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Abstract

Recurrence can be used as a function definition schema for any non-trivial free

algebra, yielding the same computational complexity in all cases. We show that

primitive-recursive computing is in fact independent of free algebras altogether,

and can be characterized by a generic programming principle, namely the control

of iteration by the depletion of finite components of the underlying structure.

1 Introduction

1.1 Abstract delineation of PR

Recall that the schema of recurrence over N consists of the two equations

f(0, ~x) = g0(~x)
f(sn, ~x) = gs(n, ~x, f(n, ~x))

(1)

More generally, given a free algebra A = A(C) generated from a finite set C of con-
structors (where c∈C has arity r(c)), the schema of recurrence over A has one equation
per constructor c:

f(c(z1, · · · , zk), ~x) = gc(~z, ~x, f1, . . . , fk) (2)

where fi = f(zi, ~x) and k = r(c).
The recurrence schema for N originates with Dedekind’s interest in formalizing

arithmetic, was first articulated by Skolem [19], and was studied extensively (see e.g.
[17]). The set PR(A) of primitive recursive functions over A is generated from the
constructors of A by recurrence over A and explicit definitions.3

We show here that primitive recursive computing is independent from free alge-
bras altogether, and is rooted instead in fundamental programming constructs alone.
Namely, PR is the set of mappings between structured (finite) data-objects that are
computed by imperative programs whose loops are governed by the depletion of the
structure’s functions, dubbed here “variants”. To show that a program terminates
using time and space resources primitive-recursive in the input’s size, it therefore suf-
fices to identify for each loop a variant, which is usually germane to the algorithm.
This characterization also encompasses in one fell swoop various variations of primi-
tive recursion. Moreover, the fact that variants are second-order entities makes them
amenable to methods of implicit computational complexity, as we show elsewhere.

1SICE (Indiana University) and IRIF (Université Paris-Diderot)
2LORIA, Université de Lorraine and CNRS
3The phrase “primitive recursion” was triggered by Ackermann’s and Sudan’s discoveries of com-

putable (“recursive”) functions that are not in PR(N). Given present-day usage of “recursion” for a
broader notion of recursive procedures, it seems preferable to refer to the schemas above as “recur-
rence” rather than “recursion.”
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1.2 Inductive data-objects as finite structures

We identify data-objects, such as elements of a free algebra, with finite partial-structures.
For example, binary strings are finite partial-structure over the vocabulary with a con-
stant e and unary function identifiers 0 and 1. Thus, the string 011 is taken to be the
following partial-structure with four atoms, and where the partial-function denoted by
0 is defined for only one of the four:

e ◦
0

−→ ◦
1

−→ ◦
1

−→ ◦

A function over A can thus be construed as a mapping between such finite structures.
Computation by recurrence on A terminates because the recurrence argument is

being depleted. A more generic form of depletion, adapted to loops of imperative
programs, is obtained by assigning to each loop a set of finite partial-functions, which
we dub the loop’s variant, and requiring that each pass through the loop contracts
the variant. Our variants are analogous to the variants used in Hoare-style program
verification [9, 6, 21], but whereas the latter decrease along a prescribed well-ordering,
our variants are depleted by function-contractions, i.e. function re-assignment to un-

defined. The distinction between positive and negative forms of assignment is thus
fundamental in our approach.

1.3 Main results

Our programming language STV is a basic imperative language for the transformation
of structures. We focus on finite partial-structures, following the the approach of [16]
and the imperative language ST defined there. ST, which is a variant of Gurevich’s
ASMs [4, 11, 12], focuses on finite structures, but also supports computing over infi-
nite data-structures, such as free algebras, once their elements are construed as finite
structures. ST is Turing complete, and therefore a suitable framework for identifying
syntactic conditions that characterize complexity classes.

The programming language STV defined here differs from ST only in having loop
variants, which convey in a more generic and abstract sense the resource depletion
implicit in recurrence. Our main technical result is that STV characterizes an abstract
notion of primitive recursion, in the strongest possible sense. On the one hand, all
STV-programs run in time and space that are primitive-recursive in the size of their
input structure (Theorem 2). For the converse, we show that for each free algebra A

the functions in PR(A) are computable by STV-programs (Theorem 4). Moreover,
recurrence is embedded directly in STV, using no extraneous concepts or coding
schemes.

The equivalence above is extensional, in the sense that it refers to computability,
and not to particular algorithms. However, if we take ST as our reference Turing-
complete computation model, then every ST-program that runs in PR time can be
augmented with variants to become an equivalent STV-program.

We caution against confounding our approach with unrelated prior research ad-
dressing seemingly related themes. Recurrence and recursion over finite structures
have been shown to characterize logarithmic space and polynomial time queries, re-
spectively [13, 18], but the programs in question do not allow inception of new structure
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elements, and so remain confined to linear space complexity, and are inadequate for
the broad approach we seek. On the other hand, unbounded recurrence over arbitrary
structures has been considered by a number of authors [1, 2, 20], but always in the
traditional sense of computing within an infinite structure. Also, while the meta-finite
structures of [8] merge finite and infinite components, both of those are considered
in the traditional framework, whereas we deal with purely finite structures, referring
to infinity only in relation to collections of such structures. Finally, the functions we
consider are from structures to structures (as in [18]), and are thus unrelated to the
global functions of [10, 7], which are (isomorphism-invariant) mappings that assigns
to each structure a function over it.

As for generalizations of primitive recursion to computing over abstract structures,
[5] refers to the computation model of [3], which incorporates primitive recursive from
the outset, and therefore does not examine the abstract contents of PR as we do here.

The paper is sectioned along the outline above: §2 defines the programming lan-
guage STV, and §3 gives examples of programs, most of which we use in the sequel. In
§4 we prove that STV characterizes primitive recursion, and that it includes, modulo
augmenting loops with variants, all ST-programs that terminate in PR time.

2 STV: Programs with loop variants

The imperative programming language ST we defined in [16] is designed to be
a Turing-complete language for the transformation of finite partial-structures, whose
building blocks are as fundamental as possible. It is a variant of Gurevich’s abstract
state machines (ASMs) [4, 11, 12] that focuses on finite structures, distinguishes be-
tween constructive and destructive assignments, and give a prominent place to recur-
rence. (ASMs strive to generalize directly hardware models, and are based on global
iteration.)

The imperative programming language STV proposed here refines ST programs
with a restrictive condition on loops which guarantees termination, foregoing in the
act Turing completeness. We refer the reader to [16] for a broader discussion of ST.

2.1 Finite partial-structures

The programs of STV operate over a single data-type, namely finite partial-structures,
defined as follows. We posit a fixed denumerable set A of atoms. An A-function is
a finite k-ary partial-function over A, where k > 0; thus, the nullary A-functions are
the atoms. To accommodate non-denoting terms we extend A to a flat domain A⊥,
which has, in addition to the atoms, a fresh object ⊥, intended to denote “undefined.”
The atoms are the standard elements of A⊥. We identify a k-ary A-function F with
the strict total function F̃ : Ak

⊥
→ A⊥ that for input ~a returns F (~a) if it is

defined, and ⊥ otherwise. An entry of an A-function F is a tuple 〈a1 . . . ak, b〉 where
b = F (a1, . . . , ak) 6= ⊥. The scope of F is the set of atoms occurring in its entries. The
range of F is the set of atoms obtained as values of F . The size of F is the number
|F | of entries in it.
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Function partiality provides a natural representation of finite relations over A by
partial functions, without recourse to booleans: we identify a finite k-ary relation R
over A (k > 0) with the partial-function

ξR(a1, . . . , ak) = if R(a1, . . . , ak) then a1 else ⊥

Conversely, any partial k-ary function F over A determines the k-ary relation

RF = {〈~a〉 ∈ Ak | F (~a) is defined }

A vocabulary is a finite list V of function-identifiers, with each f in V assigned an
arity r(f) > 0. We superscript an identifier with its arity when convenient, and refer
to nullary function-identifiers as tokens and to unary ones as pointers. The distinction
is fundamental, because a pointer is potentially an unbounded memory, whereas a
token is not. The order of identifiers in V will matter here, but we nonetheless use the
membership notation f ∈ V .

A V-structure is a mapping σ that to each f k ∈ V , assigns a k-ary A-function
σ(f), said to be a component of σ. The scope of σ is the union of the scopes of its
components, and the size |σ| of σ is the sum of the sizes of its components. Note
that if 〈~a, b〉 occurs as entry of multiple functions, then those occurrences are counted
separately in |σ|.

If σ is a V -structure, and τ a W -structure where W ⊇ V , then we say that τ is
an expansion of σ (to W ), and that σ a reduct of τ (to V ), if σ(f) is identical to τ(f)
for every f ∈ V . Note that the scope of τ may be strictly larger than that of σ, due
to the identifiers in W −V . We say that a V -structure σ is an under-structure of a
V -structure τ if for every f ∈ V , σ(f) ⊆ τ(f); that is, every entry of σ(f) is an entry of
τ(f). Note that the definition does not require that σ(f) be τ(f) restricted to the scope
of σ, which is why we avoid the phrase “sub-structure.”

If σi are structures for Vi (i = 1 . . . k), where the Vi’s are disjoint and the scopes of
the σ′

is are disjoint, then the list 〈σ1, . . . , σk〉 can be identified with the single structure
∪iσi, for the concatenated vocabulary V1 ∗ · · · ∗ Vk.

Given a vocabulary V , the set TmV of V -terms is generated by ω ∈ TmV ; and
if f k ∈ V , and t1, . . . , tk ∈ TmV then ft1 · · · tk ∈ TmV . Terms without ω are
standard. Note that we write function application in formal terms without parentheses
and commas. We implicitly posit that the arity of a function matches the number of
arguments displayed. Given a V -structure σ the value of a V -term t in σ, denoted
σ(t), is obtained by recurrence on t: σ(ωωω) = ⊥ and, for f k ∈ V , σ(ft1 · · · tk) =
σ(f)(σ(t1), . . . , σ(tk))

An atom a ∈ A is V -accessible in σ if a = σ(t) for some t ∈ TmV . A V -structure
σ is accessible if every atom in the scope of σ is V -accessible. The accessible under-

structure of a structure σ consists of the entries 〈a1 . . . ak, b〉 where a1 . . . ak, b are all
accessible.

If every atom in the scope of an accessible V -structure σ is the value of a unique

V -term we say that σ is free. For example, every element of a free algebra is a free
structure, as is any tuple of such elements.
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2.2 Structure revisions

We define the following three basic transformations of V -structures. In each case we
indicate how an input structure σ is transformed by the operation into a structure σ′

that differs from σ only as indicated.

1. An extension is a phrase f t1 · · · tk ↓ q where the ti’s and q are all standard
terms. The intent is that σ′ is identical to σ, except that if σ(f t1 · · · tk) = ⊥
then σ′(f t1 · · · tk) = σ(q). Thus, σ′ is identical to σ if σ(f t1 · · · tk) is defined.

2. A contraction, the dual of an extension, is a phrase of the form ft1 · · · tk ↑ .
The intent is that σ′(f)(σ(t1), . . . , σ(tk)) = ⊥. Note that this removes the entry
〈σ(t1), . . . , σ(tk), σ(ft1 · · · tk)〉 if defined, from σ(f), but not from σ(g) for other
identifiers g.

3. An inception is a phrase of the form c⇓, where c is a token. A common alternative
notation is c := new. The intent is that σ′ is identical to σ, except that if
σ(c) = ⊥, then σ′(c) is an atom not in the scope of σ.

We have no atom-removal operation dual to inception, since atoms can be re-
moved from the scope of a structure by repeated contractions.

We refer to extensions, contractions, and inceptions as revisions. An extension
or inception is executed if it adds an entry. That is, f~t ↓ b executes when f~t = ⊥,
and similarly for an inception. The identifiers c and f in the templates above are the
revision’s eigen-identifier.

A more general form of inception, with a fresh atom assigned to an arbitrary term
t, is obtained as the composition

b⇓ ; t↓b; b⇑

where b is a fresh (and reserved) token.
An extension and a contraction can be combined into an assignment, i.e. a phrase

of the form f~t := q. This can be viewed as an abbreviation, with b a fresh token, of
the composition

b↓q; f~t ↑; f~t↓b; b↑

The atom σ(q) is memorized here by b, in case q becomes inaccessible through the
contraction f~t ↑.

Although assignments are common and useful, we take the revisions above as our
basic constructs, for two reasons. Conceptually, they are truly elemental; and con-
cretely, the contrast between extensions and contraction is central to our characteri-
zation of complexity classes.

2.3 STV programs

Fix a vocabulary V . A V -equation is a phrase t ≃ q where t and q are V -terms,
intended to state that t and q are equal in A⊥ (i.e. both undefined or both defined
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and equal). A V -guard is a boolean combination of V -equations. We write ! t for the
guard t 6≃ ω.4

A V -variant is a finite set T of identifiers in V , to which we refer as T ’s components.

Our intent is to bound iteration via variant depletion. This can be achieved simply
by requiring that the total size of the variant is reduced with each iteration cycle,
much like the traditional function-variants [9, 6, 21]. However, we seek syntactic
conditions that guarantee such a behavior, or at least semantic conditions that can
be easily enforced by syntactic flags. We consider separately the non-increasing of a
variant, and its decrease. Non-increasing of a variant T can be enforced by prohibiting
expansions of T ’s components within the loop body; this is a syntactic condition that
applies to the body as a whole. We enforce variant depletion by halting iteration if
variant depletion does not occur; this is a semantic condition that applies locally, and
can be enforced by conjoining the guard with an appropriate boolean flag.

Formally, the programs of STV are generated inductively in tandem with the
syntactic notion of a variant being non-inflating in a program.

1. A revision is a program. A variant T is non-inflating in a revision unless it is an
extension whose eigen-function is in T .

2. If P and Q are STV-programs, and T non-inflating in both, then so is P ; Q.

3. If G is a guard and P,Q are STV-programs, and T is non-inflating in both, then
so is if [G] {P} {Q} .

4. If G is a guard, P is an STV-program, and S, T are non-inflating in P , then
do [G] [T ] {P} is an STV-program, in which S is non-inflating.

The formal denotational semantics of programs is defined as a binary yield relation

⇒P between V -structures by recurrence on the syntax of a program P . It is routine
(see [16]), except for loops. If P is do [G] [T ] {Q}, then σ ⇒P τ if for some k > 0 one

of the two options below holds. Let us write ξ
-
⇒ ξ′ [respectively ξ

0

⇒ ξ′] for

the conjunction of ξ |= G, ξ
0

⇒ ξ′, and the condition that ξ ⇒Q ξ′ executes
[respectively, fails to execute] a contraction of T .

1. σ = σ0
-
⇒ σ1

-
⇒ · · ·

-
⇒ σk = τ , where τ 6|= G; or

2. σ = σ0
-
⇒ σ1

-
⇒ · · ·

-
⇒ σk

0

⇒ σk+1 = τ

That is, a loop do [G] [T ] {Q} is entered if G is true in the current V -structure, and
is re-entered if G is true in the current V -structure, and the previous pass executes at
least one contraction for some component of the variant T . Thus, as do [G][T ] {Q} is
executed, T grows within P , by the syntactic condition that T is non-inflating in P ,
and is decreased by a contraction at least once for each iteration, save the last, by the
semantic condition on loop execution. When no variant component shrinks within a
pass through P , the execution of the loop is terminated.

Note that the depletion condition we impose on loops can be conveyed by a built-in
syntactic controller: for each variant T take a fresh token cT to serve as a “controller”

4The notations ≃ and ! are due to Kleene [15].
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for T . Each loop do[G][T ]{P} is preceded by cT ⇓ , the test !cT is conjuncted to the
guard G, and P is preceded by the contraction cT ↑. Finally, each revision in P , whose
eigen-function is in T , is coupled with an inception cT ⇓ .

A V -structure is accepted by an STV-program P if P terminates for σ as input.
A class C of V -structures is recognized by P if C consists of the V -structures accepted
by P .

We say that a k-ary relation between structures is accepted by P if P terminates
for input 〈σ1, . . . , σk〉; and P recognizes a class C of k-ary relations between structures
as above if C consists of the k-tuples accepted by P .

We define as well the interpretation of programs as transducers, as follows. Let
Φ : C ⇀ C

′ be a partial-mapping from a class C of V -structures to a class C
′ of

V ′-structures. A W -program P computes Φ if for every σ ∈ C, σW ⇒P Q for some
W -expansion Q of Φ(σ). Note that the vocabulary V ′ of the output structure need
not be related to the input vocabulary V .5

We shall focus mostly on programs as transducers. Note that all structure revisions
refer only to accessible structure nodes. It follows that non-accessible nodes play no
role in the computational behavior of STV-programs.

Note that the depletion condition we impose on loops can be conveyed syntactically,
as follows. For each loop L present, say an instance of the program P = do[G][T ]Q,
let cL be a reserved token, to serve as a toggle for the depletion of L’s variant.

• Precede L by cL ⇓ .

• Conjunct the test ! cL to G.

• Precede Q by cL ↑ .

• Replace each contraction f~t ↑ in Q, where f ∈ T , by cL ↓ f~t; f~t ↑.

For a program P over V we define the binary yield relation ⇒P between V -
structures by recurrence on the syntax of P . When P is a revision the definition
follows the semantics given above.

3 Examples of STV programs

3.1 String duplication

The following program duplicates a structure σ representing a binary string; that is,
the output structure has the same scope as the input, but with functions appearing
in duplicate. The algorithm has two phases: a first loop, whose variant consists of
all pointers in V , creates two new copies of the string, while depleting the input
functions. A second loop restores one of the two copies to the original identifiers,
thereby allowing the duplication to be useful within a larger program that refers to
those original identifiers.

5Of course, if C is a proper class (in the sense of Gödel-Bernays set theory), then the mapping
defined by P is a proper-class.
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a := e;

do [!0a ∨ !1a] [0, 1] % 0/1 copied to 0̄/1̄ and 0̂/1̂

{ b ↓ a; % while being consumed (via b) as variant

if [ !0a ]

{ 0̄(a) ↓ 0a; 0̂(a) ↓ 0a; a ↓ 0a; 0b ↑ }

{ 1̄(a) ↓ 1a; 1̂(a) ↓ 1a; a ↓ 1a; 1b ↑ }

};

a := e; % 0̂/1̂ restored to 0/1

do [ !0̂a ∨ !1̂a ] [ 0̂, 1̂ ]

{if [ !0̂a ]

{ 0a↓ 0̂a; 0̂a↑ ; a ↓ 0a; }

{ 1a↓ 1̂a; 1̂a↑ ; a ↓ 1a; }

}

3.2 Generating large output

Let V = {z0, s1} be the vocabulary for the natural-number structures, i.e. the free
structures for the terms s[n]z. The addition of V -structures (z0, s0) and (z1, s1), repre-
senting natural numbers n0, n1, is computed by an STV program that duplicates the
second input, and uses one of the two copies as a loop variant for splicing the other
copy over the first input.

A program for multiplication is obtained by duplicating the second input, initial-
izing the output to z, and then using the first input as variant of a loop whose body
splices the second argument on the output-so-far.

A program E for exponentiation, transforming the structure s[n]z to the structure
s2

n

z, is constructed similarly to the multiplication program above, except that the
output is initialized to the structure for sz. and the loop’s body duplicates the output-
so-far and adds up the two copies.

3.3 Enumerators

A pair (a, e), with a ∈ A and e : A→A, is an enumerator for a V -structure σ if for
some n the sequence a, e(a), e(e(a)), . . . , e[n](a) consists of all accessible atoms of
σ, and e[n+1](a) = ⊥.

The following program L builds, in each V -structure σ taken as input, an enumer-
ator (a, e) for σ. That is, for some fresh identifiers a0, e1, the output τ of L for input
σ is an expansion τ of σ with an enumerator (τ(a), τ(e)) for σ (whence for τ as well).
L initializes e to a list of the atoms denoted by V ’s tokens. L’s main loop, with body
C, collects new accessible elements into an auxiliary unary pointer p, used as a cache
and re-initialized to empty at the start of C. For each fk ∈ V in turn, C creates k new
copies of p. Using the set of these copies as a variant, C then cycles through k-tuples
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~a of elements in p (using auxiliary tokens) and appends σ(f)~a to p if it is not already
in p. When this process is completed for all f ∈ V , C concatenates p to e. The loop is
exited by the depletion condition on the semantics, when the cache p remains empty
at the end of C, i.e. when no new atom has been found.

Note that if the input structure σ is free, then the construction above clearly yields
an enumerator e that is monotone, in the following sense: for each term q = fkt1 · · · tk
the enumerator lists ti before q.

3.4 Duplicating the accessible under-structure

The program above for string duplication implicitly relies on the presence of a trivial
enumerator for the string-structure. Using the program L above for constructing an
enumerator for all V -structures, we can now outline a program that duplicates the ac-
cessible under-structure of any V -structure. Thus, the program duplicates completely
any accessible V -structure.

A program Dm to create for each pointer f ∈ V (of any arity) m copies f1 . . . fm
of f (over the same atoms as f) can be obtained as follows. Dm first constructs an
enumerator (a, e) for the input structure. Recall that the identifiers f1 . . . fm for the
duplicates to be created are all initially empty, by our semantic conventions.

For each of the (finitely many) identifiers fk ∈ V in turn, Dm then creates k copies
of e, and uses them to cycle through all k-tuples ~a of accessible atoms in σ, extending
each fi with the entry 〈~a, σ(f)~a〉. The k copies of e are also used collectively as the
loop’s variant. The loop ends when the variant is depleted, leaving no unchecked tuple
~a. Note that the original enumerator e is left alone during the process, remaining
available for the program segment dealing with the next pointer in V .

3.5 Quasi-inverses

In inductive data the constructors are injective, but a lax form of function-inversion,
namely quasi-inversion, can be defined for arbitrary functions, as follows.6 For a
relation R ⊆ A × B and a ∈ A, define R′a =df {b ∈ B | aRb}.7 Say that a partial-
function f : A ⇀ B is a choice-function for R if f ⊆ R and f(a) is defined whenever
R′a 6= ∅. A partial-function g : A ⇀ B is a quasi-inverse of f if it is a choice function
for the relation f−1. When f is r-ary, i.e. A = ×r

i=1Ai, g can be construed as an r-tuple
of partial-functions 〈g1 . . . gr〉. We write f−i for gi. Evidently, if a unary function f is
injective then its (unique) quasi-inverse is the usual inverse f−1.

Let V be a vocabulary. We construct an STV-program J that for each V -structure
σ as input yields an expansion of σ with quasi-inverses for the accessible portion of
each non-nullary σ(f), f ∈ V . J is similar to the program D above for duplicating the
accessible portion of all functions. However, whereas D examines all entries 〈~a, σ(f)~a〉,
and extends f1, . . . , fm whenever that entry is defined, J extends, for i = 1 . . . k, the
function f−i with the entry 〈σ(f)~a, ai〉.

6Quasi-inverses are often defined algebraically: g is a quasi-inverse of f when f ◦ g ◦ f = f .
7We use infix notation for binary relations.
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For a vocabulary V we can now easily define, using quasi-inverses, a program Sub

over V that maps any free accessible structure σ, and atom y = σt in the scope of σ,
to the restriction of σ to atoms denoted by sub-terms of t.

4 The abstract core of primitive recursion

4.1 Soundness of STV-programs for PR

Recall (§2.1) that the size |σ| of a structure σ is the sum of sizes of its components. In
fact this is in tune with our use of variants, which are consumed by eliminating function
entries, not atoms. Moreover, the size of functions seems to be an appropriate measure
in general, since it conveys the information contents of a structure more faithfully than
the number of atoms.

Note that for word-structures, i.e. σ(w) for w ∈ Σ∗ (Σ an alphabet) the total size
of the structure’s functions is precisely the length of w, so in this important case our
measure is identical to the count of atoms.

We say that a program P runs within time t : N→ N if for all structures σ, the
number of configurations in the execution trace of P on input σ is finite and 6 t(|σ|).
P runs within space s : N→N if for all σ, all configurations in the execution trace of
P on input σ are of size 6 s(|σ|). We say that P runs in PR if it runs within time t,
for some PR function t. This is trivially equivalent to P running in PSpace, since s
cannot exceed t, t cannot exceed 2O(s), and PR is closed under exponentiation.

We assign to each STV-program P a primitive-recursive function bP : N→N as
follows.

• If P is an extension then bP (n) = 1; if P is a contraction or an inception then
bP (n) = 0.

• If P is S;Q then bP (n) = bQ(bS(n))

• If P is if[G]{S}{Q} then bP (n) = max[bS(n), bQ(n)].

• If P is do[G][T ]{Q} then bP (n) = b
[n]
Q (n).

Lemma 1 If P is an STV-program computing a mapping ΦP between structures,
then for every structure σ

|ΦP (σ)| 6 bP (|σ|)

Proof. Structural induction on P .

• If P is a revision, then the claim is immediate by the definition of bP .

• If P is S;Q then

|ΦP (σ)| = |ΦQ(ΦS(σ))|
6 bQ(|ΦS(σ)|) (IH for Q)
6 bQ(bS(|σ|)) (IH for S, bQ is non-decreasing)
= bP (|σ|)
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• The case for P of the form if[G]{S}{Q} is immediate.

• If P is do[G][T ]{Q} then ΦP (σ) is Φ
[m]
Q (σ) for some m. By the definition of

variants, and the semantics of looping, m is bounded by the size of T , which is
bounded by |σ|. So

|ΦP (σ)| = |Φ
[m]
Q (σ)| for some m 6 |σ|

6 b
[m]
Q (|σ|) IH, bQ is non-decreasing

6 b
[n]
Q (|σ|) where n = |σ| by the comment above,

since bQ is non-decreasing

= bP (|σ|) by the dfn of bP

�

From Lemma 1 we obtain the soundness of STV-programs for PR:

Theorem 2 Every STV-program runs in PR space, and therefore in PR time.

4.2 Completeness of STV-programs for PR

Turning to the completeness of STV for primitive recursion, we could prove that STV

is complete for PR(N), and invoke the coding of primitive recurrence over any free
algebra in PR(N). This, however, would fail to establish a direct representation of
generic recurrence by STV-programs, which is one of the raisons d’être of STV. We
show instead that, for any free algebra A, every function primitive-recursive f over A
is computed by an STV-program that conveys directly the PR definition of f .

For a free algebra A = A(C), and an element a ∈ A, let σa be a given as a
C-structure.

Lemma 3 For each free algebra A = A(C) and each instance of the schema (2) above
of recurrence over A (with ~x = x1, . . . xm), the following holds. Given STV-programs
for the functions gc, there is an STV-program P that, for each y, x1, . . . , xm ∈ A,
maps the structure 〈σy, σx1

, . . . , σxm
〉 to σt where t = f(y, x1, . . . , xm).

Proof. Assume that gc in (2) is computed by an STV-program Pc, for each c ∈ C.
Our program P builds up a unary pointer r that maps each atom in the structure σy

for y to the structure σt where t = f(q, x1, . . . , xm). I.e. for each sub-term-occurrence
p of y σr(sp) = σ(f(q, x1, . . . , xm)).

P starts by invoking the program L above to expand σ(y) with an enumerator
e and quasi-inverses for each c ∈ C. Note that since σy is a free structure, each
quasi-inverse is an inverse; also, e never lists σq before listing σp for a sub-term p of
q.

P ’s main loop examines the atoms listed by e, using e itself as variant (after saving
a copy). For each a = σq listed, the constructor-inverses are used to identify the main

11



constructor of q, say c of arity k, as well as the atoms denoted by q’s immediate-
sub-terms, namely b1 = c−1a, . . . bk = c−ka. P then invokes Pc for the following
structure as input, where βi is a copy of the structure for the sub-term of q rooted at
bi, obtained by the program Abs of §3.5.

〈β1, . . . , βk, σx1
, . . . , σxm

, r(c−1a), . . . , r(c−ka)〉

It then defines r(a) to be the root of the output structure of Pc.
By our definition of the enumerator, its last entry is the recurrence argument

y = σq itself, and by the definition of P , r(y) is the root of σ(f(y, x1, . . . , xm)). The
last phase of P uses contractions to eliminate all atoms and entries other than that
substructure, leaving as output σt where t = f(y, x1, . . . , xm). �

Theorem 4 For each free algebra A, the collection of STV-programs is complete for
PR(A).

Proof. Let f ∈ PR(A). We show that f is computable in STV by discourse-level
induction on the definition of f as a PR function over A. The cases where f is a
constructor are trivial. For explicit definitions, and more particularly composition,
we need to address the need of duplicating substructures, which is obtained by the
duplication program of 3.4. Finally, the case of recurrence is treated in Lemma 3. �

4.3 Completeness of STV for PR-bounded ST-programs

Theorem 4 establishes, for any free algebra A a simple and direct mapping from defini-
tions in PR(A) to STV-programs, If we take the ST-programs of [16] as the Turing-
complete computation model of reference, the question remains as to whether every
ST-program P running within primitive-recursive time and space is directly mapped
to an equivalent STV-program Q. Indeed, it suffices to take Q of the form E;B;P ′,
where:

1. E expands σ with an enumerator for σ. (Recall that an enumerator for a V -
structure σ generates the V -accessible elements of σ.)

2. B invokes Theorem 4 for A = N, using E as input, to compute the function f ,
i.e. further expanding σ with (b0, t1) representing a chain of length f(n), where
n is the size of σ.

3. P ′ is P with each loop preceded with duplicating t, and using the copy as variant
for the loop.

5 Conclusion

We’ve followed here [16], where we introduced programming over finite partial-structures
as an approach for the analysis and certification of resources in an abstract setting.
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[14] The key insight is that inductive data-objects, such as natural numbers, strings
and lists, can be construed as finite partial-structures, and as such are amenable to
programming for the transformation of finite partial-structures. We showed there that
the underlying theory of finite partial-structure is mutually interpretable with Peano
Arithmetic, and noted that the corresponding programming language ST, for finite
partial-structure transformation, is Turing complete.

Here we presented a variation STV of ST, that requires each loop to be assigned
a “variant” in the guise of a set of the structure’s components, with each pass through
the loop consuming at least one variant’s entry. We showed that this generic construct
yields an abstract delineation of primitive recursive computing: On the one hand
recurrence over any free algebra is captured directly in STV, and on the other hand
any function computed by STV programs is primitive recursively bounded, and is
therefore primitive recursive.
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