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ABSTRACT
The MAP-Elites quality-diversity algorithm has been successful in

robotics because it can create a behaviorally diverse set of solutions

that later can be used for adaptation, for instance to unanticipated

damages. In MAP-Elites, the choice of the behaviour space is es-

sential for adaptation, the recovery of performance in unseen en-

vironments, since it defines the diversity of the solutions. Current

practice is to hand-code a set of behavioural features, however,

given the large space of possible behaviour-performance maps,

the designer does not know a priori which behavioural features

maximise a map’s adaptation potential. We introduce a new meta-

evolution algorithm that discovers those behavioural features that

maximise future adaptations. The proposed method applies Covari-

ance Matrix Adaptation Evolution Strategy to evolve a population

of behaviour-performance maps to maximise a meta-fitness func-

tion that rewards adaptation. The method stores solutions found

by MAP-Elites in a database which allows to rapidly construct

new behaviour-performance maps on-the-fly. To evaluate this sys-

tem, we study the gait of the RHex robot as it adapts to a range

of damages sustained on its legs. When compared to MAP-Elites

with user-defined behaviour spaces, we demonstrate that the meta-

evolution system learns high-performing gaits with or without

damages injected to the robot.
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Computing methodologies → Artificial intelligence; Evolution-
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1 INTRODUCTION
Quality-diversity algorithms [23] evolve an archive of solutions

which is, according to a user-defined behaviour space, as diverse

as possible while obtaining for each solution a high performance.

Two prototypical quality-diversity algorithms are: i) Novelty Search

with Local Competition (NS-LC) [17], which optimises behavioural

diversity itself on a behavioural distance function (Novelty Search

[16]) and which ensures high-quality solutions based on a local

competition among behaviourally similar solutions; and ii) Multi-

dimensional Archive of Phenotypic Elites (MAP-Elites) [19], which

records the highest-performing solutions (elites) for each local re-

gion in a discretised behaviour space called a behaviour-performance

map. Quality-diversity algorithms have been applied widely, with

applications in artificial life [17], video game design [7, 14], auto-

mated image generation [20], design of robot morphologies and

controllers [11, 19, 21], and behaviour adaptation [3, 13].

In quality-diversity algorithms, the designer’s choice of a suitable

behaviour space or behavioural distance function is essential, as it

defines behavioural diversity and therefore the types of solutions

obtained. In some cases, the end-user is interested in a particular

set of behavioural features and in this case, the behaviour space can

be hand-coded based on these features of interest (see, for example

[6, 11, 19, 21, 25]).

There has been a shift towards automated behaviour spaces.

Recent methods have used auto-encoders to reduce the dimension-

ality of the behaviour space to avoid the exponential increase in the

number of cells in the behaviour-performance maps as its dimen-

sionality is increased [2, 4]. This line of research is part of a wider

agenda to exploit deep neural networks for unsupervised learning

of behavioural descriptors, although not fully realised [20].

Another line of research in automated behaviour spaces explores

multiple behaviour spaces, thereby avoiding the need to select one

single behavioural descriptor. Pugh et al. (2016) perform novelty

search based on the Pareto-front arising from two different be-

havioural diversity metrics, illustrating that a behaviour space of

interest can be combined efficiently with a behaviour space that

drives evolution towards solutions on a deceptive maze [24]. Mey-

erson et al. (2016) propose an approach which learns behaviour
spaces for Novelty Search [18]. Using a weight-vector that reflects

the importance of each of its constituent features, a policy-based

behaviour space is transformed into a new behavioural distance

metric. In this approach, the weights are adapted with a fixed,

heuristic rule based on a comparison of behaviours in the initial

population to behaviours in a population that is found successful

on the domain of interest. A more dynamic approach [5], predating

quality-diversity algorithms and instead using multi-objective opti-

misation of behavioural distance and fitness, switches behavioural

distance metrics randomly once every few generations, demonstrat-

ing that switching between behavioural distance metrics guides
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evolution in a favourable manner compared to taking the mean

across behavioural distance metrics.

Despite the progress in automated behavioural descriptors, there

is a need for automated methods that optimise a particular objective

defined on the level of archives, rather than on the level of individual
solutions. For example, the user may be interested in evolving a

behaviour-performance map that optimises a robot’s adaptation

to unexpected future events, such as damages to its actuators or

sudden changes to its environment, or a map that optimises perfor-

mance on a complex task by defining a discretised space of subtasks.

In these cases, it is not known which behaviour space will optimise

the meta-level objective. This paper studies a system that evolves
behavioural descriptors based on an objective defined at the level

of a behaviour-performance map – a meta-fitness function. The

proposed method automates the choice of behavioural features and

thereby learns how to learn behaviour-performance maps.

2 LEARNING BEHAVIOUR-PERFORMANCE
MAPS WITH META-EVOLUTION

We develop a meta-evolution system, where each of the solutions

evolved (meta-individuals) is a quality-diversity algorithm with its

own behaviour space. As a quality-diversity algorithm, we use the

Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) [19]

which generates behaviour-performancemaps by collecting the best

individuals for each cell in a grid over the behaviour space. Unlike

traditional MAP-Elites, the system is not limited to pre-defined be-

havioural features but instead learns the best weighted combination

of a larger number of base-features, with the aim of optimising the

adaptation potential of the resulting behaviour-performance map.

Due to controlling the selection and replacement of individuals, the

meta-individuals not only represent the behaviour-performance

maps as an end-result but also actively guide evolution. The pseudo-

code for our meta-evolution system is provided in Algorithm 1.

2.1 MAP-Elites algorithm
The MAP-Elites algorithm starts by creating an initial population

of individuals, each with random genotypes. Each of the individu-

als in the initial population is then evaluated to obtain its fitness

score f and behavioural descriptor β . After this evaluation, the
individuals are added to the behaviour-performance map according

to the following replacement rule: if the bin corresponding to the

individual’s behavioural descriptor is empty (i.e.,M[β] = ∅) or if
the new individual has a higher fitness than the solution in that bin

(i.e., f > f (M[β])), place the individual’s genotype g in that bin of

the behaviour-performance map (i.e.,M[β] ← g).
After initialisation, the algorithm applies repeated cycles of ran-

dom selection, genetic variation, evaluation and replacement. Ran-

dom selection is implemented by selecting individuals at random

from the pool of currently filled bins in the behaviour-performance

maps. Genetic variation is applied using a mutation operator. Evalu-

ation of the solutions is based on the fitness function. Replacement

is based on the above-mentioned replacement rule. After many

repetitions of this cycle, the behaviour-performance map is gradu-

ally filled with a behaviourally diverse map with high-performing

solutions.

Algorithm 1 Meta-evolution with CMA-ES.

1: D ← ∅. ▷ Create empty database.

2: for i = 1 to p do ▷ Create initial database.

3: g← random-genotype().
4: b, f ← eval(g). ▷ Base-features and fitness.

5: Insert ⟨g, b, f ⟩ into D. ▷ Fill the database.

6: end for
7: for j = 1 to G do ▷ Loop over meta-generations.

8: for i = 1 to λ do
9: SetMi ← ∅. ▷ Empty the map.

10: w ∼ N(m,σC). ▷ Sample map-genotype.

11: for ⟨g, b, f ⟩ ∈ D do ▷ Construct map from database.

12: add-to-map(Mi
, w, g, b, f ).

13: end for
14: end for
15: for i = 1 to λ do
16: Perform MAP-Elites-iterations(Mi

,wi
).

17: Fi ← Meta-fitness(Mi
).

18: end for
19: m← Update-mean(). ▷ See Equation 3.

20: C← Update-covariance(). ▷ See Equation 4.

21: σ ← Update-step(). ▷ See Equation 5.

22: end for
23: procedure add-to-map(M, w, g, b, f )
24: W← vec2mat(w). ▷ Convert to matrix.

25: β ←W · b. ▷ Apply meta-genotype to get descriptor.

26: ifM[β] = ∅ or f > f (M[β]) then
27: M[β] ← g. ▷ Add individual g to the mapM.

28: end if
29: end procedure
30: procedureMAP-Elites-iterations(M, w)

31: for i = 1 to I do ▷ I is the number of iterations

32: g ∼ M. ▷ Sample genotype randomly from map.

33: g′ ← mutate(g). ▷ Mutation.

34: b, f ← eval(g). ▷ Base-features and fitness.

35: add-to-map(M, w, g, b, f ).
36: Insert ⟨g, b, f ⟩ into D. ▷ Fill the database.

37: end for
38: end procedure

2.2 Meta-evolution with CMA-ES
To evolve meta-individuals, consisting of behaviour-performance

maps, we make use of the Covariance Matrix Adaptation Evolu-

tionary Strategy (CMA-ES) [8, 9]. The selection of this traditional

evolutionary strategies method is due to its ability to learn functions

characterised by noise, allowing to use a stochastic meta-fitness

function, and due to the ability to learn with a limited population

size, thereby allowing the meta-learning system to converge within

a limited number of meta-generations.

Initialisation: The algorithm first applies an initialisation phase

to populate the behaviour-performance maps at the first meta-

generation. A total number of p random genotypes are created

and then evaluated (see l. 2-6 in Algorithm 1; in our experiments,

p = 2000, to ensure a large diversity of initial solutions). At this

point, all the individual solutions are stored in a database D. Each
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entry inD is a tuple ⟨g, b, f ⟩, where g is the low-level genotype (e.g.,
the parameters of a robot’s controller), b is an extended behavioural

description of the individual according to a large number of Nb
user-defined behavioural ‘base-features’, and f is the fitness of the

individual. The database is implemented as a large circular buffer

which stores the last |D| = 500, 000 entries; this choice is based

on a trade-off between the number of solutions retained and the

consumption of memory and time to store and process, respectively,

the solutions.

Meta-generations: After initialisation, the meta-evolution al-

gorithm starts repeating meta-generations, applying CMA-ES to

obtain behaviour-performance maps that are increasingly adaptive,

i.e., high-performing on the map-level meta-fitness score F (see

Section 3.2 for its implementation).

The meta-generation first constructs new mapsMi , for each

i ∈ {1, . . . , λ} in the meta-population (see l. 8-14 in Algorithm 1). A

new meta-genotype w ∈ Rn is generated based on a multivariate

normal distribution,

w ∼ N(m,σC) , (1)

where m ∈ Rn is the mean meta-genotype, C is the covariance

matrix, and σ > 0 is a scalar representing the step-size. Each meta-

genotype w ∈ Rn is a rowwise vectorisation of a matrix W ∈

RNf ×Nb
, where Nb is the number of user-defined base-features

and where Nf is a smaller number of features representing the

features on which the behaviour-performance map will be based.

To ensure each feature of the resulting behaviour-performance

maps is in [0, 1], a rowwise normalisation is performed such that∑Nb
j Wi j = 1 for all i ∈ {1, . . . ,Nf }.

The algorithm then applies for all database-entries ⟨g, b, f ⟩ ∈ D
MAP-Elites’ replacement rule (see l. 26-28 in Algorithm 1), but

the behavioural descriptor β of the low-level genotype g is first

computed by applying the meta-genotypeW to obtain a weighted

sum of the base-features (see l. 24-25 in Algorithm 1):

β ←W · b . (2)

Once the maps are constructed
1
, the meta-individuals i ∈

{1, . . . , λ} independently apply MAP-Elites, each continuing to

evolve their own behaviour-performance map Mi for a pre-

determined number of I iterations. During these iterations of MAP-

Elites, the behavioural description of a low-level genotype is again

computed according to Equation 2 and any new individuals arising

fromMAP-Elites’ reproduction phase are added to the database (see

l. 36 in Algorithm 1) and are subject to MAP-Elites’ replacement

rule for the evolution of the map (see l. 35 in Algorithm 1). After

terminating MAP-Elites, each meta-individual is then evaluated

based on a meta-fitness score F , which represents the adaptation

potential of its behaviour-peformance map to unseen contexts.

CMA-ES then updates the mean, covariance and step size pa-

rameters (see l. 19-21 in Algorithm 1) as is usually done in the

(µ/µW , λ)-CMA Evolution Strategy [9], except that the objective

of CMA-ES is based on the meta-fitness scores. The first step is

to sort meta-individuals according to their meta-fitness, and then

select a number of µ ≤ λ individuals for reproduction. Reproduc-

tion involves mutating the mean towards the best of the selected

1
Empirical tests show reconstructing λ = 5 behaviour-performance maps from the

large database of 500,000 solutions consumes on average 1.4 s.

meta-individuals:

m← m + cmσ

µ∑
i=1

vi (wi −m) , (3)

where vi > 0,

∑µ
i=1vi = 1; wi

is the i’th best meta-genotype; σ is

the step size; and cm ∈ [0, 1] is a learning rate. Second, the covari-
ance matrix is adapted based on a combination of the active rank-µ
update [12], which exploits information from the entire population

by assigning positive weights to highest-ranking individuals and

negative weights to lowest-ranking individuals, and the rank-one

update [10], which exploits the correlations between generations

based on the evolution path:

C← ©«1 − c1 − cµ
∑
j
vj
ª®¬C + cµ

λ∑
i=1

vi si s
⊺
i + c1pcp

⊺
c , (4)

where cµ and c1 are positive weights reflecting the importance

of the rank-µ and rank-one term, respectively; si ∼ N(0,C) is the
difference of the sampledmeta-genotype from the oldmean, divided

by the step size σ ;vi is a positive scalar in case i ≤ µ and a negative
scalar otherwise ; and pc ∈ Rn is the evolution path, a weighted

sum of the past mutation steps. Finally, step-size is controlled:

σ ← σ exp

(
cσ
dσ

(
| |pσ | |2

E [| |N(0, I) | |2]
− 1

))
, (5)

where cσ and dσ are parameters that affect the damping and

pσ ∈ Rn is the conjugate evolution path. The interpretation is the

following: i) successive steps that are positively correlated increase

the step size to reduce the number of steps to reach a promising

region in search space; and ii) successive steps that are negatively

correlated decrease the step size to avoid successive steps cancelling

out each other.

3 EXPERIMENTAL SETUP
The aim of the experiments is to assess whether meta-evolution

with CMA-ES can evolve an archive of robot controllers which

adapts rapidly to a wide variety of damages to the robot’s legs.

We compare the proposed meta-evolution system to MAP-Elites

with user-defined behavioural descriptors corresponding to the

base-features and MAP-Elites with a randomly chosen combination

of base-features. Source code corresponding to the experiments is

available at https://github.com/resilient-swarms/meta-cmaes.

3.1 Simulation environment
As the robotic platform, we use the RHex robot (see Figure 1) [26],

a hexapod robot which has been shown to be able to move robustly

across many different terrains and at high speeds compared to its

body frame. Its body and movements are modelled using the DART

(Dynamic Animation and Robotics Toolkit) simulator [15]. The

task of the Rhex robot is to walk in a straight line and the fitness

function f is the total distance the robot has moved forward within

a time span of 5 s, on a flat plain surface where the robot faces no

damages or obstacles. The control cycle of the robot is set to 5ms.

Each of the robots legs is controlled by a Buehler clock mech-

anism, which alternates between a stance phase where the robot

leg touches the ground and a swing phase where the leg rotates

above ground [26, 27]. The bottom-level genotype g is comprised
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Figure 1: The RHex robot platform and simulation model.
The robot is tasked with moving forward in a straight line.

of 24 parameters of the clocks. Parameter 1 defines the period of

the clocks,T , between 0.33-1 s (clock speed within 1-3Hz). For each

leg, the following parameters are defined: the duty-factor, the pro-

portion of a single period during which the leg touches the ground

(parameters 2-7); the stance angle in [0,π ], the angle within which

the robot leg touches the ground (parameters 8-13); the stance offset

in [−π/4,π/4], the angular offset to the leg’s stance phase (param-

eters 14-19); the phase offset in [0,T /2], the time lag with which

the leg touches the ground when compared to leg 1 (parameters

20-24; reference leg 1 is excluded as parameter).

3.2 Experimental conditions
In the experiments, a total of five conditions are investigated.

In themeta condition, the meta-fitness of a mapM is defined

as

F
damage

= Eg∼M

[
1

6|D |

∑
d ∈D

6∑
l=1

f (g;d(l))

]
, (6)

where D defines a set of two damage-types, selected randomly

before evolution and f (g;d(l)) computes the fitness of the genotype

g when a damage of type d is applied to leg l of the RHex robot. To
limit computational expense, the expected value in Equation 6 is

approximated by sampling, without replacement, 10% of genotypes

in the behaviour-performance map. Although fault recovery is

often achieved by taking the maximal performance on an individual

damage across the archive, we use the performance of a random

sample of individuals on diverse damages due to the following: i)

evaluating all solutions in the archive would be too expensive; ii)

repeatedly sampling themaximumdoes not represent themaximum

across the map whilst repeatedly sampling the average represents

the map’s average reasonably well; and iii) optimising the expected

value of performance on multiple damages may have additional

benefits beyond adaptation, such as steering evolution to evolve

robust, high-quality controllers. The behaviour-performance maps

in the meta condition are based on 3-dimensional features that are

weighted combinations of 15 base-features.

The base-features are based on three user-defined behavioural de-

scriptors, which define three control conditions of the experiments.

The duty-factor is a 6-dimensional descriptor which represents

for each leg of the RHex robot the proportion of time it is in con-

tact with the ground. The body-orientation is a 6-dimensional

descriptor which represents for each orientation (row, pitch, and

heave) the proportion of time the angle is higher than 0.005π rad

and the proportion of time the angle is lower than −0.005π rad. The

linear-velocity is a 3-dimensional descriptor which represents the

instantaneous linear velocities, vx , vy , and vz , of the centre-of-

mass of the robot for each dimension in the 3-D coordinate system.

Some values of the base-features included may not appear to lead

to high-performing solutions. For example, moving sideways, as

indicated by a high score on the second dimension on the linear-

velocity descriptor, would never lead to the highest performance

in the normal environment. However, a high- or low-performing

behaviour in the normal environment does not necessarily imply a

high- or low-performing behaviour when the robot is damaged (for

example, a behaviour that goes sideways might go straight when

one of the legs is removed); also, thevx feature of the linear-velocity

is normalised to include only positive values
2
.

To control for the effect of the weighted sum over base-features,

an additional control condition, called random-weights, evolves
a behaviour-performance map with a 3-dimensional combination

of the same 15 base-features, as in the meta condition, but in this

case, the weights are fixed during evolution. Each of the 45 weights

are randomly initialised from a uniform distributionU (0, 1), after
which a rowwise normalisation is performed such that

∑
15

j Wi j = 1

for all i ∈ {1, 2, 3}.

3.3 Experimental parameters
Each of the experimental conditions is repeated for 5 independent

replicates
3
. For the meta condition, each replicate is also defined

by a different damage set on which the meta-fitness is computed.

Two unique damage types are chosen randomly from the following:

leg-removal, leg-shortening, blocked-joint, or passive-joint. This

results in 12 unique damages, defined by a combination of damage

type and the affected leg of the RHex robot.

To evolve the individual solutions, all conditions apply the same

operators and use the same population parameters (see Table 1),

except for parameters only defined for the meta condition. To keep

the behaviour-performance maps comparable, the number of al-

lowed solutions is set to 4096 for all conditions; for 3-dimensional

behavioural descriptors, this amounts to 16 bins per dimension

2
This implies that solutions with negative velocity cannot be elite solutions because

they have to compete with solutions with a low, positive velocity.

3
Each independent run is executed on a 16-CPU Intel Xeon 2.20GHz and takes

approximately 120-140 hours.
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Table 1: Parameter settings for evolution.

Parameter Setting
Maximal map coverage 4096 solution

Genotype (g) discretised in [0, 1]24

Mutation rate 0.05

Mutation type random increment/decrement to a gene

Function evaluations 2,800,000

Batch size per generation 400 bottom-level individuals

Initial population (p) 2000 bottom-level individuals

Meta-population size (λ) 5

Meta-genotype (w) [0, 1]45

whereas for 6-dimensional behavioural descriptors, this amounts to

4 bins per dimension
4
. Bottom-level genotypes are evolved using

a discretised genotype, with increments of 0.025, within [0, 1]24;

with a rate of 0.05, a relatively low-impact mutation is applied

that randomly increments or decrements a gene, thereby allowing

an exhaustive local search around the solutions in the behaviour-

performance maps. Due to time constraints and the observation of

weak convergence, all conditions are given a computational budget

of 2.8 million function evaluations – this amounts to 7,000 gener-

ations for control conditions and based on our empirical results

this corresponds to 260 meta-generations in the meta conditon. For

the meta condition, a population size of λ = 5 is chosen to ensure

a fairly rapid convergence whilst maintaining a global search. A

number of 5 bottom-level generations per meta-generation is cho-

sen to make a rapid assessment of how well a behaviour space is

able to generate new solutions to obtain behaviour-performance

maps with high meta-fitness. To ensure the evolution of diverse,

high-quality solutions in the meta condition, the batch size, the

number of iterations per bottom-level generation, is selected at

400 such that the number of bottom-level evaluations is compa-

rable to the number of meta-fitness evaluations. The meta-level

CMA-ES algorithm uses the default settings for its parameters. For

control conditions, the iterations are all treated independent of

the batch, and therefore we use the same batch size of 400. The

initial population is set to 2000 to ensure sufficient diversity in the

initial behaviour-performance map of the control conditions and

the database of the meta condition.

4 RESULTS
We first analyse how the behaviour-performance maps evolve

over time. Then, to evaluate the quality of the final behaviour-

performance maps, each condition is subjected to a test phase,

where its solutions are tested on damages different from training.

4.1 Evolution
The evolutionary process can give us information on the develop-

ment of map quality and whether or not our meta-learning system

is optimising its meta-fitness. This section first compares all the

conditions to evaluate the quality of their resulting maps over time

4
Note that an alternative to defining for each dimension the number of bins would

be to use Centroidal Voronoi Tesselations [28], which similarly allows a pre-defined

number of solutions albeit with different geometry.

and then analyses the development of the meta condition in terms

of the meta-fitness.

Map quality comparison. During evolution, all conditions im-

prove their map quality statistics over time, progressing rapidly

initially and then largely converging in the final generations (see

Figure 2).

The global performance, the maximal performance across an

entire behaviour-performance map, is similar for most conditions,

with a distance walked of around 9.5m at the end of evolution. The

meta condition converges to this point more quickly, with a score

of 9.5m after 2,000 generations, and at the end of evolution, has a

marginally higher score of 9.7m. In comparison, the duty-factor

has a lower maximal performance in its archives, with a maximal

distance walked of 8.8m.

The average performance across the map is another metric in-

cluded in our analysis. The duty-factor and linear-velocity condi-

tions have a lower average performance of 4.4m and 4.2m, respec-

tively, while the body-orientation has the highest average perfor-

mance of nearly 5.4m. The random-weights and meta conditions

score in between, with a performance of 4.8-4.9m.

Finally, we observe the number of unique solutions in the

behaviour-performance maps, the coverage. The meta and random-

weights conditions have a notably lower coverage of the behaviour

space, with 100-200 solutions, when compared to the other con-

ditions, which have 1,000-3,000 solutions. We observe that, in the

meta and random-weights conditions, the 3 behavioural features all

score in [0.2, 0.6]. The explanation for these results is that extreme

feature values, such as 0 or 1, for a particular feature is, with few

exceptions, only achievable when all base-features have an extreme

score (all 0 or all 1).

Meta-fitness evolution. The score on the meta-fitness function

progresses in a volatile manner, with consecutive improvements

being unpredictable over time, implying the meta-fitness is noisy,

however, there is a stable increasing trend (see Fig. 3). These findings

indicate that the meta-fitness is highly noisy but nevertheless is

being optimised by the meta-level CMA-ES. The relatively large

standard-deviation across replicates indicates the varying difficulty

levels of the different damage sets.

4.2 Adaptation test of final maps
We analyse now the final behaviour-performance maps with regard

to their adaptation performance. Performance data, comparing

average performance across the map on all damages in the damage

set, are collected for all individuals in the behaviour-performance

maps, for two distinct damage sets:

• train-set: the damages that the meta condition used for its

meta-fitness evaluations;

• test-set: the damages that the meta condition did not use for
its meta-fitness evaluations.

Each replicate defines a different train-set of 12 unique damages

(see Section 3.3), and therefore also a different test-set, consisting

of the remaining 12 unique damages.

We perform two analyses: first, to evaluate the generalisation

capability of controllers in the evolved maps, we assess the average

performance of each controller on all damages in the test-set and
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Figure 2: Evolution ofmap qualitymetrics (Mean ± SD, aggregated across replicates of the same condition), when bottom-level
individual solutions are evaluated on a flat surface without any damages. The followingmetrics are shown as a function of the
number of MAP-Elites generations5: (a) global performance computes the highest bottom-level fitness in the map; (b) average
performance computes themean bottom-level fitness in themap; (c) coverage computes the number of solutions in the archive.
For the meta condition, Mean and SD are aggregated over replicates and over λ = 5 meta-individuals (i.e., its maps).

Table 2: Performance average of the behaviour-performance map on different damages, with Mean ± SD aggregated over
replicates. For the meta condition, the behaviour-performance map with the best performance average on the train-set is
selected for both the train- and test-set.

Meta Body
orientation

Duty
factor

Linear
velocity

Random
weight

Train-set 4.57 ± 0.09 4.88 ± 0.06 4.02 ± 0.13 3.91 ± 0.04 4.48 ± 0.24

Test-set 3.05 ± 0.04 3.18 ± 0.03 2.80 ± 0.10 2.80 ± 0.01 3.00 ± 0.14
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Figure 3: Evolution of the population average of the meta-
fitness, which measures the distance travelled when dam-
ages are incurred on 10% randomly selected solutions, with
Mean ± SD over 5 replicates.

average this across the map; second, to evaluate fault recovery, we

assess the best performance obtained on each damage in the test-set

individually by a random search across the map.

Generalisation. We hypothesised that the train- and test-set are

best solved by controllers in the meta condition. To assess this

hypothesis, we compute summary statistics of the performance in

different scenarios (see Table 2).

The results indicate that the meta condition is among the top

performers but that the body-orientation typically has the highest

performance. The random-weights condition scores lower than

the meta condition, while scoring higher than the duty-factor and

linear-velocity. Overall, these results indicate that the use of a

meta-fitness can help to obtain a performance similar to that of the

highest-performing behavioural descriptor.

To compare the meta condition to the other conditions on the

test-damages in pairwise manner, we make use of the Wilcoxon

rank-sum test, a non-parametric analysis of significance, to ensure

statistical power regardless of parametric assumptions, and Cliff’s

delta [1] as a metric for effect size, to assess the size of the effect

5
The number of MAP-Elites generations does not take into account additional function

evaluations due to the meta-fitness. Therefore, the meta condition’s runs are halted

with fewer total MAP-Elites generations to ensure the number of fitness evaluations is

the same for all conditions.
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regardless of sample size. This analysis demonstrates the following:

i) themeta condition outperforms the duty-factor and linear velocity

conditions, with large effect size (p < 0.01, ∆ = 1.0 in both cases);

ii) the meta condition is outperformed by the body-orientation

condition (p < 0.01, ∆ = −1.0); and iii) the effect of the meta

condition with respect to the random-weights is not significant

(p = 0.602, ∆ = 0.20).

To explain the third finding, an additional analysis demon-

strates that the random-weights condition does not improve sig-

nificantly on the lower-performing conditions (duty-factor and

linear-velocity; p = 0.076, ∆ = 0.68 in both cases). Even the highest-

performing condition, the body-orientation, has only a marginally

significant p-value (p = 0.047, ∆ = −0.76). These data suggest that
the high variance of the random-weights condition leads to high

p-values, making the detection of significance difficult with the

limited sample size of 5 replicates.

To analyse how a small difference in the average performance

across different damages may translate into real-world conse-

quences, we visualise the behaviours of the evolved controllers

for different test damages
6
. Taking for a randomly chosen test set

controllers with a performance similar to the average scores, 3.03

for the meta condition and 2.80 for the duty-factor condition, we

observe that for some damages no differences are observed whereas

for other damages large differences can be observed: when leg 6 is

removed, controllers obtained from both conditions have a similar

performance of 3.5m; however, when leg 5 and leg 6 are blocked,

the meta condition outperforms the duty factor by a large margin

(3.9m vs 1.7m, and 3.8m vs 3.1m, respectively).

Recovering from individual damages. We now evaluate the best

solution in the map on individual damages in the test-set. For sim-

plicity of interpretation, we perform a random search across the

behaviour-performance maps, where a random controller in the

map is selected without replacement and the best performance so

far is recorded – this implies that the results presented here may

be improved, for example, by using Bayesian optimisation as in

previous work [3]. Because robots usually have limited time to

adapt and not all maps have 100 or more controllers, we allow

80 function evaluations for this search. To assess the benefit of

the MAP-Elites algorithms compared to a traditional evolutionary

algorithm, we compare the solutions obtained from the maps to

the solutions obtained by evolving controllers from scratch with

CMA-ES – with parameters set to default values and the population

size set to λ = 5. All algorithms, including CMA-ES and the random

search across the maps for the different MAP-Elites conditions, are

run independently for a total of 60 independent runs, where each

run represents a combination of the replicate and one of the unique

damages in the corresponding test-set. Results, shown in Figure 4,

demonstrate that themeta and body-orientation conditions perform

equally high, with an initial performance of around 5m and a final

performance of around 6m. While the other MAP-Elites conditions

(duty-factor, linear-velocity, and random) are close in performance,

with a performance drop of around 0.5m, the traditional EA is not

successful with a drop of around 1.5m.

6
See http://tiny.cc/metacmaes for the video materials.
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Figure 4: Fault recovery by searching for the best controller
for each damage in the test-set individually, based on 5
independent replicates with 12 unique damages each. The
x-axis represents the number of function evaluations; for
MAP-Elites algorithms, this is a random search across the
behaviour-performance map, while for the traditional EA
this is a search from scratch. The y-axis represents the best
performance (Mean ± SD) so far in the search; the line repre-
sents the Mean across the different damages and replicates
whilst the shaded area is based on the standard-deviation
across replicates. For a given replicate of themeta condition,
the behaviour-performance map is selected by performing
an analogous search procedure on the train-set and then tak-
ing the map with maximal final performance average.

5 DISCUSSION
This paper proposes a novel meta-algorithm for learning a popula-

tion of behaviour-performance maps. The algorithm makes use of

a large database of solutions, allowing an efficient reuse of previ-

ously evaluated solutions to construct and evaluate new behaviour-

performance maps on-the-fly. Optimising a meta-fitness function,

our system learns how to combine features to obtain a perfor-

mance similar to the highest-performing behavioural descriptor.

Results not only indicate a benefit related directly to the meta-

fitness, namely that adaptation to diverse scenarios is improved,

but also an improved global performance on the bottom-level fit-

ness.

Although there are certain commonalities, such as the reduction

of dimensionality [2, 4] and adaptivity over behavioural features

[5, 18], our system departs in other ways from previous approaches

to automated behavioural diversity. The use of a top-level evolu-

tion system allows the interpretation as a meta-evolution system,

in which evolutionary mechanisms are used to guide evolution.
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A comparatively generic meta-fitness criterion allows a less pre-

scriptive system, which does not use pre-existing rules to adapt

the behaviour space (compare Meyerson et al. (2016) [18], for ex-

ample, where weights for behavioural features are determined by

a heuristic equation). With few modifications, a wider set of char-

acteristics of the bottom-level quality-diversity algorithm, other

than its behavioural features, could potentially be evolved as well.

However, the high cost of quality-diversity algorithms limits the

number of parameters that can possibly be optimised in this man-

ner. Therefore, given the limited budget for computation, the use

of CMA-ES with a limited number of meta-individuals is justified

as a meta-evolution strategy for evolving quality-diversity algo-

rithms. A further benefit of CMA-ES is that, due to exploring the

search space with multiple solutions at a time, it has the potential

to escape local minima more easily compared to gradient-descent

based methods; moreover, noisy cost functions such as our meta-

fitness functions can be optimised more readily due to its inherently

statistical nature.

While our approach selects the behaviour-performance map

during evolution, another approach to automated behavioural di-

versity is to evolve multiple independent maps in simulation and

then automatically select the map that is most suitable for online

adaptation in the context of the application [13, 22]. Although these

approaches are not mutually exclusive, and may be complementary,

a comparison of both would be an interesting avenue for further

research.

Our system is amenable for further improvements, and our study

has its limitations. The database for restoring individuals may be

improved by preventing the loss of high-performing individuals

and the addition of low-performing or behaviourally similar indi-

viduals. If coverage is a desired end-goal, a different normalisation

can be used for the behavioural features. Further, there is a trade-

off between frequent meta-fitness evaluations and the MAP-Elites

iterations and our current system may not have chosen the optimal

setting; since the right balance would be highly problem-dependent,

we envision a role for meta-optimisation in this case. Finally, the

benefit in performance when compared to a random choice of

feature weights is marginal (though not negligible). A possible

interpretation is that, due to combining the high-performing body-

orientation with lower-performing linear-velocity and duty-factor,

the performance is an interpolation between that of the maps that

would be constructed from these constituent features; if this is so,

the meta-learning system would also be bounded by the maximal

performance (i.e., that of the body-orientation). Another possible

interpretation is that there is an inherent benefit to using multiple

behavioural descriptors, as some other findings suggest [5, 24]. Due

to the large variance of the random weights, more samples are

required to assess significance. Despite these reservations, our find-

ings suggest that our system is able to learn a higher-performing

behaviour space than hand-coded and randomly chosen features.

6 CONCLUSION
Archives evolved by quality-diversity algorithms such as MAP-

Elites are often exploited for adaptation to unknown future events.

Because the behaviour space that maximises the performance over

these unknown events is unknown and because the computational

resources are limited – implying that the end-user cannot empir-

ically assess which is the best behavioural descriptor – there is a

need for automated behavioural descriptors that learn a suitable be-

haviour space. This paper introduces a new meta-evolution system

which evolves a population of MAP-Elites algorithms, optimising

the behaviour space by applying CMA-ES on an adaptation-based

meta-fitness criterion. The proposed system represents behaviour-

performance maps by weighting a larger set of behavioural base-

features and – using a database which stores genotypes, behavioural

base-features, and fitness value - the system efficiently reuses solu-

tions found by iterations of the bottom-level MAP-Elites algorithm.

We experiment with the evolution of controllers for improved dam-

age recovery with the RHex robot. Our system gives high-quality

solutions (i.e., controllers of the RHex robot) on par with the highest-

quality hand-coded behaviour space included in the study, with or

without damages injected to the robot.
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