel(B) by choosing the
empty trace. In particular, to prove (2) ⇒ (1), it su�cies to
prove that for all A,B determinate, φ(A,B) ⇒ A vtr B and
φ(A,B) ⇒ φ(B,A).

The �rst implication is immediate. As for the second, we
prove that for all extended processes A0,B0 such that φ(A0,B0)

18



and Inv(A0,B0), and all

t ′ : B0
α1
−−→ · · ·

αn
−−→ Bn ∈ Tτ (B0) ,

there exists

t : A0
α1
−−→ · · ·

αn
−−→ An ∈ Tτ (A0) ,

s.t. for all i ∈ n0,no, Inv(Ai ,Bi ). This is su�cient to conclude
as Inv(P,Q) holds for any determinate plain processes P,Q in
 -normal form s.t. skel(P) = skel(Q).

We proceed by induction on n. If n = 0 the conclusion is
immediate. Otherwise, assume by induction hypothesis that it
holds for any trace of length n − 1.
. case 1: α1 = τ .

We know that B0 does not contain private channels by deter-
minacy (Inv(A0,B0) Item (i)). Therefore, the transition B0

τ
−→ B1

is derived by the rule (Par). In particular by Inv(A0,B0) Item (iv),
there also exists a transition A0

τ
−→ A1. The conclusion can now

follow from the induction hypothesis applied to A1,B1; but to
apply it we have to prove that φ(A1,B1) and Inv(A1,B1) hold.
→ proof that φ(A1,B1).

Let s ∈ Tτ (A1). Then (A0
τ
−→ A1)·s ∈ Tτ (A0) and byφ(A0,B0)

there exists (B0
τ
−→ B′1) · s

′ ∈ Tτ (B0) such that tr(s) = tr(s ′),
Φ(t) ∼ Φ(t ′) and skel(t) = skel(t ′). But by τ -determinism of B0
we deduce that B1 = B′1, and s ′ ∈ Tτ (B1) satis�es the expected
requirements.
→ proof that Inv(A1,B1).

(i) A0 and B0 are determinate and determinacy is preserved by
transitions.

(ii) skel(A1) = skel(A0) = skel(B0) = skel(B1)
(iii) A0 ∼ B0 and the rule (Par) does not a�ect the frame.
(iv) A0 and B0 are τ -deterministic and τ -determinism is pre-

served by transitions (w.r.t. Tτ ). Besides due to the  -
normalisation, we know that neither of A1 nor B1 contain a
parall operator, hence the result.
. case 2: α1 , τ .

By de�nitionTτ (B0), we know that the rule (Par) is not appli-
cable to B0; neither to A0 by Inv(A0,B0) Item (iv), which means
that traces of Tτ (B0) may start by an application of rules (In)
or (Out). Using this and the fact that skel(A0) = skel(B0)
(Inv(A0,B0) Item (ii)), we obtain that there exists a transition
A0

α1
−−→ A1. The conclusion can now follow from the induction

hypothesis applied to A1,B1; but to apply it we have to prove
that φ(A1,B1) and Inv(A1,B1) hold.
→ proof that φ(A1,B1).

The argument is the same as its analogue in case 1, using the
determinacy of B0 instead of its τ -determinism.
→ proof that Inv(A1,B1).

(i) A0 and B0 are determinate and determinacy is preserved by
transitions.

(ii) By applying φ(A0,B0) with the trace t0 : A0
α1
−−→ A1, we ob-

tain a trace t ′0 : B0
α1
−−→ B′1 such that skel(A1) = skel(B′1). But

by determinacy of B0, the transition B0
α1
−−→ B1 is the only

transition from B0 that has label α1, hence B1 = B′1 and the
conclusion.

(iii) Identical proof as that of Item (ii) above, using the fact that
A1 ∼ B′1 instead of skel(A1) = skel(B′1).

(iv) Let us write

A0 = ({{P0}} ∪ P,Φ) A1 = ({{P1}} ∪ P,Φ
′)

B0 = ({{Q0}} ∪ Q,Ψ) B1 = ({{Q1}} ∪ Q,Ψ
′)

As we argued already at the beginning of case 2, neither P
nor Q contain processes with parallel operators at their roots.
Therefore, we only have to prove that P1 has a parallel opera-
tor at its root i� Q1 does. For cardinality reasons, this a direct
corollary of the following points:
– skel(P0) = skel(Q0) (same action α1 being executable at

topelevel),
– skel(A0) = skel(B0) (hypothesis Inv(A0,B0)), and
– skel(A1) = skel(B1) (Item (ii) proved above). �

Proof of (1)⇒ (2). The proof will follow in the steps as the other
implication (we construct the trace t ′ by induction on the length
of t while maintaining the invariant Inv).

More formally, we prove that for all extended processesA0,B0
such that A0 ≈tr B0 and Inv(A0,B0), and all

t : A0
α1
−−→ · · ·

αn
−−→ An ∈ Tτ (A0) ,

there exists

t ′ : B0
α1
−−→ · · ·

αn
−−→ Bn ∈ Tτ (B0) ,

s.t. for all i ∈ n0,no, Inv(Ai ,Bi ).
We proceed by induction on n. We proceed by induction on

n. If n = 0 the conclusion is immediate. Otherwise, assume by
induction hypothesis that it holds for any trace of length n − 1.
. case 1: α1 = τ .

Similarly to the converse implication, there exists a transi-
tion B0

τ
−→ B1 (derived by (Par)) and it su�cies to prove that

A1 ≈tr B1 and Inv(A1,B1) hold in order to apply the induction
hypothesis and conclude.
→ proof that A1 ≈tr B1.

Let s ∈ Tτ (A1). Then (A0
τ
−→ A1) · s ∈ Tτ (A0) and since

A0 ≈tr B0 there is (B0
τ
−→ B′1) · s

′ ∈ Tτ (B0) such that

(A0
τ
−→ A1) · s ∼ (B0

τ
−→ B′1) · s

′ .

But by τ -determinism of B0 we deduce that B1 = B′1, and thus
s ′ ∈ Tτ (B1) and s ∼ s ′. This justi�es that A1 vtr B1, and
a symmetric argument can be used for the converse inclusion
B1 vtr A1.
→ proof that Inv(A1,B1).

By the exact same arguments as that of the analogue case in
the converse implication.
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. case 2: α1 , τ .
Similarly to the converse implication, there exists a transition

B0
α1
−−→ B1 and it su�cies to prove thatA1 ≈tr B1 and Inv(A1,B1)

hold in order to apply the induction hypothesis and conclude.
→ proof that A1 ≈tr B1.

The argument is the same as its analogue in case 1, using the
determinacy of B0 instead of its τ -determinism.
→ proof that Inv(A1,B1).

This is the proof obligation whose arguments substantially
di�er from that of the converse implication.

(i) A0 and B0 are determinate and determinacy is preserved by
transitions.

(ii) We assume by contradiction that skel(A1) , skel(B1). By
symmetry, say that skel(A1) * skel(B1) and let s ∈ skel(A1)r
skel(B1). By de�nition of Tτ (A0), we know that the rule (Par)
is neither applicable to A0 nor B0; in particular, there exists a
transition A1

α
−→ A derived from rule (In) or (Out) (the one

corresponding to the skeleton s) such that B1 6
α
−→.

But by determinacy of B0, the transition B0
α1
−−→ B1 is the

only transition from B0 that has label α1. Thus, this yields a
contradiction withA0 ≈tr B0: more precisely the traceA0

α1
−−→

A1
α
−→ A is not matched.

(iii) By determinacy of B0, the transition t ′0 : B0
α1
−−→ B1 is the only

transition from B0 that has label α1. In particular, using the
hypothesis A0 ≈tr B0, we obtain that t ′0 ∈ Tτ (B0) is the only
trace such that

t0 : (A0
α1
−−→ A1) ∼ t ′0 .

In particular A1 ∼ B1.
(iv) Same cardinality argument as the analogue case in the con-

verse implication. �

Session matchings Proposition B.2 is the core result of the
proof. We now connect it with the equivalence by session by using
the characterisation of Appendix A.

Proposition B.3 . Let P,Q two determinate plain processes in -
normal form and two labelled traces t ∈ Tτ (A0) and t ′ ∈ Tτ (Q)
such that tr(t) = tr(t ′) and skel(t) = skel(t ′). Then there exists a
session matching for t and t ′.

Proof. We prove that for all τ -deterministic, determinate ex-
tended processes A0 and B0, and

t : A0
[α1 ]

`1
−−−−−−→ · · ·

[αn ]`n
−−−−−−→ An t ′ : B0

[α1 ]
`′1

−−−−−−→ · · ·
[αn ]`

′
n

−−−−−−→ Bn

if skel(t) = skel(t ′), then there exists a session matching for t
and t ′. We proceed by induction on n. If n = 0 the session
matching is π : ε 7→ ε . Otherwise, let us write

An−1 = ({{[ P ]
`n }} ∪ P,Φ) Bn−1 = ({{[Q ]

`′n }} ∪ Q,Ψ)

By induction hypothesis, let π be a session matching for the �rst
n − 1 transitions of t and t ′; in particular, the labels of An−1 are
in the domain of π .

. case 1: αn , τ .
In this case we write

An = ({{[ P
′ ]`n }} ∪ P,Φ′) Bn = ({{[Q

′ ]`
′
n }} ∪ Q,Ψ′)

First of all, we observe that skel(P) = skel(Q) because the
same observable action αn can be performed at the root of P
andQ . In particular, by determinacy (hypothesis), unicity of the
process with a given label (invariant of the labelling procedure),
and Item (1) of De�nition A.1, we deduce that π (`n ) = `′n .

Therefore by the hypothesis skel(An−1) = skel(Bn−1), we ob-
tain skel(P) = skel(Q). Hence skel(P ′) = skel(Q ′) by the hy-
pothesis skel(An ) = skel(Bn ). All in all, π is a session matching
for the whole traces t and t ′.
. case 2: αn = τ .

In this case we write

P = P1 | · · · | Pk An = ({{[ Pi ]
`n ·i }}ki=1 ∪ P,Φ

′)

Q = Q1 | · · · | Qk ′ Bn = ({{[Qi ]
`′n ·i }}k

′

i=1 ∪ Q,Ψ
′)

Since determinacy excludes private channels, the last transi-
tion of t and t ′ is derived from the rule (Par). By τ -determinism,
this means that P andQ are the only processes inAn−1 and Bn−1,
respectively, that contain a parallel operator at their roots. In
particular, by Item (1) of De�nition A.1, we deduce that π (`n ) =
`′n and skel(P) = skel(Q); and thus k = k ′.

Therefore, there exists a permutation σ of n1,ko such that
for all i ∈ n1,ko, skel(Pi ) = skel(Qσ (i)) (although this is not
needed for the proof, this permutation appears to be unique by
determinacy). Thus if π ′ : L → L′ is the function extending π
and such that

∀i ∈ n1,ko, π ′(` · i) = π (`) · σ (i) ,
then π ′ is a session matching for t and t ′. �

Altogether Propositions A.2 to B.3 justify the following corol-
lary (that actually appears to be stronger than Proposition 3.2).

Corollary B.4 . If P andQ are determinate plain processes in -
normal form, P ≈tr Q i� P vs Q .

C CORRECTNESS OF POR

In this section we prove the results presented in Section 4.

C.1 Permutability of independent actions

We give the proof of the core correctness argument, namely that
traces can be considered up to permutation of independent actions
(Proposition 4.3). First we prove it for traces of two actions.

Proposition C.1 . If α || β and t : A
α β
===⇒ B, then there exists

a trace u : A
βα
===⇒ B. It has the property that for all traces u2 :

A2 βα
===⇒s B2 such that fst(u2) = u, there exists t2 : A2 α β

===⇒s B2

such that fst(t2) = t .
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Proof. Since the labels of α and β are incomparable w.r.t. the
pre�x ordering by independence, the trace t needs have the form

A = (P ∪ Q ∪R,Φ)
α
−→ (P ′ ∪Q ∪R,Φ′)

β
−→s (P

′ ∪Q ′ ∪R,Φ′′)

with (P,Φ)
α
−→ (P ′,Φ′) and (Q,Φ′)

β
−→ (Q ′,Φ′′). Now we con-

struct the traceu, by a case analysis on α and β . In each case, we
omit the construction of the trace t2 that can be inferred easily.
. case 1: α and β are inputs or τ actions.

In particular Φ′′ = Φ′ = Φ and it su�cies to choose

u : (P ∪ Q ∪ R,Φ)
β
−→ (P ∪ Q ′ ∪ R,Φ)

α
−→ (P ′ ∪ Q ′ ∪ R,Φ) .

. case 2: α is an output and β is an input or a τ action.
In particular Φ′′ = Φ′ = Φ∪{ax 7→m} with ax < dom(Φ) and

ax does not appear in β . Then it su�cies to choose the trace

u : (P ∪ Q ∪ R,Φ)
β
−→ (P ∪ Q ′ ∪ R,Φ)

α
−→ (P ′ ∪ Q ′ ∪ R,Φ′) .

. case 3: α is an input or a τ action and β is an output.
Similar to case 2.
. case 4: α and β are both outputs.

Then Φ′ = Φ ∪ {ax 7→ m} and Φ′′ = Φ′ ∪ {ax′ 7→ m′} with
ax , ax′, {ax, ax′} ∩ dom(Φ) = �. Then we choose

u : (P ∪ Q ∪ R,Φ)
β
−→ (P ∪ Q ′ ∪ R,Φ ∪ {ax′ 7→m′})

α
−→ (P ′ ∪ Q ′ ∪ R,Φ′′) . �

Then Proposition 4.3 can be obtained by induction on the hy-
pothesis of π permuting independent actions of tr, using Proposi-
tion C.1. We actually prove the stronger result:

Proposition C.2 . If t : A
tr
=⇒ B and π permutes independent ac-

tions of tr, then A
π .tr
===⇒ B. This trace is unique if we take la-

bels into account, and is referred as π .t . It has the property that
for all u2 : A2 π .tr

===⇒s B2 such that fst(u2) = π .t , there exists
t2 : A2 tr

=⇒s B
2 such that fst(t2) = t .

Proof. The uniqueness of π .t is immediate, as a quick induc-
tion on the length of traces shows that any labelled trace u is
uniquely determined by the action word tr(u) (labels included).
We then construct π .t by induction on the hypothesis that π
permutes independent actions of tr(t). Let us write

t : A = A0
α1
−−→ · · ·

αn
−−→ An = B .

If π = id it su�cies to choose π .t = t . Otherwise let us write π =
π0 ◦ (i i+1)with αi || αi+1 and π0 permutes independent actions
of tr′ = αp · · ·αi−1αi+1αiαi+2 · · ·αn . By Proposition C.1, there
exists a trace

u : A0
α1
−−→ · · ·

αi−1
−−−−→ Ai−1

αi+1αi
======⇒ Ai+1

αi+2
−−−−→ · · ·

αn
−−→ An

such that for all u2 : A2 tr′
==⇒s B2 verifying fst(u2) = u, there

exists t2 : A2 tr
=⇒s B2 such that fst(t2) = t . Then since π0 per-

mutes independent actions of tr′ = tr(u), it su�cies to choose

π .t = π0.u by induction hypothesis. �

Then we can easily extend this result to ≡por.

Proposition C.3 . Let t : A
tr
=⇒ B be a trace and t ′ ≡por t . Then

writing tr(t ′) = tr′ we have t ′ : A
tr′
==⇒ B and, for all u2 : A2 tr′

==⇒ B2

such that t ′ = fst(u2) ∼ snd(u2), there exists t2 : A2 tr
=⇒ B2 such

that t = fst(t2) ∼ snd(t2).

Proof. For the sake of reference, let us writeH (t, t ′) the property
to prove. We reason by induction on the hypothesis t ≡por t ′.
. case 1: t ′ = π .t , π permutes independent actions of t .

Direct consequence of Proposition C.2.
. case 2: t ′ is recipe-equivalent to t .

Let u2 with t ′ = fst(u2) ∼ snd(u2) . By static equivence, for
any recipes ξ1, ξ2 such that

ξ1Φ(fst(u2)) =E ξ2Φ(fst(u2)) ,

we also have

ξ1Φ(snd(u2)) =E ξ2Φ(snd(u2)) .

In particular, t2 can be obtained by operating on the second com-
ponent of u2 the same recipe transformations that have been
operated to transform t ′ = fst(u2) into t .
. case 3: (transitivity) H (t, s) and H (s, t ′) for some trace s .

Let u2 with t ′ = fst(u2) ∼ snd(u2) . By hypothesis H (s, t ′)
there exists s2 such that s = fst(s2) ∼ snd(s2). Hence the result
by hypothesis H (t, s). �

And �nally we have the Proposition 4.4 that is a corollary of this
result.

Proposition 4.4 (correctness of por) . Let O∀1 ⊆ O
∀

2 be universal
optimisations. We assume that for all t ∈ O∀2, there exists text such
that t is a pre�x of text , and t ′ ∈ O∀1 such that t ′ ≡por text . Then O∀1
is a correct re�nement of O∀2.

Proof. Let≈i= vi ∩ wi the notion of equivalence induced byO∀i .
The inclusion ≈2 ⊆ ≈1 is immediate. Let us then assume P v1 Q
and prove P v2 Q . Let t ∈ T(P)∩O∀2. Without loss of generality,
we assume t maximal, i.e. that there are no transitions possi-
ble from its last process. Therefore by hypothesis, there exists
t ′ ≡por t such that t ′ ∈ O∀1. Since P v1 Q , there is u2 ∈ T(P,Q)
such that

t ′ = fst(u2) ∼ snd(u2) .

Therefore by Proposition C.3, there exists t2 ∈ T(P,Q) such that
t = fst(t2) ∼ snd(t2). �

C.2 Additional results

We provide some utility results on independent permutations of
actions. First, about composition of permutations:

Proposition C.4 . Let t be a trace, π permuting independent ac-
tions of t , and π ′ permuting independent actions of π .t . Then
π .π ′.t = (π ◦ π ′).t .
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Proof. By de�nition, if t : A
tr
=⇒ B, π .π ′.t is the unique trace of

the form A
π .π ′ .tr
======⇒ B, and (π ◦ π ′).t is the unique trace of the

form A
(π◦π ′).tr
========⇒ B. Hence the result since π .π ′.tr = (π ◦ π ′).tr

by de�nition of a group action. �

This formalises that the group-action properties of (π , tr) 7→
π .tr carry on to traces. Then, we also discuss the domain extension
of permutations. If π is a permutation of n1,no, we de�ne π+q+p
permutation of n1,n + p + qo by

π
+q
+p (x) =

{
p + π (x − p) if p < x 6 n + p
x otherwise

in particular, the following result is immediate:

Proposition C.5 (extension) . If π permutes independent actions
of v , π+ |w |

+ |u | permutes independent actions of uvw .

C.3 Decomposition into phases

In this section we prove correct the re�nement at the very basis of
our partial-order reductions, namely that all traces can be decom-
posed into phases (modulo permutation of independent actions).

Proposition 4.5 . O∀c,b is a correct re�nement of O∀all.

Proof. By Proposition 4.4, it su�cies to prove that for all traces
t that are maximal (i.e. whose last process is irreducible), there
exists π permuting independent actions of t such that π .t can be
decomposed into phases.

We prove this by induction on the length of t . If t is empty
the result is immediate: π is the identity and the phase decom-
position consists of a unique empty negative block. Otherwise
let us write

t : (A
α
−→ B) · t ′ .

Note in particular that the trace t ′ is also maximal. By induction
hypothesis, there exists π ′ permuting independent actions of t ′
such that

π ′.t ′ = b−0 · b
+
1 · b

−
1 · b

+
2 · b

−
2 · · ·b

+
n · b

−
n

where each b+i is a positive or null phase, and each b−i is a neg-
ative phase.
. case 1: α is an output or a parallel action.

Then (A
α
−→ B) · b−0 is a negative phase and it su�cies to

choose π = (π ′)+0
+1.

. case 2: α = [τ ]`1 |`2 (internal communication).
Let us write E the multiset of actions of the word tr(b−0 ). We

partition it into E = F ]G where

F = {{β ∈ E | α || β}}

G = {{[a ]` ∈ E | `1 4pref ` or `2 4pref `}}

where 4pref refers to the pre�x ordering on words. This is in-
deed a partition of E thanks to the invariant that any label ap-
pearing in t ′ is either incomparable with `1 and `2, or a su�x of

`1 or `2. For the same reason, all actions in F are independent of
all actions in G: it is therefore straightforward to construct π−0
permuting independent actions of b−0 such that

π−0 .b
−
0 : B

trF ·trG
======⇒ C trF ∈ F

? trG ∈ G
? .

Then, we let σ permuting independent actions of

s = (A
α
−→ B) · (π−0 .b

−
0 )

such that σ .s = A
trF
==⇒ B′

α
−→ B′′

trG
===⇒ C . By de�nition of F

and G, we have polar(B′) , ∞. And by the hypothesis that b−0
is a negative phase, its last process C has not a polarity of −∞

neither. ThereforeA
trF
==⇒ B′ and B′′

trG
===⇒ C are negative phases.

All in all, it su�cies to choose

π = σ
+p
+0 ◦ (π

−
0 )
+p
+1 ◦ (π

′)+0
+1 with p =

n∑
i=1
|b+i | + |b

−
i |

. case 3: α = [ c(ξ ) ]` .
Let us write

A = ({{[ c(x).P ]`}} ∪ P,Φ) B = ({{[ P ′ ]`}} ∪ P,Φ)

If the label ` does not appear in tr(t ′), then by maximality of t it
needs be that polar(P ′) = 0 and (A

α
−→ B) is therefore a positive

phase. In particular π ′.t is already decomposed into phases and
it su�cies to choose π = (π ′)+0

+1.
Otherwise assume that ` appears in tr(t ′). We write

tr−i = tr(b−i ) tr+i = tr(b+i )

We also consider the phase of t ′ in which the �rst action of P ′
is executed, i.e. the �rst phase b such that ` appears in tr(b).
Note that, thanks to the invariant that any label appearing in t ′

is either incomparable or a su�x of `, α is independent of all
actions of all phases of t ′ preceding b.
. case 3a: b = b+i is a positive or null phase.

Then we �x σ permuting independent actions of

α · tr with tr = tr−0 · tr
+
1 · tr

−
1 · · · tr

+
i−1 · tr

−
i−1

such that, writing s = (A
α
−→ B) · b−0 · b

+
1 · b

−
1 · · ·b

+
i−1 · b

−
i−1,

σ .s : A
tr
=⇒ A′

α
−→ A′′ .

If b = b+i is a null phase, A′
α
−→ A′′ is a positive phase. If b is

a positive phase, (A′
α
−→ A′′) · b is a positive phase too. In both

cases, it su�cies to choose

π = σ
+p
+0 ◦ (π

′)+0
+1 with p =

n∑
j=i
|b+j | + |b

−
j |

. case 3b: b = b−i is a negative phase.
Similarly to case 2, we �x E the multiset of actions appearing

in the word tr−i and we partition it as E = F ]G

F = {β ∈ E | α || β} G = {[a ]`
′

∈ E | ` 4pref `
′} .
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And again we let π−i permuting tr−i such that

π−i .b
−
i : R

trF
==⇒ S

trG
===⇒ T trF ∈ F

? trG ∈ G
? .

Then we let σ permuting independent actions of

α · tr · trF with tr = tr−0 · tr
+
1 · tr

−
1 · · · tr

+
i

such that, writing s = (A
α
−→ B) · b−0 · b

+
1 · b

−
1 · · ·b

+
i · (π

−
i .b
−
i ),

σ .s : A
tr
=⇒ A′

trF
==⇒ A′′

α
−→ S

trG
===⇒ T .

For the same reason as in case 2, A′
trF
==⇒ A′′ and S

trG
===⇒ T are

negative phases. It therefore su�cies to choose

π = σ
+p
+0 ◦ (π

−
i )

p
1+ |tr | ◦ (π

′)+0
+1 with p =

n∑
j=i+1

|b+j | + |b
−
j | �

C.4 Improper positive phases

In this section we prove the correctness of the optimisation O∀c+i
consisting of delaying improper blocks as much as possible in
traces, as introduced in Section 4.3. First we prove that improper
blocks are essentially independent of all blocks following them.

Proposition C.6 . Let t ∈ O∀c of the form t = b · u where u ∈ O∀c
and b is an improper block. Then there exists u ′ recipe equivalent
to u such that b is independent of all blocks of u ′.

Proof. By de�nition of improper blocks Item (2), if A
tr
=⇒ (P,Φ)

is improper then for all [ P ]L ∈ P such that P , 0, the labels
of L are pre�x-incomparable with all labels of tr. In particular
a straightforward induction shows that all actions of b are se-
quentially independent of all actions of u. Besides let us write
by de�nition

b : (P,Φ)
tr
=⇒ (Q,Φ ∪ {ax1 7→ t1, . . . , axn 7→ tn })

with ξi a recipe such that ξiΦ =E ti . We then let the substitution

σ = {ax1 7→ ξ1, . . . , axn 7→ ξn }

as well as u ′ the trace obtained by replacing in u all actions of
the form c(ξ ) by c(ξσ ). By de�nition, u is recipe equivalent to
u ′ and, since no axioms introduced in b appear in u ′, b is data
independent of all blocks of u ′. All in all, b is independent of all
blocks of u ′. �

The main argument is then a substantially-simple but tech-
nical induction delaying improper blocks one by one. For that
we prove the following auxiliary result about the preservation of
(im)properness when permuting independent blocks, since it is not
the case in general as discussed in Section 4.4.

Proposition C.7 . Let a sequence of blocks t = b1 · · ·bn and a
transposition π = (i i+1) for some i ∈ n1,n − 1o. We assume that
bi || bi+1. Then
(1) Delaying an improper block preserves improperness: if bi is im-

proper then the i+1th block of π .t is also improper.
(2) Advancing a proper block preserves properness: if bi+1 is proper

then the ith block of π .t is also proper.

(3) Swapping two improper blocks preserve improperness: if bi and
bi+1 are improper then the ith and i+1th blocks of π .t are im-
proper.

Proof. Item (1) follows from the fact that for any ground term
t , recipe ξ and frame Φ, if ξΦ =E t then ξ (Φ ∪ Φ′) =E t for
all frames Φ′ such that dom(Φ) ∩ dom(Φ′) = �. Item (2) fol-
lows from the fact that for any ground term t and frames Φ,Φ′
such that dom(Φ) ∩ dom(Φ′) = �, if t is not deducible in Φ ∪ Φ′

then it cannot be deducible in Φ neither. Let us detail more the
argument for Item (3), by writing

bi : (P0,Φ0)
tr
=⇒ (P1,Φ0 ∪ Φ1)

bi+1 : (P1,Φ0 ∪ Φ1)
tr′
==⇒ (P2,Φ0 ∪ Φ1 ∪ Φ2)

If we write b ′i ,b
′
i+1 the ith and i+1th blocks of π .t , respectively,

they have the form

b ′i : (Q0,Φ0)
tr′
==⇒ (Q1,Φ0 ∪ Φ2)

b ′i+1 : (Q1,Φ0 ∪ Φ2)
tr
=⇒ (Q2,Φ0 ∪ Φ1 ∪ Φ2) .

To show that b ′i and b ′i+1 are improper, it su�cies to verify the
Item (3) of the de�nition since the two other items immediately
follow from the fact that bi and bi+1 are improper.
. Proof that b ′i is improper.

Let t ∈ im(Φ2) and let us construct a recipe ξ such that
ξΦ0 =E t . Since bi+1 is improper there exists a recipe ξ0 such
that ξ0(Φ0 ∪ Φ1) =E t . Besides bi is also improper hence for all
ax ∈ dom(Φ1) there exists a recipe ξax such that ξaxΦ0 =E axΦ1.
It thus su�cies to choose

ξ = ξ0{ax 7→ ξax | ax ∈ dom(Φ1)} .

. Proof that b ′i+1 is improper.

If t ∈ im(Φ2), since bi is improper there exists a recipe ξ such
that ξΦ0 =E t . In particular ξ (Φ0 ∪ Φ1) =E tΦ1 =E t . �

Proposition 4.9 . For all t ∈ O∀c, there exists t ′ ≡b-por t such that
t ′ ∈ O∀c+i and t ′ has the same number of improper blocks t .

Proof. Let us decompose t in blocks as t : b−0 · b1 · · ·bn . We say
that i ∈ n1,n − 1o is a pending index in t when bi is an improper
block and there exists j > i such that bj is a proper block. We
prove the proposition by induction on the number of pending
indexes.

If there are no pending indexes then t ∈ O∀c+i by de�nition.
Otherwise let p be the minimal pending index in t . By Proposi-
tion C.6 there existsv ′ recipe equivalent to bp+1 · · ·bn such that
b is independent of all blocks of v ′. Thus the permutation

π = (n n−1) ◦ (n−1 n−2) ◦ · · · ◦ (p+2 p+1) ◦ (p+1 p)

permutes independent blocks of s = b1 · · ·bp · v ′. Let us prove
that π .s has less pending indexes than t , and as many improper
blocks as t . Once this is established this will conclude the proof:
this makes it possible apply the induction hypothesis to π .s ,
thus obtaining t ′ ≡b-por π .s such that t ′ ∈ O∀c+i and t ′ has as
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many improper blocks as π .s . In particular t ′ ≡b-por π .s ≡b-por
s ≡b-por t hence the desired conclusion.

Let us thus compare the number of pending indexes and im-
proper blocks of t and π .s . First of all, (im)properness is pre-
served under recipe equivalence, and t therefore has as many
pending indexes and improper blocks as s . Let us decompose s
and π .s in blocks as

s = b−0 · b
s
1 · · ·b

s
n π .s = b−0 · b

π .s
1 · · ·bπ .sn

We then let i ∈ n1,no.
. case 1: i < p. Let us prove that bi and bπ .si are proper (in
particular i is not a pending index in π .s).

This follows from the fact that bπ .si = bi and bi is proper
(otherwise p would not be the minimal pending index in t ).
. case 2: i = n. Let us prove that bπ .sn is an improper block.

Since bsp = bp is improper by hypothesis, n − p applications
of Proposition C.7 Item (1) show that the bπ .sp is improper.
. case 3: p 6 i < n. Let us prove that bπ .si is improper i� bsi+1 is
improper.

Let us write, if u ∈ O∀c, bui the ith block of u. If a 6 b we also
de�ne the permutation

πa→b = (b b−1) ◦ (b−1 b−2) ◦ · · · ◦ (a+2 a+1) ◦ (a+1 a)

with πa→a = id by convention. As a preliminary result we prove
by induction on i that bπp→i .si is improper: if i = p we have
b
πp→p .s
p = bp which is improper, and if i > p we know that
b
πp→i−1 .s
i is improper by induction hypothesis, hence the result

since πp→i = (i i −1) ◦ πp→i−1 and by using Proposition C.7
Item (1).

We now prove the actual property, i.e. that bπ .si is improper
i� bsi+1 is improper. Using the preliminary result above we
know that bπp→i .si is improper. In particular, using Proposi-
tion C.7 Items (2) and (3), we obtain thatbπp→i+1i .s is improper i�
b
πp→i .s
i+1 = bsi+1 is improper. The conclusion eventually follows

from the fact that bπ .si = b
πp→n .s
i = b

πp→i+1 .s
i .

. Conclusion: π .s contains less pending indexes than s , and the
same number of improper blocks.

The fact that π .s and s have the same number of improper
blocks follows from the fact that the bijectionφ : n1,no→ n1,no
de�ned by

φ(i) = i if i < p φ(i) = n if i = p
φ(i) = i + 1 if p 6 i < n φ(i) = p if i = n

veri�es bπ .si is improper i� bsφ(i) is improper, by the cases 1,2,3.
Let us then show that π .s has less pending indexes than s . For

that, by case 1, it su�cies to prove thatbπ .sp · · ·bπ .sn contains less
pending indexes than bsp · · ·b

s
n . Let p 6 i < n such that bπ .si is

improper. By case 3, there exists j ∈ ni + 1,n − 1o such that bπ .sj
is proper i� there exists j ′ ∈ ni + 2,no such that bsj′ is proper,
that is, i� i + 1 is a pending index in s . By case 2 this means that

i < n is a pending index in π .s i� i + 1 is a pending index in
s . Therefore there are as many pending indexes in bπ .sp · · ·bπ .sn
as in bsp+1 · · ·b

s
n , i.e. less than in bsp · · ·b

s
n since p is a pending

index in s by hypothesis. �

The correctness of the optimisation (Corollary 4.10) then simply
follows from this proposition and Corollary 4.8.

C.5 High-priority null phases

In this section we prove the correctness of the optimisation based
on executing high-priority internal communications in priority in
traces as formalised in Section 4.5. First we state and prove the
main technical property of high-priority transitions that makes it
correct to execute them as soon as they are available:

Proposition C.8 . Letd ∈ Chpriv a high-priority channel inA, and
a transition A

α
−→ B that is not an internal communication on d .

Then d is high-priority in B.

Proof. We use the de�nition and thus let a trace of the form

B
tr
=⇒ C no labels of LB (d) appear in tr,

and show that LB (d) = LC (d). By hypothesis the label of α
does not belong to LA(d) and therefore, since d is high-priority
in A and LA(d) = LB (d) by de�nition, we obtain the expected
conclusion by considering the trace A

α
−→ B

tr
=⇒ C . �

Using this result we can prove that whenever a channel is high-
priority at some point A in a maximal trace, there needs be a later
transition that executes an internal communication on this chan-
nel that was already available in A.

Proposition C.9 . Let t ∈ O∀c ∩ T(A) and d ∈ Chpriv that is high-
priority in A. We also assume that t is maximal, i.e. that no transi-
tions are possible at the end of t . Then t can be decomposed into
t = b−0 ·u ·b ·v for some negative phase b−0 and u,v ∈ O∀c such that

b is a block starting with an internal communication on d with
action [τ ]` |`

′

with {`, `′} ⊆ LA(d)
the block b is independent of all blocks of u.

Proof. We decompose t in phases as follows t : b−0 ·b1 · · ·bn .We
proceed by induction on n the number of blocks of t . Since d is
high-priority inA, an internal communication ond is possible in
A by de�nition. In particular since t is maximal, we know that
b1 cannot be the empty trace. Let us therefore perform a case
analysis on the �rst transition of b1.
. case 1: t starts with an internal communication on d .

Then it su�cies to choose u = ε , b = b1 and v = b2 · · ·bn .
. case 2: t starts with a transition that is either a public input

or an internal communication on a channel e , d .
Let us write t0 = (b−0 · b1) : A1

α1
−−→ · · ·

αn
−−→ An . By applying

Proposition C.8 to each transition of t0, we know that d is also
high-priority in each Ai , in particular in An . We can therefore
apply the induction hypothesis to b2 · · ·bn . By doing so we get
i ∈ n2,no such that
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(1) bi starts with an internal communication on d with action
[τ ]` |`

′

with {`, `′} ⊆ LAn (d). Hence {`, `′} ⊆ LA(d) since
LAn (d) = LA(d) because d is high-priority in A1 = A. This
implies, since b1 contains no internal communications on d
by hypothesis, that the �rst transition of bi is sequentially
independent—and therefore independent—of all actions of
b1. In particular b1 || bi .

(2) for all j ∈ n2, i − 1o, bj || bi .
Altogether it su�cies to choose u = b1 · · ·bi−1, b = bi and v =
bi+1 · · ·bn . �

Proposition 4.14 . Let t = u · v a maximal trace, where u,v ∈ O∀c
and v does not contain any high-priority transitions. Then there
exists π permuting independent blocks of u such that π .u ∈ O∀0.

Proof. We decompose u and v in blocks

u = b−0 · b1 · · ·bn v = bn+1 · · ·bm

with bi : Ai
tri
==⇒ Ai+1. First of all we observe that for all i > n,

there are no high-priority channels in Ai . Indeed using Propo-
sition C.8, a quick induction on the length of s shows that for all
maximal traces s : A

tr
=⇒ B such that there exists a high-priority

channel in A, there exists a high-priority transition in s . In the
context of our proposition, this would contradict the hypothesis
that v does not contain any high-priority transitions. We then
prove the property by induction on the number of processes Ai ,
i ∈ n1,no, such that there is a high-priority channel in Ai .

If there is no such process then it su�cies to choose π = id.
Otherwise let p ∈ n1,no be the minimal index such that there
exists a high-priority channel in Ap , and d ∈ Chpriv the minimal
such channel w.r.t. 4Ch. By Proposition C.9 there exists q ∈
np,mo such that bq starts with an internal communication on d
and for all p 6 r < q, br || bq . If we consider the minimal such
index q, we know by Proposition C.8 that d is high-priority in
Aq and in particular q 6 n by the preliminary remark. Let us
thus assume so. Therefore the permutation

π0 = (p p+1) ◦ (p+1 p+2) ◦ · · · ◦ (q−2 q−1) ◦ (q−1 q)

permutes independent blocks ofu and thepth block of π0.u starts
with a high-priority transition. We write up the trace composed
of the �rst p blocks of π0.u. We have up ∈ O∀0: no high-priority
transitions are possible in the �rst p−1 blocks ofup by minimal-
ity of p, and the pth block starts with a high-priority transition.

We then let un−p the remaining n − p blocks of π0.u, i.e. the
trace such that π0.u = b−0 · up · un−p . We then apply the induc-
tion hypothesis to un−p · v (which is indeed a maximal trace)
which gives π1 permuting independent blocks ofun−p such that
π1.un−p ∈ O∀0. It therefore su�cies to choose π = π1+0

+p ◦ π0
(notation of the extension lemma, Proposition C.5). �

Corollary 4.15 . O∀c+i∗+0 is a correct re�nement of O∀c+i∗ .

Proof. We use the characterisation of Corollary 4.8. Let t ∈
O∀c+i∗ and text an arbitrary maximal extension of t (obtained by
executing transitions after t as long as it is possible). By Proposi-

tions 4.9 and 4.12 there exists ti∗ ≡b-por text such that ti∗ ∈ O∀c+i∗ .
Let us decompose ti∗ as

ti∗ = b
−
0 · u · v

whereb−0 is a negative phase,u ∈ O∀c only contains proper blocks
and v ∈ O∀c only contains improper blocks. Note that ti∗ is max-
imal since ti∗ ≡b-por text and text is maximal. Recall also that
improper blocks never contain high-priority transitions by def-
inition. There we can apply Proposition 4.14 to obtain π per-
muting independent actions of u such that π .u ∈ O∀0. Hence
b−0 · π .u · v ∈ O

∀

c+i∗+0, keeping in mind Proposition 4.11. �

C.6 Reduction of independent blocks

Now we prove the correctness of the optimisationO∀por introduced
in Section 4.6. We recall that we assume an ordering 4 on words
of actions such that two words of independent actions are always
strictly comparable. In particular we can rephrase more simply the
de�nition of the fact that a block cannot follow an other one:

Proposition C.10 . Let two blocks b || b ′. If b cannot follow b ′

then tr(b) ≺ tr(b ′), and if b ′ starts with a high-priority transition
then b too and on the same private channel.

Proof. By de�nition if the block b cannot follow the block b ′

then (1) ¬(tr(b ′) ≺ tr(b)); and (2) if b ′ starts with a high-pri-
ority transition then b too; and (3) b and b ′ do not start with
a high-priority transition on di�erent channels. Hence the re-
sult, keeping in mind the assumption on 4 that b || b ′ implies
tr(b) ≺ tr(b ′) or tr(b ′) ≺ tr(b). �

We write 4lex the lexicographic extension of 4 to traces of same
number of blocks, i.e. if t = b1 · · ·bn and t ′ = b ′1 · · ·b

′
n ,

t 4lex t ′ i� tr(b1) ≺ tr(b ′1) or
{

tr(b1) 4 tr(b ′1)
b2 · · ·bn 4lex b

′
2 · · ·b

′
n

By convention, two traces with a di�erent number of blocks are
incomparable w.r.t. 4lex . The core argument to prove the correct-
ness of the optimisation is that O∀r contains minimal traces among
those obtainable by permutation of independent actions:

Proposition C.11 . Let u = (b−0 · b1 · · ·bn ) ∈ O∀0 and i ∈ n2,no
such that ¬Minimal(b1 · · ·bi−1,bi ). We assume i minimal among
indexes with this property and write π = (i−1 i). Then π permutes
independent actions of u, π .u ≺lex u and p ∈ O∀0 where p consists
of the �rst i − 1 blocks of π .u.

Proof. By de�nition of the predicate Minimal, bi−1 || bi , tr(bi ) ≺
tr(bi−1) and bi cannot follow bi−1. Note that the eventual-
ity ¬Minimal(b1 · · ·bi−2,bi−1) has been excluded by minimal-
ity of i . In particular π permutes independent blocks of u and
π .u ≺lex u. Thus let b ′j the jth block of π .u, j ∈ n1, i − 1o and
let us show that it starts with a high-priority transition if one is
available. If j < i−1 then π (j) = j, henceb ′j = bj . The conclusion
thus follows from the assumption u ∈ O∀0. Otherwise j = i − 1
and we write A such that bi−1 ∈ T(A). We recall that bi cannot
follow bi−1; therefore by Proposition C.10 we are in one of the
following cases.
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. case 1: bi−1 does not start with a high-priority transition
In particular the assumption that u ∈ O∀0 ensures that no

high-priority transitions are possible from A which appears to
be the initial process of the block b ′j , hence the conclusion.
. case 2: bi−1 and bi start with a high-priority internal commu-

nication on a channel d
In particular since u ∈ O∀0, d is the minimal high-priority

channel among those available in A, and the block b ′j (which
takes the same transitions as bi ) starts with a high-priority. �

Corollary C.12 . Let t ∈ O∀c a maximal trace of the form t = u ·v
where u ∈ O∀0 rO

∀
r , andv ∈ O∀c does not contain any high-priority

transitions. Then there exists π permuting independent actions of
u such that π .u ≺lex u and π .u ∈ O∀0.

Proof. Consider the block decomposition u = b−0 · b1 · · ·bn . By
hypothesis u ∈ O∀0 r O

∀
r and we can therefore �x i ∈ n2,no the

minimal index such that ¬Minimal(b1 · · ·bi−1,bi ). By Propo-
sition C.11, π = (i − 1 i) permutes independent blocks of u,
π .u ≺lex u and the �rst i − 1 blocks of π .u form a trace of O∀0.

Besides let s consisting of the last n − i + 1 blocks of π .u.
By hypothesis s · v is maximal and v does not contain high-
priority transitions: in particular by Proposition 4.14 there exists
σ permuting independent blocks of s such that σ .s ∈ O∀0. Then
we de�ne, using the notations of the extension lemma (Propo-
sition C.5), τ = σ+0

+i−1 ◦ π . It permutes independent blocks of u,
τ .u ≺lex u and τ .u ∈ O∀0. �

Proposition C.13 . Let t ∈ O∀c a maximal trace of the form t = u ·v
where u ∈ O∀0, and v ∈ O∀c does not contain any high-priority
transitions. Then there exists π permuting independent blocks of
u such that π .u ∈ O∀0 ∩ O

∀
r . Besides π .u ≺lex u if u < O∀r .

Proof. Let us consider the set of traces

U = O∀0 ∩ {π .u | π permutes independent blocks of t} .

The set U is �nite (its size is bounded by |u |!). In particular the
ordering 4lex is well-founded on U , i.e. there exist no in�nite
decreasing sequences of elements of U w.r.t ≺lex . Let us thus
show by well-founded induction on u ′ that for all traces of the
formu ′ ·v , u ′ ∈ U , there exists π permuting independent blocks
ofu ′ such that π .u ′ ∈ O∀r . Ifu ′ ∈ O∀r it su�cies to choose π = id.
Otherwise by Corollary C.12 there exists π0 permuting indepen-
dent blocks of u ′ such that π0.u ′ ≺lex u ′ and π0.u ′ ∈ U . Hence
the result by induction hypothesis applied to π0.u ′. �

We can eventually prove the correctness of O∀por. It essentially
relies on the characterisation of correctness provided by Corol-
lary 4.8, applying two times Proposition C.13. The decreasing ar-
gument w.r.t. the lexicographic extension of 4 is a simple con-
sequence of the fact that the proof is performed by well founded
induction w.r.t. this ordering.

Proposition 4.16 . For all maximal traces t ∈ O∀c+i∗+0, there exists
π permuting independent blocks of t such that π .t ∈ O∀por. Besides
π .t ≺lex t if t < O∀por, with 4lex the lexicographic extension of 4.

Proof. Let us decompose such a trace t into t : b− · tp · ti where
b− is a negative phase, tp ∈ O∀0 only contains proper blocks
and ti ∈ O

∀
c only contains improper blocks. Besides, by maxi-

mality of ti , no high-priority channels appear in any extended
process of ti (otherwise a block of ti would start with an inter-
nal communication by Proposition C.9, impossible for improper
blocks). Therefore ti ∈ O∀0. We can thus apply Proposition C.13
with u = ti and v = ε and we obtain πi permuting independent
blocks of ti such that πi .ti ∈ O∀0 ∩ O

∀
r and πt .ti 4lex ti .

We observe that πi .ti is also maximal and does not con-
tain any high-priority transitions. By applying Proposition C.13
again, but with u = tp and v = πi .ti , we obtain πp permut-
ing independent blocks of tp such that πp .tp ∈ O∀0 ∩ O

∀
r and

πt .tp 4lex tp . In particular, using the notations of the extension
lemma (Proposition C.5),

π = πp
+ |ti |
+0 ◦ πi

+0
+ |tp |

permutes independent actions of t and

π .t = b−0 · πp .tp · πi .ti .

There are only improper blocks in πi .ti by Proposition C.7
Item (3), and therefore π .t ∈ O∀c+i∗ by Proposition 4.11. All in
all, π .t ∈ O∀por and π .t 4lex t . �

Corollary 4.17 . O∀por is a correct re�nement of O∀c+i∗+0.

Proof. Let t ∈ O∀c+i∗+0 and text an arbitrary, maximal extension
of t obtained by executing as many transitions of t as possible.
By Propositions 4.9, 4.12 and 4.14 there exists t̄ ≡b-por text such
that t̄ ∈ O∀c+i∗+0. Then by Proposition 4.16 there existsu ≡b-por t̄
such that u ∈ O∀por. Hence the conclusion by Corollary 4.8. �

D CORRECTNESS OF SYMMETRIES

In this section we prove the correctness of the optimisations pre-
sented in Section 5, i.e. the reduction by symmetries.

D.1 Preliminary notations and results

First of all we introduce some notions that will be at the core of
most proofs of correctness of our reductions by symmetry. Intu-
itively when there is a symmetry between two processes Pa and
Pb , we relabel them (that is, we swap their labels) and the result-
ing process is structurally equivalent to the initial one. Then we
use the fact that structurally equivalent processes produce almost
identical traces, meaning that their can be matched equivalently.
We formalise these two notions in the following paragraphs.

Relabelling We �rst de�ne an action of the group of label per-
mutations. It acts on extended (twin) processes, actions and traces
by relabelling. Formally if π is a permutation of labels, we write

Aπ A2π απ tπ t2π

respectively the extended process A, extended twin process A2, la-
belled action α , trace t and extended twin trace t2 where each label
` · `′ has been replaced by π (`) · `′. For this transformation to be
well de�ned, we always consider that π is consistent (w.r.t. the ob-
ject it is applied to) which means that
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(1) the set supp(π ) = {` | π (`) , `} only contains pairwise in-
comparable labels w.r.t. the pre�x ordering

(2) if applied to A = ({{[ P1 ]`1 , . . . , [ Pn ]
`n }},Φ) then for all ` ∈

supp(π ), there exists i ∈ n1,no such that ` is a pre�x of `i
(3) if applied to t ∈ T(A)withA = ({{[ P1 ]`1 , . . . , [ Pn ]

`n }},Φ) then
π is consistent w.r.t. A

(4) if applied to an extended twin process or an extended twin
trace, π is consistent w.r.t. its �rst projection.

We recall that extended twin processes are only labelled on their
�rst projection. This operation has a lot of trivial but important
properties that we will use implicitly in incoming proofs:

Proposition D.1 . With the notations above:
(1) fst(t2π ) = fst(t2)π and snd(t2π ) = snd(t2)
(2) Hence: t = fst(t2) ∼ snd(t2) i� tπ = fst(t2π ) ∼ snd(t2π )
(3) if σ ∈ Sn and π is the permutation such that π (`i ) = `σ (i),

Aπ = σ−1.A.
(4) ifX is any of the objects above,X id = X andXππ ′ = X (π ′◦π ).
(5) if π is consistent w.r.t. A, A

α
−→ B then π is consistent w.r.t. B.

Structural equivalence Then we list several core properties as-
sociated to structural equivalence. The �rst one is the trivial ob-
servation that it is preserved by the action of permutations:

Proposition D.2 . If A ≡ B consist of n parallel subprocesses and
π ∈ Sn , π .A ≡ π .B.

An important corollary is that the function (π ,A) 7→ π .A is a
group action on the set of extended processes quotiented by ≡. In
particular its stabilisers are permutation groups:

Corollary D.3 . For all extended processes A consisting of n pro-
cesses, Stab(A) is a subgroup of Sn .

An other property is that structural equivalence preserves static
equivalence and skeletons. This is simply because static equiva-
lence is preserved by bijective renaming of private names.

Proposition D.4 . If A ≡ B then A ∼ B, and if P ≡E Q then
skel(P

 

) = skel(Q
 

).

The goal of our reductions by symmetry is to identify subpro-
cesses that will behave identically, so that the execution of one is
prioritised over the others; we formalise this by a notion that iden-
ti�es traces that are identical up to their labels and public channels.
Formally we writeX 'Ch Y whenX and Y are two identical objets
up to renaming of public channels, i.e. X = Yϱ for ϱ permutation of
Chpub; then we say that two tracesu,v are almost identical, written
u � v , when there exists a session matching σ for u and v (notion
introduced in Appendix A) and ϱ an α-renaming such that

u : A0
[a1 ]

`1
−−−−−−→ · · ·

[an ]`n
−−−−−−→ An

v : (B0
[b1 ]

`1σ

−−−−−−−→ · · ·
[bn ]`nσ
−−−−−−−→ Bn )ϱ

where for all i , ai 'Ch bi and Ai ,Bi are of the form

Ai = ({{[ P1 ]
`′1 , . . . , [ Pm ]

`′m }},Φ)

Bi 'Ch ({{[Q1 ]
`′1σ , . . . , [Qm ]

`′mσ }},Φ′)

with Pj ≡E Q j for all j and Φ =E Φ′. We sometimes make the
session matching explicit by writing u

σ
� v . Almost identity is an

equivalence relation on traces, which is mostly justi�ed by Propo-
sition A.3. We now identify some transformations that produce
almost identical traces and we give the core property that we ex-
pect such traces to verify.

Proposition D.5 . If π is consistent w.r.t. t then t
π
� tπ .

The proof of this proposition is straightforward (≡E and 'Ch
can be replaced by syntactic equalities). An other property is:

Proposition D.6 . If u
π
� v and ϱ is a permutation of Chpub then

u
π
� vϱ. Besides ifu andv have the same initial extended process B,

π |L = id for L the set of labels of B, and t : A
tr
=⇒ B, then t ·u

π̄
� t ·v

where π̄ is the extension of π that coincides with π on dom(π ) and
is the identity on the labels of t .

But the most important property is that structurally equivalent
processes have almost identical traces (again with the identity re-
naming of channels).

Proposition D.7 . Let A0,B0 two extended processes such that
A0 ≡ B0, and L the set of labels appearing in A0 and B0 (which
is the same). Then for all traces u ∈ T(A0), there exists v ∈ T(B0)

such that u
π
� v with π |L = id and u ∼ v .

Proof. Intuitively the trace v is constructed by mirroring all
transitions ofu in B0. The technical part is that structural equiv-
alence includes associative-commutative reordering of parallel
operators, making the labels of u and v di�erent after the �rst

transition. Let us write u : A0
[a1 ]

`u1
−−−−−−→ · · ·

[an ]`
u
n

−−−−−−→ An and

A0 = ({{[ P1 ]
`0

1 , . . . , [ Pm ]
`0
m }},Φ)

B0 = ({{[Q1 ]
`0

1 , . . . , [Qm ]
`0
m }},Φ)ϱ

for some α-renaming ϱ and Pi ≡E Qi for all i . We show by
induction on n that there exists a trace

v : B0
[a1 ]

`u1 π

−−−−−−−→ · · ·
[an ]`

u
n π

−−−−−−−−→ Bn

for some session matching π for u and v such that π |L = id, and
Ai ,Bi are of the form

Ai = ({{[R1 ]
`1 , . . . , [Rm ]

`m }},Φi )

Bi = ({{[ S1 ]
`1 , . . . , [ Sm ]

`m }},Φ′i )ϱ

with Rj ≡E Sj for all j and Φi =E Φ′i .
For n = 0 it su�cies to choose v the empty trace and π = id.

For n > 0 we write u = u0 ·u ′ with u0 : A0
α
−→ A1 and perform a

case analysis on the rule from which the transitionu0 is derived.
Below we write L(A) the set of labels appearing in a process A.
. case 1: rules (In), (Out) or (Comm)

We write v0 : B0
α
−→ B1, the transition obtained by perform-

ing the same action as u0 in B0 at the same label. In particular
we apply the induction hypothesis tou ′ fromA1,B1, which gives
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v ′ ∈ T(B1) and π a session matching for u ′ and v ′. Then π is
also a session matching for t and s and π |L(A0) = π |L(A1) = id
and it su�cies to choose v = v0 · v ′.
. case 2: rule (Par)

Let us use the following notations

u0 : A0 = ({{[
∏p

i=1 Pi ]
`}} ∪ {{[ Pi ]

`i }}
q
i=p+1,Φ)

τ
−→ ({{[ Pi ]

` ·i }}
p
i=1 ∪ {{[ Pi ]

`i }}
q
i=p+1,Φ)

B0 = ({{[Q ]
`}} ∪ {{[Qi ]

`i }}
q
i=p+1,Φ)ϱ

with
∏p

i=1 Pi ≡E Q and for all i ∈ np + 1,no, Pi ≡E Qi . By
Proposition D.4 and since Q is in -normal form by de�nition,
we have Q =

∏p
i=1 Qi where, for some permutation σ ∈ Sp ,

Qi ≡E Pσ (i) for all i ∈ n1,po. In particular by applying rule
(Par) in B0 at label ` we obtain a transition v0 : B0

τ
−→ B1

such that we can apply the induction hypothesis from A1,B1π0,
where π0 is the label permutation de�ned by π0(` · i) = ` · σ (i)
and supp(π0) ⊆ {` · 1, . . . , ` · p}. Note that B1π0 is well de�ned
since π0 is consistent w.r.t. B1. Let us thus apply the induction
hypothesis to the processesA1,B1π0 and the traceu ′. We obtain
a tracev ′ ∈ T(B1π0) and a session matching π ′ foru ′ andv ′. To
conclude it su�cies to choose v = v0 · v ′π−1

0 and π de�ned by

π (`) = `

π (` · i · `′) = π−1
0 (` · i) · `

′′ where π ′(` · i · `′) = ` · i · `′′

π (`′) = π ′(`′) if ` not a pre�x of `′

π is well de�ned and a session matching for u and v because π ′
is a session matching for u ′ and v ′ such that π ′

|L(A1)
= id. �

Finally, almost identical traces preserve POR properties. Indeed
if u

σ
� v , a permutation π permutes independent blocks of u i�

it permutes independent blocks of v and, in this case, π .u
σ
� π .v .

In addition, since the frames of almost identical traces are equal
modulo theory and renaming of private names, a block is proper
i� an almost identical block is. All in all:

Proposition D.8 . If u � v then u ∈ O∀c+i∗ i� v ∈ O∀c+i∗ .

D.2 Universal symmetries

D.2.1 Permutation groups
Let us �rst prove that the sets Sym1 and Sym2 (notation of Sec-
tion 5.3.1) are subgroups of Sn . For that we recall the following
classical characterisation of �nite subgroups:

Proposition D.9 . LetG be a group and S a non-empty, �nite sub-
set ofG that is closed under composition w.r.t. the group law ofG.
Then S is a subgroup of G.

Proof. It su�cies to prove E is closed by inverse. Since E is
closed under composition, if x ∈ E then xn ∈ E for all n > 1.
Besides E is also �nite, hence there exists i > j such that x i = x j .
In particular by multiplying by x−j (the inverse of x j in G), we
obtain that x i−j−1 is the inverse of x in E. �

In the next two theorems we �x the notations of Section 5.3.1
Sym1 and Sym2 depend of. We therefore consider a trace t ∈ T(P)
whose �nal process A consists of n processes.

Proposition D.10 . Sym1 is a subgroup of Sn .

Proof. Since Stab(A) is a group, it su�cies to prove SymQ
1 is

a subgroup of Sn . We recall that it is the set of permutations
π ∈ Sn such that for all traces t2 : (P,Q)

tr
=⇒ A2 such that

t = fst(t2) ∼ snd(t2), there exists a trace s2 : (P,Q)
tr
=⇒ π .A2

such that t = fst(s2). This set contains the identity (it su�cies
to choose s2 = t2). Therefore by Proposition D.9 it su�cies to
prove that SymQ

1 is closed by composition.

Let π ,σ ∈ SymQ
1 . In particular there is s2 : (P,Q)

tr
=⇒ π .A2

such that t = fst(s2). Since s2 has the same �nal frames as t2, we
also have fst(s2) ∼ snd(s2). Therefore since π ′ ∈ SymQ

1 , there

exists u2 : (P,Q)
tr
=⇒ σ .π .A2 = (σ ◦ π ).A2 such that fst(u2) = t ,

hence π ◦ σ ∈ SymQ
1 . �

Proposition D.11 . Sym2 is a subgroup of Sn .

Proof. Rephrasing the de�nition, π ∈ Sym2 i� there exists ϱ
permutation of Chpub such that π .A ≡ Aϱ and, for all twin

traces t2 : (P,Q)
tr
=⇒ A2 such that t = fst(t2) ∼ snd(t2), we

have π .snd(A2) ≡ snd(A2)ϱ. Similarly to Sym1, it su�cies to
prove that Sym2 is closed by composition to conclude by Propo-
sition D.9, since id ∈ Sym2. Thus let π , π ′ ∈ Sym2 and ϱ, ϱ ′

permutations of Chpub such that
(1) π .A ≡ Aϱ and π ′.A ≡ A′ϱ ′

(2) for all twin traces t2 : (P,Q)
tr
=⇒ A2 such that t = fst(t2) ∼

snd(t2), π .snd(A2) ≡ snd(A2)ϱ and π ′.snd(A2) ≡ snd(A2)ϱ ′.
We prove that π ◦ π ′ ∈ Sym2. First of all

(π ◦ π ′).A ≡ π .(Aϱ ′) = (π .A)ϱ ′ ≡ Aϱϱ ′ .

Then let t2 : (P,Q)
tr
=⇒ A2 such that t = fst(t2) ∼ snd(t2).

With the same reasoning as above we obtain (π ◦ π ′).snd(A2) ≡
snd(A2)ϱϱ ′, hence the conclusion. �

D.2.2 Correctness of the reduction by symmetry
First of all we prove that the optimisation consisting of discard-
ing transitions based on the analysis of Sym. At �rst we only
study the re�nement of O∀c+i∗ and tackle later the question of the
compatibility with high-priority transitions and with the lexico-
graphic reduction. We use again the notations of Section 5.3.1 and,
if π ∈ Sym and L = {`i }

n
i=1, we let π̄ the label permutation de�ned

by supp(π̄ ) ⊆ L and π̄ (`i ) = `π (i).

Proposition D.12 . Let π ∈ Sym. We also let a trace u ∈ O∀c+i∗ of
the form

u = t · (A
[a ]`
−−−−→ B) · v

We assume that for all traces u ′ � u of the form

u ′ = t · (A
[a′ ]`π̄
−−−−−−→ B′) · v ′ (?)
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there exists s ∈ T(Q)withu ′ ∼ s and a session matching foru ′ and
s . Then there exists s ∈ T(Q) with u ∼ s and a session matching
for u and s .

Proof. We decompose the proof in three parts, isolating the
characterisation based on Sym1, the one based on Sym2, and
how to compose the two.

Part 1: Proof in the case π ∈ Sym1. Let u ∈ T(P) a trace with the
same notations as the statement of the theorem. We write

u0 : A
[a ]`
−−−−→ B

The permutation π̄ is consistent w.r.t. A and the trace (u0 · v)π̄
is therefore well de�ned, and of the form

(u0 · v)π̄ : (π−1.A
[a ]`π̄
−−−−−→ B) · vπ̄

But π ∈ Sym1 and in particular π ∈ Stab(A). Since Stab(A) is
a group we deduce, by de�nition, that π−1.A ≡ A. Hence by
Proposition D.7 there exists w ∈ T(A) such that w ∼ u0 · v and
(u0 ·v)π̄

σ
� w for some σ such that σ |L = id. In particularu � t ·w

by Proposition D.6 and t ·w is therefore of the form (?). Hence
by hypothesis there exists s ′ ∈ T(Q) such that s ′ ∼ t · w and
σ ′ a session matching for t · w and s ′. We also let σ ′t and σ ′w
the restrictions of σ ′ to the labels of t and w , respectively. If we
decompose s ′ = s ′t · s

′
w with |s ′t | = |t | then σ ′t (resp. σ ′w ) is a

session matching for t and s ′t (resp. w and s ′w ). In particular,
σ ′w ◦ σ is a session matching for (u0 · v)π̄ and s ′w . Thus ϕ =
σw ◦ σ ◦ π̄ is a session matching for u0 · v and s ′w .

Besides by hypothesis π−1 ∈ SymQ
1 because Sym1 is a group;

in terms of session matchings this assumption can be rephrased
as follows:

for all z : Q
tr
=⇒ Z and ω session matching for t and z, there

exists z′ : Q
tr
=⇒ Z and ω ′ session matching for t and z′ such

that ω ′
|L(Z ) = ω |L(Z ) ◦ π̄ , where L(Z ) is the set of labels of Z .

In particular for z = s ′t and ω = σ ′t we obtain s ′′t ∈ T(Q) and σ ′′t
session matching for t and s ′′t such that for all i ∈ n1,no,

σ ′′t (`i ) = σ
′
t (`π (i))

= σ ′w (`π (i)) (because σ ′t and σ ′w coincide on L)

= ϕ(`i ) (because σ |L = id)

This justi�es that the following mappingψ of domain dom(σ ′′t )∪
dom(ϕ) is well de�ned

ψ |dom(σ ′′t ) = σ
′′
t ψ |dom(ϕ) = ϕ

All in all it su�cies to choose s = s ′′t · s
′
w since ψ is a session

matching for u and s , and s ∼ u because

tr(s) = tr(s ′t ) · tr(w) = tr(t) · tr(u0 · v) = tr(u) �

Part 2: Proof in the case π ∈ Sym2. We use the same initial no-
tations for u and u0 as in the previous Part, with in particular

(u0 · v)π̄ : (π−1.A
[a ]`π̄
−−−−−→ B) · vπ̄

But by hypothesis π ∈ Sym2, or equivalently π−1 ∈ Sym2 since

Sym2 is a group. Therefore there exists ϱ permutation of Chpub
such that π−1.A ≡ Aϱ. Hence by Proposition D.7 there exists
w ∈ T(Aϱ) such thatw ∼ u0 ·v and u0 ·v

σa
� w for some σa such

that σa |L = id. In particular u � t · wϱ−1 by Proposition D.6
and t · wϱ−1 is therefore of the form (?) (and its �rst action is
[a′ϱ−1 ]`π̄ ). Hence by hypothesis there exists s ′ ∈ T(Q) such
that s ′ ∼ t · wϱ−1 and σ ′ a session matching for t · wϱ−1 and
s ′. We also let σ ′t and σ ′w the restrictions of σ ′ to the labels of
t and w , respectively. Decomposing s ′ = s ′t · s

′
w with |s ′t | = |t |,

σ ′t (resp. σ ′w ) is a session matching for t and s ′t (resp. wϱ−1 and
s ′w ). Hence we have established so far:
σ ′t is a session matching for t and s ′t
σ ′w ◦ σa ◦ π̄ is a session matching for u0 · v and s ′wϱ

However this is not su�cient to construct a session matching
for u = t · u0 · v , among other things because the last extended
process of s ′t (let us write it Z ) is not the same as the �rst ex-
tended process of s ′wϱ (which is Zϱ). This is where we use the
hypothesis π−1 ∈ SymQ

2 , which implies that π−1 ∈ Stabϱ (Z ). In
this instance of Stabϱ (Z ), the implicit ordering of the labels of Z
is the one mirroring the ordering on the labels of A: namely the
labels of Z are ordered σ ′w (`1),σ ′w (`2) . . . ,σ ′w (`n ). In particular
in our context, the hypothesis π−1 ∈ Stabϱ (Z ) means:

(π−1.(Zσ ′−1
w ))σ

′
w ≡ Zϱ

or more succinctly:

Zϕ ≡ Zϱ−1 with ϕ = σ ′w ◦ π̄
−1 ◦ σ ′−1

w

Hence by applying Proposition D.7 to the trace s ′wϕ, we obtain
s ′′w ∈ T(Zϱ

−1) such that s ′′w ∼ s ′w and σz a session matching for
s ′wϕ and s ′′w such that σz |L(Z ) = id for L(Z ) = {σ ′w (`) | ` ∈ L}
the set of labels of Z . Therefore σz ◦ ϕ is a session matching for
s ′wϱ and s ′′wϱ ∈ T(Z ). To conclude we choose s = s ′t · s

′′
wϱ. To

de�ne the session matching for u and s we consider

ψ1 = σ
′
t ψ2 = σz ◦ ϕ ◦ σ

′
w ◦ σa ◦ π̄

= σz ◦ σ
′
w ◦ π̄

−1 ◦ σa ◦ π̄

We have established that ψ1 is a session matching for t and s ′t ,
and that ψ2 is a session matching for u0 · v and s ′′w . There-
fore a session matching for u and s would be the matching ψ
such that dom(ψ ) = dom(ψ1) ∪ dom(ψ2) and ψdom(ψ1) = ψ1 and
ψdom(ψ2) = ψ2. This function can be de�ned ifψ1 andψ2 coincide
on dom(ψ1) ∩ dom(ψ2) = L. And indeed, for all i ∈ n1,no,

ψ2(`i ) = σz ◦ σ
′
w ◦ π̄

−1 ◦ σa (`π (i)) (by de�nition)

= σz ◦ σ
′
w ◦ π̄

−1(`π (i)) (because σa |L = id)

= σz ◦ σ
′
w (`i )

= σ ′w (`i ) (because σz |L(Z ) = id)

= ψ1(`i ) (because σt ′ |L = σw ′ |L)

Finally we also verify that s ∼ u, in particular tr(s) = tr(u):

tr(s) = tr(t) · tr(s ′wϱ) = tr(t) · tr(w) = tr(t) · tr(u0 ·v) = tr(u) �

Part 3: General case. That is, π = π1 ◦ · · · ◦ πn for some
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π1, . . . , πn ∈ Sym1 ∪ Sym2. For succinctness if w ∈ T(P) we
write H (w) the property

There exists s ∈ T(Q) such that tr(s) = tr(w) and a session
matching forw and s .

In particular the property we attempt to prove is that for all π ∈
Sym, assuming that H (u ′) for allu ′ � u of the form (?), we have
H (u). We proceed by induction on a proof that π ∈ Sym.
. case 1: π = id.

Since Sym1 is a group, it contains the identity and this case is
already captured by the Part 1 of the proof.
. case 2: π = ϕ ◦ψ with ϕ ∈ Sym1 ∪ Sym2,ψ ∈ Sym.

To apply the induction hypothesis to ψ (and thus conclude
the proof) we have to prove that H (u ′′) for all traces u ′′ � u:

u ′′ : t · (A
[a′′ ]`ψ̄
−−−−−−→ B′′) · v ′′ .

Letu ′′ be such a trace. Using either Part 1 or Part 2 (depending
on whether ϕ ∈ Sym1 or ϕ ∈ Sym2) we know that it su�cies to
prove that H (u ′) for all u ′ � u ′′ of the form

u ′ : t · (A
[a′ ]`π̄
−−−−−−→ B′) · v ′ .

Since � is transitive all such u ′ also verify u ′ � u, hence the
conclusion by hypothesis. �

This is the core technical lemma to justify the correctness of our
universal symmetry.

D.2.3 Compatibility with POR
So far we have provided the core argument to prove that O∀sym is a
correct re�nement of O∀c+i∗ . However it is more complex to prove
it compatible with O∀por, i.e. with high-priority transitions and
the lexicographic reduction. In essence we will have to reuse the
core corectness arguments developed in Appendices C.5 and C.6
to prove their correctness, but with the handicap of applying sym-
metries at the same time.

Proposition 5.1 . O∀por ∩ O∀sym is a correct re�nement of O∀por.

Proof. Since the reasoning will be the same anyway, we prove
the stronger result that O∀sym ∩ O∀por is a correct re�nement of
O∀c+i∗+0. We let vsym and v0 the notions of inclusion respec-
tively induced by these two optimisations and show that they
coincide. The inclusion v0 ⊆ vsym is immediate. Regarding the
converse inclusion, let P,Q two processes such that P vsym Q
and let us prove that P v0 Q . For that we prove that for all
traces u ∈ T(P) ∩ O∀c+i∗+0, there exists u2 ∈ T(P,Q) such that
u = fst(u2) ∼ snd(u2). We proceed by well founded induction
w.r.t. the ordering 4lex on compressed traces.
. case 1: u < O∀por

We consider an arbitrary maximal extension u ′ ∈ O∀c ob-
tained by executing arbitrary blocks after u as long as possible.
Then by Propositions 4.9, 4.12 and 4.14 there exists ū ≡b-por u

′

such that ū ∈ O∀c+i∗+0. Since ū is maximal, by Proposition 4.16
there exists π permuting independent blocks of ū such that

π .ū ∈ O∀por ⊆ O
∀

c+i∗+0 and π .ū ≺lex u. In particular by ap-
plying the induction hypothesis to π .ū we obtain u2 such that
π .ū = fst(u2) ∼ snd(u2). Hence the conclusion by Proposi-
tion C.3, since π .ū ≡b-por u.
. case 2: u ∈ O∀por ∩ O

∀
sym

Then the conclusion follows from the hypothesis P vsym Q .
. case 3: u ∈ O∀por r O

∀
sym

Let us write u = u1 · b · u2 with u1,u2 ∈ O∀c and b ∈ T(A) a
block such that b < O∀sym. Let `1, . . . , `k be the labels A and `
the label of its �rst action.
. case 3a: the �rst action of b is an input.

We write ` = `i0 . Referring to the notations of the de�nition
of O∀sym we let π ∈ Sym such that

π (i0) = minOrb(i0) .

The conclusion will follow from Proposition D.12 provided we
manage to comply with its hypothesis. Thus let u ′ � u a trace
of the following form

u ′ : u1 · b
′ · u ′2

where the �rst action of b ′ ∈ T(A) is an input on the label `π (i0).
We recall thatu ′ ∈ O∀c+i∗ by Proposition D.8. Besides by hypoth-
esis u1 · b ∈ O∀c+i∗+0, therefore no high-priority transitions are
available at the start of b, i.e. in A (since the �rst transition of
b is an input and can therefore not be high-priority). Therefore
u1 · b ′ ∈ O∀c+i∗+0. On the other hand there are no guarantees
that high-priority transitions are respected in u ′2; however by
Proposition 4.14 we can �x π permuting independent blocks of
u ′2 such that π .u ′2 ∈ O

∀

c+i∗+0. In particular if u ′′ = u1 ·b ′π .u ′2 we
have u ′′ ∈ O∀c+i∗+0 but also and u ′′ ≺lex u because tr(b ′) ≺ tr(b)
by de�nition of π . By the induction hypothesis applied to u ′′

we therefore obtain u2 such that u ′′ = fst(u2) ∼ snd(u2). Us-
ing Proposition C.3 we then obtain v2 such that u ′ = fst(v2) ∼
snd(v2). Hence the expected conclusion by Proposition A.1.
. case 3b: the �rst action of b is an internal communication.

We write ` = `i0 | `i1 where the label of the input is `i0 .
Referring to the notations of the de�nition of O∀sym we let π ∈
Sym such that

(π (i0), π (i1)) = minOrb(i0, i1) .

Like the previous case we want to conclude by using Proposi-
tion D.12. Let u ′ � u a trace of the following form

u ′ : u1 · b
′ · u ′2

where the �rst action of b ′ is on the label `π (i0) | `π (i1). We
recall that by de�nition Orb(i0, i1) ⊆ IO and therefore that an
internal communication at label `π (i0) | `π (i1) respects high-
priority transitions. In particular u1 ·b ′ ∈ O∀c+i∗+0 (using Propo-
sition D.8 again). Besides, using a similar reasoning as in the
case 3a we also obtain that u ′ ∈ O∀c+i∗ and a π permuting inde-
pendent blocks of u ′2 such that u ′′ = u1 ·b ′ ·π .u ′2 ∈ O

∀

c+i∗+0. The
conclusion of the reasoning is then similar, applying the induc-
tion hypothesis to u ′′ and then Propositions A.1 and C.3. �
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D.3 Existential symmetries

In this section we prove the existential optimisation:

Proposition 5.3 . O∃sym is a correct re�nement of O∃all.

However although the formalism of twin traces makes the for-
malisation of the optimisation more conceit as a simple restriction
of rule (Match), we found it easier to prove it correct using the
formalism of session matchings; that is, the optimisation rather
consists of reducing the potential number of session matchings
considered for a trace. Let us thus �rst state it in this paradigm.

Let t ∈ T(P) a trace and an instance of rule (Par) in t :

({{[
∏n

i=1 Pi ]
`}} ∪ P,Φ)

τ
−→ ({{[ Pi ]

` ·i }} ∪ P,Φ)

We also let t ′ ∈ T(Q) such that tr(t) = tr(t ′) and assume that there
exists a session matching σ for t and t ′. In particular t ′ contains a
unique application of rule (Par) of the form

({{[
∏n

i=1 Qi ]
σ (`)}} ∪ Q,Ψ)

τ
−→ ({{[Qi ]

σ (`)·π (i)}} ∪ Q,Ψ) = π−1.A

for some π ∈ Sn and σ (` · i) = σ (`) · π (i). Then we write

π ∼ π ′ i� ∃u ∈ Stab(A), π ′ = π ◦ u

and say that σ is well formed on ` if π is minimal in its equivalence
class for ∼ (w.r.t. an arbitrary �xed ordering on Sn ). We say that
σ is well formed when it is well formed on all labels ` on which an
application of rule (Par) has been performed in t . In particular we
obtain the following characterisation of O∃sym by Proposition A.1:

Proposition D.13 . The following statements are equivalent for
all processes P,Q
(1) ∀t ∈ T(P), ∃t2 ∈ T(P,Q) ∩ O∃sym, t = fst(t2) ∼ snd(t2)
(2) for all t ∈ T(P), there exists t ′ ∈ T(Q) and σ a well formed

session matching for t and t ′ such that t ∼ t ′

In the remaining of the section we therefore focus on proving
that the second item is equivalent to P vs Q . For that we rely again
on the results of Appendix D.1.

Proposition D.14 . The following statements are equivalent for
all processes P,Q
(1) P vs Q
(2) for all t ∈ T(P), there exists t ′ ∈ T(Q) and σ a well formed

session matching for t and t ′ such that t ∼ t ′

Proof. The implication (2) ⇒ (1) is immediate. Conversely we
assume (1), let t ∈ T(P) and thus t ′ ∈ T(Q) such that t ∼ t ′ and
σ0 a session matching for t and t ′. We now construct s ∈ T(Q)
and σ a well formed session matching for t and s . We proceed by
(decreasing) induction on the number of transitions of t before
the �rst (Par) transition on a label ` the matching σ0 is not well
formed on. If there are none σ0 is well formed and it su�cies to
choose s = t ′ and σ = σ0. Otherwise let ` be the �rst such label.
We write t = t0 · p · t1 with p the transition

({{[
∏n

i=1 Pi ]
`}} ∪ P,Φ)

τ
−→ ({{[ Pi ]

` ·i }} ∪ P,Φ) .

Similarly we write t ′ = t ′0 · p
′ · t ′1 with p′ the transition

({{[
∏n

i=1 Qi ]
σ0(`)}}∪Q,Ψ)

τ
−→ ({{[Qi ]

σ0(`)·π (i)}}∪Q,Ψ) = π−1.A .

We let u ∈ Stab(A) such that π0 = π ◦u is minimal in its equiva-
lence class for ∼. By de�nition of Stab(A) we have in particular
π−1.A ≡ π−1

0 .A. Therefore by Proposition D.7 we know that
there exists s1 ∈ T(π−1

0 .A) and a session matching σ1 for t ′1 and
s1 such that t ′1 ∼ s1 and σ1(`′) = `′ for all labels `′ ∈ L the set of
labels appearing in A. In particular we consider the trace

s ′ = t ′0 · (({{[
∏n

i=1 Qi ]
σ0(`)}} ∪ Q,Ψ)

τ
−→ π−1

0 .A) · s1

and σ ′ the label permutation de�ned by

σ ′(`′) = σ0(`
′) if `′ label of t0 · p

σ ′(`′) = σ1 ◦ σ0(`
′) if `′ label of t1

Since σ0 and σ1 coincide on L, σ ′ is well de�ned a session match-
ing for t and s ′. Besides it is well formed on ` (and on all labels
appearing before in the trace t ). Hence we can apply the induc-
tion hypothesis to s ′ and σ ′ which gives the expected trace s and
session matching σ . �
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