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Abstract
We present here Rigor Mortis, a gamified crowdsourcing platform designed to evaluate the intuition of the speakers, then train them
to annotate multi-word expressions (MWEs) in French corpora. We previously showed (Fort et al., 2018) that the speakers’ intuition
is reasonably good (65% in recall on non-fixed MWE). After a training phase using some of the tests developed in the PARSEME-FR
project, we obtain 0.685 in F-measure at an experimentally determined 25% threshold (number of players who annotated the same
segment).
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1. Motivations
Multiword expressions (MWEs) can roughly be defined as
combinations of several words that encompass some com-
position irregularity at one or several linguistic levels, in-
cluding morphology, syntax and semantics. For instance,
the meaning of the expression cut the mustard (succeed)
cannot be derived from the meaning of its parts. Multiword
expressions include multiple linguistic phenomena, as men-
tioned in (Sag et al., 2001), for example idioms, phrasal
verbs, complex function words, light-verb constructions,
adverbial and nominal open compounds.
Handling MWEs is a key challenge for natural lan-
guage processing (Sag et al., 2001), on which researchers
have long been working. Recently, significant advances
have been made thanks to the availability of new MWE-
annotated data that are used to learn state-of-the-art iden-
tification models (Schneider et al., 2016; Ramisch et al.,
2018).
The construction of such annotated corpora is nonetheless
costly. Indeed, they are mainly annotated by experts or
linguistics-aware people long-trained by experts in order to
guarantee the annotation quality. Indeed, MWEs are known
to be hard to identify due to the fuzzy delimitation be-
tween compositional and non-compositional combinations
of words. This difficulty is demonstrated in the modest av-
erage inter-annotator agreement (0.65 in F-score) for com-
prehensive MWEs annotation in English (Schneider et al.,
2014).
In this paper, we propose a gamified platform for annotating
MWEs. Experiments were carried out for French. The aim
of this paper is to assess to what extent one can rely on
corpora annotated in MWEs by the participants with respect
to experts.

2. Related Work
The creation of linguistic resources for natural language
processing using games with a purpose (GWAPs) has been
tested for a while now. The first to be developed were

JeuxDeMots, a game allowing the creation of a lexi-
cal network for French, which is more than ten years old
now (Lafourcade, 2007; Lafourcade et al., 2018), closely
followed by Phrase Detectives (Chamberlain et al.,
2008), in which participants annotate co-reference relations
in English corpora. Both games are still running and col-
lecting language data as we write these lines.
Other GWAPs were then designed, addressing new tasks,
like ZombiLingo (still running) for the annotation of de-
pendency relations for French (Guillaume et al., 2016) or
Wordrobe (no more active), for various semantic annota-
tion tasks (Bos and Nissim, 2015).
Most of the active GWAPs in the domain now appear
on the LDC LingoBoingo portal1. Apart from the al-
ready mentioned games, it presents TileAttack (Madge
et al., 2017), Wormingo (Kicikoglu et al., 2019),
WordClicker (Madge et al., 2019), Name That
Language! (described as the Language ID game
in (Cieri et al., 2018)) and Know Your Nyms?.
Many of these GWAPs were quite successful, both in terms
of the quantity of created data and of the obtained qual-
ity (Chamberlain et al., 2013). However, despite the wide
variety of available GWAPs, there is, to our knowledge, no
other active (and open) gamified platform or game deal-
ing with MWE identification. The only related work we
found is a gamified interface which was developed as part
of the PARSEME COST action2, allowing selected partici-
pants (researchers) to guess the meaning of opaque MWEs
in other languages (Krstev and Savary, 2018).

3. Rigor Mortis
3.1. A gamified platform
Rigor Mortis3 is a gamified crowdsourcing platform,
which aim is to allow the participants to annotate MWEs

1https://lingoboingo.org/.
2https://typo.uni-konstanz.de/parseme/
3http://rigor-mortis.org

https://lingoboingo.org/
https://typo.uni-konstanz.de/parseme/
http://rigor-mortis.org


in corpora. We instantiated it for French, but, in princi-
ple, it can be adapted to any language, provided the tests
described in Section 3.3. are adapted.
The platform integrates different phases that the user can
unlock in sequence:

1. the intuition test

2. the training phase

3. the annotation itself

The players gain points only from the third phase of the
game.
The gamification layer is quite light for the moment, with
a leaderboard and a very simple scenario revolving around
the exploration of pyramids.4 The design is thus inspired
from the world of ancient Egypt (see Figures 1 and 4).

Figure 1: Rigor Mortis: phase 1 and leaderboard.

The annotation interface of the platform is directly inspired
from that of TileAttack (Madge et al., 2017)5, offering
the possibility to annotate discontinuous segments (see Fig-
ure 2) and to include the same token in different annotated
segments.

Figure 2: Annotation of a discontinuous segment (intuition
phase).

3.2. Intuition phase
In order to prevent the participants from being influenced
by the training phase, the intuition phase is the first step in
Rigor Mortis. The players are asked to identify MWEs
without any prior training and very little help, only a short
description of what a MWE is (expressions made of sev-
eral words, more or less fixed and non-compositional) and
a couple of examples.
During this phase, the participants have to annotate ten
sentences, taken from a corpus made from French politi-
cal scandals Wikipedia articles, the Affaires corpus. These
sentences were selected carefully for their simplicity and
brevity: we did not want the players to feel bored and run
away too quickly. In order to prevent bias, they do not re-
ceive any feedback on their annotations during this phase,
but they can see how they performed once done (see Fig-
ure 3).

4We had more ideas, but had to renounce implementing them
due to a lack of resources.

5https://tileattack.com/.

Figure 3: Intuition phase: the results can only be checked
once finished.

This particular phase of the game has been presented in a
previous publication (Fort et al., 2018), so we will not detail
it here, except to mention that the intuition of the speakers
is rather good for non-fixed MWEs (65% of recall).

3.3. Training phase
The training phase was split in steps, or “corridors” of the
pyramid, each corresponding to a linguistic test allowing to
identify one type of MWE. As we did not want the train-
ing phase to be too burdensome, both in terms of time
and difficulty, we limited ourselves to five of the easiest
and most productive tests from the PARSEME-FR project6,
which includes ten tests for the identification of non-verbal
MWEs.7

For each test, we purposely crafted two short sentences,
with only one possible annotation, so that the players can
easily apply their new knowledge, gain confidence, and not
be confused upon completing the training phase. During
this phase, if the player gives a bad answer, their error is
notified to them.
The five tests were selected for their productivity, their cov-
erage of the different types of MWEs and their ease of com-
prehension. They encompass the following8: replacement
[LEX], identification of “cranberry” terms [CRAN], inser-
tion [INSERT], morphosyntactic features (such as singu-
lar/plural) [MORPHO] and “zero” determiner [ZERO]. All
these tests try to capture some fixity of the expressions, that
tend to entail idomaticity as productive composition rules
can not be applied. In particular, the fixedness of a MWE
can be identified by applying a transformation on the given
MWE that leads to an unexpected meaning shift or an un-
acceptable sequence, with respect to a regular setting.

3.3.1. Replacement test [LEX]
We use the replacement test to show two properties of
MWEs to our participants. Firstly, that one part of a MWE
cannot be replaced by another word with a similar mean-
ing or function (be it a synonym, a hypernym or analogous

6https://parsemefr.lis-lab.fr
7https://gitlab.lis-lab.fr/

PARSEME-FR/PARSEME-FR-public/wikis/
Guide-annotation-PARSEME_FR-chapeau.

8We use the same codes as the PARSEME-FR project, be-
tween brackets.

https://tileattack.com/
https://gitlab.lis-lab.fr/PARSEME-FR/PARSEME-FR-public/wikis/Guide-annotation-PARSEME_FR-chapeau
https://gitlab.lis-lab.fr/PARSEME-FR/PARSEME-FR-public/wikis/Guide-annotation-PARSEME_FR-chapeau
https://gitlab.lis-lab.fr/PARSEME-FR/PARSEME-FR-public/wikis/Guide-annotation-PARSEME_FR-chapeau


linguistic items), without either modifying its meaning, or
making it meaningless. Secondly, that the ’head’ of a MWE
is not itself the hypernym of that expression. In the follow-
ing example, “eau de vie” (brandy) cannot be replaced by
“liquide de vie” (liquid of life) and it is not “eau” (water)
either, it is in fact alcohol :

Tu
You

prendras
will take

bien
at least

un
a

peu
little of

d’eau
water

de
of

vie.
life.

‘I’m sure you’ll take at least a sip of brandy.’

Figure 4: Training on the replacement test.

3.3.2. Cranberry test [CRAN]
The cranberry test consists in identifying terms which can-
not exist outside of the MWEs they are part of. In the ex-
ample below, “perlimpinpin” is such a word in “poudre de
perlimpinpin” (snake oil):

[...]
[...]

C’est
This

de
is

la poudre
powder

de
of

perlimpinpin.
perlimpinpin.

‘[...] This is snake oil.’

3.3.3. Insertion test [INSERT]
The insertion test should fail with most MWEs. When try-
ing to insert an adjective or an adverb, the sentence would
have a different meaning, or not mean anything at all, as in
“Luc prend la puissante mouche” (Luc takes the powerful
fly). Note that we can apply this test only in cases where
it is possible to insert an adjective or an adverb in a similar
regular linguistic context.

Luc
Luc

prend
takes

la
the

mouche.
fly.

‘Luke flies off the handle.’

3.3.4. Morphosyntactic test [MORPHO]
The morphosyntactic test exposes how changing the num-
ber or the gender in the candidate MWE is either impos-
sible, or changes the meaning of the sentence. In the fol-
lowing example, “ramener ses fraises” (plural) is possible
in French, but with another, literal, meaning.

[...]
[...]

Je
I

savais
knew

qu’il
he

ramènerait
would bring back

sa
his

fraise.
strawberry.
‘[...] I knew he would show up.’

3.3.5. Zero determiner test [ZERO]
The zero determiner test presents verbal expressions with
no determiner. In French, one cannot “prêter la main forte”
(to lend the strong hand):

Il
He’s

prête
lending

main
hand

forte
strong

à
to

ces
these

gens
people

[...].
[...].

‘He’s lending these people a helping hand [...].’

3.4. Annotation phase
The annotation phase can only be unlocked once the intu-
ition and training phases have been completed. As shown
in Table 1, this phase allows to play 504 sentences from the
Affaires corpus, made from Wikipedia pages on French po-
litical scandals. The same corpus was used for the intuition
phase.
The bonus phase was added at our most productive player’s
request. It includes 743 sentences from Wikipedia pages
on strikes and demonstrations against Loi travail (Law on
work). We include it in the annotation phase, as it is merely
an extension of the third phase.
The annotation phase contains 19 “control” sentences, i.e.
reference sentences, annotated by two of the co-authors,
which we use to check that the participant still remembers
the training (see Figure5).

Figure 5: Feedback given on a wrong answer on a control
sentence during the annotation phase: encore venu (come
again) is not a MWE

.

In case of an error on a control sentence, the next sentence
will also be a control sentence, and so on, until the given
answer is the right one. Hopefully, with this system, the
player will either learn about MWEs or get bored and re-
nounce playing.

4. Participation
We advertised the platform on social networks and on the
French NLP mailing list, LN.
It was therefore not entirely surprising to us that some col-
leagues specializing on the subject participated in the game.
In particular, two members of the PARSEME-FR project
appeared rapidly in the leaderboard.
As can be seen from the homepage of the platform, 121
persons registered and while 65 did not go further than the
training and did not get any point, 57 users scored at least
1 point. However, we created two fake players to bootstrap
the game, therefore there are in fact 55 real participants in
the annotation part of the platform.



Phase Source Nb sentences Nb tokens
Intuition (1) Wikipedia Affaires 10 268
Training (2) ad hoc 10 112
Annotation (3) Wikipedia Affaires 504 16,753
Bonus annotation (4) Wikipedia Loi travail 743 25,067

Table 1: Corpora used in Rigor Mortis.

One participant, Wellington, managed to annotate all
the proposed sentences and ask us for more. We therefore
added a bonus level, which was mainly played by two play-
ers, Wellington and Methos31.

5. Evaluating the annotations
5.1. Creating a reference a posteriori
62 sentences were played by at least two members of the
PARSEME-FR project, including 32 by three of them.
They did not always agree in their annotation, so we ad-
judicated the obtained results to create a reference.
It has to be noted that M. Constant participated both in the
game as a PARSEME-FR expert and in the adjudication as
a co-author of this paper. However, a couple of months
passed in the meantime and he did not recall his annota-
tions. Moreover, the adjudication was done collaboratively
with all the co-authors.
The 62 reference sentences contain 61 MWEs with the dis-
tribution presented in Table 2.

Nb of MWEs Nb of sentences with so many MWEs
No MWE 26
1 MWE 20
2 MWEs 9
3 MWEs 5
4 MWEs 2

Table 2: Distribution of MWEs in the reference sentences.

Unsurprisingly, no sentence contain more than four MWEs
and very few of them (two) contain four MWEs. On the
opposite, 26 sentences out of 62 do not contain any MWE.
These reference sentences were played by between 22 and
51 different players with an average of 31.48 players by
sentence.

5.2. Taking variations into account
Even when a MWE is recognised in a sentence, it is of-
ten difficult to decide the precise set of tokens that be-
longs to it. For instance, in the reference data, there
is a sentence Les inventeurs ont l’habitude de démontrer
l’efficacité . . . [Inventors are used to demonstrate the ef-
ficiency. . . ] with a MWE avoir +habitude [have + habit].
Following PARSEME-FR guidelines, the determiner l’ is
not part of the MWE because some examples like Ils ont
cette habitude [They have this habit] can be found where
the same MWE is present without the same determiner.
It was also decided in PARSEME-FR not to include the fi-
nal preposition in MWEs. Thus, instead of annotating au

détriment de [to the detriment of], the annotators are sup-
posed to restrict the annotation to au détriment. One of the
motivation of this choice is that one can find occurrences of
this MWE followed by coordination like au détriment de X
et de Y. If the preposition is included in the MWE, there is
no easy way to deal with this case and to decide what to do
with the preposition de just before Y.
In order to take these difficulties into account, two measures
are used:

Exact an annotation from a player is considered as correct
if it contains exactly the same set of tokens as in the
reference.

Approx an annotation from a player is considered as cor-
rect if it contains exactly the same set of semantically
full words: only nouns, verbs, adjectives and adverbs
are considered in the comparison.

In the Approx setting, two annotations which differ only
by some determiners, prepositions or other function words
are considered as identical. In the two examples presented
above, annotations au+detriment+de and au+detriment are
equivalent for the Approx setting; similarly, avoir + habi-
tude and avoir + l’ + habitude are equivalent.

5.3. Empirically determining a threshold
Although the participants are trained, our platform is a
crowdsourcing one, which means we have no prior knowl-
edge of who is going to participate and how well they
will perform. In order to benefit from the “wisdom of
the crowd”, we need to establish the minimum number of
agreeing players necessary to obtain the best results.
Given a threshold α, the scores are computed as follows:

1. Projection:

• For Approx scores, each annotation (a list of to-
kens of the sentence) from the reference and from
the players is projected on the sub-list containing
only the semantically full tokens.

• For Exact scores, the full list of tokens is kept.

2. For each sentence played by n players, we keep only
the annotations identified by at least α · n players.

3. We use the usual metrics of precision, recall and F-
measure to evaluate the quality of the annotations ob-
tained at the previous step as compared to the refer-
ence ones.

Again, it should be reminded here that we consider as a
full-fledged annotation the fact that a player chose not to



select anything and clicked the Valider (Validate) button
(no MWE).
No threshold can be fixed a priori, so we observe below
on the reference data (Figure 7 and 8) how this threshold
impacts the quality of the produced resource.

6. Obtained results
6.1. Produced annotations
The participants identified 13,387 annotations in the anno-
tation phase itself (15,693 in both the intuition and the an-
notation phase).
As shown in Figure 6 and as usual in voluntary crowdsourc-
ing (Chamberlain et al., 2013), very few participants pro-
duced a lot of data. In our case, two annotators produced
nearly 2,000 annotations (i.e. around 14%) each.

sentence_upl_user

player annot

Wellington 1989

Methos31 1839

fanfan69 997

YeonWoo 899

NicoZombi 877

Matadora 775

iougz 763

Lyco 738

manoste 660

Karen 492

lyly 335

bruno 293

Gwendo66 221

HeIice 212

mhlay 191

FATMA MELLAK 191

Sidonie L. 189

Aurélie 178

nicolef 131

Chouchou 121

Mathieu.Constant 110

Venom 102

baronne 98

ceramisch 93

lena 74

Axine 72

lucie.barque 64

Wellesley 55

marlise 54

tiburce 53

agata.savary 49

supercat 48

nat 47

Evpok 44

Digs 34

Elles comme Linguistes 33

Pik 31

mutantninja 23

DrZomgwtfbbq 22

Les Pascaux 20

Hermine 18

ataly 17

AnneLaureJousse 17

Suri77 17

anaelle.baledent 16

izabellastic 15

az 13

mjl 13

lafeedhiver 12

Elisemarion 12

Bob123 12

gloumard 6

azazou78 6

chaF 5

angeen 3

0

500

1000

1500

2000

1

Figure 6: Number of annotations produced by player.

It has to be noted that we considered as an annotation the
fact that a participant chose not to annotate anything in a
sentence, explicitly pressing the Validate button without
selecting any text segment.
Obviously, a number of the produced annotations are not
real MWEs (noise), whereas some real MWEs were not
identified (silence).

6.2. Quality of the produced annotations
3,124 annotations were produced on the reference sen-
tences by all the participants, among which 229 were
played by the three PARSEME-FR participants who pro-
duced 92, 90 and 47 annotations.
Below, we consider the 2,895 remaining annotations (pro-
duced by annotators who are not PARSEME-FR members),
which were added to 1,952 sentences.
Figure 7 describes how the annotation scores of the play-
ers against the reference (precision, recall and F-measure)
evolve for different values of the threshold we defined pre-
viously.
In the Exact setting (Figure 7), at the threshold 0% (no
annotations are filtered out, so all MWEs annotated by at
least one player are considered), we observe a high recall
at 0.956 but a very low precision 0.138). This means that
most of the MWEs of the reference are found but with a
lot of noise. The best F-measure (0.618) is obtained with
a 25% threshold. The precision becomes greater than the
recall at a 35% threshold.
Figure 8 describes the same observation but with the Ap-
prox setting. In this case, at threshold 0%, the recall is

exact_measure

threshold precision recall f_measure

0 % 0,1376 0,955556 0,240559

1 % 0,1376 0,955556 0,240559

2 % 0,140294 0,955556 0,244666

3 % 0,168651 0,944444 0,286195

4 % 0,224324 0,922222 0,36087

5 % 0,287719 0,911111 0,437333

6 % 0,29927 0,911111 0,450549

7 % 0,315175 0,9 0,466859

8 % 0,341772 0,9 0,495413

9 % 0,381643 0,877778 0,531987

10 % 0,384236 0,866667 0,532423

11 % 0,393782 0,844444 0,537102

12 % 0,389474 0,822222 0,528571

13 % 0,406593 0,822222 0,544118

14 % 0,417143 0,811111 0,550943

15 % 0,429448 0,777778 0,55336

16 % 0,429448 0,777778 0,55336

17 % 0,451613 0,777778 0,571429

18 % 0,453333 0,755556 0,566667

19 % 0,455782 0,744444 0,565401

20 % 0,462069 0,744444 0,570213

21 % 0,492537 0,733333 0,589286

22 % 0,503937 0,711111 0,589862

23 % 0,520325 0,711111 0,600939

24 % 0,533333 0,711111 0,609524

25 % 0,547009 0,711111 0,618357

26 % 0,543103 0,7 0,61165

27 % 0,554545 0,677778 0,61

28 % 0,554545 0,677778 0,61

29 % 0,560748 0,666667 0,609137

30 % 0,556604 0,655556 0,602041

31 % 0,563107 0,644444 0,601036

32 % 0,575758 0,633333 0,603175

33 % 0,574468 0,6 0,586957

34 % 0,576087 0,588889 0,582418

35 % 0,574713 0,555556 0,564972

36 % 0,581395 0,555556 0,568182

37 % 0,590361 0,544444 0,566474

38 % 0,6 0,533333 0,564706

39 % 0,618421 0,522222 0,566265

40 % 0,643836 0,522222 0,576687

41 % 0,666667 0,511111 0,578616

42 % 0,686567 0,511111 0,585987

43 % 0,69697 0,511111 0,589744

44 % 0,730159 0,511111 0,601307

45 % 0,754098 0,511111 0,609272

46 % 0,754098 0,511111 0,609272
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Figure 7: Exact scores depending on the threshold.

0.989 and the precision 0.170. The maximum F-measure,
0.685, is obtained at 25% threshold. The balanced value
for precision and recall is obtained at a 36% threshold with
0.622.

approx_measure

precision recall f_measure

0 % 0,170498 0,988889 0,29085

1 % 0,170498 0,988889 0,29085

2 % 0,173489 0,988889 0,295191

3 % 0,203196 0,988889 0,337121

4 % 0,266667 0,977778 0,419048

5 % 0,32342 0,966667 0,48468

6 % 0,337209 0,966667 0,5

7 % 0,353659 0,966667 0,517857

8 % 0,381579 0,966667 0,54717

9 % 0,420792 0,944444 0,582192

10 % 0,429293 0,944444 0,590278

11 % 0,436842 0,922222 0,592857

12 % 0,436842 0,922222 0,592857

13 % 0,451087 0,922222 0,605839

14 % 0,463687 0,922222 0,6171

15 % 0,476471 0,9 0,623077

16 % 0,476471 0,9 0,623077

17 % 0,487654 0,877778 0,626984

18 % 0,487179 0,844444 0,617886

19 % 0,496689 0,833333 0,622407

20 % 0,503356 0,833333 0,627615

21 % 0,539568 0,833333 0,655022

22 % 0,559701 0,833333 0,669643

23 % 0,581395 0,833333 0,684932

24 % 0,582677 0,822222 0,682028

25 % 0,587302 0,822222 0,685185

26 % 0,58871 0,811111 0,682243

27 % 0,583333 0,777778 0,666667

28 % 0,588235 0,777778 0,669856

29 % 0,594828 0,766667 0,669903

30 % 0,605263 0,766667 0,676471

31 % 0,609091 0,744444 0,67

32 % 0,616822 0,733333 0,670051

33 % 0,617647 0,7 0,65625

34 % 0,62 0,688889 0,652632

35 % 0,617021 0,644444 0,630435

36 % 0,622222 0,622222 0,622222

37 % 0,632184 0,611111 0,621469

38 % 0,623529 0,588889 0,605714

39 % 0,626506 0,577778 0,601156

40 % 0,634146 0,577778 0,604651

41 % 0,653846 0,566667 0,607143

42 % 0,68 0,566667 0,618182

43 % 0,689189 0,566667 0,621951

44 % 0,728571 0,566667 0,6375

45 % 0,73913 0,566667 0,641509

46 % 0,73913 0,566667 0,641509

47 % 0,738462 0,533333 0,619355

48 % 0,741935 0,511111 0,605263

49 % 0,77193 0,488889 0,598639

50 % 0,77193 0,488889 0,598639

51 % 0,781818 0,477778 0,593103

52 % 0,781818 0,477778 0,593103

53 % 0,807692 0,466667 0,591549

54 % 0,807692 0,466667 0,591549

55 % 0,791667 0,422222 0,550725

56 % 0,787234 0,411111 0,540146

57 % 0,804348 0,411111 0,544118
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Figure 8: Approx scores depending on the threshold.

In the Approx setting, only one MWE of the reference
is not annotated by any player. It is pertes+subies in des
pertes financières directes et subies de plus de 750 mil-
lions de francs [direct and incurred financial losses of more
than 750 million francs] which is an instance of the light
verb construction subir+pertes [suffer+loss]. However, this
one is very difficult to notice because the two tokens of the
MWE are separated by three other words which are not in-
cluded in the construction.
In Figure 9, we report the same scores for the PARSEME-
FR experts annotations.9 The four different values for the

9We report only the Exact measure for the expert; the Ap-
prox measure is very close and there is no significant difference



F-score are: 0.752 (threshold 0% to 33%), 0.788 (thresh-
old 34% to 50%), 0.763 (threshold 51% to 66%) and 0.594
(threshold 67% to 100%). This indicates that experts ob-
tained significantly higher scores at the same thresholds
than other players. Nevertheless, for high thresholds (i.e.
for cases where all experts are consistent), the F-score is
closed to 0.6, which confirms the difficulty of the task.

exact_measure

threshold precision recall f_measure

0 % 0,640625 0,911111 0,752294

1 % 0,640625 0,911111 0,752294

2 % 0,640625 0,911111 0,752294

3 % 0,640625 0,911111 0,752294

4 % 0,640625 0,911111 0,752294

5 % 0,640625 0,911111 0,752294

6 % 0,640625 0,911111 0,752294

7 % 0,640625 0,911111 0,752294

8 % 0,640625 0,911111 0,752294

9 % 0,640625 0,911111 0,752294

10 % 0,640625 0,911111 0,752294

11 % 0,640625 0,911111 0,752294

12 % 0,640625 0,911111 0,752294

13 % 0,640625 0,911111 0,752294

14 % 0,640625 0,911111 0,752294

15 % 0,640625 0,911111 0,752294

16 % 0,640625 0,911111 0,752294

17 % 0,640625 0,911111 0,752294

18 % 0,640625 0,911111 0,752294

19 % 0,640625 0,911111 0,752294

20 % 0,640625 0,911111 0,752294

21 % 0,640625 0,911111 0,752294

22 % 0,640625 0,911111 0,752294
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26 % 0,640625 0,911111 0,752294
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32 % 0,640625 0,911111 0,752294

33 % 0,640625 0,911111 0,752294

34 % 0,737864 0,844444 0,787565

35 % 0,737864 0,844444 0,787565

36 % 0,737864 0,844444 0,787565

37 % 0,737864 0,844444 0,787565

38 % 0,737864 0,844444 0,787565

39 % 0,737864 0,844444 0,787565

40 % 0,737864 0,844444 0,787565

41 % 0,737864 0,844444 0,787565

42 % 0,737864 0,844444 0,787565

43 % 0,737864 0,844444 0,787565

44 % 0,737864 0,844444 0,787565

45 % 0,737864 0,844444 0,787565

46 % 0,737864 0,844444 0,787565
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Figure 9: Exact scores depending on the threshold (for ex-
perts).

6.3. Impact of the training
Comparing the results between the intuition phase and the
actual annotation phase performed post training could let
one think that the training had very little impact. However,
the sentences played in the intuition phase were very short
and easy to annotate on purpose: we did not want to make
players feel like this task would be too hard before they
even started.
While the approach we took seemed reasonable through the
GWAP lens, we cannot really reap the fruits of seeing the
benefits of the training phase, because the annotation cor-
pus was overall harder to play that the intuition phase sen-
tences. The main take-outs when having a look at the re-
sults would be that a training was missing on verbal MWEs.
For example, light verb constructions and reflexive verbal
MWEs were not easily detected by our players, who could
have benefited from more instructions on the matter.

7. Conclusion
We present in this article the results obtained with our gam-
ified platform on MWEs identification. With the Approx
measure and a well-chosen threshold, we obtained an F-
measure of 0.685. Considering the difficulty of the MWE
identification task as shown by the low inter-annotator
agreement (0.65 F-score) reported in (Schneider et al.,
2014), we believe that our first experiments shows that the
crowdsourcing approach for MWEs identification is rele-
vant and represents a valid option to build new annotated
resources.

between the two settings.

The gamification of the platform should be improved, in
order to attract and retain more players. In addition to
usual gamification features, we could also add more in-
teraction among the users, for instance with a new game
mode where a user have to correct the output of another
player (Phrase Detectives proposes a similar fea-
ture) or places where players can discuss about their an-
notations (as in the ZombiLingo forum).
As future work, we would like to use the data produced
by the players of Rigor Mortis to quantify a degree of
fixity of a MWE, depending of the percentage of players
who annotated it.
Another interesting perspective would be to adapt Rigor
Mortis to other languages. The PARSEME project de-
fined general annotation guidelines10 (with restriction to
verbal MWEs) and applied them to 27 languages. In order
to adapt Rigor Mortis for a new language, an exten-
sion of the PARSEME work on verbal MWEs to all MWEs
is needed; the PARSEME-FR being a first step in this di-
rection.
The code of Rigor Mortis as well as the created re-
sources, are freely available on GitHub.11
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