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Motivation: Effective use of evolutionary information has re-
cently led to tremendous progress in computational prediction
of three-dimensional (3D) structures of proteins and their com-
plexes. Despite the progress, the accuracy of predicted struc-
tures tends to vary considerably from case to case. Since the
utility of computational models depends on their accuracy, reli-
able estimates of deviation between predicted and native struc-
tures are of utmost importance.
Results: For the first time we present a deep convolutional neu-
ral network (CNN) constructed on a Voronoi tessellation of 3D
molecular structures. Despite the irregular data domain, our
data representation allows to efficiently introduce both convo-
lution and pooling operations of the network. We trained our
model, called VoroCNN, to predict local qualities of 3D pro-
tein folds. The prediction results are competitive to the state
of the art and superior to the previous 3D CNN architectures
built for the same task. We also discuss practical applications
of VoroCNN, for example, in the recognition of protein binding
interfaces.
Availability: The model, data, and evaluation tests are available
at https://team.inria.fr/nano-d/software/vorocnn/.
Contact: ceslovas.venclovas@bti.vu.lt, sergei.grudinin@inria.fr

protein structure | structural bioinformatics | geometric deep learning |
Voronoi tessellation | convolutional neural networks | protein model quality
assessment
Correspondence:
ceslovas.venclovas@bti.vu.lt
sergei.grudinin@inria.fr

1. Introduction
Protein structure prediction and protein structure analysis are
very important problems in structural biology and bioinfor-
matics. They have recently been subject to revolution thanks
to multiple developments in several fields, most notably deep
learning (1–3). Indeed, as the recent Critical Assessment of
protein Structure Prediction (CASP) community-wide chal-
lenge has demonstrated, nowadays we are able to accurately
predict protein structures even if they possess novel folds (4–
8).
In the protein structure prediction field, so far deep-learning
techniques have been routinely applied to regular two-
dimensional data represented with matrices of multiple se-
quence alignments (2, 9, 10), or regular three-dimensional
(3D) data of voxelized electron density maps (11–13). Given
the unprecedented success of the former approaches in the

general structure prediction task, it was a bit surprising to
see that the latter could not achieve the same accuracy as
more classical methods in the last CASP13 protein model
quality assessment (MQA) exercise (14, 15). We believe
that the data representation used in MQA methods that are
based on 3D convolutional neural networks (CNN) is too
complex for the currently available amount of data and com-
putational resources. This work proposes a novel approach,
called VoroCNN, that combines the advantages of versatil-
ity of 3D CNNs with a simpler data representation based on
Voronoi tessellation of 3D space (16).
Proteins fold into specific three-dimensional (3D) structures
as a result of interatomic interactions. Protein atoms inter-
act among themselves and with the solvent, and these inter-
actions rapidly decay with the distance. A rigorous way to
define interatomic interactions is to construct a Voronoi tes-
sellation of the protein atoms and relate every Voronoi cell to
an atom and every Voronoi cell face to an interatomic contact
(17–19). However, if a pair of contacting atoms is located
near the surface of a protein structure, the corresponding
Voronoi face may extend far away from the atoms. This prob-
lem can be circumvented by constraining the Voronoi cells
of the atoms inside the boundaries defined by the solvent-
accessible surface, enabling calculation of the areas for ev-
ery atom-atom and atom-solvent contact. Such a solution
has been implemented in Voronota (20), a software pack-
age specifically optimized to construct rapid tessellations for
molecular structures, when the radii of balls (atoms) are not
very different from each other. Each Voronoi tessellation-
derived contact area describes the magnitude of the corre-
sponding interaction. The relatively larger contact area in-
dicates that the interaction is less overshadowed by adja-
cent interactions and vice versa. This trait, specific to the
tessellation-based analysis of protein structures, naturally in-
troduces non pairwise-additive molecular interactions. In-
teratomic contact areas as proxies for multibody interactions
proved to be effective in various tasks, such as measuring de-
viation of models from the reference structure (21, 22) or the
estimation of model accuracy in the absence of native struc-
ture (23–26).
Generally, it is rather difficult to operate on nonregular data
structures in 3D space (27, 28). Therefore, to construct an
efficiently trainable neural network, we decided to convert
the initial 3D tessellations into protein interaction graphs.
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Fig. 1. Schematic representation of the VoroCNN quality assessment method. Firstly, a Voronoi tessellation of a 3D-model is computed with Voronota. Then, based on
Voronoi 3D-tessellation, a graph is built. Finally, a graph neural network predicts local CAD-scores of all residues in the initial model.

This allowed us to reuse all the knowledge already avail-
able for graph convolutional neural networks (29–33). We
believe that a 3D tessellation can be reduced to a graph with-
out loosing too much information. Indeed, relative coordi-
nates in 3D space can be reconstructed from a set of pair-
wise distance observations, if we have a sufficient number of
these, which are encoded as graph edges. This has been rou-
tinely demonstrated by various NMR-based techniques (34),
and also recently by solving protein structures from residue
contact maps (3, 35). Derivation of a protein interaction
graph from Voronoi tessellation-based atomic contacts is then
straightforward. Naturally, each protein atom corresponds to
a graph node, each atom-atom contact - to a graph edge, and
each contact area - to the weight of the edge. Every node can
also contain additional tessellation-derived features. These
can be the corresponding atom solvent-accessible area, the
volume of the constrained Voronoi cell, etc. Also, such a
graph representation inherently overcomes many orientation-
dependence problems characteristic to some other methods.

2. Methods

The workflow of the VoroCNN method consists of the fol-
lowing steps. Firstly, given an atomistic 3D-model of a pro-
tein, we create the corresponding graph using the Voronoi
3D-tessellation method Voronota (20). Then, we convert the
output of Voronota to a graph. After, we assign to the graph
nodes some geometrical and physic-chemical features. Fi-
nally, we pass this graph as an input to a graph CNN that
predicts local folding qualities of the input protein model.
As we are building our graph using 3D geometric informa-
tion about atom contacts, it was rather natural to us to choose
the ground-truth local quality measure for the graph CNN
that also assesses atomic contacts. Also, it has been re-
cently shown that local measures, and contact area difference
(CAD)-score in particular (21), are much more informative
in multiple respects, and are also more consistent in selecting
good models than global measures (36). Therefore, we have
naturally chosen CAD-scores of each residue in the protein
as the ground truth for the graph CNN. We should specifi-
cally mention that we primarily train the network to predict
node-based scores, which are called local quality measures in
the protein structure prediction community. Figure 1 shows a
schematic representation of our method.

A. Graph Representation. We represent the initial 3D-
model of a protein as a weighted unordered multigraph with
two types of edges, which are described in more detail below.
The key property of the graph is that it implicitly keeps infor-
mation about spatial relationship between the atoms based on
the Voronoi 3D-tessellation of the protein model.
Nodes in the graph correspond to atoms in the protein struc-
ture. Each node of the graph contains a vector of features
that describe the corresponding atom. These features include
an atom type encoded with the one-hot representation (a bi-
nary vector with all “0”s and a single “1” value at the posi-
tion corresponding to the type of the atom; we use 167 types
in total following (11)), the solvent-accessible surface area
for each atom computed with Voronota (20), the volume of
atom’s Voronoi cell, also computed with Voronota, and the
“buriedness” of the atom, which is a topological distance in
the graph to the nearest solvent-accessible atom. We repre-
sent the whole set of nodes as a feature matrix X ∈ RN×d,
where N is the number of atoms in the protein structure and
d= 170 is the dimension of the feature vector.
As we have mentioned above, our graph has two types of
edges. Edges of the first type, the contact edges, correspond
to a spatial relationship between the atoms. To construct
these edges, we built a Voronoi partitioning on a set of balls
whose positions and sizes are defined by the locations of the
protein atoms and their van der Waals radii, correspondingly.
We say that two atoms are in a contact if their Voronoi cells
have non-zero contact surface. We consider that two atoms
have a contact edge if these atoms are in a contact and there
is no covalent bond between them. Edges of the second type,
the covalent edges, correspond to the covalent bonds between
the atoms that are in a contact. We should note that in some
bad-quality models that contain atomic clashes, two atoms
with a covalent bond may not be in a contact. In these cases
we do not assign any edge to these atoms. We represent the
two sets of edges as two adjacency matrices. For the contact
edges we introduce a matrix Ac ∈RN×N , where weights ac

ij
are equal to the area of the contact surface between Voronoi
cells of the i-th and the j-th atoms if there is a contact edge
between them, and zero otherwise. For the covalent edges we
introduce a matrix Ab ∈RN×N , where weights ab

ij are equal
to the area of the contact surface between Voronoi cells of
the i-th and the j-th atoms if there is a covalent edge between
them, and zero otherwise.
In order to improve numerical stability of the stochastic opti-
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mization and to add a certain level of regularization (30), we
normalize the adjacency matrices according to the following
equation,

Â = D−1/2AD−1/2, (1)

where A is an adjacency matrix and D is a diagonal matrix
with nodes’ degrees at the diagonal. We only consider edges
of the same type when computing degrees of the nodes. We
also normalize the geometric features of the nodes, since the
weights of the edges in our graph have a geometric origin,
i.e. they are the contact surface areas. More precisely, the
normalized features are the solvent-accessible surface areas
and Voronoi cells’ volumes.
Finally, after the normalization, we split the covalent edges
into 3 subtypes according to the types of covalent bonds,
which can be single, double or aromatic. We also split the
contact edges into 6 subtypes according to atoms’ sequence-
separation distances. For example, the first type of edges is
composed of atoms belonging to the same residue, the sec-
ond type of edges is composed of atoms that are in two con-
secutive residues, etc. As a result, we obtain two adjacency
tensors, Â

b
∈ RN×N×db for the covalent edges with db = 3,

and Â
c
∈ RN×N×dc for the contact edges with dc = 6.

B. Graph Convolutional Neural Network. Here we intro-
duce a graph neural network that solves the following prob-
lem. Given a graph of a protein model in atom-level repre-
sentation, the aim is to predict the local CAD-scores (21) of
all the residues in the model. The key components of our net-
work are the convolutional and the pooling layers, which are
described below.

B.1. Convolutional Layer. In the past years convolutional
neural networks became very popular as an efficient method
for various image processing tasks (37–40). The core idea
that lies behind the convolutional layer is that it can learn lo-
cal patterns that appear in different segments of the image.
Very recently, similar approaches started to be adapted for
graph structures (27, 33, 41). Contrary to images, graphs
represent an irregular data domain that makes the definition
of convolution operation on graphs more complicated. One
common way to define the convolution operation on a graph
is based on the idea that one should combine information
about a graph node with information about its neighbors.
This basic observation has been further developed into var-
ious realizations of convolutional layers for graphs (29–32).
Today graph convolutional networks are becoming a popular
alternative to more classical approaches in structural bioin-
formatics as well (42–46). This section introduces a graph
convolutional layer that inherits from the same principles of
sharing information between graph nodes and also takes into
account the specificity of our data.
Our convolutional layer contains trainable tensors W ∈
Rdin×dout , Wb ∈Rdin×dout×db , and Wc ∈Rdin×dout×dc , where
din is the number of node features before passing them to the
layer and dout is the number of node features after the layer
has been applied. Each layer transforms the feature matrix
Z ∈ RN×din into Z′ ∈ RN×dout according to the following

equation,

Z′ = σ
[
ZW +σΣ(Â

b
�Z�Wb)+σΣ(Â

c
�Z�Wc)

]
, (2)

where the result X�Y of the � operator is defined as

[X�Y]ijk =
{∑

l XilkYlj , if Y is an order-2 tensor (matrix)∑
l XilkYljk, if Y is an order-3 tensor,

(3)

the function σΣ is defined as

[σΣ (X)]ij =
∑

k

σ
(
Xijk

)
, (4)

and σ is a nonlinear activation function. In the present work
we use exponential linear unit (ELU) as the activation func-
tion (47).

B.2. Pooling Layer. Downsampling operations are often used
in classical CNN architectures to reduce the data represen-
tation, achieve a better translational invariance, and extract
hierarchical features. For images represented with pixels,
downsampling can be implemented using convolutional fil-
ters with a stride that reduces the size of the output with re-
spect to the input, or also using additional pooling layers that
return one pixel according to an operation applied to sev-
eral input pixels. However, downsampling in a graph is an
open research problem, because it is unclear how to define
this operation on a non-regular domain in the general case.
Nonetheless, there are several approaches that are based on
clustering algorithms (48–50). In this work we introduce a
pooling operation that uses prior information about the topol-
ogy and structure of the input graph.
Indeed, our graphs are very specific in sense that we have a
strict hierarchy of the representation. More precisely, atoms
in the input data are grouped into residues. This allows us
to introduce a pooling layer that downsamples graph to the
residue-level representation by averaging atoms’ feature vec-
tors within each residue. After applying this layer, covalent
edges become primitive, i.e. they simply represent the pep-
tide chain of the protein. Therefore, after the pooling layer
we keep working only with the contact edges. We should
also specify that in this case the adjacency matrix is rewrit-
ten with the contact areas between the residues, which are
computed as sums of the relevant inter-atom contact areas.

B.3. Network Architecture. We have tested and assessed mul-
tiple graph network architectures that are described in more
detail below. The final architecture, VoroCNN, and its mod-
ification, VoroCNN-conv, are composed of a sequence of
seven consecutive convolutional layers and one pooling layer
in the middle of the sequence, as it is shown in Fig. 2. The
first two convolutional layers are applied to the one-hot vec-
tors only and reduce their length from 167 to 64. The next
two convolutional layers are applied to the resulting nodes’
vectors concatenated with 3 atoms’ features. The pooling
layer in the middle of the sequence downsamples the graph
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Fig. 2. Architectures for the VoroCNN (top) and VoroCNN-conv (bottom) networks.
Red color denotes the convolution operation (“C”), blue color denotes the pooling
operation (“P”), green color denotes the 1D-convolution operation (“C1D”). Rectan-
gles represent feature matrices, one row of a rectangle represents a feature vector
of one graph node: it consists of one-hot part (marked as “one-hot”) and other fea-
tures (marked as “f”). If there are no symbols inside the rectangles, it means that
the convolution operation was applied to the whole vector and it is meaningless to
distinguish one-hot and other features anymore. Multiple-stacked rectangles mean
that the network operations are applied to the three-dimensional adjacency tensors.
Numbers on top of the matrices correspond to the size of the feature vectors.

to the residue-level representation and the next three convo-
lutional layers reduce the dimensionality of node features to
1. VoroCNN-conv has an additional 1D-convolutional layer
at the very end.
To train the network on local CAD-scores, we use Mean
Squared Error (MSE) as a loss function,

L(y, ŷ) = 1
M

M∑
i=1

(yi− ŷi)2, (5)

where y is a vector of ground-truth local CAD-scores, ŷ is
a vector of VoroCNN predictions and M is a number of
residues in a protein.

B.4. Training Parameters and Technical Details. To train the
model we used the Adam optimizer with the learning rate of
0.001 (51). We stored and processed the adjacency matri-
ces in the sparse format, and the whole training process was
conducted in 15 parallel CPU threads. Thanks to the sparse
representation of the data, the efficiency of the CPU training
turned out to be slightly higher than that on the GPUs. Each
thread in one iteration processed 300 models. The dataloader
was organized in a way that the threads were sequentially fed
with structural models corresponding to a particular target.
Here we assume that each native structure, called a target,
has multiple corresponding models. Only after processing
of all the models for the current target the dataloader moved
to another target. Such data-loading policy helped us to re-
duce the variance of the resulting models trained indepen-
dently. One training iteration took on average 10 minutes
on 15 Intel® Xeon® processors E5-2650 v2 @ 2.60GHz,
and the models converge in about 10 iterations. The code
was written in Python using the PyTorch library (52). All
trained models, code, and preprocessing binaries are avail-
able at https://team.inria.fr/nano-d/software/vorocnn/.

C. Datasets. To train and test our networks we used submis-
sions from the previous CASP (Critical Assessment of pro-
tein Structure Prediction) challenges (4, 53). More precisely,

for the training we used models from stage-2 server submis-
sions of CASP[8-11] when tested on CASP12 submissions,
and models from stage-2 server submissions of CASP[8-12]
when tested on CASP13 submissions. We would like to men-
tion that some of the CASP targets can form obligatory pro-
tein complexes, others can belong to membrane proteins, and
also there can be targets with only low-quality models. To
keep the physics of interactions, we tried to prune the train-
ing set as much as possible. Thus, we excluded from the
training set some models and certain targets, as we explain
below. Following our previous experiments (54), we have
also augmented the set of input protein models by generating
near-native conformations using the NOLB tool (55). Over-
all, our training dataset CASP[8-11] consisted of 333 target
structures and 73418 models, and dataset CASP[8-12] con-
sisted of 365 target structures and 79467 models. To test the
performance of our network, we have also constructed two
test datasets. The first included stage-2 server submissions
of the CASP12 experiment (38 targets), the second included
stage-2 server submissions of the CASP13 experiment (79
targets). We did not specifically filter out any models in this
case. However, for both the training and the test sets, we also
excluded models with unrecognized atom names, and mod-
els that contained hetero atoms. The full list of targets for
the training and the test sets can be found in Supplementary
Information (Tables S1 and S2).

C.1. Pruning the training set. In order to identify and exclude
potential obligatory complexes and membrane proteins, and
also to filter out targets that have only low-quality models, we
performed the following procedure. For each of the targets,
we computed its VoroMQA score (25) and retrieved the high-
est CAD-score (21) among all the models submitted for this
target. Afterwards, we identified the targets corresponding to
the low outliers of the VoroMQA scores and the low outliers
of the maximum CAD-scores. The identified suspicious tar-
gets were then inspected visually and removed if deemed pre-
carious. We also excluded from the training set those models
that did not have all the residues of the corresponding target
structures. Please see Table S1 from Supplementary Infor-
mation for more details.
After the model filtering, we proceeded as follows. Firstly,
we removed from the model all the excessive residues, i.e.
those that were not present in the corresponding target struc-
ture. We also removed hydrogen atoms. Then, we computed
per-residue ground-truth scores (local CAD-scores), and fi-
nally built the graphs.

C.2. Data Augmentation. The specificity of our training data
is that it contains very few models with sufficiently-high
CAD-scores. Indeed, more than 90% of the models in the
training set have CAD-scores lower than 0.7. We have pre-
viously demonstrated that augmentation of the training data
with good-quality models significantly improves the success
rate of the predictions (54). Therefore, we reused this ap-
proach and generated random perturbation of the target struc-
tures using the nonlinear Normal Mode Analysis method
NOLB (55). More precisely, we combined deformations
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Method z-score rank Pearson’s r Spearman’s ρ
CAD lDDT GDT-TS CAD lDDT GDT-TS CAD lDDT GDT-TS CAD lDDT GDT-TS

ProQ3 1.670 1.441 1.141 11.961 13.500 25.961 0.801 0.775 0.692 0.750 0.734 0.615
SBROD 1.282 1.234 1.034 23.579 18.842 27.329 0.762 0.726 0.694 0.685 0.670 0.581
VoroMQA 1.410 1.178 0.761 17.171 18.158 36.421 0.803 0.759 0.638 0.766 0.725 0.561
Ornate 1.780 1.440 1.180 10.776 13.355 24.539 0.828 0.729 0.573 0.781 0.686 0.499
VoroCNN 1.871 1.518 1.191 9.276 12.000 25.829 0.817 0.704 0.565 0.774 0.682 0.509
VoroCNN-conv 1.857 1.480 1.271 8.197 11.447 19.408 0.823 0.700 0.563 0.783 0.679 0.508

Table 1. Comparison of VoroCNN, VoroCNN-conv, Ornate, VoroMQA, SBROD, and ProQ3 on the CASP12 stage-2 dataset.

Method z-score rank Pearson’s r Spearman’s ρ
CAD lDDT GDT-TS CAD lDDT GDT-TS CAD lDDT GDT-TS CAD lDDT GDT-TS

ProQ3 1.457 1.210 0.980 18.494 22.804 33.715 0.771 0.731 0.640 0.732 0.717 0.595
ProQ3-lDDT 1.495 1.257 1.023 15.620 20.873 30.044 0.832 0.782 0.712 0.792 0.773 0.666
SBROD 1.052 0.894 0.734 18.321 21.850 28.979 0.772 0.724 0.673 0.762 0.753 0.670
VoroMQA-B 1.363 1.185 0.976 21.513 23.696 33.816 0.802 0.776 0.661 0.762 0.731 0.608
Ornate 1.410 1.134 0.843 19.051 26.525 40.127 0.814 0.752 0.606 0.781 0.714 0.577
VoroCNN 1.581 1.149 0.948 13.625 27.042 36.333 0.763 0.671 0.541 0.728 0.630 0.531
VoroCNN-conv 1.508 1.219 1.004 15.297 21.810 29.778 0.832 0.756 0.648 0.798 0.734 0.610

Table 2. Comparison of VoroCNN, VoroCNN-conv, Ornate, VoroMQA-B, SBROD, ProQ3-lDDT, and ProQ3 on the CASP13 stage-2 dataset.

along 100 slowest normal modes with random amplitudes.
Then, we generated 50 decoy models for each target structure
below the RMSD threshold of 0.9 Å. This threshold roughly
corresponds to 0.95 global CAD-score.

3. Results and Discussion

A. Test sets and metrics. We evaluated the performance
of VoroCNN on CASP12 and CASP13 stage-2 datasets1.
None of them were used for the training of the corresponding
models. Our main goal was to assess the ability of VoroCNN
to select the best model from a pool submitted for a certain
target structure. This can be fulfilled in several ways, and
in this work we report z-scores, ranks, per-target Pearson and
Spearman correlations of model scores (56) averaged over all
the targets using the Fisher transformation (57). We provide
results computed on the following metrics, the global CAD-
score (21), the global lDDT-score (58), and GDT-TS (59, 60).
We put emphasis on z-scores since they weight the predic-
tions according to targets’ “difficulty”. In addition, z-score is
the main assessment metric in the CASP challenges.
For the comparison with the state of the art, we have chosen
several recent single-model methods. We want to specifically
draw the reader’s attention to the fact that we only compare
our results with the best single-model methods. The sec-
ond class of methods, the consensus-based approaches (15),
selects the best models based on the analysis of the whole
pool of structures. They often perform better than the single-
model methods, but can not assign a score to a single model
without having access to the rest of the pool. Thus, we elim-
inated this class of methods from the comparison.
For the comparison we have chosen the Voronoi diagram-
based method VoroMQA (25), the machine learning ap-
proach that uses orientational statistics of protein’s back-
bones SBROD (54), a descriptor-based method ProQ3 (61),

1We used only models submitted by servers.

which also has access to sequence information, and a 3D-
CNN approach Ornate (11). Since VoroCNN is trained to
predict local per-residue scores, to obtain the global score of
a model and compare with the other methods, we averaged
the local predictions. We should also add that we specif-
ically designed a variation of VoroCNN, called VoroCNN-
conv, with an additional smoothing layer trained to smooth
the local scores along the sequence.

B. VoroCNN results. Here we report results of VoroCNN
and VoroCNN-conv obtained on CASP[12-13] stage-2
datasets. The numbers on CASP12 for SBROD were com-
puted by us for a previous publication (54). We also locally
computed the corresponding numbers for Ornate. For ProQ3
and VoroMQA, we used results from the server submissions
archive downloaded from the official CASP website. For
CASP13, we obtained the results of SBROD, VoroMQA-B
and ProQ3, ProQ3D-lDDT from the official CASP website
as well. We should mention that SBROD did not estimate
several targets in CASP13, so we assigned “-2” as SBROD’s
z-scores for these targets, to be on par with the official CASP
assessment policy. When calculating SBROD’s mean corre-
lations and ranks, we excluded these targets from the anal-
ysis. We also used ground-truth CAD-scores, lDDT-scores
and GDT-TS scores from the CASP website.
Table 1 lists the results for CASP12. Here, the VoroCNN
models were trained on CASP[8-11] data. Table 2 compares
results for CASP13. Here, the VoroCNN models were trained
on CASP[8-12] data. For each of these two cases we inde-
pendently launched 8 training processes and then chose the
best trained model achieved on the test data with respect
to the CAD z-scores. We can see that in both benchmarks
VoroCNN and VoroCNN-conv outperform other methods if
the aim is to predict global CAD-scores. For the CASP12
benchmark, we outperform the other methods in CAD, lDDT
and GDT-TS z-scores and also in CAD and lDDT ranks. For
the CASP13 benchmark, we outperform the other methods in
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Fig. 3. Illustration of local scores predictions. The color-bar on the right corresponds to the values of the scores. A) VoroCNN predictions for the T0951 CASP target (left),
T0951TS498_1 model (center), and the ground-truth local CAD-scores (right). B) VoroCNN predictions for the T0954 CASP target (left), T0954TS112_3 model (center), and
the ground-truth local CAD-scores (right). C) VoroCNN predictions for the obligatory complex of bacteriophage RNA-binding protein (pdb code 1UNA, left) and its individual
subunits (right). D) VoroCNN predictions for the obligatory complex of cyclohexadienyl dehydrogenase (pdb code 4WJI, left) and its individual subunits (right).

CAD z-scores and CAD ranks. However, our method is not
the best according to the correlation measure, especially in
the GDT-TS case. This behavior can be explained by the fact
that although we average local predictions in order to get the
global score, in reality global CAD-scores (and even more
GDT-TS) are not a simple average of the local predictions.
On the other hand, it is obvious that for high-quality models
all the local scores should be high and should also correlate
with the global score. Therefore, ability of a local-scoring
algorithm to select high-quality models correctly does not
imply that the same algorithm also correctly predicts global
scores in general. Since local scores show different properties
from those of global scores (such as GDT-TS), optimizing
the performance according to one type of scores unavoidably
makes the results worse according to the other type (36).

C. Local scores. As our model predicts per-residue folding
qualities, these can be visually illustrated in all major molec-
ular visualization systems. Figure 3A-B provides a visual
comparison of VoroCNN predictions for the crystallographic
structures, their CASP13 models, and also ground-truth lo-
cal CAD-scores. Figure 3A shows a structure and models
of strigolactone receptor (pdb code 5CBK), which consists
of multiple alpha-helices. Figure 3B demonstrates a beta-
propeller structure and models of Wdr5 protein (pdb code
2O9K). One can see that the predictions of VoroCNN for the
native structures and the corresponding models are visually
very similar to the ground truth.
A generally interesting question is how much predictions of
the local scores can be useful for the structural bioinformatics
community. An obvious application of the local scores, as it
is demonstrated in Fig. 3A-B, is to highlight local structural
inaccuracies in protein models. Indeed, it has been recently
demonstrated that local scores, and CAD-score in particu-
lar, are well suited for promoting physical realism of protein
models (36). Local scores are also more robust in dealing
with multi-domain structures as well as movements of loops
or local structural motifs. Another practical example can be
an analysis of protein binding interfaces. Figure 3C-D shows

VoroCNN predictions for two obligatory complexes and their
individual subunits. We can clearly see that the binding inter-
faces have lower scores compared to the rest of the structure,
and are very visually distinguishable. This can be explained
by the specificity of these interfaces. Very often they are hy-
drophobic and it is energetically unfavorable for them to be
exposed into solvent. This is why they can be detected by the
local-scoring schemes, e.g., VoroCNN.

D. Binary classification. An interesting general question is
how well VoroCNN can distinguish target (native) structures
from the models. Let us consider here VoroCNN as a bi-
nary classifier, meaning an algorithm that predicts one of two
classes that a given model belongs to. In order to evaluate
the quality of VoroCNN binary classification, we used global
scores predicted by VoroCNN for all models and targets from
our test sets CASP12 and CASP132. Figure 4 (left) shows
distributions of the global scores predicted for targets and
models from CASP12 by VoroCNN trained on CASP[8-11].
Figure 4 (right) shows the same distributions for CASP13 by
VoroCNN trained on CASP[8-12]. In both cases we can see a
clear separation between the two distributions. For CASP12
scores, the value of ROC-AUC, the area under the ROC-curve
(62), equals to 0.942. For CASP13 scores, ROC-AUC is
0.953. Thus we can conclude that VoroCNN has learned to
discriminate target structures from the models.
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Fig. 4. Distribution of VoroCNN scores on target structures and models from
CASP12 (left) and CASP13 (right). Solid lines represent kernel density estimations
of the corresponding distributions.

2Here, for CASP13, we used only 13 publicly available target structures.
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Fig. 5. Mean trajectories of CAD Pearson and Spearman correlations and z-scores
of VoroCNN model and its modifications. The first row represents averaged results
of models trained on CASP[8-11] and tested on CASP12. The second row shows
averaged results of models trained on CASP[8-12] and tested on CASP13.

E. Tested architectures. In order to design the final archi-
tecture we studied a number of variations of the network.
This section briefly describes them and discusses their ben-
efits and drawbacks, a schematic representation of the net-
works can be found in Fig. S1 from Supplementary Infor-
mation. Figure 5 summarizes averaged trajectories of cor-
relation coefficients and z-scores of CAD-scores on the test
data for the selected network designs. For models trained on
CASP[8-11] the metrics are measured on CASP12, and for
models trained on CASP[8-12] the metrics are measured on
CASP13. Evaluation on other metrics, box-plot results, and
comparison with the state-of-the-art methods can be found in
Figs. S2-S7 from Supplementary Information.
At the very beginning we started with a more classical ar-
chitecture named VoroCNN-endpool that differs from the fi-
nal VoroCNN in the position of the pooling layer. In the
VoroCNN-endpool architecture, the pooling is applied at the
very end of the network and plays solely a technical role
– it aggregates atom-scores into residue-scores. The aver-
age performance of VoroCNN-endpool network on CAD z-
scores is similar to the performance of VoroCNN. However,
VoroCNN-endpool has lower correlation scores, which can
be explained by the fact that in VoroCNN-endpool residue-
level scores are not optimized after pooling. Moreover,
VoroCNN-endpool has more parameters compared to the fi-
nal architecture, since the pooling is applied at the very end,
and, as a result, it also requires more time to train.
Another interesting effect that we noticed is connected to the
structure of the input data. As we have described above,
we represent contact- and covalent-edge adjacency matri-
ces as three-dimensional tensors. Precisely, we expand two-
dimensional matrices along the third dimension by the sub-
types of the edges. According to eq. Eq. (2), it means that
we have separate trainable matrices for each edge subtype.
We also tested an approach when the graph edges are repre-
sented by a single matrix. This simplified architecture, called

VoroCNN-mono, performed worse on average. However, the
number of its trainable parameters is dramatically reduced
compared to VoroCNN.
In order to improve results of our method on the GDT-
TS metrics, we tried to smooth the local predictions of
VoroCNN. To do that, we added a trainable 1D-convolutional
layer at the very end of the network. Indeed, the de-
signed VoroCNN-conv architecture performs better than
VoroCNN on GDT-TS. Moreover, except for the CAD-
scores, VoroCNN-conv beats VoroCNN in all metrics on
CASP13 (see Table 2).
Finally, we have also tested the VoroCNN-amino architecture
that processes only residue-level data. Surprisingly enough,
it demonstrated somewhat less impressive results compared
to the recently published residue-level methods (45, 46). This
can be partially explained by its design. We have only tested a
very simple network that contains 4 sequential convolutional
layers.
Along with the described designs, we have also tried vari-
ous shapes and numbers of convolutional layers, played with
the loss function, learning rates and feature normalization
approaches. For example, we have tested weighted MSE
with weights corresponding to the ground-truth z-scores or
ground-truth global CAD-scores as alternative loss functions.
We have also varied the network depth. If we increase the
depth of the base architecture by adding more convolutional
layers, there is no significant improvement in the network
performance. However, reducing of the network depth results
in worse CAD z-scores. Thus, VoroCNN and VoroCNN-conv
are the final designs of all the tested networks.

4. Conclusion
This work suggests a novel way to learn on 3D protein folds
and 3D macromolecular data in general. For the first time
we demonstrate the applicability of learning on 3D Voronoi
tessellations using graph convolutional networks. Our results
confirm a high potential of using 3D tessellation and graph
representation in general in various learning tasks in struc-
tural bioinformatics. Indeed, despite the complexity of the
VoroCNN model and a rather big number of free parameters,
our results are comparable to the state of the art and better
than those of the very recent 3D CNN architectures trained
on regular volumetric representations, e.g. Ornate. Thus, we
believe that currently, given the available amounts of train-
ing data and computational resources, Voronoi tessellation is
a better representation of 3D protein structure than raw volu-
metric data.
This work also illustrates a potential of methods that predict
local folding accuracies for various structural bioinformatics
applications. Indeed, we have demonstrated that VoroCNN
can highlight structural inaccuracies in protein models, and
can also distinguish protein binding interfaces.

Acknowledgements
The authors would like to thank Elodie Laine from Sorbonne
Université for the discussions during the study and proof-
reading the manuscript.

Igashov et al. | VoroCNN: deep 3D Voronoi CNN for protein structures 7



Funding

This work was supported by the French-Lithuanian project
PHC GILIBERT 2019 N° 42128UM/S-LZ-19-5, and by Inria
International Partnership program BIOTOOLS.

1. JG Greener, SM Kandathil, and DT Jones. Deep learning extends de novo protein modelling
coverage of genomes using iteratively predicted structural constraints. Nature communica-
tions, 10(1):3977–3977, 2019.

2. Jinbo Xu. Distance-based protein folding powered by deep learning. Proceedings of the
National Academy of Sciences, 116(34):16856–16865, 2019.

3. Andrew W Senior, Richard Evans, John Jumper, James Kirkpatrick, Laurent Sifre, Tim
Green, Chongli Qin, Augustin Žídek, Alexander WR Nelson, Alex Bridgland, et al. Improved
protein structure prediction using potentials from deep learning. Nature, pages 1–5, 2020.

4. Andriy Kryshtafovych, Torsten Schwede, Maya Topf, Krzysztof Fidelis, and John Moult. Crit-
ical assessment of methods of protein structure prediction (CASP)–Round XIII. Proteins:
Structure, Function, and Bioinformatics, 87(12):1011–1020, 2019.

5. Luciano A Abriata, Giorgio E Tamò, and Matteo Dal Peraro. A further leap of improve-
ment in tertiary structure prediction in CASP13 prompts new routes for future assessments.
Proteins: Structure, Function, and Bioinformatics, 87(12):1100–1112, 2019.

6. Andrew W Senior, Richard Evans, John Jumper, James Kirkpatrick, Laurent Sifre, Tim
Green, Chongli Qin, Augustin Žídek, Alexander WR Nelson, Alex Bridgland, et al. Pro-
tein structure prediction using multiple deep neural networks in the 13th critical assessment
of protein structure prediction (CASP13). Proteins: Structure, Function, and Bioinformatics,
87(12):1141–1148, 2019.

7. Wei Zheng, Yang Li, Chengxin Zhang, Robin Pearce, SM Mortuza, and Yang Zhang. Deep-
learning contact-map guided protein structure prediction in CASP13. Proteins: Structure,
Function, and Bioinformatics, 87(12):1149–1164, 2019.

8. Jie Hou, Tianqi Wu, Renzhi Cao, and Jianlin Cheng. Protein tertiary structure modeling
driven by deep learning and contact distance prediction in CASP13. Proteins: Structure,
Function, and Bioinformatics, 87(12):1165–1178, 2019.

9. David T Jones and Shaun M Kandathil. High precision in protein contact prediction using
fully convolutional neural networks and minimal sequence features. Bioinformatics, 34(19):
3308–3315, 2018.

10. Badri Adhikari, Jie Hou, and Jianlin Cheng. DNCON2: improved protein contact prediction
using two-level deep convolutional neural networks. Bioinformatics, 34(9):1466–1472, 2018.

11. Guillaume Pagès, Benoit Charmettant, and Sergei Grudinin. Protein model quality assess-
ment using 3D oriented convolutional neural networks. Bioinformatics, 35(18):3313–3319,
2019.

12. Georgy Derevyanko, Sergei Grudinin, Yoshua Bengio, and Guillaume Lamoureux. Deep
convolutional networks for quality assessment of protein folds. Bioinformatics, 34(23):4046–
4053, 2018.

13. Guillaume Pagès and Sergei Grudinin. DeepSymmetry: Using 3D convolutional networks
for identification of tandem repeats and internal symmetries in protein structures. Bioinfor-
matics, 35(24):5113–5120, 2019.

14. Jianlin Cheng, Myong-Ho Choe, Arne Elofsson, Kun-Sop Han, Jie Hou, Ali HA Maghrabi,
Liam J McGuffin, David Menéndez-Hurtado, Kliment Olechnovič, Torsten Schwede, et al.
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Supplementary Information for VoroCNN: Deep convolutional neural network built on 3D
Voronoi tessellation of protein structures

Table S1. CASP targets that are present in the training datasets.

Dataset Targets used

CASP8 T0387, T0388, T0389, T0390, T0391, T0392, T0393, T0394, T0398, T0399, T0400, T0401, T0402, T0404, T0406, T0407, T0411,
99
targets T0412, T0414, T0415, T0416, T0417, T0418, T0419, T0420, T0421, T0422, T0423, T0424, T0425, T0426, T0427, T0428, T0429,

T0431, T0432, T0433, T0434, T0435, T0436, T0437, T0438, T0440, T0441, T0442, T0444, T0445, T0446, T0447, T0448, T0449,
T0450, T0451, T0452, T0453, T0454, T0455, T0456, T0457, T0458, T0459, T0460, T0461, T0462, T0463, T0464, T0469, T0470,
T0471, T0472, T0473, T0475, T0477, T0479, T0481, T0483, T0485, T0486, T0487, T0488, T0490, T0491, T0492, T0493, T0495,
T0497, T0501, T0502, T0503, T0504, T0505, T0506, T0507, T0508, T0509, T0511, T0512, T0513, T0514

CASP9 T0515, T0518, T0520, T0521, T0522, T0523, T0524, T0525, T0526, T0527, T0528, T0530, T0532, T0533, T0536, T0538, T0539,
92
targets T0540, T0541, T0542, T0543, T0544, T0545, T0547, T0548, T0551, T0552, T0553, T0555, T0557, T0558, T0560, T0561, T0563,

T0564, T0565, T0566, T0567, T0569, T0570, T0572, T0573, T0574, T0575, T0576, T0579, T0580, T0581, T0582, T0584, T0585,
T0586, T0588, T0589, T0592, T0593, T0594, T0596, T0597, T0598, T0599, T0601, T0603, T0606, T0607, T0608, T0609, T0610,
T0611, T0612, T0613, T0614, T0615, T0617, T0618, T0619, T0620, T0622, T0623, T0624, T0625, T0626, T0627, T0628, T0630,
T0634, T0635, T0636, T0638, T0640, T0641, T0643

CASP10 T0645, T0648, T0650, T0651, T0652, T0653, T0654, T0655, T0657, T0658, T0659, T0661, T0662, T0663, T0664, T0666, T0667,

69
targets T0669, T0671, T0672, T0676, T0678, T0679, T0681, T0682, T0683, T0685, T0686, T0687, T0688, T0689, T0690, T0691, T0692,

T0693, T0696, T0698, T0699, T0701, T0702, T0703, T0704, T0707, T0708, T0710, T0711, T0713, T0714, T0715, T0716, T0717,
T0720, T0721, T0726, T0733, T0737, T0738, T0742, T0743, T0744, T0746, T0747, T0749, T0750, T0752, T0753, T0755, T0757,
T0758

CASP11 T0759, T0760, T0761, T0762, T0763, T0764, T0765, T0766, T0767, T0768, T0769, T0770, T0773, T0774, T0777, T0780, T0781,

73
targets T0782, T0783, T0784, T0785, T0786, T0788, T0789, T0790, T0792, T0794, T0796, T0798, T0800, T0803, T0805, T0806, T0807,

T0808, T0810, T0811, T0812, T0814, T0815, T0816, T0817, T0818, T0819, T0821, T0822, T0823, T0824, T0827, T0829, T0830,
T0831, T0832, T0833, T0834, T0835, T0836, T0837, T0838, T0840, T0841, T0843, T0845, T0847, T0848, T0849, T0851, T0852,
T0853, T0854, T0856, T0857, T0858

CASP12 T0860, T0864, T0866, T0868, T0869, T0870, T0871, T0872, T0873, T0879, T0886, T0889, T0891, T0892, T0893, T0896, T0897,

32
targets T0898, T0900, T0902, T0903, T0904, T0911, T0912, T0920, T0921, T0928, T0942, T0943, T0944, T0945, T0947

Table S2. CASP targets that are present in the test datasets.

Dataset Targets used

CASP12 T0859, T0860, T0862, T0863, T0864, T0866, T0868, T0869, T0870, T0871, T0872, T0873, T0879, T0886, T0889, T0891, T0892,

38
targets T0893, T0896, T0897, T0898, T0900, T0902, T0903, T0904, T0911, T0912, T0918, T0920, T0921, T0922, T0928, T0941, T0942,

T0943, T0944, T0945, T0947

CASP13 T0949, T0950, T0951, T0953s1, T0953s2, T0954, T0955, T0957s1, T0957s2, T0958, T0959, T0960, T0961, T0962, T0963, T0964,

79
targets T0965, T0966, T0967, T0968s1, T0968s2, T0969, T0970, T0971, T0973, T0974s1, T0974s2, T0975, T0976, T0977, T0978, T0979,

T0980s1, T0980s2, T0981, T0982, T0983, T0984, T0985, T0986s1, T0986s2, T0987, T0989, T0990, T0991, T0992, T0993s1,
T0993s2, T0995, T0996, T0997, T0998, T1000, T1001, T1002, T1003, T1004, T1005, T1006, T1008, T1009, T1010, T1011, T1013,
T1014, T1015s1, T1015s2, T1016, T1017s1, T1017s2, T1018, T1019s1, T1019s2, T1020, T1021s1, T1021s2, T1021s3, T1022s1,
T1022s2
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Fig. S1. Schematic representation of tested network architectures (from top to bottom): VoroCNN, VoroCNN-conv, VoroCNN-mono, VoroCNN-endpool and VoroCNN-amino.
Red color denotes the convolution operation («C»), blue color denotes the pooling operation («P»), and green color denotes the 1D-convolution operation («C1D»). Rectangles
represent feature matrices, one row of a rectangle represents a feature vector of one graph node: it consists of one-hot part (marked as «one-hot») and other features (marked
as «f»). If there are no symbols inside a rectangle, it means that the convolution operation was applied to the whole vector and it is meaningless to distinguish one-hot and
other features anymore. Multiple stacked rectangles mean that the network operations are applied to three-dimensional adjacency tensors. Numbers on top of the matrices
correspond to the size of the feature vectors.
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Fig. S2. Trajectories (top) and boxplots (bottom) of Pearson and Spearman correlations, z-scores and ranks on CAD-scores evaluated on CASP12 for models trained on
CASP[8-11]. Trajectories are averaged over launches (for each architecture we independently trained and evaluated 8 models). For the boxplots we used all the results of
each step of the training of each model beginning from the 20th iteration, assuming that from this iteration step the quality of predictions did not change from iteration to
iteration significantly.

12 Igashov et al. | VoroCNN: deep 3D Voronoi CNN for protein structures



0 10 20 30
Iteration step

0.45

0.50

0.55

0.60

0.65

0.70

M
et

ric
s v

al
ue

 o
n 

te
st

 d
at

a

lDDT, Pearson's r

VoroCNN
VoroCNN-conv
VoroCNN-endpool
VoroCNN-mono
VoroCNN-amino

0 10 20 30
Iteration step

0.45

0.50

0.55

0.60

0.65

0.70

M
et

ric
s v

al
ue

 o
n 

te
st

 d
at

a

lDDT, Spearman's 

VoroCNN
VoroCNN-conv
VoroCNN-endpool
VoroCNN-mono
VoroCNN-amino

0 10 20 30
Iteration step

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
et

ric
s v

al
ue

 o
n 

te
st

 d
at

a

lDDT, z-score

VoroCNN
VoroCNN-conv
VoroCNN-endpool
VoroCNN-mono
VoroCNN-amino

0 10 20 30
Iteration step

10

20

30

40

50

60

70

M
et

ric
s v

al
ue

 o
n 

te
st

 d
at

a

lDDT, rank
VoroCNN
VoroCNN-conv
VoroCNN-endpool
VoroCNN-mono
VoroCNN-amino

Vo
ro

CN
N

Vo
ro

CN
N-

co
nv

Vo
ro

CN
N-

en
dp

oo
l

Vo
ro

CN
N-

m
on

o

Vo
ro

CN
N-

am
in

o0.55

0.60

0.65

0.70

0.75

M
et

ric
s v

al
ue

 o
n 

te
st

 d
at

a

lDDT, Pearson's r

ProQ3 
VoroMQA 
SBROD 
Ornate 

Vo
ro

CN
N

Vo
ro

CN
N-

co
nv

Vo
ro

CN
N-

en
dp

oo
l

Vo
ro

CN
N-

m
on

o

Vo
ro

CN
N-

am
in

o

0.55

0.60

0.65

0.70

M
et

ric
s v

al
ue

 o
n 

te
st

 d
at

a

lDDT, Spearman's 

ProQ3 
VoroMQA 
SBROD 
Ornate 

Vo
ro

CN
N

Vo
ro

CN
N-

co
nv

Vo
ro

CN
N-

en
dp

oo
l

Vo
ro

CN
N-

m
on

o

Vo
ro

CN
N-

am
in

o

1.1

1.2

1.3

1.4

1.5

M
et

ric
s v

al
ue

 o
n 

te
st

 d
at

a

lDDT, z-score

ProQ3 
VoroMQA 
SBROD 
Ornate 

Vo
ro

CN
N

Vo
ro

CN
N-

co
nv

Vo
ro

CN
N-

en
dp

oo
l

Vo
ro

CN
N-

m
on

o

Vo
ro

CN
N-

am
in

o

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

M
et

ric
s v

al
ue

 o
n 

te
st

 d
at

a

lDDT, rank
ProQ3 
VoroMQA 
SBROD 
Ornate 

Fig. S3. Trajectories (top) and boxplots (bottom) of Pearson and Spearman correlations, z-scores and ranks on lDDT-scores evaluated on CASP12 for models trained on
CASP[8-11]. Trajectories are averaged over launches (for each architecture we independently trained and evaluated 8 models). For the boxplots we used all the results of
each step of training of each model beginning from the 20th iteration, assuming that from this iteration step the quality of predictions did not change from iteration to iteration
significantly.
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Fig. S4. Trajectories (top) and boxplots (bottom) of Pearson and Spearman correlations, z-scores and ranks on GDT-TS evaluated on CASP12 for models trained on CASP[8-
11]. Trajectories are averaged over launches (for each architecture we independently trained and evaluated 8 models). For the boxplots we used all the results of each
step of the training of each model beginning from the 20th iteration, assuming that from this iteration step the quality of predictions did not change from iteration to iteration
significantly.
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Fig. S5. Trajectories (top) and boxplots (bottom) of Pearson and Spearman correlations, z-scores and ranks on CAD-scores evaluated on CASP13 for models trained on
CASP[8-12]. Trajectories are averaged over launches (for each architecture we independently trained and evaluated 8 models). For the boxplots we used all the results of
each step of the training of each model beginning from the 20th iteration, assuming that from this iteration step the quality of predictions did not change from iteration to
iteration significantly.
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Fig. S6. Trajectories (top) and boxplots (bottom) of Pearson and Spearman correlations, z-scores and ranks on lDDT-scores evaluated on CASP13 for models trained on
CASP[8-12]. Trajectories are averaged over launches (for each architecture we independently trained and evaluated 8 models). For the boxplots we used all the results of
each step of the training of each model beginning from the 20th iteration, assuming that from this iteration step the quality of predictions did not change from iteration to
iteration significantly.
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Fig. S7. Trajectories (top) and boxplots (bottom) of Pearson and Spearman correlations, z-scores and ranks on GDT-TS evaluated on CASP13 for models trained on CASP[8-
12]. Trajectories are averaged over launches (for each architecture we independently trained and evaluated 8 models). For the boxplots we used all the results of each
step of the training of each model beginning from the 20th iteration, assuming that from this iteration step the quality of predictions did not change from iteration to iteration
significantly.
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