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Graph immersions with parallel cubic form

Roland Hildebrand ∗

April 9, 2020

Abstract

We consider non-degenerate graph immersions into affine space An+1 whose cubic form is par-
allel with respect to the Levi-Civita connection of the affine metric. There exists a correspondence
between such graph immersions and pairs (J, γ), where J is an n-dimensional real Jordan algebra
and γ is a non-degenerate trace form on J . Every graph immersion with parallel cubic form can
be extended to an affine complete symmetric space covering the maximal connected component
of zero in the set of quasi-regular elements in the algebra J . It is an improper affine hypersphere
if and only if the corresponding Jordan algebra is nilpotent. In this case it is an affine complete,
Euclidean complete graph immersion, with a polynomial as globally defining function. We classify
all such hyperspheres up to dimension 5. As a special case we describe a connection between
Cayley hypersurfaces and polynomial quotient algebras. Our algebraic approach can be used to
study also other classes of hypersurfaces with parallel cubic form.

Keywords: affine differential geometry, graph immersions, improper affine hyperspheres, parallel
cubic form, Jordan algebras

MSC: 53A15, 17C36, 17C37

1 Introduction

The cubic form C of an equiaffine hypersurface immersion is the covariant derivative of the affine metric
h with respect to the affine connection ∇. Affine hypersurface immersions with parallel cubic form
have been studied in various settings for 30 years, and their classification is an important problem in
affine differential geometry.

One can consider immersions whose cubic form is parallel with respect to the affine connection,
∇C = 0. Non-degenerate Blaschke immersions satisfying this condition are either quadrics or graph
immersions whose defining function is a cubic polynomial [30]. Actually, in the latter case the immersion
must be an improper affine hypersphere [1], and the determinant of the Hessian of the defining function
identically equals ±1 [28, Example 3.3, pp. 47–48]. Non-degenerate Blaschke hypersurface immersions
with ∇C = 0 into Rk, k = 3, 4, 5, 6, have been classified in [27],[30],[11],[12], respectively. In [13] an
algorithm was presented to classify all such immersions for a given arbitrary dimension.

Another class of hypersurface immersions is obtained when the condition ∇K = 0 is imposed, where
K = ∇−∇̂ is the difference tensor between the affine connection and the Levi-Civita connection of the
affine metric. Non-degenerate Blaschke immersions with this property have been studied in [5]. There
it was established that, as for ∇C = 0, they are either quadrics or improper affine hyperspheres. In
the latter case the defining function is given by a polynomial, the affine metric is flat, the difference
tensor is nilpotent, i.e., Km

X = 0 for some m > 1 and all vector fields X, and [KX ,KY ] = 0 for all
vector fields X,Y . A classification of these improper affine hyperspheres has been obtained for several
special cases, namely, if K2 = 0, if the affine metric has Lorentzian signature, and if Kn−2 6= 0.

Parallelism of the cubic form can also be defined with respect to the connection ∇̂. Since the affine
metric is parallel with respect to ∇̂, the conditions ∇̂C = 0 and ∇̂K = 0 are equivalent. Much work
concentrated on the case of Blaschke immersions. A Blaschke immersion satisfying ∇̂C = 0 must be
an affine hypersphere [1]. This hypersphere may be proper or improper.

∗Univ. Grenoble Alpes, CNRS, Grenoble INP, LJK, 38000 Grenoble, France
(roland.hildebrand@univ-grenoble-alpes.fr).
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An n-dimensional improper affine hypersphere satisfying ∇̂C = 0 and which is not a quadric must
be affinely equivalent to the Cayley surface z = xy− 1

3y
3 for n = 2 [25], to one of the graph immersions
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for n = 4 [16]. For general n ≥ 3 it cannot be convex [19], and if it has a Lorentzian metric, then it
must be affinely equivalent to one of the graph immersions [17]
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In [23] the case of vanishing Pick invariant, constant sectional curvature, and metric with negative
index 2 has been classified. In [14, Sect. 6.1.3] we have sketched a connection between improper affine
hyperspheres satisfying ∇̂C = 0 and nilpotent Jordan algebras.

The second hypersurface in (1) and the sixth hypersurface in (2) are generalizations of the Cayley
surface known as Cayley hypersurfaces. These hypersurfaces were introduced in [7] and shown to be
improper hyperspheres with vanishing Pick invariant, satisfying C 6= 0 and ∇̂C = 0 [20]. Further
generalizations of these hypersurfaces have been shown in [24] to be characterized by a parallelism
condition involving connections which are affine combinations of ∇ and ∇̂.

The main subject of this paper are graph immersions into affine space An+1 satisfying the condition
∇̂C = 0. We establish a correspondence between this class of hypersurfaces and the class of Jordan
algebras with non-degenerate trace form, so-called metrised Jordan algebras [2]. We show that such
graph immersions can be extended to affine complete symmetric spaces, which are translation-invariant
coverings of the quasi-regular domain containing zero in the corresponding Jordan algebra.

The structure of the present paper closely matches that of [14] on centro-affine immersions with
parallel cubic form, but the technical details differ in several respects. The main difference is that here
we consider general real Jordan algebras instead of unital ones. The role of the unit element in [14]
is played by the zero element here, and the inverse is replaced by the quasi-inverse. While in [14] the
proper affine hyperspheres satisfying the condition ∇̂C = 0 correspond to the subclass of semi-simple
Jordan algebras, here the improper affine hyperspheres satisfying ∇̂C = 0 correspond to the nilpotent
Jordan algebras.

In particular, the classification of such improper hyperspheres reduces to the classification of nilpo-
tent metrised Jordan algebras. In contrast to the semi-simple Jordan algebras, the nilpotent ones are
not fully classified. Partial results are available in [10],[9],[8], where nilpotent Jordan algebras of dimen-
sions ≥ 4,5, and 6, respectively, have been classified. In [3],[9] nilpotent Jordan algebras of dimension
n and nilindex n, n − 1, respectively, have been classified. These classifications are not always up to
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isomorphism, however. From [2, Theorem 3.1] it follows that the classification of metrised nilpotent
Jordan algebras is not simpler than that of nilpotent Jordan algebras. A classification of improper
affine hyperspheres satisfying ∇̂C = 0 is thus out of reach. We will show, however, that such improper
affine hyperspheres must be graph immersions with a polynomial as global defining function.

In [4],[18] it has been observed that the Calabi product of proper affine hyperspheres with parallel
cubic form or of such a hypersphere with a point are again proper affine hyperspheres with parallel
cubic form, and hence one can speak of decomposable or irreducible such immersions. In a classifi-
cation, one then only needs to consider the irreducible immersions. We will provide a similar notion
of decomposability and irreducibility for graph immersions with parallel cubic form. This notion also
respects the property of being an improper affine hypersphere.

The remainder of the paper is structured as follows. In the next section we review the notion of
graph immersions, in particular, we define the notion of product and irreducibility for graph immersions
in Subsection 2.1. In Section 3 we provide the necessary background on Jordan algebras. Section 4
contains the main technical results of the paper, namely how exactly metrised Jordan algebras are
related to graph immersions with parallel cubic form. In Section 5 we consider specifically improper
affine hyperspheres with parallel cubic form and their algebraic counterparts, the nilpotent metrised
Jordan algebras. We provide a structural result in Theorem 5.5 and show in Corollary 5.10 that the
dimension of an irreducible improper hypersphere with parallel cubic form is bounded by a quadratic
function of the number of negative eigenvalues of its affine fundamental form. In Subsection 5.2 we
consider the Cayley hypersurfaces more closely. In Subsection 5.3 we provide a full classification of
irreducible improper affine hyperspheres with parallel cubic form up to dimension 5. In Sections 2,
4, and 5, whenever we speak about parallel cubic form, we will mean the condition ∇̂C = 0. In
Section 6 we apply our methods to other classes of hypersurface immersions with parallel cubic form,
in particular, those mentioned at the beginning of this introduction.

2 Graph immersions

In this section we review some basic facts about graph immersions and improper affine hyperspheres.
We introduce a notion of products of graph immersions which is similar to the Calabi product of proper
affine hyperspheres.

A graph immersion f : Mn → An+1 of an n-dimensional manifold into (n + 1)-dimensional affine
space is an affine hypersurface immersion equipped with a parallel transversal vector field ξ. It is
non-degenerate if its affine fundamental form h is non-degenerate. The induced connection ∇ of a
graph immersion is flat [28, Example 2.4], and we may locally introduce an affine coordinate system
on Mn. On a simply connected affine chart there exists a scalar function F such that the immersion f
is locally affinely equivalent to the graph immersion x 7→ (x, F (x)) with transversal vector field (0, 1)
[28, Prop. 2.8]. We shall call F a local representing function of the immersion f . Here and throughout
the paper 0 denotes the zero vector in an n-dimensional vector space, which may be a tangent space
to a graph immersion or a Jordan algebra.

When considering local properties of the graph immersion, it will be convenient to define the
immersion f directly via its representing function. Let Ω ⊂ Rn be a domain and F : Ω → R a
smooth function. The graph immersion f : Ω → Rn+1 = Rn × R represented by F is then defined
by f(y) = (y, F (y)), and the transversal vector field is given by ξ = (0, 1). The induced connection
∇ equals the canonical flat affine connection on Rn. The affine fundamental form h is given by the
derivative ∇2F = F ′′ [28, p. 39]. In the sequel we will assume that h is non-degenerate, in which case
it defines a Hessian pseudo-metric on Ω. We shall use this metric to raise and lower indices of tensors
on Ω.

From the point of view of affine differential geometry, neither the decomposition Rn+1 = Rn×R nor
the vector space structure of the target space Rn+1, and hence the representing function F , have an
invariant meaning. Indeed, the natural target space of an n-dimensional affine hypersurface immersion
is the affine space An+1. The affine connection as well as the affine fundamental form on Ω are
determined solely by the map f : Ω → An+1 and the transversal vector field ξ. Given these objects,
a representing function F of the graph immersion can be obtained by specifying an affine hyperplane
A ⊂ An+1 which is transversal to ξ, and considering An+1 as a direct sum A + span ξ, corresponding
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to the decomposition Rn+1 = Rn × R. For y ∈ Ω we may then set F (y) = α, where α is the unique
real number such that f(y) − αξ ∈ A. The affine connection ∇ is then given by the pullback of the
flat affine connection on A to Ω by virtue of the injective local diffeomorphism ι : Ω → A defined by
ι : y 7→ f(y)− F (y)ξ = (f(y) + span ξ) ∩A.

For a given y ∈ Ω, there exists a unique affine hyperplane A such that f(y) ∈ A and A is tangent
to the image f [V ] at f(y), where V ⊂ Ω is a small enough neighbourhood of y. The corresponding
representing function then satisfies F (y) = 0, F ′(y) = 0. Moreover, in this case we can naturally
identify A with the tangent space TyΩ, by putting into correspondence the tangent vector v ∈ TyΩ
with the point f(y) + f∗(v) ∈ A, where f∗ is the differential of f at y. Then the product TyΩ×R can
be identified with An+1 by the relation

(v, α) 7→ f(y) + f∗(v) + αξ. (3)

We will make use of this identification later in Subsection 4.3.

We adopt the Einstein summation convention over repeating indices. Denote the derivatives of
F with respect to the affine connection ∇ by indices after a comma. Thus we have ∇αF = F,α,
∇α∇βF = F,αβ etc. Denote the elements of the inverse of the Hessian F ′′ = ∇2F by F ,αβ .

Let ∇̂ be the Levi-Civita connection of the affine pseudo-metric h, C = ∇h the cubic form, and
K = ∇−∇̂ the difference tensor. These affine invariants can be represented by expressions depending
on the derivatives of F , as follows:

hαβ = F,αβ , Cαβγ = F,αβγ , Kγ
αβ = −1

2
F,αβδF

,γδ. (4)

The covariant derivative of C with respect to ∇̂ is given by

∇̂δCαβγ = F,αβγδ −
1

2
F ,ρσ(F,αβρF,γσδ + F,αγρF,βσδ + F,βγρF,ασδ). (5)

Corollary 2.1. Let f : Ω → An+1 be a smooth non-degenerate graph immersion with representing
function F : Ω → R. Then the immersion f has parallel cubic form with respect to the Levi-Civita
connection of the affine metric if and only if

F,αβγδ =
1

2
F ,ρσ(F,αβρF,γδσ + F,αγρF,βδσ + F,αδρF,βγσ). (6)

Proof. The corollary is a direct consequence of (5).

We have the following characterization of improper affine hyperspheres.

Lemma 2.2. [28, Example 3.3, pp. 47–48] Let f : Ω → An+1 be a smooth non-degenerate graph
immersion with representing function F : Ω → R. Then f is an improper affine hypersphere with
affine normal equal to ξ if and only if detF ′′ = ±1.

2.1 Products of graph immersions

In this subsection we consider a notion of product for graph immersions and improper affine hyper-
spheres.

Definition 2.3. Let Ωk ⊂ Rnk , k = 1, . . . , r, be domains, Fk : Ωk → R smooth functions, and
fk : Ωk → Rnk+1 the graph immersions defined by Fk. Set Ω = Ω1 × · · · × Ωr and define the
function F : Ω → R by F (x1, . . . , xr) = F1(x1) + · · · + Fr(xr). We shall call the graph immersion
f : Ω → Rn1+···+nr+1 defined by the function F the product of the immersions f1, . . . , fr. A graph
immersion which can be in a nontrivial way (locally) represented as such a product will be called
(locally) decomposable, otherwise it will be called irreducible.
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Lemma 2.4. Assume the notations of Definition 2.3. If the graph immersions f1, . . . , fr are non-
degenerate, then f is non-degenerate. If f1, . . . , fr are improper affine hyperspheres, then f is an
improper affine hypersphere. If f1, . . . , fr have parallel cubic form, then f has parallel cubic form.

Proof. The mixed derivatives ∂2F
∂xk∂xl

, k 6= l, are identically zero, and hence all derivatives of F will
be block-diagonal, with the corresponding derivatives of Fk in the diagonal blocks. In particular, we
have detF ′′ =

∏r
k=1 detF ′′k . Hence detF ′′k 6= 0 implies detF ′′ 6= 0, which yields the first assertion of

the lemma. The conditions detF ′′k = ±1 imply detF ′′ = ±1, which by Lemma 2.2 yields the second
assertion of the lemma. The third assertion follows from Corollary 2.1 and the block-diagonal structure
of the tensors F ,ρσ, F,αβγ , F,αβγδ.

3 Jordan algebras

In this section we provide the necessary background on Jordan algebras. Much of the material in this
section is taken from [31, Section 14]. Other references on Jordan algebras are [21],[22], or [26].

Definition 3.1. [26, p. 3] A real Jordan algebra J is a real vector space endowed with a bilinear
operation • : J × J → J satisfying the following conditions:

i) commutativity: x • y = y • x for all x, y ∈ J ,
ii) Jordan identity: x • (x2 • y) = x2 • (x • y) for all x, y ∈ J , where x2 = x • x.
Throughout the paper we assume that J is finite-dimensional. Define xk+1 = x • xk recursively for

all x ∈ J and k ≥ 1.

Let us denote the operator of multiplication with the element x by Lx, Lxy = x • y = Lyx.
Then the Jordan identity can be written as [Lx, Lx2 ] = 0. Jordan algebras are power-associative, i.e.,
xk • xl = xk+l for all k, l ≥ 1. Moreover, we have the following result.

Lemma 3.2. [21, p. 35] In a Jordan algebra we have [Lxk , Lxl ] = 0 for all k, l ≥ 1, and all operators
Lxk are generated by the two operators Lx, Lx2 .

Definition 3.3. [29, p. 24] A trace form on a Jordan algebra J is a symmetric bilinear form γ such
that

γ(u • v, w) = γ(u, v • w) (7)

for all u, v, w ∈ J . Equivalently, the operator Lv is self-adjoint with respect to γ for all v ∈ J .

Definition 3.4. [2] A pair (J, γ), where J is a Jordan algebra and γ a non-degenerate trace form on
J , is called metrised.

Definition 3.5. [22, p. 58] An element u of a Jordan algebra J is called nilpotent if ur = 0 for some
r ≥ 1.

Lemma 3.6. [22, Theorem III.5, p. 58] For an element u of a Jordan algebra J the following are
equivalent:

• u is nilpotent,

• Lu is nilpotent,

• there exists m > 0 such that trLur = 0 for all r ≥ m.

Definition 3.7. [21, p. 195] A Jordan algebra J is called nilalgebra if it consists of nilpotent elements.
It is called nilpotent if there exists m ≥ 1 such that the product of every m elements is zero.

Now every Jordan nilalgebra J is solvable [21, Theorem 3, p. 196] and every solvable Jordan algebra
is nilpotent [21, Cor. 1, p. 195]. We thus have the following lemma.

Lemma 3.8. Let J be a Jordan nilalgebra. Then J is nilpotent.

Definition 3.9. A Jordan algebra J is called direct sum of the subalgebras J1, . . . , Jr, J = ⊕rk=1Jk,
if J is the sum of J1, . . . , Jr as a vector space and x • y = 0 for all x ∈ Jk, y ∈ Jl with k 6= l.

Clearly the summands in a direct sum decomposition are ideals, i.e., x•y ∈ Jk for all x ∈ Jk, y ∈ J .

5



Definition 3.10. A metrised Jordan algebra (J, γ) is called direct sum of the metrised subalgebras
(J1, γ1), . . . , (Jr, γr) if J = ⊕rk=1Jk, γk = γ|Jk for all k, and the ideals Jk are mutually γ-orthogonal.

An element e ∈ J is called unit element if x • e = x for all x ∈ J . A Jordan algebra possessing
a unit element is called unital. In a unital Jordan algebra J , y = x−1 is called the inverse of x if
x • y = e and Lx, Ly commute [22, p. 67]. If it exists, the inverse is unique [22, Lemma III.5, p. 66]
and satisfies (x−1)−1 = x [22, p. 67]. In this case we shall call x invertible. Introduce the operator
Ux = 2L2

x −Lx2 , which is quadratic in the parameter x. We have the following characterization of the
invertible elements of J .

Theorem 3.11. [22, Theorem III.12, p. 67] Let J be a unital Jordan algebra. An element x ∈ J is
invertible if and only if detUx 6= 0. In this case the inverse is given by x−1 = U−1

x x, and

Ux−1 = U−1
x , Lx−1 = LxU

−1
x = U−1

x Lx.

It follows that the set of invertible elements in a unital Jordan algebra is open, dense, and conic,
its complement being the zero set of the homogeneous polynomial detUx.

The derivative of the inverse is given by [22, eq. (1), p. 73]

Dux
−1 = −U−1

x u. (8)

Here Du denotes the derivative with respect to x in the direction of u.

Definition 3.12. [26, p. 52] Let J be a Jordan algebra with multiplication •. The unital hull Ĵ of J
is the vector space R× J equipped with a multiplication •̂ defined by

(α, u)•̂(β, v) = (αβ, αv + βu+ u • v). (9)

The unital hull Ĵ is a unital Jordan algebra, with ê = (1,0) as its unit element, and the original
algebra J is canonically isomorphic to the ideal {0} × J ⊂ Ĵ [26, p. 149].

Definition 3.13. [31, p. 307] Let J be a Jordan algebra. An element a ∈ J is called quasi-regular if
there exists b ∈ J such that in the unital hull Ĵ of J the element (1,−a) is invertible and (1,−a)−1 =
(1,−b). Then b is called quasi-inverse and denoted by a(−1).

Lemma 3.14. [31, Theorem 7, pp. 307–308] Let J be a Jordan algebra. An element a ∈ J is quasi-
regular with b ∈ J its quasi-inverse if and only if (1,−a)•̂(1,−b) = ê and [La, Lb] = 0.

Note that the zero element is always quasi-regular, and its quasi-inverse is again zero. Moreover, if
(1,−a) has an inverse in Ĵ , then by (9) the first component of this inverse must be equal to 1. Thus a
is quasi-regular if and only if (1,−a) is invertible in Ĵ . The set of quasi-regular elements is hence open
and dense in J .

In the present paper, a central role is played by domains of elements a ∈ J such that (1, a) is
invertible in Ĵ , i.e., elements whose negative is quasi-regular. We shall denote the connected component
of zero in the set of all such elements by Y. Hence a ∈ Y if and only if −a is quasi-regular and there
exists a path linking −a and 0 in the set of quasi-regular elements. For a ∈ J such that −a is
quasi-regular we have by definition that (1, a)•̂(1,−(−a)(−1)) = (1, 0), which by (9) yields

a • (−a)(−1) = a− (−a)(−1). (10)

Lemma 3.15. [31, p. 310] Let J be a nilpotent Jordan algebra. Then every element of J is quasi-
regular.

3.1 The set of quasi-regular elements

In this subsection we shall investigate the symmetry properties of the set of quasi-regular elements of
a Jordan algebra, more precisely of the connected component Y of the zero element in this set. It
will turn out that any graph immersion with parallel cubic form is a covering space, for which the
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component Y serves as a base. The main goal will be to represent Y as a homogeneous space and to
describe its symmetry group. The second goal will be to compute the derivative of the quasi-inverse.

Let J be a real Jordan algebra, Ĵ its unital hull, and ê ∈ Ĵ the unit element. Denote by Ŷ the
connected component of ê in the set of invertible elements of Ĵ . Since Ŷ is conic, we have that the
connected component Y of zero in the set of elements whose negative is quasi-regular is given by
Y = {a ∈ J | (1, a) ∈ Ŷ}, i.e., {1} × Y = Ŷ ∩ ({1} × J).

Let Π ⊂ GL(Ĵ) be the group generated by the transformations Uû, where û ∈ Ĵ varies in a small
neighbourhood of ê. Define also the subgroup Π1 ⊂ Π generated by the transformations U(1,u), where
u ∈ J varies in a small neighbourhood of zero. For any a > 0, u ∈ J we have U(a,au) = a2U(1,u). Hence
Π = Π1 × R++ decomposes into a direct product.

Theorem 3.16. [22, Theorem VI.2, p. 110] The group Π acts transitively on Ŷ.
In the context of [22, Chapter VI] this theorem was proven for semi-simple Jordan algebras. How-

ever, as we have sketched in [14, Section 3.1], the proof is valid for every unital Jordan algebra, in
particular, for Ĵ .

For any û = (a, u) ∈ Ĵ the operator Uû multiplies the first component of Ĵ = R×J by a2. Therefore
Π1 is precisely the subgroup of Π which leaves the set {1} × Y ⊂ Ŷ invariant.

Let us find the generators of Π1. Set û0 = ê for every û ∈ Ĵ . Then we can define the exponential
exp(û) =

∑∞
k=0

1
k! û

k = exp(Lû)ê, which bijectively maps a neighbourhood of zero in Ĵ to a neigh-
bourhood of ê [22, pp. 82–83]. Note that for û = (a, u), the first component of exp(û) is given by
ea.

Lemma 3.17. [22, Lemma IV.4, p. 83] For every ŵ ∈ Ĵ we have Uexp(ŵ) = exp(2Lŵ).

Therefore the group Π is generated by the 1-dimensional subgroups exp(tLŵ), ŵ ∈ Ĵ , and the
group Π1 is generated by the 1-dimensional subgroups exp(tL(0,w)), w ∈ J . The latter generate a flow
ϕw : J × R→ J with tangent vector field

Xw(x) = w + w • x = w + Lwx. (11)

Note that this vector field is affine-linear, and hence Π1 acts on J by affine-linear transformations.

Corollary 3.18. The group Π1 acts transitively on Y.

Proof. By Theorem 3.16 Π1 acts transitively on the set {1} × Y ⊂ Ŷ. This action induces a transitive
action also on Y ⊂ J .

We shall now compute the L and U operators in Ĵ . By (9) we have for all x ∈ J , x̂ = (1, x)

Lx̂ =

(
1 0
x I + Lx

)
, L2

x̂ =

(
1 0

2x+ x2 I + 2Lx + L2
x

)
,

x̂2 = (1, 2x+ x2), and hence

Ux̂ = 2L2
x̂ − L(1,2x+x2) =

(
1 0

2x+ x2 I + 2Lx + Ux

)
.

By Theorem 3.11 the element x̂ is invertible, i.e., −x is quasi-regular, if and only if the matrix I +
2Lx + Ux is invertible. In this case we have

U−1
x̂ =

(
1 0

−(I + 2Lx + Ux)−1(2x+ x2) (I + 2Lx + Ux)−1

)
. (12)

Let ∇, D̂ be the flat affine connections of J, Ĵ , respectively. For u ∈ J and x ∈ Y, denote by y
the directional derivative ∇u(−x)(−1). By (8) and the definition of the quasi-inverse we have (0, y) =
D̂(0,u)x̂

−1 = U−1
x̂ (0, u). By (12) we then have

∇u(−x)(−1) = (I + 2Lx + Ux)−1u. (13)

We shall now consider the particular situation when u = Xw(x) for some w ∈ J . Then Lx̂ŵ = (0, u) by
definition of the vector field Xw. By Theorem 3.11 it follows that (0, y) = U−1

(1,x)Lx̂ŵ = Lx̂−1ŵ. Now

note that x̂−1 = (1,−(−x)(−1)), and hence Lx̂−1ŵ = (0, Xw(−(−x)(−1))). We therefore obtain

∇Xw(x)(−x)(−1) = Xw(−(−x)(−1)) = w − w • (−x)(−1). (14)
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4 Immersions and Jordan algebras

We are now in a position to establish a connection between non-degenerate graph immersions with
parallel cubic form and real metrised Jordan algebras.

4.1 Jordan algebras defined by immersions

In this subsection we show that a non-degenerate graph immersion f : Ω → An+1 with parallel cubic
form equips the tangent space TyΩ with the structure of a metrised Jordan algebra J for every point
y ∈ Ω.

Since we consider only a neighbourhood of the point y, it is convenient to identify Ω with a subset
of Rn and to assume the existence of a representing function F : Ω → R. By Corollary 2.1 f has
parallel cubic form if and only if F obeys the quasi-linear fourth-order PDE (6).

Let us deduce the integrability condition of this PDE. Differentiating (6) with respect to the coor-
dinate xη and substituting the appearing fourth order derivatives of F by the right-hand side of (6),
we obtain after simplification

F,αβγδη =
1

4
F ,ρσF ,µν (F,βηνF,αρµF,γδσ + F,αηµF,ρβνF,γδσ + F,γηνF,αρµF,βδσ + F,αηµF,ργνF,βδσ

+F,βηνF,γρµF,αδσ + F,γηµF,ρβνF,αδσ + F,βηνF,δρµF,αγσ + F,δηµF,ρβνF,αγσ

+F,δηνF,αρµF,βγσ + F,αηµF,ρδνF,βγσ + F,δηνF,γρµF,αβσ + F,γηµF,ρδνF,αβσ) .

The right-hand side must be symmetric in all 5 indices. Commuting the indices δ, η and equating the
resulting expression with the original one we obtain

F ,ρσF ,µν (F,βηνF,δρµF,αγσ + F,αηµF,ρδνF,βγσ + F,γηµF,ρδνF,αβσ

−F,βδνF,ηρµF,αγσ − F,αδµF,ρηνF,βγσ − F,γδµF,ρηνF,αβσ) = 0.

Raising the index η, we get by virtue of (4) the integrability condition

Kη
αµK

µ
δρK

ρ
βγ +Kη

βµK
µ
δρK

ρ
αγ +Kη

γµK
µ
δρK

ρ
αβ = Kµ

αδK
η
ρµK

ρ
βγ +Kµ

βδK
η
ρµK

ρ
αγ +Kµ

γδK
η
ρµK

ρ
αβ .

This condition is satisfied if and only if

Kη
αµK

µ
δρK

ρ
βγu

αuβuγvδ = Kµ
αδK

η
ρµK

ρ
βγu

αuβuγvδ

for all tangent vector fields u, v on Ω, which can be written as

K(K(K(u, u), v), u) = K(K(u, v),K(u, u)). (15)

Theorem 4.1. Let f : Ω→ An+1 be a non-degenerate graph immersion with parallel cubic form. Let
y ∈ Ω be a point and let • : TyΩ × TyΩ → TyΩ be the multiplication (u, v) 7→ K(u, v) defined by the

difference tensor K = ∇ − ∇̂ at y. Let γ be the symmetric non-degenerate bilinear form defined on
TyΩ by the affine fundamental form h.

Then the tangent space TyΩ, equipped with the multiplication •, is a real Jordan algebra J , and
(J, γ) is a metrised Jordan algebra.

Proof. Assume the conditions of the theorem. The tensor Kγ
αβ is symmetric in the indices α, β, hence

the multiplication • is commutative. With u2 = u • u condition (15) can be rewritten as

u • (u2 • v) = u2 • (u • v),

which is the Jordan identity in Definition 3.1. Thus TyΩ, equipped with the multiplication •, is a
Jordan algebra J .

Let now u, v, w ∈ J be arbitrary vectors. We obtain

γ(u • v, w) = h[K[u, v], w] = −1

2
C[u, v, w] = γ(u, v • w)

by the total symmetry of the cubic form C. Hence the form γ satisfies (7) and is a trace form. Finally,
γ is non-degenerate because the immersion f is non-degenerate.
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Lemma 4.2. Assume the conditions of Theorem 4.1. If f is an improper affine hypersphere with affine
normal equal to ξ, then J is nilpotent and det γ = ±1.

Proof. Assume the conditions of the lemma. By Lemma 2.2 we have detF ′′ ≡ ±1. Since γ = F ′′(y),
we get det γ = ±1. Further, we have

∇u(log |detF ′′|) = F ,αβF,αβγu
γ = −2Kα

αγu
γ = −2 trLu = 0

for every tangent vector u ∈ TyΩ, because detF ′′ is constant. By Lemma 3.6 the Jordan algebra J is
a nilalgebra, and by Lemma 3.8 it is nilpotent.

Lemma 4.3. Assume the notations of Definition 2.3 and let (Jk, γk) be the metrised Jordan algebras
defined by the graph immersions fk, as in Theorem 4.1. Then the metrised Jordan algebra (J, γ) defined
by the product f of the graph immersions f1, . . . , fr is the direct sum of the metrised Jordan algebras
(Jk, γk).

Proof. The assertion of the lemma directly follows from the block-diagonal structure of the derivatives
F ′′, F ′′′ which was established in the proof of Lemma 2.4.

4.2 Immersions defined by Jordan algebras

In this subsection we consider the opposite direction and show that every metrised real Jordan algebra
(J, γ) defines a vertically translationally invariant involutive distribution ∆ on the product D = Y ×R,
such that the integral hypersurfaces of ∆ are graph immersions with parallel cubic form. Here −Y is
the connected component of zero in the set of quasi-regular elements of J , as defined in Section 3.

The distribution ∆ shall be defined by the tangent spaces to the orbits of a group acting on D. For
every w ∈ J , define the affine-linear vector field

X̃w(x, α) = (Xw(x), γ(w, x))

on J ×R, where Xw(x) is defined by (11) on J . Let ϕ̃w : (J ×R)×R→ J ×R be the flow defined by
this vector field on J × R. Let Θ be the group of affine-linear transformations of J × R generated by
the flows ϕ̃w, w ∈ J . Let further π : J × R → J be the canonical projection, and D,∇ the flat affine
connections on J × R, J , respectively.

By definition the flow ϕ̃w on the product J×R projects by virtue of π down to the flow ϕw generated
by (11) on J , i.e., π ◦ ϕ̃w = ϕw ◦ (π × Id). Therefore we may define a surjective group homomorphism
H : Θ → Π1 by restricting the action of any element g ∈ Θ to the first component of the product
J × R. In other words, we have π ◦ g = H(g) ◦ π for every g ∈ Θ.

Since Y is invariant under the action of Π1, and the generators of Θ are invariant under vertical
translations, we have that the product set D is invariant under the action of Θ.

Lemma 4.4. Let ã = (a, α) ∈ D and b ∈ Y be arbitrary. Then there exists an element g ∈ Θ such
that π(gã) = b.

Proof. By Corollary 3.18 there exists an element g′ ∈ Π1 such that g′a = b. It then suffices to choose
any g ∈ H−1[g′].

Let us define a 1-form ζ on D. At the point (x, α) ∈ D we set

ζ(u, µ) = γ(u, (−x)(−1))− µ, (16)

where (u, µ) ∈ J×R is a tangent vector at (x, α). Let the distribution ∆ on D be defined by the kernel
of ζ, and let ξ be the constant vector field on J × R given by (0, 1).

Lemma 4.5. The form ζ does not vanish on D, is closed, and ζ(ξ) ≡ −1. The distribution ∆ is
n-dimensional and involutive.

9



Proof. At (x, α) ∈ D we have ζ(ξ) = γ(0, (−x)(−1))− 1 = −1. Hence ζ is nowhere zero and its kernel
∆ is an n-dimensional distribution.

At (x, α) ∈ D the derivative of ζ in the direction of a vector (v, ν) ∈ J ×R is by virtue of (13) given
by

(D(v,ν)ζ)(u, µ) = γ(u,∇v(−x)(−1)) = γ(u, (I + 2Lx + Ux)−1v). (17)

But the operator (I + 2Lx +Ux)−1 is self-adjoint with respect to γ, because the operators Lx, Lx2 are
self-adjoint by virtue of Definition 3.3. Thus (17) implies (D(v,ν)ζ)(u, µ) = (D(u,µ)ζ)(v, ν). Hence Dζ
is symmetric in its two arguments, and the exterior derivative of ζ vanishes.

Lemma 4.6. The form ζ and the vector field ξ are invariant under the action of the group Θ on D.

Proof. For the Lie derivatives of ζ with respect to the generators of Θ we have

(LX̃wζ)(u, µ) = (DX̃w
ζ)(u, µ) + ζ(D(u,µ)X̃w) = γ(u,∇Xw(−x)(−1)) + ζ(∇uXw, γ(w, u))

= γ(u,w − w • (−x)(−1)) + γ(w • u, (−x)(−1))− γ(w, u) = 0.

Here the third equality comes from (14), and the fourth equality holds because γ is a trace form. Thus
ζ is invariant with respect to the action of Θ.

The corresponding Lie derivatives of ξ at (x, α) ∈ D are given by

LX̃wξ = −∂X̃w(x, α)

∂α
= 0.

Here the first equality follows from the fact that ξ is a constant vector field. Hence the vector fields ξ
and X̃w commute on D, and ξ is left invariant by the action of Θ.

Corollary 4.7. The distribution ∆ consists of the tangent spaces to the orbits of the group Θ.

Proof. Let w ∈ J . Then at (x, α) ∈ D we have

ζ(X̃w) = γ(w + w • x, (−x)(−1))− γ(w, x) = γ(w, (−x)(−1)) + γ(w, (−x)(−1) • x)− γ(w, x) = 0,

where the last equality is due to (10). Hence the vector fields X̃w generating Θ are tangent to ∆.
It follows that the orbit of Θ through a given point of D is contained in the integral manifold of ∆
through that point.

Let (x, α) ∈ D be arbitrary. By Lemma 4.4 there exists β ∈ R such that (0, β) is in the orbit of
(x, α). At (0, β) we have ζ(u, µ) = −µ, and the kernel of ζ equals the horizontal subspace. On the
other hand, X̃w(0, β) = (w, 0), and hence every vector of the horizontal subspace is actually in the
tangent space to the orbit of Θ through (0, β). Therefore the claim of the corollary holds at (0, β).
Since the group Θ preserves the form ζ, this relation holds also at the initial point (x, α).

Corollary 4.8. The orbits of the group Θ in D are given by the maximal integral manifolds of the
distribution ∆.

Proof. The preceding corollary implies that every integral manifold of ∆ must be contained in a single
orbit. The opposite inclusion follows from the fact that Θ is connected.

Lemma 4.9. Let M ⊂ D be an integral manifold of the distribution ∆, equipped with the constant
transversal vector field ξ. The affine fundamental form h induced on M is given by the restriction of
the derivative Dζ to M .

Proof. Let X,Y be vector fields on M . By definition we have DXY = ∇XY + h(X,Y )ξ, where ∇
denotes the induced connection on M . Since ζ(∇XY ) = ζ(Y ) = 0, ζ(ξ) = −1, we have h(X,Y ) =
−ζ(DXY ) = (Dζ)(X,Y ).

Lemma 4.10. The kernel of the derivative Dζ is one-dimensional and generated by ξ. In particular,
Dζ is non-degenerate on ∆.
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Proof. By (17) the matrix of Dζ is given by diag(γ(I + 2Lx +Ux)−1, 0). Both γ and I + 2Lx +Ux are
non-degenerate. Hence the kernel of Dζ is one-dimensional and generated by ξ. Since ∆ is transversal
to ξ, the form Dζ is non-degenerate on ∆.

Lemma 4.11. Let M be a maximal integral manifold of ∆, considered as a graph immersion equipped
with the transversal vector field ξ. Then M is a homogeneous space on which the group Θ of affine-
linear transformations acts transitively and isometrically. Its image π[M ] coincides with the domain
Y, the restriction of π to M is a covering map, and the different sheets are mapped to each other by
vertical translations.

Proof. From Corollary 4.8 it follows that Θ acts transitively on M . By Lemma 4.6 the form ζ and hence
its derivatives are invariant with respect to the action of the group Θ. Then the group Θ preserves the
affine fundamental form on M by virtue of Lemma 4.9, and M is a homogeneous space. It also follows
that M is affine complete.

The relation π[M ] = Y follows from Lemma 4.4. Since the distribution ∆ is invariant with respect
to translations parallel to ξ, every simply connected neighbourhood in Y is evenly covered by π|M .
Thus π|M is a covering map, and the different sheets over evenly covered neighbourhoods are related
by vertical translations.

We shall now compute a potential of ζ in a cylindrical neighbourhood of the line {0} × R ⊂ D.
Let || · || be a Euclidean norm on J such that the matrix of γ is orthogonal with respect to this norm.
Let Υk be the compact set of all possible products of k elements on the unit sphere with respect to
the norm || · ||, and define ρk = maxy∈Υk ||y|| ∈ [0,∞). By induction on k it is not hard to see that

ρk ≤ ρk−1
2 . Define R = lim infk→∞ ρ

−1/k
k . We have R ≥ limk→∞ ρ

− k−1
k

2 = ρ−1
2 > 0, and R ∈ (0,∞].

Let BR ⊂ J be the open ball with radius R around 0.

Lemma 4.12. Assume above definitions. Then the function F (x) =
∑∞
k=2

(−1)k

k γ(x, xk−1) is analytic
on BR and the function Φ(x, α) = F (x) − α is analytic on the product BR × R. Moreover, BR ⊂ Y,
BR × R ⊂ D, and Φ is a potential of the 1-form ζ on BR × R.

Proof. Let x ∈ BR and ||x|| = r < R. Then ||xk|| ≤ ρkr
k. Since γ is orthogonal, it follows that

|γ(x, xk−1)| ≤ r||xk−1|| ≤ ρk−1r
k. Hence the series defining the function F (x) is uniformly absolutely

convergent on every compact set contained in BR. Therefore F is analytic in BR and Φ is analytic in
BR × R.

The partial derivative of xk in the direction u is given by

∇uxk = ∇u(Lk−1
x x) =

k−1∑
l=1

Ll−1
x LuL

k−1−l
x x+ Lk−1

x u =

k−1∑
l=1

Ll−1
x Lux

k−l + Lk−1
x u

=

k∑
l=1

Ll−1
x Lxk−lu,

where Lx0 is by convention the identity matrix. The derivative of F is then given by

∇uF =

∞∑
k=2

(−1)k

k

(
γ(∇ux, xk−1) + γ(x,∇uxk−1)

)
=

∞∑
k=2

(−1)k

k

(
γ(u, xk−1) +

k−1∑
l=1

γ(x, Ll−1
x Lxk−1−lu)

)

=

∞∑
k=2

(−1)k

k

(
γ(xk−1, u) +

k−1∑
l=1

γ(Lxk−1−lLl−1
x x, u)

)
=

∞∑
k=2

(−1)kγ(xk−1, u)

=

∞∑
k=1

(−1)k+1γ(xk, u), (18)

where the fourth equality comes from power-associativity and all sums define analytic functions in BR.
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For every x ∈ BR we have

(1, x)•̂(1,
∞∑
k=1

(−x)k) = (1, x+

∞∑
k=1

(−x)k −
∞∑
k=1

(−x)k+1) = (1,0) = ê.

From Lemmas 3.2 and 3.14 it then follows that

(−x)(−1) = −
∞∑
k=1

(−x)k. (19)

Thus every element in BR is quasi-invertible and BR ⊂ Y, BR × R ⊂ D.
By (19) the form ζ defined by (16) is given by ζ(u, µ) =

∑∞
k=1(−1)k+1γ(u, xk) − µ. From (18) it

then follows that ζ has the potential Φ(x, α) = F (x)− α.

Lemma 4.13. Assume the notations of Lemma 4.12, and set x̃ = −(−x)(−1). Then the identity
F (x) + F (x̃) + γ(x, x̃) ≡ 0 holds on BR.

Proof. Since γ is a trace form, we have γ(xk, xl) = γ(x, xk+l−1) for all k, l ≥ 1 and hence formally

F (x̃) =

∞∑
k=2

(−1)k

k

∞∑
l=k

(−1)l
(
l − 1
k − 1

)
γ(x, xl−1) =

∞∑
l=2

(−1)l

l
γ(x, xl−1)

l∑
k=2

(−1)k
(
l
k

)

=

∞∑
l=2

(−1)l(l − 1)

l
γ(x, xl−1).

By virtue of
∑l
k=0

(
l
k

)
= 2l the power series converge absolutely in BR/2. In this smaller ball we then

get

F (x̃) + F (x) =

∞∑
l=2

(−1)lγ(x, xl−1) = −γ(x, x̃).

By analytic continuation this identity then also holds on BR.

Corollary 4.14. Assume the notations of Lemma 4.12 and let M be the maximal integral manifold
through (0, β) ∈ D of the involutive distribution ∆. Then M contains the graph M ′ of the function
F (x) + β.

Proof. For x ∈ BR we have Φ(x, F (x) + β) = −β, and the graph of F (x) + β is a level surface of the
function Φ. Hence by Lemma 4.12 this graph is an integral manifold of the distribution ∆. Note that
M ′ is connected. Since F (0) = 0, the point (0, β) ∈M is contained in M ′. Hence M ′ ⊂M .

Theorem 4.15. Let M be a maximal integral manifold of the distribution ∆, equipped with the transver-
sal vector field ξ. Then M is a homogeneous, symmetric, analytic, non-degenerate, affine complete
graph immersion with parallel cubic form. The restriction π|M is a covering map of the domain Y ⊂ J ,
and different sheets of the covering are related by a translation parallel to the vector ξ.

Proof. By virtue of Lemmas 4.10, 4.11 it remains to show that M is symmetric, analytic, and has
parallel cubic form.

That M is analytic follows from the analyticity of ζ.
Let y = (0, β) ∈ M be an arbitrary point in the preimage of 0 with respect to the covering π|M .

We shall construct a symmetry ς of M around y.
To the point (x, α) ∈ M we associate the point ς(x, α) = (−(−x)(−1), 2β − α + γ(x, (−x)(−1))).

Direct verification yields that y is a fixed point of ς, and that ς is an inversion. By Lemma 4.13 and
Corollary 4.14 the map ς takes a neighbourhood of y in M to M . By analytic continuation it then
maps M to M . By (19) the differential of ς at y is an inversion of the tangent space TyM , multiplying
every tangent vector by −1.
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We shall now show that ς is an isometry. Let us introduce locally the coordinate x ∈ Y on M . By
(17) and Lemma 4.9 the affine fundamental form h at x is given by h(u, v) = γ(u, (I + 2Lx +Ux)−1v),
where u, v ∈ TxM ∼= J are tangent vectors at x. By (13) the images ũ, ṽ ∈ Tς(x)M ∼= J of u, v under
the differential of the map ς are given by ũ = −(I + 2Lx +Ux)−1u, ṽ = −(I + 2Lx +Ux)−1v. We then
have

h(ũ, ṽ) = γ(ũ, (I + 2Lς(x) + Uς(x))
−1ṽ)

= γ((I + 2Lx + Ux)−1u, (I + 2Lς(x) + Uς(x))
−1(I + 2Lx + Ux)−1v)

= γ(u, (I + 2Lx + Ux)−1(I + 2Lς(x) + Uς(x))
−1(I + 2Lx + Ux)−1v).

Here in the third equality we used that I + 2Lx + Ux is self-adjoint with respect to γ. Now note that
ς is an inversion, i.e., ς2 is the identity map. Therefore the differential of ς at x is the inverse of the
differential of ς at ς(x), and hence (I + 2Lx + Ux)−1(I + 2Lς(x) + Uς(x))

−1 = I. It follows that

h(ũ, ṽ) = γ(u, (I + 2Lx + Ux)−1v) = h(u, v),

which proves our claim.
We have constructed an isometric inversion of M around the point y. Since M is a homogeneous

space, this inversion generates an isometric inversion around an arbitrary point y′ ∈M by conjugation
with an isometry taking y to y′. Thus M is a symmetric space.

Let us show that M has parallel cubic form. Choose again y = (0, β) ∈ M . By Corollary 4.14 M
can locally around y be represented as the graph of the function F (x) + β. Note that the powers xk

are homogeneous polynomials of degree k in the entries of x. By (18) we then have at x = 0

F,αβu
αvβ = γ(v, u),

F,αβγu
αuβvγ = −2γ(u • v, u) = −2γ(u2, v),

F,αβγδu
αuβuγuδ = 6γ(u3, u) = 6γ(u2, u2). (20)

The matrix of the Hessian F ′′ is then equal to the matrix of γ, and the coordinate vector of the 1-form
F,αβγu

αuβ is given by −2γu2. Hence

3

2
F ,ρσF,αβρF,γδσu

αuβuγuδ =
3

2
(−2γu2)T γ−1(−2γu2) = 6(u2)T γu2 = 6γ(u2, u2),

and (6) is satisfied at x = 0. By (5) we then have ∇̂C = 0 at y.
However, the action of the symmetry group Θ preserves the covariant derivative ∇̂C of the cubic

form on M , because Θ consists of affine-linear transformations of the ambient space J ×R ∼ An+1 and
preserves the transversal vector field ξ by Lemma 4.6. Since Θ acts transitively on M , we have ∇̂C = 0
identically on M . The manifold M has then parallel cubic form. This completes the proof.

Let us now consider the case when the Jordan algebra J is nilpotent.

Theorem 4.16. Let (J, γ) be a real metrised nilpotent Jordan algebra such that |det γ| = 1. Assume
the notations at the beginning of this subsection, and let M be the maximal integral manifold through
(0, 0) ∈ D of the distribution ∆, equipped with the transversal vector field ξ. Then M is a graph

immersion with the representing function given by the polynomial F (x) =
∑∞
k=2

(−1)k

k γ(x, xk−1). It
is a non-degenerate, affine complete, Euclidean complete, homogeneous, symmetric improper affine
hypersphere with parallel cubic form.

Proof. First note that the sum defining the function F is finite, since J is nilpotent. Hence F is a
polynomial. Moreover, the ball BR from Lemma 4.12 is equal to the whole space J , because there
exists a k0 ∈ N such that ρk = 0 for all k ≥ k0. By Lemma 3.15 we also have Y = J . By Corollary 4.14
the manifold M contains the graph of the function F . Clearly the graph of F is Euclidean complete,
and hence M equals this graph.

That M is affine complete, non-degenerate, homogeneous, symmetric, and has parallel cubic form,
follows from Theorem 4.15.
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We shall now show that M is an improper affine hypersphere. Differentiating (18) in the direction
v, we obtain again by (18)

∇v∇uF =

∞∑
k=1

(−1)k+1γ(∇vxk, u) =

∞∑
k=1

(−1)k+1
k∑
l=1

γ(Ll−1
x Lxk−lv, u).

Hence the Hessian of F is given by the matrix product

F ′′ = γ ·

( ∞∑
k=1

(−1)k+1
k∑
l=1

Ll−1
x Lxk−l

)
= γ ·

( ∞∑
k=0

∞∑
l=0

(−1)k+lLlxLxk

)
.

Now any polynomial with zero constant term in the matrices Lxk , k ≥ 1, is nilpotent. Hence the matrix
in parentheses is the sum of the identity matrix and a nilpotent matrix. Therefore its determinant
equals 1, and detF ′′ = det γ identically on J . The assumption |det γ| = 1 together with Lemma 2.2
conclude the proof.

Finally, we shall consider direct sums of metrised Jordan algebras.

Lemma 4.17. Let (Jk, γk), k = 1, . . . , r, be metrised Jordan algebras, and let (J, γ) be their direct
sum. Let Yk ⊂ Jk, Y ⊂ J be defined as in Subsection 3.1, and let Dk = Yk×R, D = Y ×R. Let ∆k,∆
be the involutive distributions defined on Dk,D, respectively, by the kernels of the corresponding forms
(16). Let Mk,M be the maximal integral manifolds through (0, 0) of ∆k,∆, respectively. Then M is
locally around (0, 0) a product of Mk as defined in Definition 2.3. If the affine hypersurface immersions
Mk are improper affine hyperspheres, then M is globally the product of the Mk.

Proof. The powers of an element x = (x1, . . . , xr) ∈ J are given by xk = (xk1 , . . . , x
k
r ). We thus have

γ(x, xl−1) =
∑r
k=1 γk(xk, x

l−1
k ). By Corollary 4.14 the hypersurfaces Mk can locally around (0, 0) be

represented as graphs of the functions Fk(xk) =
∑∞
l=2

(−1)l

l γk(xk, x
l−1
k ). The product of these graphs

as defined in Definition 2.3 is the graph of the function

F (x) =

r∑
k=1

Fk(xk) =

r∑
k=1

∞∑
l=2

(−1)l

l
γk(xk, x

l−1
k ) =

∞∑
l=2

(−1)l

l
γ(x, xl−1).

Again by Corollary 4.14 this graph then coincides with M in a neighbourhood of (0, 0).
Finally, if the Mk are improper affine hyperspheres, then by Theorem 4.16 Mk is globally the graph

of the polynomial Fk and Jk is nilpotent. Therefore J is also nilpotent and M is globally the graph of
the polynomial F (x) =

∑r
k=1 Fk(xk).

4.3 Immersions and Jordan algebras

Let us summarize the results of the two preceding subsections.
Let f : Ω→ An+1 be a non-degenerate graph immersion with parallel cubic form. Let K = ∇− ∇̂

be the difference tensor between the induced affine connection ∇ on Ω and the Levi-Civita connection
∇̂ of the Hessian pseudo-metric defined by the affine fundamental form h. Choose a point y ∈ Ω and
consider the tensor K at y. This tensor defines a real Jordan algebra Jy on TyΩ. Let further γy be the
symmetric bilinear form defined on TyΩ by h. Then γy is a non-degenerate trace form on Jy and the
pair (Jy, γy) is a metrised Jordan algebra.

On the other hand, let J be a real Jordan algebra of dimension n, γ a non-degenerate trace form
on J , Y ⊂ J the connected component of 0 in the set of the negatives of the quasi-invertible elements
of J , and ∆ the involutive distribution on D = Y × R defined by the kernel of the form (16). Then
every maximal integral manifold of ∆ is a non-degenerate graph immersion with parallel cubic form.

We shall now consider the interplay between these relations.

Lemma 4.18. Assume above notations and suppose that Ω is connected. Set J = Jy, γ = γy. Under
the identification of TyΩ×R = J ×R with An+1 given by (3) the hypersurface M = f [Ω] is an integral
manifold of ∆.
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Proof. By virtue of (3) we shall assume that the target space of the immersion f is the product J ×R.
Then M is locally around f(y) given by the graph of a function F̃ , and the transversal vector field ξ
is given by the constant vector (0, 1). By construction M contains the point f(y) = (0, 0), and the
hyperplane J × {0} is tangent to M at this point. Therefore F̃ (0) = 0, F̃ ′(0) = 0.

Let M ′ be the maximal integral manifold of ∆ passing through the point (0, 0). By Corollary

4.14 the hypersurface M ′ is given by the graph of the function F (x) =
∑∞
k=2

(−1)k

k γ(x, xk−1) in a
neighbourhood of (0, 0). Note that M ′ has parallel cubic form by Theorem 4.15. We have F (0) = 0,
F ′(0) = 0, and the higher derivatives of F at 0 are given by (20).

On the other hand, we have F̃ ′′(0) = γy by definition of γy, and

F̃,αβγu
αuβuγ = −2Kδ

αβF̃,γδu
αuβuγ = −2γy(u2, u)

for all u ∈ Jy. Here the first equality comes form (4), and the second one comes from the relation

F̃ ′′(0) = γy.

Thus at 0 the values of F and its first three derivatives coincide with the values of F̃ and its
corresponding derivatives, respectively. It follows that the hypersurfaces M,M ′ make a contact of
order 3 at 0. But both hypersurfaces are graph immersions with parallel cubic form and must hence
locally coincide. Since M ′ is affine complete by Theorem 4.15, M is actually contained in M ′. The
claim of the lemma now easily follows.

Theorem 4.19. Let f : Ω → An+1 be a connected non-degenerate graph immersion with parallel
cubic form and with constant transversal vector field ξ. Then f [Ω] can be extended to an embedded
hypersurface M ⊂ An+1 such that if M is equipped with the transversal vector field ξ, it is a graph
immersion with parallel cubic form satisfying the properties listed in Theorem 4.15.

Proof. The theorem is a consequence of Lemma 4.18 and Theorem 4.15.

Theorem 4.19 completely characterizes graph immersions with parallel cubic form. It reduces their
study to the study of real metrised Jordan algebras (J, γ). Note that the choice of different points
y ∈ Ω leads to metrised Jordan algebras (Jy, γy) which are isomorphic. The isomorphism is given
by the affine-linear maps g ∈ Θ which take the different points of f [Ω] to each other. Thus the
isomorphism classes of graph immersions with parallel cubic form are in bijective correspondence with
the isomorphism classes of metrised Jordan algebras.

Remark 4.20. A stronger condition than the Jordan identity [Lx, Lx2 ] = 0 is the associativity of the
algebra J , which is equivalent to the condition [Lx, Ly] = 0 for all x, y ∈ J . By [6, eq. (1.7)] this
condition is equivalent to the flatness of the affine metric of the corresponding graph immersions with
parallel cubic form.

We have the following result.

Theorem 4.21. Let f : Ω → An+1 be an improper affine hypersphere with parallel cubic form. Then
f can be extended to an affine complete, Euclidean complete, homogeneous, symmetric improper affine
hypersphere with parallel cubic form, which can be represented as the graph of the polynomial F (x) =∑∞
k=2

(−1)k

k γ(x, xk−1) for some nilpotent metrised Jordan algebra (J, γ) with |det γ| = 1. This improper
affine hypersphere can be represented as a product of lower-dimensional improper affine hyperspheres
with parallel cubic form, in the sense of Definition 2.3, if and only if (J, γ) is the direct sum of lower-
dimensional metrised nilpotent Jordan algebras whose trace forms have determinant equal to ±1.

Proof. First of all, note that Theorem 4.19 is applicable. By Lemma 4.2 the Jordan algebra J is
nilpotent and |det γ| = 1. The claims of the theorem about the extension of f follow from Theorem
4.16. The assertion about decomposability follows from Lemmas 4.3 and 4.17.

Thus the study of improper affine hyperspheres with parallel cubic form can be reduced to the
study of those real nilpotent metrised Jordan algebras which cannot be decomposed into a direct sum
of lower-dimensional such algebras. We shall call such algebras indecomposable. An algebra which can
be decomposed shall be called decomposable.
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5 Improper affine hyperspheres

In this section we provide some results on the structure of improper affine hyperspheres with parallel
cubic form and furnish a classification of irreducible such hyperspheres in dimension up to 5. In
Subsection 5.2 we consider the special case of the Cayley hypersurfaces.

5.1 Structural results

In the preceding section we have proven that improper affine hyperspheres with parallel cubic form
are in one-to-one correspondence with nilpotent metrised Jordan algebras whose metrising form has
determinant ±1. In this subsection we derive and investigate a semi-canonical form of such algebras.
This will subsequently allow us a classification up to isomorphism in low dimensions.

For a real commutative algebra A with multiplication •, define the central ascending series as a
sequence of ideals {0} = C0 ⊂ C1 ⊂ · · · ⊂ Ck . . . by Ck+1 = {x ∈ A |x • y ∈ Ck ∀ y ∈ A}. If A is
nilpotent and finite-dimensional, then there exists an index m such that Cm = A [2, p. 193]. Clearly
in this case the series is strictly increasing up to the index m, and hence {0} = C0 ⊂ · · · ⊂ Cm = A is
a partial flag of linear subspaces.

Lemma 5.1. Let A be a real commutative nilpotent algebra of dimension n and {0} = C0 ⊂ · · · ⊂
Cm = A its central ascending series. Let {0} = V0 ⊂ · · · ⊂ Vn = A be a completion of the partial flag
{Ck} to a complete flag. Then the subspaces Vk are ideals of A, and x • y ∈ Vk−1 for every x ∈ Vk,
1 ≤ k ≤ n, y ∈ A.

Proof. Let 1 ≤ k ≤ n. Then there exists k′ such that Ck′ ⊂ Vk−1, Vk ⊂ Ck′+1. For every x ∈ Vk ⊂
Ck′+1, y ∈ A we have by definition x • y ∈ Ck′ ⊂ Vk−1. Since Vk−1 ⊂ Vk, it also follows that Vk is an
ideal.

Let γ be a non-degenerate symmetric bilinear form defined on a vector space V . For any subspace
U ⊂ V , let U⊥ = {x ∈ V | γ(x, y) = 0 ∀ y ∈ U} be its orthogonal subspace with respect to γ. Since γ is
non-degenerate, we have dimU +dimU⊥ = dimV . However, V = U ⊕U⊥ if and only if the restriction
of γ to U is non-degenerate. We now derive a canonical form for γ if V is equipped with a complete
flag of subspaces.

Lemma 5.2. Let V be a real vector space of dimension n equipped with a complete flag {0} = V0 ⊂
· · · ⊂ Vn = V of subspaces. Let γ be a non-degenerate symmetric bilinear form on V . Then there
exists an ordered basis (v1, . . . , vn) of V and a partition S of the index set {1, . . . , n} into subsets of
cardinality 1 or 2 with the following properties.

i) Vk = span{v1, . . . , vk} for all 1 ≤ k ≤ n,
ii) γ(vi, vj) = 0 for every i, j belonging to different subsets I, J ∈ S
iii) γ(vi, vi) = ±1 for every i such that {i} ∈ S
iv) γ(vi, vi) = γ(vj , vj) = 0 and γ(vi, vj) = 1 for every i 6= j such that {i, j} ∈ S.

Proof. We prove the lemma by induction over the dimension n. For n = 0 there is nothing to prove.
Let n > 0. We shall consider two cases.
1. The restriction of γ to V1 is not zero. Then there exists v1 ∈ V1 such that γ(v1, v1) = ±1,

V = V1⊕V ⊥1 , and the restriction γ′ of the form γ to V ⊥1 is non-degenerate. Define subspaces V ′k ⊂ V ⊥1 ,
k = 0, . . . , n−1, by V ′k = Vk+1∩V ⊥1 . Since V1 ⊂ Vk+1 for all such k, we have dimV ′k = dimVk+1−1 = k,
and Vk+1 = V ′k ⊕ V1. It follows that {0} = V ′0 ⊂ · · · ⊂ V ′n−1 = V ⊥1 is a complete flag of subspaces of
V ⊥1 . Let {v′1, . . . , v′n−1} be the ordered basis of V ⊥1 and S′ the partition of {1, . . . , n − 1} satisfying

properties i) — iv) by the induction hypothesis on V ⊥1 and γ′. Define vk = v′k−1, k = 2, . . . , n, let S̃′

be the partition of {2, . . . , n} obtained from S′ by adding 1 to each index, and set S = {1} ∪ S̃′. Then
the basis {v1, . . . , vn} of V and the partition S of {1, . . . , n} are easily seen to satisfy i) — iv).

2. The restriction of γ to V1 is zero. Since γ is non-degenerate, there exists an index l ≥ 2 such
that Vl−1 ⊂ V ⊥1 , Vl 6⊂ V ⊥1 . Choose an arbitrary nonzero vector v1 ∈ V1. Then the set A = {x ∈
Vl | γ(v1, x) = 1} is a proper affine hyperplane in Vl which is parallel to Vl−1. Choose an arbitrary

vector ṽ ∈ A and define vl = ṽ − γ(ṽ,ṽ)
2 v1 ∈ A. We then have γ(vl, vl) = γ(ṽ, ṽ) − γ(ṽ, ṽ)γ(ṽ, v1) = 0,

16



and γ(v1, vl) = 1, because vl ∈ A. Since the restriction of γ to the 2-dimensional subspace span{v1, vl}
is non-degenerate, its restriction γ′ to the subspace V ′ = (span{v1, vl})⊥ = V ⊥1 ∩ (span{vl})⊥ is
non-degenerate too, and we have V = V1 ⊕ span{vl} ⊕ V ′. For k = 0, . . . , l − 2 define subspaces
V ′k = Vk+1 ∩ V ′, for k = l − 1, . . . , n− 2 define subspaces V ′k = Vk+2 ∩ V ′. We have v1 ∈ Vk ∩ V ⊥1 , and
hence Vk ∩ V ⊥1 6⊂ (span{vl})⊥ for all k ≥ 1. It follows that dim(Vk ∩ V ′) = dim(Vk ∩ V ⊥1 ) − 1 for all
k ≥ 1. But dim(Vk ∩ V ⊥1 ) = dimVk = k for k < l and dim(Vk ∩ V ⊥1 ) = dimVk − 1 = k − 1 for k ≥ l.
Thus dimV ′k = k for all k, and {0} = V ′0 ⊂ · · · ⊂ V ′n−2 = V ′ is a complete flag of subspaces of V ′. Let
{v′1, . . . , v′n−2} be the ordered basis of V ′ and S′ the partition of {1, . . . , n− 2} satisfying properties i)
— iv) by the induction hypothesis on V ′ and γ′. Define vk = v′k−1 for k = 2, . . . , l − 1, vk = v′k−2 for

k ≥ l + 1, let S̃′ be the partition of {2, . . . , l − 1, l + 1, . . . , n} obtained from S′ by adding 1 to each
index i ≤ l− 2 and 2 to each index i ≥ l− 1, and set S = {1, l} ∪ S̃′. Then the basis {v1, . . . , vn} of V
and the partition S of {1, . . . , n} are easily seen to satisfy i) — iv).

Definition 5.3. Let (J, γ) be a real nilpotent metrised Jordan algebra of dimension n. We shall say
that (J, γ) is in semi-canonical form if the following holds:

i) x • y ∈ span{e1, . . . , ek−1} for every x ∈ span{e1, . . . , ek}, 1 ≤ k ≤ n, and y ∈ J . Equivalently,
the structure coefficients of J satisfy Kδ

αβ = 0 whenever δ ≥ min(α, β).
ii) There exists a partition S of {1, . . . , n} into subsets of cardinality 1 or 2 such that the matrix of

γ is block-diagonal with respect to this partition with diagonal blocks equal to +1,−1, or

(
0 1
1 0

)
.

Here e1, . . . , en are the standard basis vectors of J .
The next result concerns the interplay between the semi-canonical form and the property of irre-

ducibility.

Lemma 5.4. Let (J, γ) be a real nilpotent metrised Jordan algebra of dimension n in semi-canonical
form. If there exists 1 ≤ k < n such that the subspaces V = span{e1, . . . , ek} and V ′ = span{ek+1, . . . , en}
are mutually γ-orthogonal, then (J, γ) is decomposable.

Proof. We have to show that both subspaces V, V ′ are ideals. That V is an ideal follows from property
i) in Definition 5.3. Let u ∈ J , v ∈ V , w ∈ V ′ be arbitrary. We then have γ(u •w, v) = γ(w, u • v) = 0.
Here the first equality holds by (7) and the second one because u • v ∈ V and w ∈ V ′. Hence u • w is
γ-orthogonal to the whole subspace V and must be an element of V ′. Thus V ′ is also an ideal. This
completes the proof.

Theorem 5.5. Every real nilpotent metrised Jordan algebra (J, γ) with det γ = ±1 can be brought
to semi-canonical form in the sense of Definition 5.3 by an appropriate coordinate transformation.
In addition, if m is the number of blocks of size 2 in this form, then the partition S can be chosen
equal to {{1, n}, {2, n− 1}, . . . , {m,n+ 1−m}, {m+ 1}, . . . , {n−m}}, and γ may be chosen such that
γ(ek, ek) ≥ γ(el, el) for all m+ 1 ≤ k < l ≤ n−m.

Proof. Let {0} = V0 ⊂ · · · ⊂ Vn = J be a complete flag of subspaces obtained by completing the
central ascending series of J . Let (v1, . . . , vn) be an ordered basis of J and S a partition of {1, . . . , n}
satisfying i) — iv) in Lemma 5.2. Choose a coordinate system on J by setting ek = vk for all k.
Then by properties ii) — iv) of Lemma 5.2 the matrix of γ is as required in ii) of Definition 5.3. By
property i) of Lemma 5.2 and by Lemma 5.1 property i) of Definition 5.3 holds too, and (J, γ) is in
semi-canonical form.

Let us show that the partition S can be brought to the required form by a sequence of permutations
of coordinates. First we show that for 1 ≤ i ≤ n− 1 we can exchange the basis vectors ei, ei+1 without
invalidating property i) of Definition 5.3 if the partition S satisfies one of the following conditions:

1) S contains subsets {i}, {i+ 1, l} with i+ 1 < l;
2) S contains subsets {k, i}, {i+ 1} with k < i;
3) S contains subsets {k, i}, {i+ 1, l} with k < i, i+ 1 < l;
4) S contains subsets {i, k}, {i+ 1, l} with i+ 1 < k < l;
5) S contains subsets {k, i}, {l, i+ 1} with k < l < i;
6) S contains the subsets {i}, {i+ 1}.
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It suffices to show that for every x ∈ Vi+1, y ∈ J we have x • y ∈ Vi−1. Set k = i in cases 1, 6 and
l = i+ 1 in cases 2, 6 above. Then we have k < l and (span{ei+1})⊥ = span{e1, . . . , el−1, el+1, . . . , en}
in all cases. It follows that γ(ei+1 • y, ek) = γ(ek • y, ei+1) = 0, because ek • y ∈ span{e1, . . . , ek−1} ⊂
(span{ei+1})⊥. But then ei+1 • y ∈ (span{ek})⊥ = span{e1, . . . , ei−1, ei+1, . . . , en}. On the other
hand, ei+1 • y ∈ Vi, and hence ei+1 • y ∈ Vi ∩ (span{ek})⊥ = Vi−1. Now every vector x ∈ Vi+1 can be
decomposed as x = αei+1 + x′ for some α ∈ R and x′ ∈ Vi. But x′ • y ∈ Vi−1, and hence x • y ∈ Vi−1,
which proves our claim.

Note that permutations of the coordinates do not change the number of subsets in the partition S,
in particular, the number of subsets of size 2 stays equal to m. Let j ≥ 1 be the smallest integer such
that {j, n+ 1− j} 6∈ S. If j > m, then S is already in the required form. Let now j ≤ m.

Suppose first that {j} ∈ S. Let i ≥ j be the smallest integer such that {i + 1} 6∈ S. Then there
exists l > i + 1 such that {i + 1, l} ∈ S and case 1 above holds. Let us exchange the basis vectors
ei, ei+1 and update the partition S accordingly. As a result, we will now have {i, l} ∈ S. If i > j, then
also {i − 1} ∈ S and we may exchange ei−1, ei. Continuing this process, we arrive at a partition S
containing the subset {j, l}.

We may hence assume that {j} 6∈ S, and there exists i > j such that {j, i} ∈ S. Suppose that
i < n + 1 − j. Setting k = j, we are then in one of the cases 2, 3, 5 above. Let us then exchange the
basis vectors ei, ei+1 and update S accordingly. Then we will have {j, i+ 1} ∈ S. If i+ 1 < n+ 1− j,
then we exchange ei+1, ei+2 and continue the process until {j, n+ 1− j} ∈ S.

We have shown that we can find a sequence of coordinate permutations such that the subset
{j, n+ 1− j} becomes an element of S, while (J, γ) remains in semi-canonical form. Increasing j and
repeating this process leads eventually to the required partition S. By virtue of case 6 above we may
finally sort the remaining indices k = m+ 1, . . . , n−m according to the value of γ(ek, ek), bringing γ
to the desired form.

Lemma 5.6. If the partition S in the previous theorem contains a subset of cardinality one, then the
coordinate transformation in this theorem can be chosen to be unimodular.

Proof. The determinant of γ had modulus 1 at the beginning as well as at the end of the procedure.
Hence the applied coordinate transformation had determinant ±1. If the determinant happens to be
equal to −1, we may apply an additional transformation which does not change the form of γ. If S
contains an index set of cardinality 1, say {i}, this transformation can be defined by negating the unit
basis vector ei.

It should be stressed that the semi-canonical form in Definition 5.3 is not unique. It depends on
the particular completion of the central ascending series, and also on the choice of the vector ṽ in case
2 in the proof of Lemma 5.2.

Corollary 5.7. Let M be an irreducible improper affine hypersphere with parallel cubic form and
definite affine metric. Then M is 1-dimensional and must be a parabola.

Proof. Let (J, γ) be the real metrised Jordan algebra defined by M as in Theorem 4.1. By Lemma 4.2
J is nilpotent, and by Theorem 4.21 (J, γ) is indecomposable. By Theorem 5.5 we can assume that
(J, γ) is in semi-canonical form. But then the matrix of γ must be diagonal, because γ is a definite
quadratic form. By Lemma 5.4 we have dim J = 1. But a nilpotent algebra of dimension 1 must be
the algebra with zero structural tensor. The claim of the corollary now follows from Theorem 4.21.

Lemma 5.8. Let (J, γ) be a real nilpotent metrised Jordan algebra of dimension n ≥ 2, such that γ has
a signature with k negative eigenvalues. If in any semi-canonical form of (J, γ) the number of subsets

of size 2 in the partition S satisfies m < − 3
2 +

√
9
4 + 2 max(k, n− k), then (J, γ) is decomposable.

Proof. Assume the conditions of the lemma. By Theorem 5.5 we can assume that the partition S is
given by {{1, n}, {2, n−1}, . . . , {m,n+1−m}, {m+1}, . . . , {n−m}}. If m+1 > n−m, then m = k = n

2 ,
and the inequality yields n2 + 2n < 0, a contradiction. Hence m+ 1 ≤ n−m. The restriction of γ to
the (n− 2m)-dimensional subspace V = span{em+1, . . . , en−m} has signature (n− k −m, k −m). An
isotropic subspace L ⊂ V can therefore have dimension at most min(k −m,n − k −m). Thus every
subspace of V of dimension d > min(k −m,n− k −m) must contain a vector v such that γ(v, v) 6= 0.
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Let m + 1 ≤ δ ≤ n −m, set σ = γ(eδ, eδ) = ±1, and suppose that the structure coefficient Kδ
αβ

of J is nonzero. Define α′ = α if m + 1 ≤ α ≤ n −m, and α′ = n + 1 − α otherwise. Then we have
(span{eα})⊥ = span{e1, . . . , eα′−1, eα′+1, . . . , en}. We obtain Kδ

αβ = σγ(eα •eβ , eδ) = σγ(eδ •eβ , eα) =

σKα′

βδ 6= 0. By property i) of Definition 5.3 it follows that α′ < δ < α. Hence α ≥ n−m+ 1. Similarly,

β ≥ n−m+1. Therefore there exist at most m(m+1)
2 index pairs (α, β) with α ≤ β such that Kδ

αβ 6= 0,
and the set of these pairs is the same for all δ = m+1, . . . , n−m. Thus the dimension of the intersection

(J • J)⊥ ∩ V is at least dimV − m(m+1)
2 = n− m(m+5)

2 .

The inequality in the lemma yields m(m+3)
2 < max(k, n− k), which is equivalent to n− m(m+5)

2 >
min(k −m,n− k −m). By the preceding two paragraphs there exists a vector v ∈ (J • J)⊥ ∩ V such
that γ(v, v) 6= 0. Since γ(x • y, v) = 0 for all x, y ∈ J , the subspace (span{v})⊥ is an ideal. By n ≥ 2
this ideal is not zero. On the other hand, by (7) we have γ(x • v, y) = 0 for all x, y ∈ J , and hence
x • v = 0 for all x ∈ J . It follows that span{v} is also an ideal. But v 6∈ (span{v})⊥, and (J, γ) is a
direct sum of two mutually γ-orthogonal ideals. This proves the lemma.

Corollary 5.9. Let (J, γ) be an indecomposable real nilpotent metrised Jordan algebra of dimension

n ≥ 2, such that γ has a signature with k negative (or k positive) eigenvalues. Then n ≤ k(k+5)
2 .

Proof. By Lemma 5.8 the number m of subsets of size 2 in the partition S corresponding to any semi-

canonical form of (J, γ) must be at least − 3
2 +

√
9
4 + 2(n− k). On the other hand, it cannot exceed k.

It follows that k ≥ − 3
2 +

√
9
4 + 2(n− k), which readily yields the required bound on n.

Corollary 5.10. Let M be an irreducible improper affine hypersphere with parallel cubic form and such
that its affine metric has a signature with k negative (or k positive) eigenvalues. Then the dimension

of M is bounded from above by n ≤ max(1, k(k+5)
2 ).

Proof. Apply Corollary 5.9 to the indecomposable nilpotent metrised Jordan algebra (J, γ) defined by
M as in Theorem 4.1.

5.2 Cayley hypersurfaces

In this subsection we provide a simple representation of the metrised Jordan algebras corresponding to
the Cayley hypersurfaces. The n-dimensional Cayley hypersurface is given by the graph of the function
[7]

F (x1, . . . , xn) =

n+1∑
d=2

(−1)d

d

∑
i1+···+id=n+1

d∏
j=1

xij . (21)

Here the sum over the d-tuple (i1, . . . , id) counts all permutations of the indices, e.g., for n = 3 each
of the triples (1, 1, 2), (1, 2, 1), (2, 1, 1) makes a contribution to this sum. The Cayley hypersurfaces
possess a commutative subgroup of the automorphism group which acts transitively [7, Prop. 2], they
are improper affine hyperspheres [7, Prop. 4] with parallel cubic form and flat affine metric [20]. We now
give the following description of the metrised Jordan algebras generated by the Cayley hypersurfaces.

Theorem 5.11. Let M ⊂ Rn+1 be an n-dimensional Cayley hypersurface. Then the metrised Jor-
dan algebra (J, γ) defined by M as in Theorem 4.1 can be described as the polynomial quotient ring
(tR[t])/(tn+1). If p, q are two polynomials in tR[t], then γ([p], [q]) is defined as the coefficient at tn+1

of the product p · q. Here [p], [q] ∈ J are the equivalence classes of p, q.

Proof. We shall explicitly compute the matrix of γ and the coefficients Kδ
αβ of the structure tensor of

J and compare them to the second and third derivatives at the origin of the function F defined in (21).
First note that if p, q ∈ tR[t], r ∈ R[t] are polynomials, then (rtn+1) ·q is divisible by tn+2 and hence

the products p · q, (p+ rtn+1) · q have the same coefficient at tn+1. Thus γ([p], [q]) is well-defined. For
p =

∑n
k=1 pkt

k, q =
∑n
k=1 qkt

k we have

p · q =

n∑
k,l=1

pkqlt
k+l =

2n∑
m=2

min(n,m−1)∑
k=1

pkqm−k

 tm.
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In particular, for m ≤ n+ 1 the coefficient of p · q at tm is given by
∑m−1
k=1 pkqm−k. It follows that

γ([p], [q]) =

n∑
k=1

pkqn+1−k, [p] • [q] =

[
n∑

m=2

(
m−1∑
k=1

pkqm−k

)
tm

]
.

The elements of γ,K, and their contraction are hence given by

γαβ =

{
0, α+ β 6= n+ 1,
1, α+ β = n+ 1,

Kδ
αβ =

{
0, α+ β 6= δ,
1, α+ β = δ,

γδρK
ρ
αβ =

{
0, α+ β + δ 6= n+ 1,
1, α+ β + δ = n+ 1.

On the other hand, the second and third derivative of F at the origin are given by

Fαβ =

{
0, α+ β 6= n+ 1,
1, α+ β = n+ 1,

Fαβδ =

{
0, α+ β + δ 6= n+ 1,
−2, α+ β + δ = n+ 1.

The last relation in (4) completes the proof.

Corollary 5.12. The Cayley hypersurfaces are irreducible.

Proof. By Lemmas 4.3 and 4.17 the Cayley hypersurfaces are irreducible if and only if the corresponding
metrised Jordan algebras (J, γ) are indecomposable. Suppose that (J, γ) can be decomposed into two
non-trivial factors. Then each of the factors is nilpotent and there exist at least two linearly independent
elements p, p′ such that p•q = p′•q = 0 for all q ∈ J . But in the polynomial quotient ring (tR[t])/(tn+1)
any such element must be proportional to [tn], a contradiction.

From the expression in Theorem 4.21 it can be seen that the function F , evaluated at the equivalence
class [p] of a polynomial p ∈ tR[t], is given by the coefficient at tn+1 of the Taylor expansion around
t = 0 of the function f(t) = p(t)−log(1+p(t)). This function f = f(t; p1, p2 . . . ) is hence the generating
function of the functions F defining the Cayley hypersurfaces in all dimensions.

The Jordan algebras corresponding to the Cayley hypersurfaces involve univariate polynomials.
Other improper affine hyperspheres with flat affine metric can be constructed using nilpotent metrised
associative algebras emanating from multivariate polynomials. Consider, e.g., the polynomial quotient
ring J = (tR[t, s])/({t3, s2}), with elements being the equivalence classes of p(t, s) = p1ts+p2t

2 +p3t+
p4t

2s. For two polynomials p, q ∈ tR[t, s], define γ([p], [q]) as the coefficient at t3s of the product p · q.
Then (J, γ) is a nilpotent metrised associative algebra, and the function from Theorem 4.21 is given
by F = p1p2 + p3p4− p1p

2
3. It is not hard to check that the improper affine hypersphere defined by the

graph of this function is isomorphic to that in line 3 of (2).

5.3 Low-dimensional improper affine hyperspheres

In this subsection we classify all irreducible improper affine hyperspheres with parallel cubic form up to
dimension 5. Since the classification of improper affine hyperspheres with parallel cubic form is known
in dimensions 2, 3, 4 [25],[15],[16], we need to check only for reducibility in these dimensions.

Theorem 5.13. Let M be an irreducible improper affine hypersphere with parallel cubic form in di-
mension n ≤ 4. If n = 1, then M is a quadric. If n = 2, 3, then M is isomorphic to the n-dimensional
Cayley hypersurface. If n = 4, then M is isomorphic to exactly one of the hypersurfaces in lines 2, 3,
6 of classification (2).

Proof. For n = 1 the claim follows from Corollary 5.7. For n ≥ 2 M cannot be a quadric, because a
quadric is irreducible if and only if its dimension is 1.

The first hypersurface in (1) is reducible, because it decomposes as w = (xy − 1
3y

3) + ( 1
2z

2). For
n = 2, 3 the claim now follows from Corollary 5.12.
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The hypersurfaces in lines 1, 4, 5, 7, 8 of (2) can be decomposed non-trivially as

x5 = (x1x2 −
1

3
x2

1) + (x3x4 −
1

3
x2

3),

x5 = (x1x3 − x2
1x2 +

1

4
x4

1 +
1

2
x2

2)− (
1

2
x2

4),

x5 = (x1x2 −
1

3
x3

1) + (
1

2
x2

3)∓ (
1

2
x2

4),

x5 = (x1x3 +
1

2
x2

2 − x2
1x2 +

1

4
x4

1) + (
1

2
x2

4).

Let (J, γ) be the real nilpotent metrised Jordan algebra defined by the hypersurface in line 2, 3, or 6
of (2) as in Theorem 4.1. After a suitable permutation of the coordinates, (J, γ) is in semi-canonical
form given by

K2
33 = a, K2

34 = K2
43 = K1

33 = b, K2
44 = K1

34 = K1
43 = c, K1

44 = d, K1
24 = K1

42 = K3
44 = e,

γ =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 ,


a
b
c
d
e

 =


0
1
3
1
3
0
0

 ,


0
0
1
3
0
0

 , or


0
1
0
0
1

 , (22)

all other elements of the structure tensor K being zero. Let us show that all three algebras are
indecomposable. If the 1-dimensional zero algebra is present as a factor, then the operators Lx, x ∈ J ,
must have a common eigenvector v with eigenvalue zero and such that γ(v, v) 6= 0. Such an eigenvector
does not exist in any of the cases. Hence if any of the algebras in (22) is decomposable, then it can only
split in two indecomposable factors of dimension 2. These factors must be isomorphic to the algebra
defined by the Cayley surface, because there is no other irreducible improper affine hypersphere with
parallel cubic form in dimension 2. In order to show that the product of two such 2-dimensional algebras
is not isomorphic to one of the algebras (22), we consider the set of vectors x = (x1, x2, x3, x4)T ∈ J
where the operator Lx drops rank with respect to its generic rank. In the product the operator Lx
drops rank on two distinct hyperplanes, but in the three algebras above it drops rank at the sets
{x ∈ J |x3 = x4 = 0} for the first and {x ∈ J |x4 = 0} for the other two. Hence such a product
cannot be isomorphic to one of the algebras (22), and they must be indecomposable. But then the
hypersurfaces in lines 2, 3, 6 of (2) are irreducible by Lemma 4.3. This completes the proof.

Note also that all algebras (22) are actually associative, and hence the affine pseudo-metric of the
corresponding improper affine hyperspheres is flat.

Corollary 5.14. Let M be an irreducible improper affine hypersphere with parallel cubic form and
with Lorentzian affine fundamental form. Then dimM = 2 or dimM = 3 and M is isomorphic to the
Cayley hypersurface in the corresponding dimension.

Proof. By Corollary 5.10 the dimension of M does not exceed 3. Clearly it must be at least 2. The
proof is concluded by application of Theorem 5.13, noting that the Cayley surface and its 3-dimensional
analog have a Lorentzian signature.

A general, i.e., not necessarily irreducible, improper affine hypersphere with parallel cubic form
and with Lorentzian affine metric must be either a quadric or a direct product of an irreducible such
improper affine hypersphere and a convex one. We thus recover the classification of Lorentzian improper
affine hyperspheres with parallel cubic form which was derived in [17].

In order to classify all irreducible improper affine hyperspheres with parallel cubic form in dimension
5, we shall consider the corresponding nilpotent metrised Jordan algebras.
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Theorem 5.15. An indecomposable real nilpotent metrised Jordan algebra (J, γ) of dimension 5, with
γ having signature (+ + + − −), is isomorphic by a unimodular isomorphism to exactly one of the
metrised algebras given by

K4
55 = K1

25 = K1
52 = a, K3

44 = K2
34 = K2

43 = b, K3
45 = K3

54 = K2
35 = K2

53 = K1
34 = K1

43 = c,

K3
55 = K1

35 = K1
53 = d, K2

44 = e, K1
44 = K2

45 = K2
54 = f, K2

55 = K1
45 = K1

54 = g, K1
55 = h,

γ =


0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

 ,



a
b
c
d
e
f
g
h


=



0
ε
0
0
0
0
1
0


,



0
ε
0
ε
0
0
0
0


,



0
ε
0
ε
α
0
0
0


,



0
0
1
0
0
0
0
0


,



0
0
1
0
1
0
0
0


,



0
0
1
0
α
0
0
εα


, or



1
0
1
0
1
0
0
0


, (23)

all other elements of the structure tensor K being zero. Here α > 0 is a parameter, and ε = ±1.

Proof. From Lemma 5.8 it follows that any semi-canonical form of (J, γ) has a partition S with two
blocks of size 2. By Theorem 5.5 we may assume that γ has the required form. Property i) in Definition
5.3 and (7) then imply that the structure tensor K has the required form, for some a, . . . , h. Using
unimodular linear transformations of the vector space underlying J we shall now bring the parameters
a, . . . , h to a canonical form. By direct verification it can be established that J is a Jordan algebra if
and only if a = 0 or b = ae− c2 = 0. We consider these cases separately.

1. a = 0. For A ∈ GL(2,R) the transformation diag(A, 1, (PAP )−T ) of J , where P is the nontrivial
2× 2 permutation matrix, acts on the parameters b, c, d in a way isomorphic to the action of A on the
coefficients of the quadratic form bx2

1 + 2cx1x2 + dx2
2. This action has 6 orbits, corresponding to the

different possible signatures of the form. If b = c = d = 0, then span{e1, e2, e4, e5} and span{e3} are
γ-orthogonal ideals, and J is decomposable. The other orbits have representatives for which (b, c, d)
equals (ε, 0, 0), (ε, 0, ε), (0, 1, 0), respectively.

1.1. (b, c, d) = (ε, 0, 0). Changing the sign of the second and fourth coordinate induces the
transformation (e, f, g, h) 7→ (−e, f,−g, h). Changing the sign of the first and last coordinate in-
duces the transformation (e, f, g, h) 7→ (e,−f, g,−h). Consider the Lie algebra of elements of the

form


a11 0 a13 a14 0
a21 0 a23 0 −a14

0 0 0 −a23 −a13

0 0 0 0 0
0 0 0 −a21 −a11

. The action of the group generated by this Lie algebra and the

sign changes on the space of parameters (e, f, g, h) has three orbits, given by {(e, f, g, h) |h 6= 0},
{(e, f, g, h) | g 6= 0, h = 0}, and {(e, f, g, h) | g = h = 0}, respectively. The first and the last orbit have
representatives given by (e, f, g, h) = (0, 0, 0, 1), (0, 0, 0, 0), respectively. For the corresponding algebras
the subspaces span{e1, e5}, span{e2, e3, e4} are mutually γ-orthogonal ideals, and J is decomposable.
The remaining orbit has the representative (e, f, g, h) = (0, 0, 1, 0), giving the first column in (23).

1.2. (b, c, d) = (ε, 0, ε). Consider the Lie algebra of elements of the form


0 a12 a13 a14 0
−a12 0 a23 0 −a14

0 0 0 −a23 −a13

0 0 0 0 −a12

0 0 0 a12 0

.

The action of the group generated by this Lie algebra on the space of parameters (e, f, g, h) has the
invariant (e − 3g)2 + (h − 3f)2, and every level set of this invariant is an orbit. These orbits have
representatives (e, f, g, h) = (α, 0, 0, 0), where α ≥ 0 is a parameter. This yields the second and third
column in (23).

1.3. (b, c, d) = (0, 1, 0). Changing the sign of all coordinates except the third induces the transfor-
mation (e, f, g, h) 7→ (−e,−f,−g,−h). The transformation given by the matrix diag(P, 1, P ), where P
is the nontrivial 2× 2 permutation matrix, acts like (e, f, g, h) 7→ (h, g, f, e). Consider the Lie algebra
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of elements of the form


a11 0 a13 a14 0
0 −a11 a23 0 −a14

0 0 0 −a23 −a13

0 0 0 a11 0
0 0 0 0 −a11

. The action of the group generated by this

Lie algebra on the space of parameters (e, f, g, h) has the invariant e ·h. The two-dimensional subspace
given by e = h = 0 is an orbit of this action, and all other orbits have dimension 3. Taking into account
the discrete transformations considered above, we may restrict our consideration to orbits of elements
satisfying e ≥ |h|. These orbits have representatives (e, f, g, h) = (0, 0, 0, 0), (1, 0, 0, 0), (α, 0, 0, εα),
where α > 0 is a parameter, and ε = ±1. This yields columns 4, 5, 6 in (23).

2. a 6= 0, b = 0, ae = c2. The transformation given by the matrix diag(1, α−1, 1, α, 1), α 6= 0,
induces the transformation a 7→ αa. We can hence assume a = 1. The transformation given by the
matrix diag(α, 1, 1, 1, α−1), α 6= 0, induces the transformation c 7→ αc. We can hence assume c = 0 or
c = 1, which we consider separately.

2.1. c = e = 0. The one-parametric group of transformations diag

1,

1 τ − τ
2

2
0 1 −τ
0 0 1

 , 1

 induces

the transformation d 7→ d + τ , and we can assume d = 0. But then J is decomposable, because
span{e1, e2, e4, e5} and span{e3} are γ-orthogonal ideals.

2.2. c = e = 1. Consider the Lie algebra of elements of the form


0 a12 a13 a14 0
0 0 a23 0 −a14

0 0 0 −a23 −a13

0 0 0 0 −a12

0 0 0 0 0

.

The group generated by this algebra acts transitively on the space of parameters (d, f, g, h). Hence we
can set (d, f, g, h) = (0, 0, 0, 0), yielding the last column in (23).

We have shown that (J, γ) is isomorphic to at least one of the metrised algebras in (23). In order to
show that these are mutually non-isomorphic, we list for each whether it is associative, the dimension
of its automorphism group, and for some of them the set of vectors x = (x1, x2, x3, x4, x5)T where the
operator Lx or Ux drops rank with respect to its generic rank:

algebra 1 2 3 4 5 6 7
associative X X

dim Aut(J, γ) 2 2 1 2 1 1 0
Lx drops rank x4(x2

4−2x3x5)=0 α
2 (x3

4+εx3
5)=x3x4x5

Ux drops rank x4 =x5 =0 x4 =x5 =0 x4x5 =0 x4x5 =0 x4x5 =0

The table shows that algebras in different columns are non-isomorphic. We still need to show that the
metrised algebras in columns 3, 6, respectively, are non-isomorphic for different values of the parameter
α. To this end we consider the invariant subspaces J2 = J • J , J3 = J2 • J . In both cases dim J2 = 3,
dim J3 = 2, and J3 is the kernel of the restriction of the form γ to J2. Hence γ defines a nonzero
quadratic form on the quotient space J2/J3, equipping it with an invariant Euclidean norm. The
expression 1

3γ(x •x, x) defines an invariant cubic polynomial p on J . Since J3 • J = 0, this polynomial
is also well-defined on the 3-dimensional quotient space J/J3. The unit sphere in J2/J3 defines an
invariant nonzero vector v ∈ J/J3 up to a sign. The polynomial p on J/J3 and the vector v are
explicitly given by p(x3, x4, x5) = x3(x2

4 +x2
5)+ α

3 x
3
4, 2x3x4x5 + α

3 (x3
4 + εx3

5) for the algebras in columns
3, 6, respectively, and v = (±1, 0, 0) in both cases. It is straightforward to check that the pairs (p, v) are
non-isomorphic for different values of α in both cases. Finally, for different values of ε the corresponding
metrised Jordan algebras are isomorphic, but by a linear isomorphism with determinant −1. Under
unimodular isomorphisms different values of ε lead to non-isomorphic graph immersions.

Finally, let us show that all algebras are indecomposable. If some algebra is decomposable, then its
factors have dimension at most 4 and must be associative. But then their product is also associative,
which proves irreducibility of the algebras in columns 2—6. Let us consider the remaining two algebras.
The zero algebra cannot be present as a factor for the same reason as in the proof of Theorem 5.13.
Hence the algebras could only split in two indecomposable factors of dimensions 2 and 3. These factors
must be isomorphic to the metrised algebras defined by the Cayley hypersurfaces in the corresponding
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dimension. But the product of these two metrised algebras has an automorphism group of dimension
1, which shows that the algebras in columns 1 and 7 are also indecomposable. This completes the
proof.

Corollary 5.16. Let M be a 5-dimensional irreducible improper affine hypersphere with parallel cubic
form. Then either M is isomorphic by a unimodular transformation to the graph of exactly one of the
following functions:

F = x1x5 + x2x4 +
1

2
x2

3 − εx3x
2
4 − x4x

2
5 +

1

4
x4

4,

F = x1x5 + x2x4 +
1

2
x2

3 − εx3x
2
4 − εx3x

2
5 +

1

4
x4

4 +
1

2
x2

4x
2
5 +

1

4
x4

5,

F = x1x5 + x2x4 +
1

2
x2

3 − εx3x
2
4 − εx3x

2
5 −

α

3
x3

4 +
1

4
x4

4 +
1

2
x2

4x
2
5 +

1

4
x4

5,

F = x1x5 + x2x4 +
1

2
x2

3 − 2x3x4x5 + x2
4x

2
5,

F = x1x5 + x2x4 +
1

2
x2

3 − 2x3x4x5 −
1

3
x3

4 + x2
4x

2
5,

F = x1x5 + x2x4 +
1

2
x2

3 − 2x3x4x5 −
α

3
(x3

4 + εx3
5) + x2

4x
2
5,

F = x1x5 + x2x4 +
1

2
x2

3 − 2x3x4x5 − x2x
2
5 −

1

3
x3

4 + x3x
3
5 +

3

2
x2

4x
2
5 − x4x

4
5 +

1

6
x6

5,

where α > 0 is a real parameter and ε = ±1, or M is isomorphic to the graph of −F , where F is
exactly one of the functions listed above. The affine metric is flat in the first and in the last of the
seven listed cases, in all other cases it has non-vanishing curvature.

Proof. An irreducible improper affine hypersphere with parallel cubic form in dimension n ≥ 4 cannot
have a definite or Lorentzian affine metric by Corollaries 5.7 and 5.14. We may hence assume that
the affine fundamental form of M has either signature (+ + + − −) or signature (+ + − − −). Let
(J, γ) be the indecomposable nilpotent metrised Jordan algebra defined by M as in Theorem 4.1. If the
signature of γ is (+ + +−−), then by Theorem 5.15 (J, γ) is isomorphic to exactly one of the metrised
algebras in (23). Evaluating the formula for the defining function F in Theorem 4.21 for these algebras
leads to the list in the corollary. If the signature of γ is (+ +−−−), then by negating the transversal
vector field ξ we may reduce the classification to the previous case. However, the sign change in ξ leads
to a sign change in the defining function F .

The flatness of the affine metric is equivalent to associativity of the corresponding Jordan algebra
and holds in the first and the last of the listed cases. This completes the proof.

Thus 5 is the smallest dimension in which improper affine hyperspheres with parallel cubic form
and non-vanishing curvature of the affine pseudo-metric exist. It is also the smallest dimension where
continuous families of mutually non-isomorphic such hypersurfaces occur.

6 Other classes of graph immersions

Up to now we have considered non-degenerate graph immersions with parallel cubic form in the sense
that ∇̂C = 0, where ∇̂ is the Levi-Civita connection of the affine pseudo-metric. In this section we
apply the developed algebraic methods to graph immersions or improper affine hyperspheres whose
cubic form or difference tensor is parallel with respect to the affine connection ∇. We determine which
classes of algebras arise from these classes of hypersurface immersions. We have the following analog
of Theorem 4.1.

Theorem 6.1. Let f : Ω→ An+1 be a non-degenerate graph immersion. Let y ∈ Ω be a point and let
• : TyΩ×TyΩ→ TyΩ be the multiplication (u, v) 7→ K(u, v) defined by the difference tensor K = ∇−∇̂
at y. Let γ be the symmetric non-degenerate bilinear form defined on TyΩ by the affine fundamental
form h.
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Then the tangent space TyΩ, equipped with the multiplication •, is a real commutative algebra A,
and (A, γ) is a metrised algebra, i.e., γ is a trace form on A.

Proof. The proof is the same as that of Theorem 4.1, with the parts concerning the Jordan identity
dropped.

We now consider several classes of hypersurface immersions.

6.1 Graph immersions with ∇K = 0

We shall prove the following result.

Theorem 6.2. Let f : Ω → An+1 be a non-degenerate graph immersion satisfying ∇K = 0, and let
y ∈ Ω. Let (A, γ) be the metrised commutative algebra defined in Theorem 6.1. Then A is associative

and f has representing function F locally around y given by F (x) =
∑∞
k=2

(−2)k−2

k! γ(x, xk−1).
On the other hand, let (A, γ) be a metrised associative, commutative algebra. Then the graph of

the function F (x) =
∑∞
k=2

(−2)k−2

k! γ(x, xk−1) satisfies ∇K = 0, and at x = 0 the difference tensor K
consists of the structure coefficients of A.

Every graph immersion satisfying ∇K = 0 can be extended to a hypersurface embedding with ∇K =
0, given globally by the graph of a function F : Rn → R.

The graph immersion is an improper affine hypersphere if and only if det γ = ±1 and A is nilpotent.

Proof. The condition ∇K = 0 implies that the difference tensor K is constant in any affine chart. On
the other hand, K is given by (4), where F is a representing function of the graph immersion. The
condition ∇K = 0 amounts to F,αβγδ = F,αβρF

,ρσF,γδσ. By the symmetry of the left-hand side with
respect to the four indices we obtain that Kα

βρK
ρ
γδ = Kα

γρK
ρ
βδ. This condition is equivalent to the

associativity of the algebra A.
By (4) we have ∂

∂xαF,βγ = F,αβγ = −2F,γδK
δ
αβ . This is a linear differential equation with con-

stant coefficients on the derivative F ′′, with initial condition F ′′(0) = γ. It can be integrated to
F ′′(x) = γ exp(−2Lx), where the right-hand side is to be understood as a matrix product, and Lx is
the operator of multiplication with x ∈ A. Further integration leads to F (x) = F (0) + 〈F ′(0), x〉 +

xT γ
(∑∞

k=0
(−2)k

(k+2)!L
k
x

)
x, which with F (0) = F ′(0) = 0 yields the expression in the formulation of the

theorem.
Conversely, let (A, γ) be a metrised associative, commutative algebra, and let F be as in the theorem.

For u, v ∈ A we get ∇u∇vF (x) =
∑∞
k=2

(−2)k−2

(k−2)! γ(u, xk−2 • v) =
∑∞
k=0

(−2)k

k! γ(u, Lkxv). Here we used

in the first equality that A is associative and γ is a trace form. It follows that F ′′(x) = γ exp(−2Lx),
which yields F ′′(0) = γ and, by the relation [Lx, Lu] = 0, ∇uF ′′(x) = −2γ exp(−2Lx)Lu. By (4)
we finally obtain Ku = − 1

2 (F ′′)−1(∇uF ′′) = Lu, and hence the difference tensor K is constant and
contains the structure coefficients of A.

That every graph immersion with ∇K = 0 can be extended to the graph of a function defined
globally on Rn follows from the fact that F is given by an exponential which is defined for all x ∈ A.

Finally, by Lemma 2.2 the graph of the function F is an improper affine hypersphere if and only
if detF ′′ ≡ ±1, which is equivalent to det γ = ±1 and det exp(−2Lx) ≡ 1. The second condition is
equivalent to trLx = 0 for all x ∈ A. Let us show that this condition is equivalent to the nilpotency
of A (cf. also [5, Lemma 3.3]). We have Lxk = Lkx for k ≥ 1, because A is associative. Hence trLx = 0
implies trLkx = 0 for all k ≥ 1, which in turn implies that Lx is nilpotent. By Lemma 3.8 the algebra
A must then itself be nilpotent. On the other hand, if A is nilpotent, then trLx = 0 for all x ∈ A.
This completes the proof.

By Remark 4.20 and Theorem 6.2 a graph immersion satisfying ∇K = 0 has necessarily a flat affine
metric.

The algebra A does not depend on the chosen point y ∈ Ω, because the structure tensor K of A is
constant. However, the form γ depends on y, and for different points y the metrised algebras (A, γ)
may be non-isomorphic, as the following example shows.

25



Consider the function F (x1, x2) =
√

2
8 e
−2(x1+x2)

(√
2 cosh(2

√
2x2) + sinh(2

√
2x2)

)
. The difference

tensor of the corresponding graph immersion is constant and given by K1
12 = K1

21 = K2
11 = 0, K1

11 =
K1

22 = K2
12 = K2

21 = 1, K2
22 = 2. The algebra A is hence defined by the multiplication (x1, x2) •

(y1, y2) = (x1y1 + x2y2, x1y2 + x2y1 + 2x2y2). This algebra is unital with unit element e = (1, 0).

The Hessian F ′′(y), applied to the vector e, yields
√

2
2 e
−2(y1+y2)

(√
2 cosh(2

√
2y2) + sinh(2

√
2y2)

)
. The

value of the form γ on the unit element of A is an invariant of the metrised algebra (A, γ), however, and
cannot depend on y if the isomorphism class of (A, γ) does not. Hence this graph immersion defines
non-isomorphic metrised algebras at different points.

Theorem 6.2 suggests a close relation between non-degenerate graph immersions satisfying ∇K = 0
on the one hand, and non-degenerate graph immersions with flat affine metric and satisfying ∇̂C = 0
on the other hand. Namely, both classes of hypersurface immersions generate the same class of metrised
algebras. Given a non-degenerate graph immersion M ⊂ An+1 with flat affine metric satisfying ∇̂C = 0
and a point y ∈ M , there exists exactly one graph immersion M ′ ⊂ An+1 satisfying ∇K = 0 which
makes a third-order contact with M at y. The immersions M ′ will be isomorphic for different points
y. Conversely, given a non-degenerate graph immersion M ′ ⊂ An+1 satisfying ∇K = 0 and a point
y ∈ M , there exists exactly one graph immersion M ⊂ An+1 with flat affine metric and satisfying
∇̂C = 0 which makes a third-order contact with M ′ at y. The immersions M may be non-isomorphic
for different points y, however. Note that M is irreducible if and only if M ′ is irreducible, because both
conditions are equivalent to the indecomposability of the metrised algebra (A, γ). A similar relation
holds for the subclasses of improper affine hyperspheres in these two classes of graph immersions.

The graph immersions with parallel difference tensor which correspond to the Cayley hypersurfaces
are given by [5, eq. (6.3)]

xn+1 =

n+1∑
d=2

(−2)d−2

d!

∑
i1+···+id=n+1

d∏
j=1

xij . (24)

These are actually the only improper affine hyperspheres which satisfy ∇K = 0, Kn−1 6= 0 [5, Theorem
6.2]. The similarity between the hypersurfaces (24) and the Cayley hypersurfaces was also noted in [20,
eq. (2)]. It can be shown that the metrised algebras (A, γ) defined by a hypersurface of the form (24)
at different base points y are isomorphic, and hence (24) corresponds to the Cayley hypersurfaces only.
In [5, Theorem 7.1] it was shown that if an improper affine hypersphere satisfies ∇K = 0, Kn−2 6= 0,
Kn−1 = 0, then it must be the direct sum of a hypersurface (24) and a 1-dimensional parabola. It
follows that a flat improper affine hypersphere satisfying ∇̂C = 0, Kn−2 6= 0, Kn−1 = 0 must be the
direct sum of a Cayley hypersurface and a 1-dimensional parabola.

6.2 Graph immersions with ∇C = 0

Theorem 6.3. Let f : Ω → An+1 be a non-degenerate graph immersion satisfying ∇C = 0, and let
y ∈ Ω. Let (A, γ) be the metrised commutative algebra defined in Theorem 6.1. Then f has representing
function F locally around y given by F (x) = 1

2γ(x, x)− 1
3γ(x, x2).

On the other hand, let (A, γ) be a metrised commutative algebra. Then the graph of the function
F (x) = 1

2γ(x, x) − 1
3γ(x, x2) satisfies ∇C = 0, and the difference tensor K consists of the structure

coefficients of A.
Every graph immersion satisfying ∇C = 0 can be extended to a hypersurface embedding with ∇C =

0, given globally by the graph of a cubic polynomial F : Rn → R.
The graph immersion is an improper affine hypersphere if and only if det γ = ±1 and the operator

Lx is nilpotent for every x ∈ A.

Proof. The condition ∇C = 0 is equivalent to F being a cubic polynomial. By (4) the metrised algebra
(A, γ) is in one-to-one correspondence with the pair of tensors (F ′′(y), F ′′′(y)), which implies the first
three assertions of the theorem.

At the point x ∈ A we have F,αβu
αvβ = γ(u, v)− 2γ(u, x • v), and the matrix of the Hessian F ′′ is

given by the matrix product γ(I − 2Lx). Therefore we have detF ′′ = det γ · det(I − 2Lx). By Lemma
2.2 f then defines an improper affine hypersphere if and only if det γ = ±1 and det(I − 2Lx) ≡ 1.

Clearly if Lx is nilpotent, then det(I − 2Lx) = 1. Assume now that det(I − 2Lx) = 1 for all x ∈ A.
Let λ1, . . . , λn be the eigenvalues of Lx. Then we have det(I − 2L x

2t
) =

∏n
k=1

(
1− λk

t

)
= 1 for all
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t 6= 0, and hence
∏n
k=1(t− λk) = tn. It follows that the λk are the roots of the polynomial p(t) = tn,

and Lx is nilpotent. This completes the proof.
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[29] Richard D. Schäfer. An Introduction to Nonassociative Algebras. Dover, 1996.

[30] Luc Vrancken. Affine higher order parallel hypersurfaces. Ann. Fac. Sci. Toulouse Math., 9(3):341–
353, 1988.

[31] Konstantin Aleksandrovich Zhevlakov, A. M. Slin’ko, I. P. Shestakov, and A. I. Shirshov. Rings
That Are Nearly Associative, volume 104 of Pure and Applied Mathematics. Acad. Press, 1982.

28


