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Abstract. The paper deals with the dynamics of conservative #-degree-of-freedom vibro-impact
systems involving one unilateral contact condition and a linear free flow. Among all possible
trajectories, grazing orbits exhibit a contact occurrence with vanishing incoming velocity which
generates mathematical difficulties. Such problems are commonly tackled through the definition
of a Poincaré section and the attendant First Return Map. It is known that the First Return Time to
the Poincaré section features a square-root singularity near grazing. In this work, a non-orthodox
yet natural and intrinsic Poincaré section is chosen to revisit the square-root singularity. It is based
on the unilateral condition but is not transverse to the grazing orbits. A detailed investigation of
the proposed Poincaré section is provided. Higher-order singularities in the First Return Time are
exhibited. Also, activation coefficients of the square-root singularity for the First Return Map are
defined. For the linear and periodic grazing orbits from which bifurcate nonlinear modes, one of
these coefficients is necessarily non-vanishing. The present work is a step towards the stability
analysis of grazing orbits, which still stands as an open problem.

Contents

1. Introduction 2
2. Main results 3
2.1. Poincaré section 3
2.2. Square-root singularity 5
2.3. Square-root singularity near a grazing linear mode 7
3. Domain of definition of the First Return Map 8
3.1. Contact times 8
3.2. Zero, one or infinitely many? 10
3.3. Poincaré section 12
4. Implicit function theorem and power-root singularity 14
4.1. Square-root singularity 15
4.2. Power-root singularity 18
4.3. Discontinuous First Return Time 24
5. Square-root instability 25
5.1. A nonlinear =-dimensional map 26
5.2. Two-dimensional maps with critical instability 28
6. In the vicinity of a grazing orbit 30
6.1. First Return Time 30
6.2. Square-root singularity in the vicinity of a grazing linear mode 32
7. Conclusion 34
Appendix A. One-dof system: on the square-root singularity 35

Key words and phrases. non-smooth analysis, grazing, unilateral contact, Poincaré section, First Return Time.
1



2 ON THE FIRST RETURN TIME FOR VIBRO-IMPACT SYSTEMS

Appendix B. Power-root singularity for a mass-spring chain 36
References 37

1. Introduction

In the present work, the dynamics of a mechanical system with # degrees-of-freedom (dof),
one of which being unilaterally constrained, is of interest. An example of such a system is

k1 k2 kN−1 kN

d
m1 m2 mN−1 mN

u1 u2 uN−1 uN

Figure 1. A unilaterally constrained #-degree-of-freedom chain with 3 > 0.

depicted in Figure 1. The governing equations considered in this work read1:



M¥u +Ku = r (1.1a)
u(0) = u0, ¤u(0) = ¤u0 (1.1b)
D# (C) ≤ 3, '(C) ≤ 0, (D# (C) − 3)'(C) = 0 (1.1c)
¤u+(C)>M ¤u+(C) + u>(C)Ku(C) = E(u(C), ¤u+(C)) = E(u(0), ¤u(0)), ∀C ≥ 0 (1.1d)

with
M = diag(< 9 )#9=1; K = (:8 9 )#8, 9=1; u(C) = (D 9 )#9=1; r(C) = (0, . . . , 0, '(C));

where ¤D 9 , ¤D+9 , ¤D−9 and ¥D 9 represent the velocity, the right limit of the velocity, the left limit
of the velocity and the acceleration of mass 9 , 9 = 1, . . . , # , respectively. Matrices M and
K are assumed to be symmetric constant positive definite.2 Hence, there exists a matrix
P of M-orthogonal eigenmodes which diagonalizes both M and K, that is P>MP = I and
P>KP = 
2 = diag(l2

9
) | 9=1,...,# where I is the # × # identity matrix, l2

9
, the eigenfrequencies

and )9 , the linear periods with l 9)9 = 2c, 9 = 1, . . . , # . Also, condition (1.1c) says that mass
# is constrained on the right side by a rigid obstacle at a distance 3 > 0 from its equilibrium.
There is only one constraint on mass # . The other masses are not constrained in any way. The
quantity '(C) is the reaction force induced by the obstacle on mass # at the time of gap closure.
Generally, '(C) is a measure.

The Initial Value Problem (1.1) without (1.1d) is not well-posed: it is known that uniqueness is
not guaranteed. To overcome this issue, an impact law is usually incorporated into the formulation.
The present work targets non-dissipative dynamics and condition (1.1d) is enforced: the total
energy of the system is preserved during the motion. This implies the existence of a perfectly
elastic impact law of the form ¤D+

#
= −4 ¤D−

#
with 4 = 1 where ¤D−

#
and ¤D+

#
respectively stand for the

pre- and post-impact velocities of mass # . For the well-posedness of the initial-value problem
with constant energy, see [1, 13].

With the above impact law, two types of closing contacts should be addressed: contacts with
non-zero pre-impact velocity (or simply “impacts”) and contacts with zero pre-impact velocity.
This second category can itself be divided as follows: “grazing contact” if the mass leaves the
obstacle immediately after contact is closed, or “sticking contact”3 if the mass stays in contact
with the obstacle for a finite time interval. These types of contacts are illustrated in Figure 2.

1The fact that D# is chosen to be unilaterally constrained is not limiting. It could be any other degree-of-freedom
through a permutation of indices.

2A positive definite mass matrix slightly more general than a diagonal one which has a single non-zero entry ##
on row # and column # can be considered as well.

3Note that the term “sticking” does not mean that there is glue on the wall. The contact force '(C) of the wall on
mass # is still necessarily negative as stated in Equation (1.1c).
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Figure 2. Possible types of contacts in unilaterally constrained discrete dynamics.

Recent results on nonlinear modal analysis of discrete vibro-impact systems suggest that the
First Return Map (FRM) could be defined on the unilateral constraint hyperplane {D# = 3}
in the phase-space [9, 18, 8]. This hyperplane gives access to special periodic solutions with
closed-form expressions [9, 17] and to reduced-order systems of nonlinear equations together
with the companion stability analysis [16, 15]. Yet this Poincaré section has drawbacks as already
reported [2, p. 261-262]: it is not transverse to the grazing orbits. This is the main reason why
this section is not chosen in [2]. Instead, the authors proposed a First Return Map, called the
discontinuity map, transverse to the flow but which requires two times, first to reach the contact
interface and then, the Poincaré section.
First, we prove that all orbits with a nonlinear behavior intersect the chosen Poincaré section

infinitely many times. Second, the square-root singularity is here revisited in a detailed
mathematical framework.
The paper is organized as follows: in Section 2, the main results are stated including the

definition of the Poincaré section and the square-root singularity of the First Return Time (FRT).
Section 3 deals with the exact subset of initial data at the contact constraint D# = 3 where the
trajectory will come back to the constraint, that is the domain of the FRM. The square-root
singularity and higher-order singularities are thoroughly explored in Section 4 in a mathematical
framework where the implicit function theorem is used in a degenerate case. The dynamics
induced by the square-root singularity is explored in Section 5. Coefficients of the asymptotic
expansion of the FRM activating the square-root singularity are identified in Section 6. These
coefficients are explicitly computed for grazing linear modes (GLM). The main results of this
article are then summarized in the conclusion.

2. Main results

The Poincaré section is first defined in Section 2.1. The theorems on the square-root singularity
which emerges in the vicinity of grazing orbits are provided in Section 2.2. The last section
addresses a result on the square-root singularity near a periodic solution with a sole grazing
occurrence for all times.

2.1. Poincaré section. The Poincaré section corresponds to the domain of definition of the First
Return Map. In nonsmooth analysis, where the vector field governing the dynamics is commonly
piecewise smooth only, the hyperplane H = {[u>, ¤u−>]> ∈ R2# , D# = 3} of the phase-space
defined by D# = 3 is a natural choice for the Poincaré section when targeting trajectories with
non-vanishing pre-impact velocities since they hit the section transversally [9]. However, for
grazing trajectories, the transversality condition is lost. A discontinuity mapping on another
suitable section for which the transversality condition is retrieved shall be used instead [2, 7,
11]. To study the stability of grazing periodic orbits, the approach proposed in [2, 7, 11] is quite
natural and efficient. To describe the behavior near grazing contact, our approach is more direct
than the previous one. We obtain new insights on the square-root singularity and on the complex
behavior near a grazing contact in the state space. In particular, we take advantage of the simple
linear free dynamics outside the contact.
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In the present work, the Poincaré section is still a subset of the hyperplaneH . It is the simplest
cross-section to describe the dynamics with only two phases: contact dynamics and free-flight
dynamics. This does not have the adverse effect of introducing a second free-flight dynamics
as the discontinuity mapping does. Nevertheless, our critical choice necessitates a very careful
description of the domain of definition of the FRM. This is stated in the following theorem that
categorizes the initial data generating orbits which will always come back to the section.

Proposition 2.1— Finite sticking duration. When 3 is positive, the sticking phase of a solution
to (1.1) is of finite duration.

This is proven in [15] for a two-dof vibro-impact system. A general proof for the #-dof system is
given in Section 3.1 of the present work. This property is used to show that a solution to (1.1) has
zero, one or infinitely many closing contacts with the hyperplaneH . Before stating this result,
the following assumption is needed.

Assumption 2.1 — No internal resonances. The linear frequencies of system (1.1) are Z
independent which means

#∑
8=1

:8l8 = 0 and :8 ∈ Z ⇒ :8 = 0, ∀8 = 1, . . . , #. (2.1)

Through this assumption, internal resonances are discarded in the current work.

Theorem 2.2 — Zero, one or infinitely many closing contacts withH . Let u(C) be a solution
to (1.1). Under Assumption 2.1 of no internal resonance, the solution is such that

Case 1 — linear solution: mass # never hitsH , i.e. D# (C) < 3 for all C.
Case 2 — linear solution: mass # experiences only one closing contact, i.e. there exists
C0 such that D# (C0) = 3 and D# (C) < 3 for all C ≠ C0.

Case 3 — nonlinear solution: mass # experiences a countably infinite number of isolated
closing contacts withH .

This theorem is proven in Section 3.2. The affine spaceH is of dimension 2# − 1. It is divided
into three disjoint subsets:

H− = {[u>, ¤u−>]> ∈ R2# , D# = 3 and ¤D−# > 0}, (2.2)

H+ = {[u>, ¤u+>]> ∈ R2# , D# = 3 and ¤D+# < 0}, (2.3)

H0 = {[u>, ¤u>]> ∈ R2# , D# = 3 and ¤D# = 0}. (2.4)
By a careful investigation of the free dynamics, it can be seen that the solution which features
a contact with non-zero pre-impact velocity will always experience a later (and a previous in
negative time) closing contact. Accordingly, the problem of the existence of a subsequent (or
previous) closing contact emerges only onH0. Theorem 2.2 implies thatH0 is the union of the
two subsets

H0
∞ = {[u>, ¤u>]> ∈ H0 with an infinite number of contacts}, (2.5)

H0
1 = {[u>, ¤u>]> ∈ H0 with a single grazing contact}. (2.6)

SinceH0
1 contains solutions with only one grazing contact, it does not belong to the Poincaré

section.

Definition 2.1 — Poincaré section. The Poincaré sectionHP ⊂ H is formed by the union of
the set of the states with non-zero velocity contacts and the set of the states with zero velocity
contact that gives rise to an infinite number of closing contacts, that is

HP = H− ∪H0
∞. (2.7)
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Remark 2.1. There are two options for the choice of the Poincaré section inH depending on
whether one wants to start right before or right after the contact occurrence. The former gives the
Poincaré section defined as above, and the latter yieldsH+P = H+ ∪H0∞ as the Poincaré section.

The setH0∞ can also be split into two subsets: H0
S including all the initial data belonging toH0∞

such that the solution starts by a sticking contact and H0
G of initial data such that the solution

starts by a grazing contact:
H0
∞ = H0

S ∪H0
G . (2.8)

2.2. Square-root singularity. The First Return Time is known to be generically an analytic
function of the initial data. Let W0 = [u0, ¤u0]> ∈ H−. If the first return to H , named W1,
belongs toH− then the FRM is analytic near W0 [2, 9]. However, if W1 ∈ H0, then there is a
grazing contact and it is known that a square-root singularity appears [7, 11].

By definition ofHP and through Theorem 2.2, there exists a time, called “First Return Time”,
at which the orbit emanating from W ∈ HP comes back toHP .
Definition 2.2 — First Return Time. Let u(C) be a solution to (1.1) with the initial data W =

(,8)2#8=1 ∈ HP at the initial time C = 0, i.e. ,# = D# (0) = e>
#

u(0) = 3. The First Return Time
) = ) (W) > 0 is defined by

) (W) =
{

min{C > 0 : D# (C) = 3} if there is no sticking phase at C = 0 (2.9a)
min{C > g(W) : D# (C) = 3} if there is sticking phase at C = 0 (2.9b)

where g(W) is the sticking duration.
This definition can be made more concise by saying that ) (W) = min{C > g(W) : D# (C) = 3}
with the convention that g(W) = 0 if there is no sticking at C = 0. When a sticking phase occurs
at C = 0, Proposition 2.1 ensures that the First Return Time is well defined since the duration of
the sticking phase is finite.

Let u(C,W) be the solution associated with the initial data W ∈ HP . By the definition ofHP ,
,# = 3, hence W is viewed as a vector of 2# − 1 variables. The displacement of mass #
is D# (C,W) = e>

#
u(C,W) which is a function of time variable C and the initial data W. Consider

the smooth function
Φ(C,W) = e>2#R(C)SW (2.10)

defined for all C ∈ R and for all W ∈ R2# where (1) S = diag(1, . . . , 1,−1) is a 2# × 2# diagonal
matrix with last entry −1 to reflect the impact law and (2) the operator

R(C) =
[

P cos(C
)P−1 P
−1 sin(C
)P−1

−P
 sin(C
)P−1 P cos(C
)P−1

]
(2.11)

describes the free-flight dynamics. The dynamics strictly between two successive closing contacts
is smooth. The function Φ(C,W) coincides with D# (C,W) as long as D# (C,W) < 3.
Assumption 2.2 — Non-vanishing acceleration. Is considered W0 the initial data leading to
an orbit which has a grazing contact at the first time )0 with the condition m2

C Φ()0,W0) ≠ 0.4

This is an important assumption which activates the square-root singularity near a grazing orbit.
Otherwise, a stronger singularity will emerge.

Assumption 2.3. ∇WΦ()0,W0) ≠ 0R2# .

This assumption is generally satisfied and means that there exists 1 ≤ : ≤ 2# , : ≠ # such
that m,:

Φ()0,W0) ≠ 0. Without it, the square root singularity in the First Return Time is not
expected to arise. Also, this assumption 2.3 is not verified for # = 1, as explained in Appendix A.

4In this paper, m=• = (m•)= is the =-th order partial derivative with respect to •.
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However, for # ≥ 2, it always holds true for an initial data W0 corresponding to a grazing linear
mode, as shown in Lemma 6.1.

With Assumptions 2.2 and 2.3, the scalar

W: = −
m2
C Φ()0,W0)

2m,:
Φ()0,W0) (2.12)

is well defined and does not vanish. The expression of the First Return Time near a grazing
contact is then given in Theorem 2.3. Throughout the paper, the expression “near a grazing
contact” means “with initial data , near ,0”, and the corresponding solution is investigated
near time )0. The implicit function theorem is applied on the smooth function Φ in place of the
nonsmooth function D# . It is easier to differentiate the smooth function Φ than the non-smooth
function D# .

Theorem 2.3 — Square-root singularity near a grazing contact. Let W0 = (,08)2#8=1 ∈ H−
be the initial data generating an orbit with a grazing contact at the First Return Time )0 = ) (W0).
If Assumption 2.3 applies, then there exists a component,: of W such that m,:

Φ()0,W0) ≠ 0.
Let W ∈ R2#−1 be the reduced vector obtained from W by removing ,: . If Assumptions 2.1
and 2.2 hold then:

(1) There exist two neighborhoods +)0 and +W0 ⊂ HP of )0 and W0, respectively as well as
two smooth scalar functions [ and U defined on +W0

= {W,W ∈ +W0} such that the set
(2 = {(C,W) ∈ R × R2# , Φ(C,W) = 3 and mCΦ(C,W) = 0} (2.13)

where the square-root singularity will emerge, is locally parametrized as follows:

(2 ∩ {+)0 ×+W0} =
{([(W), U(W),W), W ∈ +W0

}
, (2.14)

where [(W0) = )0 and U(W0) = ,0: .
(2) Let B: = sign W: and the set

B: =
{
W ∈ +W0 , B: (,: − U(W)) ≥ 0

}
(2.15)

Let f = sign( ¥D−
#
()0,W0)). There exists a smooth function k such that k(0,W0) = 0,

m1k(0,W0) = 1/
√
|W: | and for all W ∈ B: , the First Return Time ) is given by

) (W) = [(W) + k (
f

√
B: (,: − U(W)),W

)
. (2.16)

Moreover, the set {W ∈ HP , () (W),W) ∈ +)0 ×+W0} is exactly B: .
A mathematical proof of this theorem is provided in Section 6.1. Take note that the square-root
dependence on the initial data only appears on the set B: which is simply the region above or
below the hypersurface,: = U(W). The issue induced by this square-root singularity is already
known for a Poincaré section transverse toH [7, 2, 11, 19]. These existing results are compared
to our FRT in Section 4.3.
The presence of the square-root singularity is the consequence of the vanishing incoming

velocity ¤D−
#
()0) = 0 and the non-vanishing acceleration ¥D−

#
at )0. Contact occurrences with both

vanishing velocity and vanishing acceleration, that is ¤D−
#
()0) = ¥D−# ()0) = 0, but with D̈−

#
()0) ≠ 0

are expected to generate a cube-root singularity. More generally, if D(ℓ)−
#
()0) = 0, 0 < ℓ < =,

and D(=)−
#
()0) ≠ 0, then a =th-root singularity is expected, where D(ℓ)−

#
refers to the ℓth left

time-derivative of D# . This is proved in Section 4.2 under generic assumptions and = is shown to
be bounded by 2# where # is the number of degrees-of-freedom.

Remark 2.2 — Discontinuous First Return Time. Since B: is a one-sided set bounded by an
hypersurface, the set of initial data with their First Return Time near )0 is not a neighborhood
of W0. This means that in the vicinity of W0, there are initial data with a First Return Time far
from )0. In other words, the First Return Time ) (W) is discontinuous at W0, see Section 4.3.
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This geometric singularity is induced by our choice of a non-transverse Poincaré section. The
dynamical interpretation of this discontinuity is discussed in Section 4.3.

Theorem 2.3 also has to be generalized for initial data W0 ∈ H0
G, for instance the initial data

of a grazing linear mode. The neighborhood +W0 has to be replaced by the half neighborhood
++W0

= {W ∈ +W0 , e>2#W ≥ 0} where the initial velocity is non-positive and the set B: is replaced
by the smaller set

B+: = B: ∩++W0
= {W ∈ +W0 , W: (,: − U(W)) ≥ 0, ,2# ≥ 0}. (2.17)

The following theorem is stated with the notations of Theorem 2.3.

Theorem 2.4 — Square-root singularity for two successive grazing contacts. Assume that
W0 ∈ H0

G , ¥D+# (0,W0) < 0 and W()0) ∈ H0 where )0 = ) (W0). If Assumption 2.3 applies, there
exists : ∈ {1, . . . , 2#} and : ≠ # such that m,:

Φ()0,W0) ≠ 0 and B: = sign(W: ) together with
f = sign( ¥D−

#
()0,W0)). If Assumptions 2.1 and 2.2 hold, then there exist two neighborhoods +)0

and +W0 ⊂ HP of )0 and W0, respectively as well as two smooth scalar functions [ and U defined
on +W0

containing W0 where [(W0) = )0 and U(W0) = ,0: . There also exists a smooth function
k such that k(0,W0) = 0, m1k(0,W0) = |W: |−1/2 and for all W ∈ B+

:
, the First Return Time is

) (W) = [(W) + k (
f

√
B: (,: − U(W)),W

)
. (2.18)

Moreover, the set {W ∈ HP , () (W),W) ∈ +)0 ×++W0
} is exactly B+

:
.

The difference between Theorems 2.3 and 2.4 is that formula (2.16) of the First Return Time in
the former is defined on B: whereas in the latter it is defined on a smaller subset B+

:
. This is due

to the fact that H0
G lies on the boundary of the cross-section HP , and not all perturbations of

W0 are thus admissible. The condition ¥D+
#
(0,W0) < 0 guarantees that solutions with initial data

near W0 and with a non-negative velocity for the last mass have a First Return Time near )0. The
case W0 ∈ H0

S can also be considered and can add an additional singularity due to the sticking
phase [15].

2.3. Square-root singularity near a grazing linear mode. The square-root singularity near
the periodic solutions with one grazing contact per period is addressed. For a #-dof system
without internal resonances, there are # such periodic solutions which are called grazing linear
modes (GLM). It is known that many invariant submanifolds of periodic solutions with :
Impact-Per-Period (:-IPP) [9, 18, 16] might emerge in the vicinity of GLM.
We define the 9 th grazing linear mode as a periodic trajectory u associated to the 9 th linear

mode which satisfies maxC∈R D# (C) = 3, i.e. the contacts are at most of grazing type. An essential
tool to investigate the dynamics near a grazing linear mode is the First Return Map [2]. This map
is well defined onHP .
Definition 2.3 — First Return Map. Suppose W ∈ HP and ) = ) (W) > 0 is the First Return
Time toHP of the orbit emanating from W. The map which associates points inHP to their first
return images toHP is called the First Return Map F . To be more precise F : HP →HP with

F (W) =
{

R() (W))SW if W ∈ H− ∪H0
G (2.19a)

R(B(U(g(W)))U(g(W)) if W ∈ H0
S (2.19b)

where the matrix S describes the impact law; U(C) = [u(C), ¤u(C)] is the state of the system at
time C; g and B are the duration of the sticking phase and of the free-flight phase, respectively.

Let us investigate formula (2.19b). If there is a sticking phase, i.e. W ∈ H0
S, then g = g(W)

is the sticking duration and B = ) (W) − g(W) denotes the duration of the free-flight after the
sticking phase until the next contact. The state of the system at the end of the sticking phase is
called U(g(W)). If W ∈ H− ∪H0

G, i.e. there is no sticking at C = 0, then g is assumed to be 0,
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hence B ≡ ) and U(g(W)) ≡ W. In other words, formula (2.19b) is valid for all the cases, with
or without sticking. An explicit formula of g for a two-dof system is exposed in [15].
In (2.16), the square-root singularity shows that periodic orbits with grazing contacts yield

intricate dynamics such as instability of the periodic orbits or grazing bifurcations [7, 11]. This
square-root term may produce the so-called square-root singularity of the First Return Map via
the coefficients �: , as defined below. In the particular framework of Section 5, instability of the
grazing linear modes is expected. However, this is not true in the one-dof case, see Appendix A.

Definition 2.4 — Square-root singularity coefficients. Suppose that W0 ∈ HP generates
an orbit with the first contact at )0 of grazing type, i.e. D# ()0) = 3 and ¤D−

#
()0) = 0.

Under Assumptions 2.1 of no internal resonance and 2.3 for each : ∈ {1, . . . , 2#} such that
m,:

Φ()0,W0) ≠ 0, the square-root singularity coefficient �: is defined by

�: =

{ √
|W: |e>: P ¤q()0) if 1 ≤ : < # , (2.20a)

−
√
|W: |e>:−#MP
2 q()0) if # < : ≤ 2# (2.20b)

where [q, ¤q] are the modal coordinates defined by the transformation u = Pq.

The square-root singularity for the First Return Map is then defined as follows.

Definition 2.5 — Square-root singularity for the First Return Map. System (1.1) is said
to feature square-root singularity for the First Return Map near a grazing periodic solution
associated to the initial condition W0 if there exists at least a coefficient �: , 1 ≤ : ≤ 2# , : ≠ #
which does not vanish.

Near a grazing linear mode, the square-root singularity for the First Return Map is shown to exist
under a generic condition as stated in Theorem 2.5 proven in Section 6.2.

Theorem 2.5 — Square-root singularity for the First Return Map near grazing linear
modes. Consider the 9 th grazing linear mode of (1.1) associated to the initial state W0 ∈ HP
and )9 , its period. Assumptions 2.1, 2.2 and 2.3 hold. If there exists an index # < 8 ≤ 2# such
that m,8

D# ()9 ,W0) ≠ 0 and %8 9 ≠ 0, then there exists a square-root singularity for the First
Return Map near the 9 th grazing linear mode.

Instead, if �: = 0 for all : then the square-root singularity for the First Return Map is not
activated and the dynamics near the periodic orbit is expected to be similar to that of the smooth
dynamics. Roughly speaking, the FRM annihilates the singularity in the same way as squaring
removes a square-root singularity.
Theorem 2.5 gives a hint on how to explore the instability of the grazing linear modes. For

instance, if the dynamics starts in B: and stays in B: , then the framework of Section 5 follows
where the instability of the associated First Return Map fixed-point is explained.

The condition %8 9 ≠ 0 comes from the definition of �8 with # < 8 ≤ 2# . Despite the fact
that %8 9 ≠ 0 is a generic property, it might be violated for a chain of masses with # > 2. Hence,
in order to have such a �8 ≠ 0, a condition on %8 9 is required. When # = 2 [15], it is shown that
%8 9 ≠ 0 for all 8, 9 = 1, 2 and there is always a square-root singularity for the First Return Map
near the grazing linear modes.

3. Domain of definition of the First Return Map

This section details the Poincaré section in a comprehensive manner.

3.1. Contact times. The times at which contact occurs are defined and then categorized. In
particular, if a sticking phase starts, then it is of finite duration. Moreover, the total energy of the
system is conserved during the sticking phase. These features will be used to show that there is a
countably infinite number of closing contacts after a sticking phase, further details are found in
Section 3.2.
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Definition 3.1 — Contact time. Assume that u(C) is the solution to system (1.1); ) is a contact
time if D# ()) = 3 and there exists X > 0 such that D# () − C) < 3 for all 0 < C < X.

In other words, a contact time ) is the time at which mass # touches the rigid obstacle after a
free-flight phase. Invoking [1], the contact time is well defined in the conservative case which is
without chattering.

Contact times are classified into three categories:
(1) It is a contact with non-zero pre-velocity if D# ()) = 3 and ¤D−

#
()) > 0.

(2) It is a contact with zero pre-velocity if D# ()) = 3 and ¤D−
#
()) = 0, with two possibilities:

(a) a grazing contact if the mass leaves the obstacle right after the contact time;
(b) a sticking contact if the mass stays in contact with the obstacle.

In this paper, the term “closing contact” indifferently refers to either an impulsive impact or a
grazing contact or the beginning of a sticking contact phase. The sticking system dictates the
dynamics during the sticking phase [2]. Since the last mass rests against the obstacle, the system
of interest “loses” one degree-of-freedom. The sticking system complemented by the initial data
at the beginning of a sticking phase reads

M¥u +Ku = −3 l># (3.1)
<# ¥D# = 0, D# (0) = 3, ¤D# (0) = 0 (3.2)

where M and K are the mass and stiffness matrices after removing the last row and last column,
u is a # − 1 vector solution to the sticking dynamics, l># is the last column of K where the last
entry :## has been removed.
Proposition 2.1 can now be proven.

Proof. Let us proceed by contradiction and assume that the sticking phase never ends. The new
equilibrium u

4
of the sticking system satisfies

Ku
4
= −3 l># that is u

4
= −3K−1l># . (3.3)

During the sticking phase, the last equation reduces to ¥D# = 0. Indeed, the last equation says
'(C) = � (C) since <# ¥D# + l#u + :##3 = '(C), or <# ¥D# = −� (C) + '(C), with

� (C) = l#u(C) + :##3 ≤ 0. (3.4)

It should be understood that � (C) cannot be positive during the sticking phase. Otherwise, there
exists C0 during the sticking phase such that � (C0) > 0. By continuity of the function �, it is
strictly positive on an open interval including C0. By integrating the acceleration, D# (C0) < 3
which contradicts that D# (C) = 3 during the sticking phase.

The solution u of the sticking system is quasi-periodic and continuous and its mean value 〈u〉
is the equilibrium u

4
. Therefore, the mean value of the scalar quasi-periodic function � is

〈�〉 = l# 〈u〉 + :##3 = l#u
4
+ :##3. Since � is continuous, there exists C0 > 0 such that

� (C0) = 〈�〉 = −3 l#K−1l># + :##3 = 3X>KX with X = [K−1l># ,−1]>. � (C0) is positive
because of the condition 3 > 0 and the positive definiteness of K, which contradicts (3.4).
Therefore, the sticking duration is finite. �

The conservation of energy during the sticking phase is not necessarily obvious since the
sticking and non-sticking systems are different.

Lemma 3.1 — Energy during sticking phase. The solution to (3.1)-(3.2) preserves the total
energy E defined in (1.1d).

Proof. Assume that C = 0 is the beginning of a sticking phase and C = g, the end. During
this sticking phase on the interval [0 ; g], the governing equations become M¥u +Ku = 0, with
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u = u − u
4
where u

4
= −3K−1l># is the new equilibrium of the sticking system. This sticking

system conserves the following energy:

E(C) = ¤u>(C)M ¤u(C) + u>(C)Ku(C) = E(0). (3.5)

Moreover, since u = u + u
4
, an easy manipulation yields

E(C) = ¤u>(C)M ¤u(C) + u>(C)Ku(C) = E(C) + u>
4
Ku

4
+ 2u>(C)Ku

4
. (3.6)

In particular,

E(0) = E(0) + u>
4
Ku

4
+ 2u>(0)Ku

4
(3.7)

and the total energy of the system can now be calculated. Since ¤u is continuous during a sticking
phase including its beginning and end, the exponents ± are dropped, and

E(C) = ¤u>(C)M ¤u(C) + u>(C)Ku(C)
= ¤u>(C)M ¤u(C) + u>(C)Ku(C) + :##D2

# (C) + 2D# (C)l#u(C)
= E(C) + :##32 + 23 l#u(C)
= E(C) + u>

4
Ku

4
+ 2u>(C)Ku

4
+ :##32 + 23 l# (u(C) + u

4
)

= E(C) + u>
4
Ku

4
− 23u>(C)l># + :##32 + 23 l# (u(C) + u

4
)

= E(C) + u>
4
Ku

4
+ :##32 + 23 l#u

4
. (3.8)

Similarly,

E(0) = E(0) + :##32 + 23 l#u(0)
= E(0) + u>

4
Ku

4
+ 2u>(0)Ku

4
+ :##32 + 23 l#u(0)

= E(0) + u>
4
Ku

4
+ :##32 + 23 l#u

4
(3.9)

It follows that E(C) = E(0), i.e. the total energy of the system is constant during the sticking
phase. �

3.2. Zero, one or infinitely many? This section discusses the number of closing contacts of
any trajectory. The main results are stated in Theorem 2.2. For the system of interest, the number
of closing contacts can only be either 0, 1 or countably infinitely many. As a consequence, if
there are at least two closing contacts, then mass # will interact with the obstacle infinitely many
times. Accordingly, it is strictly impossible for a solution to enjoy exactly 2, 3, . . . , < closing
contacts.
The proof of Theorem 2.2 is mainly grounded on the relative position of mass # with the

wall. In case 1 of the theorem, system (1.1) is linear. In case 2 with only one grazing contact,
the nonlinear contact condition with zero velocity does not affect the solution of the linear
system. Now we discuss the case with at least two contacts. Between every two consecutive
closing contacts, say ]C 9 ; C 9+1 [, system (1.1a) with '(C) = 0 is linear. There is a unique solution
associated with the initial data at time C 9 . Hence, D# is a quasi-periodic trigonometric polynomial
on every interval ]C 9 ; C 9+1 [. The proof of Theorem 2.2 has two steps. We first consider the
quasi-periodic function i defined on R which coincides with D# on a free-flight interval. The
properties of almost periodic functions dictate the behavior of i [5]. Then, the results obtained
for i are extended to its restriction u(C). The first step is contained in the following lemma.

Lemma 3.2 — Maximum of a quasi-periodic function. Let i be a quasi-periodic function
defined on R such that

i(C) =
#∑
9=1
(2 9 cosl 9 C + B 9 sinl 9 C) and i(0) =

#∑
9=1
2 9 = 3 > 0 (3.10)
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If (l1, . . . , l# ) are Z-independent, then two possibilities arise:
(1) If B 9 = 0 and 2 9 ≥ 0 for all 9 = 1, . . . , # then supR i = 3. Moreover, if i is not periodic,

i.e there exist at least two coefficients 2 9 and 2: with 9 ≠ : such that 2 9 > 0 and 2: > 0,
then i(C) < 3 for all C ≠ 0 and i(C) = 3 for only C = 0.

(2) Otherwise, if there exists at least one ℓ ∈ {1, . . . , #} such that Bℓ ≠ 0 or 2ℓ < 0 then
supR i > 3.

The latter is equivalent to saying that the converse of the first case is true. In the first case,
i(C) = ∑#

9=1 2 9 cosl 9 C and the Z-independence of {l 9 } implies that i is periodic if and only if
there exists a unique 2 9 > 0 with 2: = 0 for all : ≠ 9 . Then, the set {C : i(C) = 3} is the infinite
set {:)9 , : ∈ Z} where )9 = 2c/l 9 . This corresponds to a solution with infinitely many grazing
contacts. Discarding the periodic case, the value of i can be very close to 3 but will never
equal it again in the past and in the future. This argument proves the case when the response of
system (1.1) has only one grazing contact and never reaches the obstacle again.

Later, it is proven that the function i with a supremum strictly greater than 3 corresponds to a
solution with infinitely many closing contacts. Now, Lemma 3.2 is proven.

Proof.
(1) Consider B 9 = 0 and 2 9 ≥ 0 for all 9 = 1, . . . , # , then i(C) = ∑#

9=1 2 9 cosl 9 C and
supR i =

∑#
9=1 |2 9 | =

∑#
9=1 2 9 = 3. If ∃C > 0 such that

∑#
9=1 2 9 cosl 9 C = i(C) = 3, then∑#

9=1 2 9 (1 − cosl 9 C) = 0 where 2 9 (1 − cosl 9 C) ≥ 0 for all 9 = 1, . . . , # . Hence,
cosl 9 C = 1 for all 9 = 1, . . . , # . Thus, l 9 C = : 92c, : 9 ∈ Z, which contradicts the
Z-independence assumption. Hence, i is always smaller than 3 for C > 0.

(2) Otherwise, if there exists ℓ ∈ {1, . . . , #} such that Bℓ ≠ 0, or 2ℓ < 0, then [5]

sup
R
i =

#∑
9=1

√
22
9
+ B2

9
≥ max

( #∑
9=1

√
22
9
+ B2

9
,

#∑
9=1
|2 9 |

)
>

#∑
9=1
2 9 = 3.

Hence, there exists C > 0 such that i(C) = 3. �

Now, using Lemma 3.2, Theorem 2.2 is proven.

Proof. When '(C) = 0, the solution to (1.1a) for all C ∈ R reads

�(C) = P cos (C
)P−1u(0) + P
−1 sin (C
)P−1 ¤u(0)

=

#∑
9=1
(2 9 cosl 9 C + B 9 sinl 9 C)Pe 9 (3.11)

where Pe 9 , 9 = 1, . . . , # are eigenvectors corresponding to eigenvalues l2
9
of M−1K; also

cos(C
) ≡ diag(cosl 9 C) 9=1,...,# and sin(C
) ≡ diag(sinl 9 C) 9=1,...,# are used as notations. We
can choose Pe 9 such that %# 9 = 1, 9 = 1, . . . , # . It is clear that u(C) = �(C) as long as D# (C) < 3.
Henceforth, consider the solution u(C) to the vibro-impact system (1.1). If D# (C) < 3, for all

C ≥ 0, then the solution does not impact the wall. Otherwise, since the system is autonomous, the
impacting time is chosen to be C = 0, i.e. D# (0) = 3. Based on the velocity of the # th mass at
the contact time C = 0, two possibilities emerge

Strictly positive pre-contact velocity: Byassumption, ¤D−
#
(0) > 0which implies ¤D+

#
(0) < 0.

Let i be a function defined on R such that i(C) = D# (C) on {C, B ∈ ]0 ; C], D# (B) < 3}.
It follows that i(0) = 3 and ¤i(0) < 0, thus there exists g > 0 such that i(C) > 3 for
C ∈ ]−g ; 0[. Therefore, supR− i ≥ sup]−g ;0[ i > 3. For an almost periodic function i,
the supremum taken on R− is also the one taken on R+ [5], this yields supR+ i > 3. By
Lemma 3.2, the first instant C1 > 0 such that i(C1) = 3 exists, i.e. mass # will come back
to the obstacle at time C1.
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Vanishing pre-contact velocity: By assumption, ¤D−
#
(0) = 0 which implies ¤D+

#
(0) = 0 as

well as
∑#
9=1 2 9 = 3 and

∑#
9=1 B 9l 9 = 0. Let i be the function defined on R such that

i(C) = D# (C) on {C, B ∈ ]0 ; C], D# (B) < 3}. If B 9 = 0 and 2 9 ≥ 0 for all 9 = 1, . . . , # ,
by Lemma 3.2, it follows that supR i = 3 and i(C) < 3 for all C > 0. Thus, the solution
has only one grazing contact: it is a linear solution.

Otherwise, Lemma 3.2 shows that supR i > 3. It follows that there is a sticking phase
from 0 to g, i.e. D# (C) = 3 for all C ∈ [0 ; g] and D# (C) < 3 for g < C < g + X, where
X > 0. Assume that w is the solution to (1.1a) after the sticking interval with new initial
data at C = g. Thus, F# reads

F# (C) =
#∑
9=1
(2
9
cos(l 9 (C − g)) + B 9 sin(l 9 (C − g))), C ≥ g. (3.12)

Let i be the function defined onR satisfying i(C) = F# (C) on {C, B ∈ ]0 ; C], F# (B) < 3}.
Consider the solution u to the vibro-impact system (1.1) just before and just after the
sticking phase. Its component D# (C) can be written as

D# (C) =


i(C) for C . 0
3 for C ∈ [0 ; g]
i(C) for C & g

(3.13)

We then show that sup[g ;∞[ i > 3. Otherwise, supR i = 3, then i(C) < 3, for all C > g
and i(g) = 3. By reversibility (4 = 1) and uniqueness arguments, the solution to (1.1)
never activates the contact condition and there is only one grazing contact at g. This is in
contradiction with the fact that the solution involves a sticking phase. As a consequence,
supR i > 3. Hence, there exists C > g such that i(C) = 3.

The same procedure can be repeated infinitely many times in both cases, thus the set of closing
contacts is countably infinite. �

3.3. Poincaré section. This section of the paper deals with the construction of the Poincaré
section on which the First Return Map is well-defined. Consider an orbit [u, ¤u] ⊂ R2#

satisfying (1.1). The First Return Map (also called Poincaré map) is used to study the dynamics
in a neighborhood of such an orbit. This map is defined on a Poincaré section which is classically
a (2# − 1)-dimensional manifold in R2# that contains a point U(C) = [u(C), ¤u(C)] of the previous
orbit and is transverse to the orbit at U(C). In the current work, the transversality is lost on
H0 since an orbit starting on H0 may not intersect H again. Hence, an important task is to
eliminate the set of initial data such that the associated orbit does not intersectHP again. This is
achieved by investigating the structure ofH0. Via Theorem 2.2, there are two possibilities after
the grazing contact: the orbit never comes in contact again (H0

1 ) or the orbit comes in contact
infinitely many times (H0∞). The explicit description ofH0

1 is given in the proposition below.

Proposition 3.3 — H0
1 and solutions with only one grazing contact. The set H0

1 of initial
data onH such that the associated orbits have only one contact is the convex subset ofH0,

{[u>, ¤u>]> ∈ R2# , D# = 3, ¤D: = 0, : = 1, . . . , #} (3.14)

of a (# − 1)-dimensional affine subspace such that the # − 1 components D1, D2, . . . , D#−1 satisfy
# inequalities:

%#:

#−1∑
9=1

�: 9D 9 ≥ −%#:�:# 3, ∀: = 1, . . . , # (3.15)

with two of which, at least, are strict inequalities and where B = (�8 9 )#8, 9=1 denotes P−1.
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Note thatH0
1 is a # − 1-dimensional convex set or an empty set.

Proof. The solution to (1.1) with a unique grazing contact is analytic and D# (C) has a closed
form-expression:

D# (C) = e># (P cos(C
)P−1u(0) + P
−1 sin(C
)P−1 ¤u(0))

=

#∑
:=1
(2: cosl: C + B: sinl: C) (3.16)

where 2: = %#:e>: P−1u(0) and B: = %#:l−1
:

e>
:
P−1 ¤u(0), : = 1, . . . , # . Since [u>, ¤u>]> belongs

toH0
1 , this corresponds to case 1 of Lemma3.2, thus D# (0) = 3 and ¤D# (0) = 0, and the coefficients

(2: , B: ) satisfy{
2: ≥ 0, ∀: = 1, . . . , #, ∃ℓ ≠ < : 2ℓ > 0, 2< > 0
B: = 0, ∀: = 1, . . . , #. (3.17)

This gives{
%#:e>: P−1u(0) ≥ 0, ∀: = 1, . . . , #, ∃ℓ ≠ < : 2ℓ > 0, 2< > 0

%#:l
−1
: e>: P−1 ¤u(0) = 0, ∀: = 1, . . . , #.

(3.18)

The second condition yields a linear system P−1 ¤u(0) = 0. Since det(P−1) ≠ 0, it follows that
¤u(0) = 0 and D1, . . . , D#−1 satisfy the inequalities (3.18). This gives the explicit formula ofH0

1
stated in Proposition 3.3. �

An immediate consequence of Proposition 3.3 is that most orbits which belong toH0 are in
H0∞. To be precise, the set of initial data such that the associated orbits belong toH0

1 is empty or
is a (# − 1)-dimensional subset of the 2(# − 1)-dimensional setH0. As a consequence, the
Poincaré section chosen in Definition 2.1 is reasonable.

Corollary 3.1 — Domain of definition of the First Return Map. The maximal subset of H
where the First Return Map F is well-defined isHP = H− ∪H0∞.

Consequences of Proposition 3.3 are now stated.

Corollary 3.2. Orbits with a sticking phase exhibit infinitely many countable closing contacts.

Proof. An orbit including a sticking phase intersectsH0. As proven in Proposition 3.3, the initial
data must be in H0∞ since H0

1 only involves the data on H such that the orbits have a unique
grazing contact but no sticking phase. Hence, it belongs to the set with an infinite number of
closing contacts. �

Corollary 3.3 — Infinite number of closing contacts. If the orbit intersects H− then it
intersectsH− infinitely many times in the future and in the past.
Proof. By Theorem 2.2, an orbit corresponding to the initial data inH− experiences at least one
impact at C = 0. This eliminates the possibilities of case 1 and case 2 in the theorem. Hence,
the orbit belongs to the third category, which means that there will be an infinite number of
closing contacts. However, if the set of closing contacts involves only grazing contacts in the
future, the system becomes linear with D# (C) ≤ 3 for all C > 0. Let i be a function defined
on R with i(C) = D# (C), it follows that supR i = supC>0 i = 3. This contradicts the fact that the
supremum of i must be greater than 3 since there is at least one impact at C = 0. The process can
be repeated to get another closing contact and so on. �

The subsetH−− ofH− containing all the initial data generating orbits with impacts only seems
to be dense inH−. Indeed, this is an interesting open problem.
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About the setH0
1 for two-dof systems.

Corollary 3.4—H0
1 for a two-dof system. Consider # = 2 in (1.1), then, from Proposition 3.3,

H0
1 is defined as

H0
1 = {[u>, ¤u>]> ∈ R4 : %2:�:1D1 > −%2:�:23, : = 1, 2, D2 = 3, ¤D1 = ¤D2 = 0}
= �D1 × {3} × {0} × {0} (3.19)

where �D1 is the subset ofR in which D1 satisfies the two strict inequalities %21�11D1 > −%21�123
and %22�21D1 > −%22�223.

Therefore, the set �D1 can be either empty or an open interval of the form (1,∞), (−∞, 0), or
(0, 1), with 0 = min{U1, U2}, 1 = max{U1, U2}, where U1 = −3�22/�21 and U2 = −3�12/�11.

Remark 3.1 — Linear gazing modes of a two-dof system and boundary of H0
1 . The two

scalars U1 and U2 are the distinct initial values of D1 corresponding to the first and the second
grazing linear mode.

The setH0
1 is an interval in the two-dimensional spaceH0. IfH0

1 ≠ ∅ then
H0

1 =]0, 1[×{3} × {0} × {0}, (3.20)

in the system of coordinates (D1, D2, E1, E2). This means that the set of initial data generating
orbits that have only one grazing contact is a very small subset of all the initial data of orbits
which contain zero velocity closing contacts.

For the 2-dof system, the Poincaré sectionHP reads

HP = H− ∪H0
∞ = {(D1, D2 = 3, E1, E2), D1 ∈ R, E1 ∈ R, E2 > 0} ∪ H0

∞. (3.21)

It is displayed in figure 3. The only complicated part ofHP isH0∞ = H0 − H0
1 . It means that

the intervalH0
1 must be subtracted from the 2-dimensional setH0. The setH0 is studied and

depicted in figure 6 at the end of Section 4.2. In figure 6, the data generating a grazing or a
sticking phase is also completely explicit.

v1

v2

u1

0

d

b

a

sticking

grazing

H0
∞

H−

Figure 3. The 3� Poincaré section for the 2 dof case on {D2 = 3}. It consists in the
upper part { ¤D2 > 0} and the part { ¤D2 = 0} minus the interval ]0, 1[.

4. Implicit function theorem and power-root singularity

This section is divided into three parts. First, the square-root singularity of maps is investigated
in a general framework in order to apply it on the First Return Time. This singularity generically
induces the square-root singularity for the First Return Map near the grazing linear modes as
stated later in Section 6. Second, a general power-root singularity of maps is then unveiled.
Finally, the discontinuity of the First Return Time is shortly discussed in the third part.
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4.1. Square-root singularity. The First Return Time ) is implicitly defined in the equation
5 (),W) = 0 reflecting the equality D# ()) = 3. Unfortunately, if the contact at )0 is of
grazing type, mC 5 ()0,W0) vanishes and hence the implicit function theorem does not apply in a
straightforward fashion. Indeed, a square-root singularity is expected at the intersection of the
hypersurfaces 5 = 0 and mC 5 = 0. The implicit function theorem is then exploited on a variable
other than C. We state the results for the function 5 defined in a two-dimensional space as well as
a < + 2-dimensional space with < ≥ 1.

The presentation of the square-root singularity is elementary and self-contained. It corresponds
to the local geometry of a folded map, well known in the singularity and bifurcation theory, see
for instance the pioneering work [14].

4.1.1. In two dimensions. Let 5 be a function of two variables G and H, where the relation of G
with respect to H is implicitly given by 5 (G, H) = 0. Let us write G locally as a function of H
when 5 satisfies some unusual conditions as follows.

Theorem4.1—Square-root singularity in twodimensions. Suppose that 5 (G, H) ∈ �3(R2,R)
satisfies the following conditions at (G0, H0):

(1) 5 (G0, H0) = 0,
(2) mG 5 (G0, H0) = 0,
(3) m2

G 5 (G0, H0) ≠ 0,
(4) mH 5 (G0, H0) ≠ 0.

Denote the ratio 2W = −m2
G 5 (G0, H0)/mH 5 (G0, H0) ≠ 0 and BW = sign W. There exist two

neighborhoods � and � of H0 and G0, respectively, as well as a function k ∈ �3(�W, �) defined on
the subinterval

�W = {H ∈ �, BW (H − H0) ≥ 0} (4.1)

such that the set {(G, H) ∈ � × �, 5 (G, H) = 0} is formed by the following two branches near
(G0, H0):

G = G0 + k
(√
BW (H − H0)

)
or G = G0 + k

(
−
√
BW (H − H0)

)
. (4.2)

Moreover, k satisfies k(0) = 0 and ¤k(0) = 1/
√
|W | ≠ 0.

An illustration of this theorem is given in Figure 4. Note that k is not defined on the whole open
interval � but only on half of it, determined by the sign of W.

x = ψ(
√
|y − y0 |)

x = ψ(−
√
|y − y0 |)

x0

y0

y

x

Figure 4. Two branches on the right of the line H = H0 when W > 0.
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Proof. Without loss of generality, assume that (G0, H0) is at the origin. If not, consider
the new variables G∗ = G − G0 and H∗ = H − H0 so that at the point (0, 0), the function
5 ∗(G∗, H∗) = 5 (G0 + G∗, H0 + H∗) satisfies the conditions of the theorem. The conclusions are then
modified accordingly.

The implicit function theorem guarantees the existence of the neighborhoods +G of G0 = 0 and
+H of H0 = 0, and a unique function H = i(G) for G ∈ +G and H ∈ +H such that 5 (G, i(G)) = 0 for
G ∈ +G , i(0) = 0, ¤i(0) = −mG 5 (0, 0)/mH 5 (0, 0) = 0 and ¥i(0) = −m2

G 5 (0, 0)/mH 5 (0, 0) = 2W ≠ 0.
Moreover, i is as smooth as 5 . The Taylor expansion of i with an integral remainder at 0 is

H = i(G) = G2A (G) with A (G) =
∫ 1

0
(1 − B) ¥i(BG) dB (4.3)

where A ∈ �1(R,R) and A (0) = ¥i(0)/2 = W ≠ 0. The expression of G with respect to H depends
on the sign of ¥i(0) (or the sign of W) as follows:

If W > 0: then A (0) > 0 and the continuity of A implies that A (G) > 0 in some neighborhood
of 0. On that neighborhood, let us define the continuously differentiable function
q(G) = G

√
A (G): at G = 0, q has a nonzero derivative since A (0) ≠ 0. Through the

inverse function theorem, there exists an inverse function q−1 in some neighborhood � of
q(0) = 0. From H = q2(G), it is required that H ≥ 0. Accordingly, �W is simply a right
neighborhood of 0. Hence, for H ∈ �W, G = q−1(√H) or G = q−1(−√H).

If W < 0: then H = −q2(G) with q(G) = G
√
−A (G). A similar proof holds for H defined on

�W which is now a left neighborhood of 0. The conclusion is obtained by replacing √H by√−H and the function k satisfies ¤k(0) = ¤q−1(0) = 1/√−W.
In both cases, by denoting k = q−1, we have shown that there exists a function k defined in a
neighborhood �W of 0 satisfying k(0) = 0 and ¤k(0) = ¤q−1(0) = 1/

√
|W | such that G = k(√BWH)

or G = k(−√BWH). This concludes the proof. �

Remark 4.1. Another way to express the square-root singularity of G is G =
√
V(H). However,

with the present expression, say G = _(√H), we have a better regularity of _. For instance, if
_(H) = H+H2, H ∈ R+, then_ ∈ �∞(R+). However, V(H) = _2(√H) = (√H + H)2 = H + 2H√H + H2

is not smooth: V ∉ �∞ but V ∈ �1.5.

4.1.2. In < + 2 dimensions (< ≥ 1). Consider a general function 5 of < + 2 variables with a
non-zero gradient.

Theorem 4.2 — Square-root singularity in < + 2 dimensions. Consider the smooth function
5 (G, H, z) : R × R × R< → R such that at point X0 = (G0, H0, z0), it satisfies the following
conditions:

(1) 5 (X0) = 0,
(2) mG 5 (X0) = 0,
(3) m2

G 5 (X0) ≠ 0,
(4) mH 5 (X0) ≠ 0.

Denote 2W = −m2
G 5 (X0)/mH 5 (X0) ≠ 0 and BW = sign W. Then, there exist three neighborhoods

+G0 , +H0 , and +z0 of G0, H0 and z0 respectively, and two smooth scalar functions [ : +z0 → +G0
and U : +z0 → +H0 satisfying [(z0) = G0 and U(z0) = H0 such that the set

(2 = {(G, H, z) ∈ R × R × R<, 5 (G, H, z) = 0 and mG 5 (G, H, z) = 0} (4.4)

is parameterized by (2 ∩Ω = {([(z), U(z), z), z ∈ +z0} where Ω = +G0 ×+H0 ×+z0 . Let �W be a
subset of +H0 × +z0 where �W = {(H, z) ∈ +H0 × +z0 , BW (H − U(z)) ≥ 0}. There exists a smooth
scalar function k defined on �W such that there are two graphs:

G = [(z) + k
(√
BW (H − U(z)), z

)
, (H, z) ∈ �W, (4.5)
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(α(z), η(z), z)

z

x

y

z

α(z)

η(z)

Figure 5. Square-root singularity in dimension 3. Two graphs of G(H, z) are shown in
red and blue. The square-root singularity arises along the curve H = U(z) in purple.

and

G = [(z) + k
(
−
√
BW (H − U(z)), z

)
, (H, z) ∈ �W . (4.6)

In particular, k(0, z0) = 0 and mHk(0, z0) = 1/
√
|W |.

An illustration of the square-root singularity in three dimensions is provided in Figure 5. The
function k is not defined on the whole neighborhood +H0 ×+z0 but only on �W . The subset �W in
the theorem gives the one-sided condition from which the square-root singularity arises. When
the sign of W is positive or negative, respectively, �W is simply a region above or below the
hypersurface H = U(z) and includes it. A more general result when condition (3) in Theorem 4.2
does not hold is discussed in Remark 4.2.

Proof. Let (2 be the manifold of < dimensions which is the intersection of the two hypersurfaces
of dimension < + 1 near (G0, H0, z0), (2 = (0 ∩ (1 where (0 = {(G, H, z) ∈ Ω, 5 (G, H, z) = 0} and
(1 = {(G, H, z) ∈ Ω, � (G, H, z) = 0}. Moreover, it can be parameterized in a neighborhood of z
by two parametric functions [ and U as follows.
From (1) and (4) (in Theorem 4.2), by the implicit function theorem, there exist two

neighborhoods + of (G0, z0) and , of H0, and a function i : + → , , (G, z) ↦→ H = i(G, z)
such that 5 (G, i(G, z), z) = 0 for (G, z) ∈ + , i(G0, z0) = H0. In particular, mGi(G0, z0) = 0 and
m2
G i(G0, z0) = −m2

G 5 (G0, H0, z0)/mH 5 (G0, H0, z0) = 2W ≠ 0. Moreover, i inherits the smoothness
of 5 .
For (G, z) ∈ + , once again we apply the implicit function theorem for the function � (G, z) =

mG 5 (G, i(G, z), z) which satisfies:
� (G0, z0) = mG 5 (G0, H0, z0) = 0

mG� (G0, z0) = m2
G 5 (G0, H0, z0) + mHmG 5 (G0, H0, z0)mGi(G0, z0) = m2

G 5 (G0, 00, z0) ≠ 0.

This guarantees the existence of the neighborhoods �z0 of z0 and �G0 of G0 such that there is
a smooth function [ : �z0 → �G0 , z ↦→ G = [(z) satisfying G0 = [(z0), � ([(z), z) = 0 for all
z ∈ �z0 . It follows that mG 5 ([(z), U(z), z) = 0 for all z ∈ �z0 where U(z) := i([(z), z) belongs
to a neighborhood of H0, denoted +H0 . In particular, U(z0) = i(G0, z0) = H0. As a consequence,
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the local parameterization

(2 = {(G, H, z) = ([(z), U(z), z), z ∈ �z0} (4.7)

exists. This parameterization is also found by using the implicit function theorem for the vector
function � = ( 5 , mG 5 ) with the invertible matrix

�G,H� (X0) =
[
mG 5 mH 5

m2
G 5 mHmG 5

]
(X0) =

[
0 ≠ 0
≠ 0 mHmG 5 (X0)

]
. (4.8)

We will now show that the square-root singularity arises along the hypersurface H = U(z). For
each fixed z ∈ �z0 , the Taylor expansion with an integral remainder of i with respect to G near
[(z) reads

i(G, z) = i([(z), z) + mGi([(z), z) (G − [(z))

+ (G − [(z))2
∫ 1

0
(1 − B)m2

G i(B(G − [(z)) + [(z), z) dB. (4.9)

Since H = i(G, z), mGi([(z), z) = 0, i([(z), z) = U(z), this yields
H − U(z) = (G − [(z))2A (G − [(z), z) (4.10)

where A (G − [(z), z) is a smooth function with respect to G and z, satisfying A (0, z) =
m2
G i([(z), z)/2.
The remainder A (G − [(z), z) has the sign of W for all z in a neighborhood of z0. Consider the

function W(z) = A (0, z), W(z): it is as smooth as A and satisfies W(z0) = m2
G i(G0, z0)/2 = W ≠ 0.

Without loss of generality, assume that W > 0. By continuity, W(z) > 0 in some neighborhood of
z0, say +z0 . It follows that A (0, z) > 0 for z ∈ +z0 . Similarly, by the continuity of A with respect to
G, A (G, z) > 0 for all G in a neighborhood of [(z).
Let �W ⊂ +H0 × +z0 be the region adjacent to and including the hypersurface H = U(z) such

that �W = {(H, z) ∈ +H0 × +z0 , W(H − U(z)) ≥ 0} and denote by q the function q(G − [(z), z) =
(G − [(z))

√
A (G − [(z), z). Equation (4.10) then becomes

H − U(z) = (q(G − [(z), z))2. (4.11)

This follows that H − U(z) ≥ 0. The subset �W is then a region above and including the
hypersurface H = U(z). Since q satisfies q(0, z) = 0, mGq(0, z) =

√
A (0, z) =

√
W(z) ≠ 0, there

exists an inverse function q−1 in some neighborhood of 0. The inverse function theorem is used
uniformly with respect to the parameter z and eventually reduces the neighborhood of z0 and G0.
Therefore, for (H, z) ∈ �W , Equation (4.11) leads to q(G − [(z), z) =

√
H − U(z) or q(G−[(z), z) =

−
√
H − U(z). This implies G = [(z) + q−1(

√
H − U(z), z) or G = [(z) + q−1(−

√
H − U(z), z). In

particular, q−1(0, z) = 0 and mHq−1(0, z) = 1/
√
W(z).

Similarly, for the case W < 0, A (G − [(z), z) < 0 for G in some neighborhood of [(z), it follows
that H−U(z) = −q2(G−[(z), z), where q(G−[(z), z) = (G−[(z))

√
−A (G − [(z), z). The subset

�W is now the region below and including the hypersurface H = U(z). The same conclusions hold
with a change of

√
H − U(z) in

√
U(z) − H and ¤q−1(0, z) = 1/

√
−W(z).

Consequently, by denoting k = q−1, we have shown that k is defined in �W and

G = [(z) + k
(√
BW (H − U(z)), z

)
or G = [(z) + k

(
−
√
BW (H − U(z)), z

)
. (4.12)

In particular, k(0, z0) = 0, mHk(0, z0) = 1/
√
W(z0) = 1/

√
|W |. This ends the proof. �

4.2. Power-root singularity. The square-root singularity shown in Theorem 4.2 stems from the
non-vanishing second derivative m2

G 5 (G0, H0, z0). If it vanishes, then higher order derivatives of
5 must be considered. The following remark gives analogous conditions from which we define
power-root singularity.
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Remark 4.2. Let = ≤ < + 1 and 5 (G, H, z) : R ×R ×R< → R be a smooth function, such that at
point X0 = (G0, H0, z0), it satisfies the following conditions:

(1) 5 (X0) = mG 5 (X0) = m2
G 5 (X0) = . . . = m=−1

G 5 (X0) = 0, m=G 5 (X0) ≠ 0, = ≥ 3,
(2) mH 5 (X0) ≠ 0,
(3) linear independence of vectors ∇(G,H,z)mℓG 5 (G0, H0, z0), 0 ≤ ℓ < =,

then a =th-root singularity emerges.

Let us explain this remark in details. Denote W = − 5 (=) (X0)/=!mH 5 (X0) ≠ 0 and BW = sign W.
There exist three neighborhoods +G0 , +H0 , and +z0 of G0, H0 and z0 respectively, and two smooth
scalar functions [ : +z0 → +G0 , U : +z0 → +H0 such that the critical set

(2 = {(G, H, z) ∈ R × R × R<, mℓG 5 (G, H, z) = 0,∀ℓ = 0, . . . , = − 1} (4.13)
can be parametrized under the classical assumption (3) of linear independence. The set (2 has
dimension < + 2 − =. Therefore the functions [ and U do not depend on all components of z.
Two cases arise when solving the equation 5 (G, H, z) = 0 on a small box Ω = +G0 ×+H0 ×+z0:

(1) = = 2ℓ, ℓ ∈ N: let �W be subset of +H0 ×+z0 defined by
�W = {(H, z) ∈ +H0 ×+z0 , W(H − U(z)) ≥ 0}. (4.14)
Then there exists a smooth real function k such that ∀z ∈ �W , there are only two branches
in Ω:
G = [(z) + k(±(BW (H − U(z)))

1
= , z), (4.15)

(2) = = 2ℓ + 1, ℓ ∈ N: there exists an interval � containing U(z), and a smooth function k
defined on � ×+z0 such that

G = [(z) + k((H − U(z)) 1
= , z). (4.16)

In both cases, k is not degenerate at (0, z0) with respect to the first variable: k(0, z0) = 0 and
mHk(0, z0) = 1/W 1

= ≠ 0.
The existence of a cube-root or fourth-root singularity is investigated in [4]. In the present

work, the so-called power-root singularity is defined for any positive integer =.

Definition 4.1 — Power-root singularity. A function � defined on a subset of R< is said to
have an =th-root singularity at 0 if there exists = > 0 such that, by a change of variable if needed,
� can be written as

� (X) = 5 (-
1
=

1 , -2, . . . , -<) (4.17)
where 5 is a smooth function; = is called the singularity exponent.

Using this definition, Theorem 4.2 states the conditions needed for a power-root singularity. This
singularity is associated to the multiplicity of a root of a function whose definition is recalled
below.

Definition 4.2 —Multiplicity. Given a smooth real function 5 , a positive integer = is said to be
the multiplicity of a root A of 5 , denoted by mult( 5 ) (A) = =, if it satisfies

5 (A) = ¤5 (A) = . . . = 5 (=−1) (A) = 0 and 5 (=) (A) ≠ 0 (4.18)

By convention, we denote mult( 5 ) (A) = 0 when 5 (A) ≠ 0. Before stating the main results of this
section, recall that M = diag(< 9 )#−1

9=1 and K = (:8 9 )#−1
8, 9=1 are the matrices obtained from M and

K by removing their last row and column, with l# = e>
#

K as the last row of K and l# is the last
row of K removing the last entry :## . Lemma 4.3 requires the following assumptions on the
matrix D = M−1K and the matrix P of eigenvectors of M−1K (see Section 1).

Assumption 4.1. The rank rank(l# , l#D, . . . , l#D#−2) = # − 1 is maximal.
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This assumption on the Krylov subspace states that the vectors l#D8 are linearly independent and
therefore constitute an invertible matrix. Such an assumption is well-known in controllability,
for instance, the so-called Kalman’s criterion to ensure controllability of a linear system [6].
Another application in the form of Krylov subspaces is used in modern iterative methods for
finding one (or a few) eigenvalue(s) of large sparse matrices or for solving large systems of
linear equations. This assumption is also related to the Frobenius decomposition with the block
companion matrix [6].

Assumption 4.2. All the eigenvalues of K are distinct and none of the last components of the
eigenvectors Pe: shall vanish, i.e. %#: ≠ 0, for all : = 1, . . . , # .

This assumption guarantees the existence of # grazing linear modes [9]. The following lemma
shows that for non-trivial solutions of a linear differential system to exist, the multiplicity of the
last entry of the solution must be bounded and related to the dimension of the solution.

Lemma 4.3. Assumption 4.1 or Assumption 4.2 holds. Let x(C) ∈ R# be a solution to the linear
differential system

M¥x +Kx = 0. (4.19)
Then, either mult(G# ) (0) ≤ 2# − 1 or x ≡ 0.

In other words, a non-trivial solution to (4.19) exists only if mult(G# ) (C) < 2# , for all C. We first
prove this Lemma by using Assumption 4.1; the proof under Assumption 4.2 is provided after.

Proof. [With Assumption 4.1] The statement of Lemma 4.3 is equivalent to saying that if
mult(G# ) (0) > 2# − 1, that is

G# (0) = ¤G# (0) = . . . = G (2#−1)
#

(0) = 0, (4.20)

then x ≡ 0. From the # th equation of (4.19), <# ¥G# + l#x = 0. Differentiating this equation
2# − 3 times and using (4.20) implies that the following relations hold

(�: ) : l#x(:) (0) = 0, : = 1, . . . , 2# − 3. (4.21)
The other # −1 equations form a reduced system M¥x+Kx = c where x = (G 9 )#−1

9=1 and c = −G# l># .
Differentiating this system with respect to C gives Mx(3) (0) +K¤x(0) = 0, or x(3) (0) +D¤x(0) = 0.
Similarly, differentiating this system 2# − 5 times yields

(�: ) : x(:+2) (0) + Dx(:) (0) = 0, : = 1, . . . , 2# − 5. (4.22)
Since G# (0) = ¤G# (0) = 0, it is sufficient to prove that x(0) = 0 and ¤x(0) = 0. To show the
former, a linear system with x(0) as the unknown is constructed as follows. Relation (�1)
from (4.21) gives the first equation of the linear system: l#x(0) = 0. Multiplying (�1) in (4.22)
with l# and using the relation (�3) to eliminate the term l#x(3) (0) results in the second equation:
l#Dx(0) = 0. The third equation is obtained after the following steps. First, multiply (�3)
with l# , then use relation (�5) to get l#Dx(3) (0) = 0. This vanishing term appears when
(�1) is multiplied by l#D, which gives rise to the third equation: l#D2x(0) = 0. The same
recursive process can be used for each : = 1, . . . , # − 1: the use of the relations of odd indices
(�2:−1, �2:−3, �2:−5, . . . , �1) gives the : th equation of the system

l#D:−1x(0) = 0. (4.23)
Combining the # − 1 equations (4.23), : = 1, . . . , # − 1, it follows that x(0) satisfies l#x(0) = 0,
l#Dx(0) = 0, . . . , l#D#−2x(0) = 0. By Assumption 4.1, the unique solution of this linear system
is x(0) = 0. Together with the hypothesis that G# (0) = 0, then x(0) = 0.
Similarly, ¤x(0) = 0 is shown by constructing another linear system with ¤x(0) as the variable.

The : th equation l#D:−1 ¤x(0) = 0, : ∈ [1, . . . , # − 1], of the system can be derived by using a
similar recursive process now involving the even-indexed relations (�2: , �2:−2, �2:−4, . . . , �2),
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whence, l# ¤x(0) = 0, l#D¤x(0) = 0, . . . , l#D#−2 ¤x(0) = 0. It then follows that ¤x(0) = 0, and
together with the assumption ¤G# (0) = 0, eventually gives ¤x(0) = 0.

It was shown that x(0) = 0 and ¤x(0) = 0. A solution of (4.19) associated to this initial data is
then identically zero: x(C) ≡ 0. This ends the proof by using Assumption 4.1.

[With Assumption 4.2] Consider the # th component of x(C):
G# (C) = e>#x(C) = e># (P cos (C
)P−1x(0) + P
−1 sin (C
)P−1 ¤x(0)) (4.24)

=

#∑
:=1
(U: cosl: C + V: sinl: C)e>#Pe: =

#∑
:=1
(U: cosl: C + V: sinl: C)E:

where U: and V: are coefficients depending on the initial data [x(0), ¤x(0)], E: = e>
#

Pe: are the
components of the last row of the matrix P.

Assume that mult(G# ) (0) > 2# − 1, using (4.20) for G# and # − 1 first even-order derivatives
of G# yields

∑#
:=1U:E: = 0,

∑#
:=1U:l

2
:
E: = 0, . . . ,

∑#
:=1 U:l

2#−2
:

E: = 0. Denote _: = l2
:
, this

can be rewritten as a linear system where U: are the unknowns:

1 1 . . . 1
_1 _2 . . . _#

. . .

_#−1
1 _#−1

2 . . . _#−1
#





E1 0 . . . 0
0 E2 . . . 0

. . .

0 0 . . . E#





U1
U2
...

U#


=



0
0
...

0


. (4.25)

Through Assumption 4.2, it follows that _: , : = 1, . . . , # are distinct, and E: = %#: ≠ 0 for all
: = 1, . . . , # , then there is a unique solution U: = 0, for all : = 1, . . . , # .
Similarly, using (4.20) for # odd-order derivatives of G# yields

#∑
:=1

V:l:E: = 0,
#∑
:=1

V:l
3
:E: = 0, . . . ,

#∑
:=1

V:l
2#−1
: E: = 0. (4.26)

This can be recast in a linear system where the V: are the unknowns:

1 1 . . . 1
_1 _2 . . . _#

. . .

_#−1
1 _#−1

2 . . . _#−1
#





l1E1 0 . . . 0
0 l2E2 . . . 0

. . .

0 0 . . . l#E#





V1
V2
...

V#


=



0
0
...

0


. (4.27)

With the same argument, the unique solution of this system is V: = 0, for all : = 1, . . . , # . As a
consequence, all the components of x(C) vanish, hence, x(C) ≡ 0 for all C. Lemma 4.3 is then
proven. �

This result can be proven to be true for all components G: of x, : = 1, . . . , # with suitable
Assumption 4.1 or 4.2. Let us apply this general result to the solution to (1.1) in order to show
that, at the contact time, D# has at most 2# − 1 derivatives which vanish. Between the successive
closing contacts, the system is linear and hence the solution u(C) is analytic. Therefore, for the
sake of simplicity, assume that all the derivatives are taken on the left of 0; D(=)−

#
is denoted for

the left =th-derivative of D# at 0 with respect to C.

Proposition 4.4. Assume that u(C) is a solution to (1.1) which has a closing contact at C = 0, i.e.
D# (0) = 3. Then, under Assumption 4.1 or 4.2,

0 ≤ mult( ¤D−# ) (0) ≤ 2# − 1. (4.28)
Moreover, if there is a sticking phase after C = 0 of duration g and with an assumption similar
to Assumption 4.1 or 4.2 for the (# − 1) × (# − 1) sticking system rewritten in a suitable basis
where l# ¤u corresponds to the last entry of the solution, then

0 ≤ mult(l# ¤u) (g) ≤ 2# − 3. (4.29)
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Proof. The first part of the proposition is obtained by applying Lemma 4.3 to x = ¤u−. Note that
the dynamics is linear away from the closing contacts, i.e.

M¥u− +Ku = 0. (4.30)

Hence, ¤u is the solution to Mü− +K ¤u = 0. By Lemma 4.3, it follows that mult( ¤D−
#
) (0) ≤ 2# − 1

or ¤u(C) ≡ 0. However, if ¤u(C) ≡ 0, then substituting this into the linear system (4.30), it follows
that u(C) ≡ 0. This contradicts the assumption that D# (0) = 3 > 0.
If there is a sticking phase at C = 0, then ¤D−

#
(0) = 0 and ¤D−

#
(g) = 0 where g is the end of

sticking phase. During the sticking phase from C = 0 to C = g, the # th mass lies on the obstacle,
that is

<# ¥D−# (C) + l#u(C) = '(C) (4.31)

where '(C) ≤ 0, and � (C) = l#u(C). The duration of the sticking phase g is also the end of the
sticking phase, it satisfies :

� (g) = l#u(g) = l#u(g) + :##3 = 0 (4.32)
� (g + X) > 0, ∀X ∈ ]0 ; X0 [, X0 > 0 (4.33)

where u is the solution of the sticking system M¥u + Ku = c, with c = −3 l># . Differentiating
this system with respect to C yields Mü + K ¤u = 0. A change of variables ¤u = Qv using an
M-orthogonal matrix Q, i.e. Q>MQ = I, such that E

#−1 = 2 l# ¤u, with 2 ≠ 0 yields

¥v +Q>KQv = 0. (4.34)

Invoking Theorem 4.3 for this (# − 1) × (# − 1) reduced system, it follows that mult(l# ¤u) (g) ≤
2# − 3. �

In the following proposition, the singularity exponents of both the free-flight duration and the
sticking phase duration are bounded. These durations have a relationship with the First Return
Time. More precisely, if W ∈ H− ∪ H0

G, then the First Return Time of an orbit stemming
from W coincides with the duration of the free-flight B(W). Otherwise, if W ∈ H0

S, then the
First Return Time involves the duration of sticking phase and the duration of the free-flight:
) (W) = g(W) + B(W). The bounded multiplicity shown in Proposition 4.4 is the main ingredient
to prove the singularity.

Proposition 4.5 — Power-root singularity. Suppose that W0 ∈ HP generates an orbit [u, ¤u]
of (1.1) which has a closing contact at C = )0. Assumption 4.1 or 4.2 and an equivalent
assumption for the sticking system holds.

(1) If W0 ∈ H− and W()0) ∈ H0, then the duration of the free-flight of the orbit generated
from a nearby W until the next closing contact, denoted by B(W), has an =th-root
singularity at W0 with

= = 1 +mult( ¤D−# ) ()0), 1 ≤ = ≤ 2#. (4.35)

(2) Denote H̊0
S the interior ofH0

S in the topology ofH0. If W0 ∈ H̊0
S , i.e. there is a sticking

phase right after C = 0 of duration g0 = g(W0), then for all W ∈ H0
S near W0, the duration

of the sticking phase g = g(W) has an <th-root singularity at W0 with

< = 1 +mult(l# ¤u) (g(W0)), 1 ≤ < ≤ 2# − 2. (4.36)

Remark 4.3. The First Return Time can involve two power-root singularities: one from the
duration of the sticking phase, and one from the duration of the free-flight phase.

Remark 4.4. When W0 ∈ H0
G ∩ H̄0

S , the behaviour of the First Return Time is more complicated.
It depends on whether W belongs to H0

S or not. In the former, there are two power-root
singularities while in the latter, there is a single power-root singularity.
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Proof. The idea of the proof is to use the implicit function theorem for the duration of the
free-flight or the duration of the sticking phase.

(1) Consider the duration )0 of the free-flight between the two closing contacts at C = 0 and
C = )0. For (B,W) in the neighborhood of ()0,W0), consider the function 5 (B,W) =
e>
#

R(B)SW. It is smooth and defined for all arguments and corresponds to the nonsmooth
function (due to the closing contacts) D# (B,W). A key point is to apply the implicit
function theorem to 5 and then to interpret the result for the nonsmooth function D# . By
Proposition 4.4, it follows that 0 ≤ mult( ¤D−

#
) ()0) ≤ 2# − 1. Using Remark 4.2 for the

function 5 in the neighborhood of ()0,W0), it follows that there exists a subset containing
W0 such that B has an =th-root singularity at W0 with = = 1 + mult( ¤D−

#
) ()0), and thus,

1 ≤ = ≤ 2# .
(2) Recall that U( · ,W) = [u( · ,W), ¤u( · ,W)] is the solution to (1.1) associated to the initial

data W. During the sticking phase, D# (C,W) = 3 and ¤D# (C,W) = 0 for all C ∈ [0 ; g].
By denoting � (C,W) = l#u(C,W) = l#u(C,W) + :##3, the last equation of (1.1) yields
<# ¥D# (C,W) = −� (C,W) + '(C,W) where '(C,W) ≤ 0,∀C ∈ [0 ; g]. Hence, the sticking
phase starts at C = 0 when � (0,W) = 0 and � (X,W) < 0, ∀X ∈ ]0 ; X0 [, X0 > 0. The
second condition ensures that mass # does not leave the wall immediately. The sticking
phase holds as long as � (C,W) ≤ 0, it ends at C = gwhen � (g,W) = 0 and � (g+X,W) > 0,
∀X ∈ ]0 ; X0 [, X0 > 0. The latter condition makes sure that the total force acting on the
# th mass becomes strictly negative right after C = g and therefore the mass leaves the
obstacle. Similarly, denote by �∗(C) = l#u(C) + :##3, where u is the solution of the
smooth system M¥u +Ku = c, with c = −3 l># . By Remark 4.2 for the smooth function �∗
in the neighborhood of (g0,W0), it follows that there is a subset ofH0

S containing W0 such
that g has an <th-root singularity at W0 with < = 1 +mult( ¤�) (g(W0)). Proposition 4.4
implies that 0 ≤ mult(l# ¤u) (g(W0)) ≤ 2# − 3, therefore 1 ≤ < ≤ 2# − 2. �

Remark 4.5. The lower bound of this multiplicity is optimal for a chain, i.e. 1/2# is the greatest
lower bound of the power-root singularity of the duration B. Let us verify this by showing that,
if D# ()0) = 3, ¤D# ()0) = . . . = D(2#−1)

#
()0) = 0 then there is a unique solution to (1.1) with the

maximal 2#-root singularity of B.

Notice that, in this case, the symmetric matrix K has the tridiagonal form

K =



:11 :21 . . . 0 0
:21 :22 . . . 0 0

. . .

0 0 . . . :#−1,#−1 :#,#−1
0 0 . . . :#,#−1 :##


(4.37)

with :8+1,8 ≠ 0 for all 8 = 1, . . . , # − 1. Away from closing contacts, u is the solution of the linear
system

M¥u +Ku = 0. (4.38)

From the last equation of (4.38), that is<# ¥D# +:#,#−1D#−1+:##D# = 0, together with :#,#−1 ≠
0, it follows that D#−1(0) = �#−13, ¤D#−1(0) = . . . = D(2#−3)

#−1 (0) = 0, and �#−1 = −:##/:#,#−1.
Similarly, this recursive process can be used until the (: + 1)th equation, : = 2, . . . , # − 1, which,
together with the assumption that ::,:−1 ≠ 0, gives

D: (0) = �:3 and ¤D: (0) = . . . = D2:−1
: (0) = 0 (4.39)

where �: = −(:::�: + ::+1,:�:+1)/::,:−1. As a consequence, the initial data is:

u(0) = [�13, . . . , �#−13, 3], ¤u(0) = 0. (4.40)

Hence, there exists a unique solution to (1.1) associated to this initial data.
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However, it is not sure that 1/(2# −2) is the greatest lower bound of the singularity of g since it
depends on the admissibility condition of the end of the sticking phase which is l#u(2#−2) (g) > 0.

Remark 4.6 — Power-root singularity for the two-dof chain. Let us clarify the power-root
singularity when # = 2. In this case, the duration of the free-flight may have a square-root,
cube-root, or at most fourth-root singularity, while the duration of the sticking phase is analytic.

An illustration of these power-root singularities is given in Figure 6. Let the state of the system at
C = 0 be W0 = [D1(0), 3, ¤D1(0), ¤D−2 (0)] ∈ HP . The interesting criteria happens when the first
contact (D2()0) = 3) is with zero velocity, ¤D−2 ()0) = 0. That means, ()0) ∈ H0.

1
3

u1(T0)

Ûu1(T0)

(0, 0) (d, 0)

sticking

1
4

1
2

Figure 6. Power-root singularity (1/2, 1/3 and 1/4) in the plane (D1()0), ¤D1()0)) which
is isomorphic to the set H0 since D2()0) = 3 and ¤D2()0) = 0. The blue area D1 < 3

corresponds to grazing. The red branch D1 = 3 and ¤D1 > 0 corresponds to the beginning
of a sticking phase. The green area D1 > 3 corresponds to states within a sticking phase.
The solid green line D1 = 3 and ¤D1 < 0 corresponds to the end of a sticking phase. The
dark red dot correspond to a unique orbit the worst power-root singularity.

(1) If there is no sticking phase after C = 0, that is W0 ∈ H− ∪H0
G , three configurations exist:

(a) D1()0) < 3: this implies <2 ¥D−2 ()0) = :2(D1()0) − D2()0)) < 0. The duration of the
free-flight B = B(W) has a square-root singularity at W0.

(b) D1()0) = 3 and ¤D1()0) > 0: this is the beginning of a sticking phase, ¥D2()0) = 0 and
<2D̈

−
2 ()0) = :2( ¤D1()0) − ¤D2()0)) > 0. Hence, B = B(W) has a cube-root singularity

at W0.
(c) D1()0) = 3 and ¤D1()0) = 0: this gives ¥D−2 ()0) = D̈−2 ()0) = 0. However,

<2D
(4)−
2 ()0) = :2( ¥D1()0) − ¥D−2 ()0)) = :1:23 > 0. This case corresponds to a

grazing contact and the fourth-root singularity of B(W) arises.
(2) If there is a sticking phase of duration g0 at C = 0, that is W0 ∈ H0

S, then there are two
possibilities: D1(0) > 3 or (D1(0) = 3 and ¤D1(0) > 0). During a sticking phase, D1
is a solution of <1 ¥D1 + (:1 + :2)D1 = :23. The end of the sticking phase is at C = g0,
when D1(g0) = 3 and ¤D1(g0) < 0. This shows that mult( ¤D1) (g0) ≤ 2# − 3 = 1. This is a
particular case where the duration of the sticking phase g(W) is analytic for W ∈ H0

S .
An example of a cube-root singularity is depicted in Figure 7.

4.3. Discontinuous First Return Time. The discontinuity of the return time near grazing orbits
is a consequence of Theorem 2.3. The simplest case is stated in Corollary 4.1. This result yields
a possibly discontinuous First Return Map, higher singularity degree, or instantaneous instability.
It is a geometric discontinuity induced by the choice of the Poincaré section. Another choice for
the Poincaré section could annihilate this discontinuity.
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Figure 7. First Return Time ) with respect to E1 = ¤D1 (near a periodic solution with one
sticking phase per period [15]). A cube-root singularity appears near E1(0) = ¤D1(0) =
5.86.

Corollary 4.1 — Discontinuous First Return Time. If W0 ∈ H− and W()0) ∈ H0 where
)0 = ) (W0) > 0 and W()0) satisfies Assumption 2.2 which says that the grazing contact is not
degenerate, then the First Return Time ) (W) is discontinuous at W0.

Proof. Theorem 2.3 states that ) (W) is near )0 = ) (W0) only on B: = {W ∈ +W0 , B: (,: −
U(W)) ≥ 0} which is one half of a neighborhood of W0. Accordingly, ) (W) is not near )0 for
B: (,: − U(W)) < 0. �

This kind of discontinuity is already reported by Nordmark in [12, p. 282]. His clear explanation
is reproduced here: “In the case of mapping between impacts, there is a more fundamental
problem due to tangential flow. At E = 0, the flow is tangent to the Poincaré section, so that
nearby points may impact with low velocity, or may miss and impact at a later time. This is an
inherent problem when choosing a section where the flow is not everywhere transversal, and it
will cause discontinuities to appear at points being mapped to the line D = 0.” Moreover, when
Nordmark chose a Poincaré section orthogonal to the contact surface, which corresponds to our
Poincaré sectionHP , he discovered the square-root singularity for a 1-dof model with a source
term [12]. This Nordmark map is well summarized in [10, p. 2]. The square-root singularity
appears in exactly a half neighborhood which corresponds to our half neighborhood B: . For
the other half part of the neighborhood, the Nordmark map is smooth. It corresponds to orbits
coming back to the contact surface with a First Return Time which is not almost the time )0 but a
later time. It is the reason why our FRT is not continuous.

5. Square-root instability

In this section, the so-called square-root instability is introduced for a fixed-point of the map.
Loosely speaking, the square-root singularity may affect the dynamics and the fixed-point may
become unstable.
Let F : R= → R= be a map defined by F(X) = G(

√
|G1 |, G2, . . . , G=) where G : R= → R= is

at least a �2 function. F has a fixed-point 0 ∈ R=. Consider the dynamical system obtained by
iterating F:

X<+1 = F(X<), X< = (G<1 , G<2 , . . . , G<= ) ∈ R=, < = 1, 2, . . . (5.1)

With the presence of the square-root term
√
|G1 |, a question on the stability of the fixed-point 0

arises. This section provides a generic condition for which the fixed-point 0 of the map F
is unstable. Besides, examples show that this condition is only a sufficient condition of the
instability of the fixed point even in small dimensions.
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5.1. A nonlinear =-dimensional map. In the coming theorem, it is shown under a specific
condition that the square-root term acting on the component G1 of X yields the instability of the
fixed-point 0. Moreover, this instability occurs along the direction of G1.

Theorem 5.1 — Unstable fixed-point. Consider two functions F and G : R= → R= such that
F(X) = G(X), whereG(X) = (61, 62, . . . , 6=) (X),X = (G1, . . . , G=) andX = (

√
|G1 |, G2, . . . , G=).

If G belongs to �2(R=,R=), G(0) = 0, and the Jacobian DG(0) = (08 9 )=8, 9=1 satisfies

011 ≠ 0 (5.2)
then 0 is an unstable fixed-point of F.

Remark 5.1. More generally, if the square-root is activated on the component G: , then the
instability of the fixed-point 0 occurs if 0:: = mG:6: (0) ≠ 0.

Proof. Our goal is to show that there is a neighborhood of 0 such that many points arbitrarily
close to 0 will go out of that neighborhood.

The Taylor expansion with an integral remainder of each 68 near 0, 8 = 1, . . . , = is

68 (X) = 081
√
|G1 | +

=∑
9=2
08 9G 9 + |G1 |A8,11(X)+

+ 2
=∑
9=2

√
|G1 |G 9 A8,1 9 (X) + 2

∑
=≥:>ℓ>1

G:GℓA8,:ℓ (X) +
=∑
9=2
G2
9A8, 9 9 (X) (5.3)

where A8,:ℓ (X) =
∫ 1

0 (1 − B)m:mℓ68 (BX) dB, for all :, ℓ = 1, . . . , =. On a compact set which will
be chosen later, there exists a constant " > 0 such that |A8,:ℓ (X) | ≤ " for all :, ℓ = 1, . . . , = and
for each 8 = 1, . . . , =. Hence,

|081 |
√
|G1 | −

=∑
9=2
|08 9 | |G 9 | −"\ (X) ≤ |68 (X) | ≤ |081 |

√
|G1 | +

=∑
9=2
|08 9 | |G 9 | +"\ (X) (5.4)

where \ (X) = |G1 | + 2
√
|G1 |

∑=
9=2 |G 9 | + 2

∑
=≥:>ℓ>1 |G: | |Gℓ | +

∑=
9=2 G

2
9
. A suitable neighborhood,

denoted �n , is constructed so that a sequence starting from any point in �n will eventually go
away from 0 in the direction of G1. To define �n , the following notations are needed. Let U8,
8 = 2, . . . , =, be:

U8 =



|011 |

2= |018 | if 018 ≠ 0 (5.5a)

1 if 018 = 0. (5.5b)
It follows from this definition that U 9 |01 9 | ≤ |011 |/2= while the equality occurs if 01 9 ≠ 0;
otherwise it is a strict inequality. For X ∈ R= such that |G 9 | ≤ U 9

√
|G1 |, ∀ 9 = 2, . . . , =, we have

|01 9 | |G 9 | ≤ |01 9 |U 9
√
|G1 |, and hence,

=∑
9=2
|01 9 | |G 9 | ≤

=∑
9=2
|01 9 |U 9

√
|G1 | ≤ (= − 1) |011 |

2=
√
|G1 |. (5.6)

Moreover, the following inequality holds:

\ (X) ≤ |G1 |
(
1 + 2

=∑
9=2
U 9 + 2

∑
=≥:>ℓ>1

U:Uℓ +
=∑
9=2
U2
9

)
. (5.7)

Denote U = 1 + 2
∑=
9=2 U 9 + 2

∑
=≥:>ℓ>1 U:Uℓ +

∑=
9=2 U

2
9
, the above inequality becomes \ (X) ≤

U |G1 |. Denote also W0 = 0
2
11/(2=U")2. Then, for X ∈ R= such that |G1 | ≤ W0, we have

"U |G1 | ≤ |011 |
2=

√
|G1 |. (5.8)
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Since "\ (X) ≤ "U |G1 |, it follows that

"\ (X) ≤ |011 |
2=

√
|G1 |. (5.9)

Let � > 0 be a constant such that

� ≥ 2
|011 |

(
|081 | +

=∑
9=2
|08 9 |U 9 + "U

)
, ∀8 = 2, . . . , = (5.10)

Let W > 0 such that W = min8=2,...,={W8 > 0 |�W8 ≤ U8√W8}. Therefore, for any X ∈ R= such that
|G1 | ≤ W, we have � |G1 | ≤ U8

√
|G1 |, for all 8 = 2, . . . , =. We can now define �n as follows. Let

n = min{W0, W, 0
2
11/8} > 0. Consider

� = {X = (G1, . . . , G=) ∈ R=, |G8 | ≤ � |G1 |, ∀8 = 2, . . . , =} (5.11)
�n = {X = (G1, . . . , G=) ∈ R=, |G1 | ≤ n and |G8 | ≤ � |G1 |, ∀8 = 2, . . . , =}. (5.12)

This choice of �n avoids the criteria in which the instability of 0 is hidden by starting at a point

x1

x2

ε−ε

x2 = α2
√
|x1 |

x2 = −α2
√
|x1 |x2 = C2x1

x2 = −C2x1

DεDε

Figure 8. Neighborhood � n

near 0 but the sequence comes back at 0 after one step. See Example 5.1 for more information.
An illustration of �n is provided in Figure 8. Any X ∈ �n satisfies the important inequalities as
stated next.

Lemma 5.2. For any X ∈ �n , the following inequalities hold:
|011 |

2
√
|G1 | ≤ |61(X) | ≤ 3|011 |

2
√
|G1 |, (5.13)

|68 (X) | ≤ �8 |61(X) |, ∀8 = 2, . . . , =. (5.14)

Proof. Suppose that X ∈ �n then |G 9 | ≤ � |G1 | for all 9 = 2, . . . , =, and |G1 | ≤ n ≤ W. By the
definition of W, it follows that � |G1 | ≤ U 9

√
|G1 |. Hence, |G 9 | ≤ � |G1 | ≤ U 9

√
|G1 |. Thus (5.6)

holds. Substituting (5.6) and (5.9) into (5.4) when 8 = 1, the right hand side (RHS) of (5.4)
becomes

RHS(5.4) ≤ |011 |
√
|G1 | + (= − 1) |011 |

2=
√
|G1 | + |011 |

2=
√
|G1 | ≤ 3|011 |

2
√
|G1 |. (5.15)

Similarly,

LHS(5.4) ≥ |011 |
√
|G1 | − (= − 1) |011 |

2=
√
|G1 | − |011 |

2=
√
|G1 | ≥ |011 |

2
√
|G1 |. (5.16)
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Therefore, X satisfies (5.13).
Let us prove inequality (5.14). For 8 = 2, . . . , =, expressions (5.4) and (5.9) imply

|68 (X) | ≤
(
|081 | +

=∑
9=2
|08 9 |U 9 + "U

)√
|G1 |. (5.17)

Via inequality (5.13), it is shown that |011 |
√
|G1 | ≤ 2|61(X̃) |. Hence, to prove (5.14), it is

sufficient to show that

2
|011 |

(
|081 | +

=∑
9=2
|08 9 |U 9 + "U

)
≤ �. (5.18)

This is true by the choice of � given in (5.10). Inequality (5.14) and Lemma 5.2 are then
proven. �

Back to the proof of Theorem 5.1, the idea is to show that the recurrence goes away from 0 in the
direction of the first component. In other words, the square-root singularity acting on the first
component plays an important role via the inequalities (5.13) and (5.14).

Let us show that, for any 0 < X < n , if the sequence (X<)<≥1 in �n , where X< = (G<1 , . . . , G<= ),
is defined by

X0 = (X/2, 0, . . . , 0) ∈ �n , X<+1 = F(X<), < ≥ 1, (5.19)

then there exists a #0 > 0 such that X#0 ∉ �n . From (5.14), X1 = F(X0) = G(X0) ∈ �.
If |G1

1 | > n then X1 ∉ �n . This shows the instability of 0. Otherwise, if |G1
1 | ≤ n and

|G1
8
| = |68 (X0) | ≤ � |G1

1 | by inequality (5.14), then X1 ∈ �n , and X2 is considered. If there exists
X< ∈ �n for all < ≥ 1 then

011
2

√
|G<1 | ≤ |G<+11 | ≤ 3011

2

√
|G<1 |. (5.20)

Consider the sequence I< defined by I<+1 = 011/2
√
|I< |, I0 = G

0
1 = X/2 ≤ n ≤ 02

11/8. Then,
inequality (5.20) yields |G<1 | ≥ I<. It is known that I< increasingly converges to 02

11/4 in
an interval (0, 02

11/4). Hence, there exists #0 > 0 such that |I#0 | > 02
11/8 ≥ n , and thus

|G#0
1 | ≥ |I#0 | > n . That means, X#0 ∉ �n and hence 0 is unstable. �

Example 5.1. Consider F(G, H) = G(
√
|G |, H) when G is a linear map

G(X) = G(G, H) = AX =

[
0 1

2 3

] [
G

H

]
, 0 ≠ 0. (5.21)

Figure 9(a) shows that the fixed-point (0, 0) of F is unstable and the recurrence goes away
from this point along the line H = 2G/0. An interesting case is when 2 = U0, 3 = U1 with
U ≠ 0. The instability of (0, 0) is hidden if the sequence starts at a point belonging to the curve
(C) : H = −0

√
|G |/1 because the sequence stays at (0, 0) as soon as the second step, as illustrated

in Figure 9(b). To show the instability, it is required to start at a point (G0, H0) which does not lie
on C. This is the reason why the set �n is chosen as specified in the previous proof.

5.2. Two-dimensional maps with critical instability. As proven in Theorem 5.1, the square-
root instability of the fixed-point appears when 011 ≠ 0. When 011 vanishes, the square-root
singularity may appear under additional assumptions on the other components of A.

Proposition 5.3. Consider two functions F and G : R2 → R2 such that F(G, H) = G(
√
|G |, H)

where G is a linear map satisfying G(G, H) = (1H, 2G + 3H) with 12 ≠ 0. Then, (0, 0) is an
unstable fixed-point of F.
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Figure 9. Instability of the fixed-point (0, 0) for the map (5.21). (a) 0 = 1, 2 = 2,
1 = 3 = 0: the recurrence goes away from (0, 0) along the line H = 2G/0; (b)
2 = U0, 3 = U1: the instability does not realize if the starting point sits on the
curve C : H = −0

√
|G |/1 since the next iterate is (0, 0). (c) 1 = 2 = 1, 0 = 3 = 0: iterates

leave (0, 0). The gradient color scale [ ] shows initial iterates in blue to final
iterates in red irrespective of the magnitude.
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Figure 10. Instability of the fixed-point (0, 0) for the map (5.21). (a) when 0 < 3 =

0.5 < 1 and 2 = 1; (b) when −1 < 3 = −0.5 < 0 and 2 = 1; (c) when 3 = 0 and 2 = 1.
The gradient color scale [ ] shows initial iterates in blue to final iterates in
red irrespective of the magnitude.

Proof. By considering the map (F ◦ F) (G, H) = (12
√
|G | + 13H, 23

√
|G | + 32H + 2

√
|1H |), it is

clear that 011 = 12 ≠ 0, then the technique in the proof of Theorem 5.1 is used to show the
instability of the fixed-point (0, 0) of F ◦ F. �

Let us denote

DG(0, 0) =
[
0 1

2 3

]
. (5.22)

Then, in the case of a linear map G, the fixed-point (0, 0) of F is stable if and only if 12 = 0 and
|3 | < 1. The square-root term in G disappears because of the condition 12 = 0 and the stability
analysis of the origin for the two-dimensional map reduces to the stability analysis of the origin
for the one-dimensional linear map, and hence |3 | < 1 is needed to guarantee stability.

Example 5.2. A simple example of the instability mechanism is shown in Fig. 9(c) where
1 = 2 = 1 and 0 = 3 = 0. Starting at a point closed to (0, 0), the recurrence goes away from this
point.

Example 5.3. Is also of interest the situation where (0, 0) is linearly stable but nonlinearly
unstable. Consider F1(G, H) = (0,

√
|G | + 3H) where |3 | < 1. Thus (0, 0) is a stable fixed-point

of F1. However, for the map F2(G, H) = (
√
|G |H,

√
|G | + 3H), the fixed-point (0, 0) is numerically

shown to be unstable.
More precisely, three cases are expected:
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(1) for 0 < 3 < 1, the recurrence oscillates during several steps then goes away from (0, 0)
along the curve similar to H = :

√
|G |, see Figure 10(a).

(2) for −1 < 3 < 0, the recurrence seems to always oscillate around (0, 0) (see Figure 10(b)).
(3) For 3 = 0 and when G is linear, the fixed-point (0, 0) for F is asymptotically stable. when

G is nonlinear, the problem is open, see Figure 10(c).

6. In the vicinity of a grazing orbit

The aim of this section is first to prove the existence of the square-root singularity near a
grazing contact, that is to prove Theorems 2.3 and 2.4. Then, the square-root singularity near
periodic solutions with one grazing contact per period is investigated. Such periodic solutions of
the #-dof system are limited to # grazing linear modes and there is no other such linear solutions.
Periodic solutions with sticking contacts [15, 17] are excluded. Take note thatHP ensures that
the First Return Time exists and is finite. A challenging point in building the FRT is to check the
nonlocal admissibility condition D# (C) < 3 before the closing contact. Moreover, data may lead
to a FRT which is not in the vicinity of )0 but instead in the vicinity of 2)0, 3)0 and so on. We
pay attention to the class of initial data near W0 inH− orH0

G which leads to orbits having their
FRT near )0.

6.1. First Return Time. This section deals with the proof of Theorem 2.3. It will be shown
that, in a certain class of initial data, the FRT has a particular form containing a square-root
term. First, a lemma is stated, then a long proof is proposed. Recall that Φ(C,W) = e>

#
R(C)SW is

smooth. It coincides with D# in the neighborhood of ()0,W0) as long as D# (C) ≤ 3.
Lemma 6.1. The set K of indices {8 ∈ {# + 1, . . . , 2#}, m,8

Φ()0,W0) ≠ 0} is not empty for
# ≥ 2.

In other words, there exists at least one non-vanishing partial derivative of Φ with respect to at
least one initial velocity. This guarantees the existence of a component,: stated in Theorem 2.3.

Proof. This is proved by contradiction. The smooth function Φ(C,W) can be written as
Φ(C,W) = e>#R(C)SW = e># (P cos(C
)P−1u + P
−1 sin(C
)P−1v) (6.1)

If K = ∅ then m,8
Φ()0,W0) = 0 for all 8 = # + 1, . . . , 2# . It follows that

e>#P
−1 sin()0
)P−1e8 = 0 for all 8 = 1, . . . , #. (6.2)

In other words, the # th row of A = P
−1 sin()0
)P−1 is identically zero. Thus, sin()0
) = 0,
i.e. sinl8)0 = 0, ∀8 = 1, . . . , # which implies l8)0 = :8c, :8 ∈ N: this is impossible since
# ≥ 2, there is no internal resonance through Assumption 2.1. Hence, K ≠ ∅. �

Now, the implicit equation Φ(),W) = 3 is locally solved via a function ) = \ (W) defined on
half a neighborhood of W0. Ultimately, it is proven that \ (W) is the First Return Time ) (W).
Proof. Consider the initial condition W0 ∈ H− ∪H0

G at initial instant C = 0, the associated orbit
shows a first grazing contact at )0 = ) (W0). The First Return Time ) is implicitly given by the
equation D# (),W) = 3. The nonsmooth function D# is replaced by the smooth function

Φ(),W) = 3 (6.3)

on which the implicit function theorem applies and where Φ()0,W0) = D# ()0,W0) = 3,
mCΦ()0,W0) = ¤D−# ()0,W0) = 0. As a consequence of Lemma 6.1, there exists : ∈ K where
m,:

Φ()0,W0) ≠ 0. Denote W is the reduced vector obtained from W by removing,: . Together
with Assumption 2.2, function Φ(C,W) can be seen as Φ(C,,: ,W) where W0 corresponds to
(,0: ,W0), and 5 satisfies the following conditions: Φ()0,,0: ,W0) = 3, mCΦ()0,,0: ,W0) = 0,
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m,:
Φ()0,,0: ,W0) ≠ 0, m2

C Φ()0,,0: ,W0) ≠ 0. Via Theorem 4.2, there exist neighborhoods
+W0

, +)0 and +,0: of W0, )0 and,0: respectively and smooth scalar functions [, U such that
[ : +W0

→ +)0 , W ↦→ ) = [(W) (6.4)
U : +W0

→ +,0: , W ↦→ ,: = U(W) (6.5)
satisfying [(W0) = )0 and U(W0) = ,0: . The set (2 defined as the intersection of the two
hypersurfaces Φ = 3 and mCΦ = 0 can be parameterized as

(2 = {(C,,: ,W) ∈ +)0 ×+,0: ×+W0
, Φ(C,,: ,W) = 3 and mCΦ(C,,: ,W) = 0}

= {([(W), U(W),W), W ∈ +W0
}. (6.6)

Recall that B: = {W = (,: ,W) ∈ +,0: × +,0: , B: (,: − U(W)) ≥ 0} where B: = sign W: . It is
the region adjacent to and including the hypersurface,: = U(W). By applying Theorem 4.2,
there exists a smooth function k such that there are two graphs solving equation (6.3):

) = \ (W) = [(W) + k
(
±
√
B: (,: − U(W)),W

)
, W ∈ B: (6.7)

where k(0,W0) = 0 and m,:
k(0,W0) = |W: |−1/2. We choose the branch of \ (W) corresponding

to the admissibility condition for the velocity at the contact so that the mass comes in contact in
the right side of the wall, which is

¤Φ(\ (W),W) ≥ 0. (6.8)
Denote F(W) = R(\ (W))SW. Using the asymptotic expansion up to the first order of√
B: (,:U(W0)) in the direction of the : th component of W, and taking note that [(W0) = )0,

one has

\ (W) = )0 ± |W: |−1/2
√
B: (,: − U(W0)) +$ (ℎ2) = )0 + ℎ +$ (ℎ2) (6.9)

where ℎ = ±|W: |−1/2√B: (,: − U(W0)) from which we deduce that ,: = U(W0) ± W:ℎ2 =

,0: + $ (ℎ2) and W = W0 + ℎ2e: , e>
:
= [0, . . . , 1, . . . , 0] ∈ R2# follows, since U(W0) = ,0: ,

see Theorem 4.2. Similarly,

cos(\ (W)
) = cos(()0 + ℎ +$ (ℎ2))
) = cos()0 
) − ℎ
 sin()0 
) +$ (ℎ2)
sin(\ (W)
) = sin(()0 + ℎ +$ (ℎ2))
) = sin()0 
) + ℎ
 cos()0 
) +$ (ℎ2)

and R(\ (W)) can be written as R()0+ ℎ+$ (ℎ2)) = R()0) + ℎ ¤R()0) +$ (ℎ2) where ¤R(C) denotes
the matrix whose elements are the derivatives of the elements of R:

¤R(C) =
[ −P
 sin(C
)P−1 P cos(C
)P−1

−P
2 cos(C
)P−1 −P
 sin(C
)P−1

]
. (6.10)

Inserting these expressions into F and neglecting higher order terms in ℎ leads to

F(W) ≈ (
R()0) + ℎ ¤R()0)

)
SW0 ≈

[
u()0,W0)
v()0,W0)

]
+ ℎ

[
v()0,W0)
−Ku()0,W0)

]
. (6.11)

Thus, ¤Φ(\ (W),W) = e>2#F(W) ≈ e>
#
(v()0,W0) − ℎKu()0,W0)) = −ℎe>

#
Ku()0,W0) where

e2# is the vector in R2# with all zero components except the 2# th one equal to unity, in a
way similar to the vector e# in R# . From the # th equation of (1.1) taken at C = )0, that is
<# ¥D−# ()0) + e>

#
Ku()0) = 0, it follows that <# ¥D−# ()0,W0) = −e>

#
Ku()0,W0) and thus

¤Φ(\ (W),W) ≈ ℎ<# ¥D−# ()0,W0). (6.12)

Since ¥D−
#
()0,W0) < 0, ℎ is chosen with the negative sign in order to have ¤Φ(\ (W)) ≥ 0. Hence,

\ (W) satisfies (6.8). �

The proof of Theorem 2.3 ends by showing that \ (W) = ) (W). This means that Φ(C,W) < 3
for all C ∈ ]0 ; \ (W) [.
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Proof. First, ¥Φ()0,W0) < 0 and ¤Φ()0,W0) = 0 imply that Φ(C,W0) < 3 for C < )0 and C near
)0. By the smoothness of Φ with respect to (C,W), there exists a neighborhood [)− ;)+] ×+1 of
()0,W0) and X1 > 0 such that ¥Φ(),W) < −X1 < 0 in this neighborhood and \ (W) ∈ [)− ;)+]
for W ∈ +1. This will be the crucial ingredient to conclude at the end that Φ(C,W) < 3 for all
C ∈ ])− ; \ (W) [.
Second, ¤Φ(0,W0) < 0 because W0 belongs to H−. Thus, there exists a neighborhood
[0 ;)2] × +2 of (0,W0) with +2 ⊂ +1 and X2 > 0 such that ¤Φ(),W) < −X2 < 0 in this
neighborhood. This implies thatΦ(C,W) < 3 − X2C < 3 for all C ∈ ]0 ;)2]. Let X3 = 2−1X2)2 > 0,
there exists a neighborhood of W0 denoted by +3 ⊂ +2 such that |Φ(C,W) −Φ(C,W0) | < X3 for
all (C,W) ∈ [)2 ;)−] ×+3. This yields Φ(C,W) < 3 − X3 < 3 for all (C,W) ∈ [)2 ;)−] ×+3.

Finally, on [)− ; \ (W)] with W ∈ +3, the function Φ(C,W) is concave and the velocity at time
\ (W) is nonnegative from (6.8) and Φ(C,W) < 3 on [)− ; \ (W) [ ×+3 which concludes the proof
for \ (W) = ) (W). This also ends the proof of Theorem 2.3. �

The proof of Theorem 2.4 is similar in many aspects except two points: the neighborhood of
,0 is smaller and the proof thatΦ(C,W) < 3 for 0 < C small enough requires a careful inspection.
The difference is that the initial velocity of the last mass is zero. However, the acceleration is
negative ¥D+

#
(0,W0) < 0 which is enough to ensure that Φ(C,W) < 3 for 0 < C small enough.

This concludes the proof of Theorem 2.4.

6.2. Square-root singularity in the vicinity of a grazing linear mode. This subsection ex-
plores the possible square-root singularity near any GLM. One feature of a GLM is that the
sticking phase does not occur near such a motion. This property is proven in the coming
Proposition. Then, the square-root singularity coefficients are computed. At least one of them,
non-vanishing, will activate the square-root singularity near a GLM. If the First Return Map has
a particular expression with the square-root term in a class of initial data then one may expect the
instability of any GLM as in Section 5. Such an instability near periodic grazing solutions is
expected [3] but is not yet mathematically proven.

Throughout this section, let us consider the 9 th GLM (the notation GLM 9 is also used below)
with period )9 = ) (W0) [9] associated to the initial data

W0 = [u>0 , v>0 ]>, u0 =
3

%# 9
Pe 9 , v0 = 0. (6.13)

Proposition 6.2. The sticking phase does not occur near the 9 th GLM, 9 = 1, . . . , # .

Proof. From the # th equation in (1.1), <# ¥D# (C) + e>
#

Ku(C) = '(C), '(C) ≤ 0, the sticking phase
does not occur if D# (C) = 3 and � (C) = e>

#
Ku(C) > 0. By the periodicity of GLM, it is sufficient

to show that � (0) > 0. The initial data of the GLM yields

� (0) = 3

%# 9
e>#KPe 9 =

3

%# 9
e>#MP
2 P−1Pe 9 = 3 <#l

2
9 > 0 for 3 > 0. (6.14)

which ends the proof. �

In some cases when 3 > 0 and for some initial data in B+
:
defined in Theorem 2.4, the associated

orbit takes less time to come back to the Poincaré section. This is a consequence of Theorem 2.4
and a feature of GLM.

Corollary 6.1. Consider a GLM with period )9 and an initial perturbation of its initial data
W = W0 + Fe: with : ≠ 2# (or : = 2# and f > 0 where f = sign W:), then there exists X > 0
such that 0 < fF < X and ) (W) < )9 .
Such one-sided condition on the First Return Time is already known for nonlinear modes with
one impact per period near a GLM [9]. It is expected that this inequality is valid on a larger set
near W0 but of course not in the whole neighborhood if : ≠ 2# .
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T

T = T1 +
√|u1(0) − u1GLM1 (0)|/|γ |

T = T1 −
√|u1(0) − u1GLM1 (0)|/|γ |

u1(0)u1GLM1 (0)
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(a)
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T = T2 +
√|u1(0) − u1GLM2 (0)|/|γ |

T = T2 −
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u1GLM1 (0)

T2

T

(b)

Figure 11. First Return Time (red lines) with respect to the initial displacement of the
first mass: (a) near the first GLM, (b) near the second GLM.

Proof. To apply Theorem 2.4, Assumption 2.2 must be verified. The second time derivative of
D# at the grazing point is

¥D# ()9 ,W0) = − 1
<#

e>#Ku()9 ) = − 1
<#

e>#Ku(0) = −3l2
9 < 0. (6.15)

Hence, by Theorem 2.3, the First Return Time ) takes the form given by (2.16). Moreover, since
¥D# ()0,W0) < 0, it follows that in the direction of the : th component of W

) = [(W0) + k(−
√
fF,W0), [(W0) = )9 , m,:

k(0,W0) = 1/
√
|W: |. (6.16)

Hence, ) = )9 − 1/
√
|W: |
√
fF + O(F) < )9 . �

Let us name D1GLM1 (0) and D1GLM2 (0), the initial displacement of the first mass along GLM1
and GLM2, respectively. The square-root singularity of the FRT with respect to the initial
D1, when D1(0) & D1GLM1 (0) or D1(0) . D1GLM2 (0) is shown in Figure 11. The red lines are
computed numerically, while the dashed lines illustrate the Taylor expansion of k. In both cases,
) < )9 , 9 = 1, 2.

The following is the proof of Theorem 2.5 which gives the computation of the coefficients �:
and the generic condition that causes the square-root singularity for the First Return Map near
GLMs.

Proof. Via Proposition 6.2, the sticking phase does not occur near GLMs, thus the First
Return Map takes the form (2.19a) F (W) = R() (W))SW where the FRT has the square-root
dependence (2.16) in the subset B+

:
. Using the proof in Subsection 6.1, the First Return Map

can be rewritten as F (W) = G(W̄) = (61, . . . , 62# ) (W̄) where W̄ = [,̄8]2#8=1, with a change of
variables:

,̄: =

√
B: (,: − U(W0)) and ,̄8 = W

8
, ∀8 ≠ :. (6.17)

Note that 6# (W̄) = 3. From the proof in Subsection 6.1, it follows that ,̄: =
√
|W: |ℎ. Together

with (6.11), F can then be written as

F (W) = G(,1, . . . ,
√
|W: |ℎ, . . . ,,2# ) ≈

[
u()9 ,W0)
v()9 ,W0)

]
+ ℎ

[
v()9 ,W0)
−Ku()9 ,W0)

]
. (6.18)

For : ∈ {1, . . . , 2#}, : ≠ # such that m,:
D# ()9 ,W0) ≠ 0, the coefficient associated with the

square-root term ℎ is �: = 0:: = m,̄:
6: ()9 ,W0) =

√
|W: |mℎ6: ()9 ,W0). The expression of �: is
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then obtained via (6.18) as

�: =

{ √
|W: |e>: v()9 ,W0) if 1 ≤ : < # , (6.19a)

−
√
|W: |e>:−#Ku()9 ,W0) if # < : ≤ 2# . (6.19b)

Since v()9 ) = v0 = 0, it follows that �: = 0, ∀1 ≤ : < # . Another way to write �: is by using
the modal coordinates [q, ¤q] where u = Pq as

�: =

{ √
|W: |e>: P ¤q()9 ,W0) if 1 ≤ : < # , (6.20a)

−
√
|W: |e>:−#MP
2 q()9 ,W0) if # < : ≤ 2# . (6.20b)

From Lemma 6.1, K ≠ ∅ and for every : ∈ K, the coefficient �: is

�: = −
√
|W: |e>:−#MP
2 q()9 ) = −

√
|W8 |3<8l2

9%: 9/%# 9 . (6.21)

By the hypothesis that there exists 8 ∈ K where %8 9 ≠ 0, it follows that�8 ≠ 0. This non-vanishing
coefficient then facilitates the analysis of the square-root singularity for the First Return Map
near GLMs. �

The square-root singularity for the First Return Map is activated near W0 and in a particular
class of initial data. If the orbits stay in that regime of initial data, the dynamics will follows the
framework of Section 5 and one may be able to determine the instability of GLMs.

Remark 6.1. In this section, we have only considered a First Return Time near the fundamental
period )9 of the GLM 9 . A similar study can be done for any multiple of this period )ℓ = ℓ)9 ,
ℓ ∈ N∗. This yields exactly the same coefficient �: .

7. Conclusion

A wealth of studies are available on one-dof vibro-impact oscillators with nonlinear ODEs
and source terms [2]. In the present article, we consider #-dof autonomous vibro-impact
systems with linear ODEs. The choice of the Poincaré sectionHP is critical for the qualitative
exploration of the associated nonsmooth dynamics. It is a subset of the contact hyperplane
H = {D# = 3} ⊂ R2# . Indeed, the only nonlinear and nonsmooth behavior of orbits occurs only
on this hyperplane and it seems natural to define it as the Poincaré section. However, it features a
geometric drawback since it is not transverse to all orbits. It appears that this serious drawback is
directly related to the richness of the nonsmooth dynamics of vibro-impact systems. The difficulty
is with orbits involving a closing contact with a vanishing incoming velocity. Such orbits, initially
investigated by Nordmark [12], can generate a grazing bifurcation and a square-root singularity
for the the First Return Time and the First Return Map. It is also known that many nonlinear
modes emerge from the grazing linear modes. The present paper pays attention to the initial data
onH corresponding to grazing orbits.

We define the Poincaré sectionHP as the largest subset ofH where the orbits emitted from this
subset return toH infinitely many times. Unfamiliar orbits hittingH only once are discovered.
These very specific grazing orbits hit the subset H0

1 ⊂ H . We also prove that an orbit with a
sticking contact always has a finite sticking duration (when 3 > 0—no pre-stress—otherwise it
can be false) and crossesHP . This means that if an orbit has a sticking contact, then the orbit
crossesHP infinitely many times.

Our work extensively analyzes the First Return Time fundamental function defined fromHP to
]0 ;+∞[. By construction ofHP , the First Return Time is a well-defined function. We revisit the
square-root singularity on the chosen unusual Poincaré section in a self-contained and elementary
analytical framework. We also prove that stronger singularities exist. For two-dof systems, the
data producing the cube-root or quartic-root singularity is explicitly obtained. Generically, for
#-dof systems, it is shown that the order of the singularity is at most 2# . Another striking result
says that The First Return Time is not continuous over a whole neighborhood of data producing a
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grazing contact. This strange new property is caused by orbits which do not return toH with
almost the same time. In short, they can return toH after more of fewer cycles than the grazing
orbit does.
The square-root singularity of the First Return Time may affect the First Return Map. We

introduce the square root singularity coefficient �: for : = 1, . . . , 2# . When one �: ≠ 0 then the
First Return Map also exhibits a square root singularity. We prove that for a vectorial map defined
on an open set with such a square-root singularity at a fixed point, then the point is unstable. We
cannot directly apply this result to the First Return Map because our study of the square-root
singularity of the First Return Time is not valid over an entire neighborhood. Accordingly, the
expected instability of the Grazing Linear Modes is still an open problem.

Appendix A. One-dof system: on the square-root singularity

Consider the one-dof dynamics depicted in Figure 12:
< ¥D + :D = A (A.1)
D(0) = D0, ¤D(0−) = ¤D−0 (A.2)
D(C) ≤ 3, A (C) ≤ 0, (3 − D(C))A (C) = 0 (A.3)
¤D+ = − ¤D− when D(C) = 3 (A.4)

The solution to (A.1) is always periodic with or without the obstacle and it takes the form
D(C) = D0 coslC + ¤D−0 /l sinlC (A.5)

on ]0 ;)0 [ where l =
√
:/< is the linear frequency and )0 is the period of the nonlinear solution

and also the First Return Time. It can be expressed as

mk

d

u

Figure 12. Simple unilaterally constrained one-dof system

)0 = ) − 2g (A.6)
where ) = 2c/l and 2g is the complementary time for the mass to go from the state (3, + ¤D−0 )
back to (3,− ¤D−0 ) if there was no obstacle, see Figure 13. Since both linear and nonlinear

t = T0

t = 0

t = −τ

t = τ

u

Ûu

(0, 0) (d, 0)
ε

Figure 13. One-dof system orbit

solutions are periodic, ) and )0 are exactly the First Return Time to the Poincaré section
{[D0, ¤D−0 ] ∈ R2, D0 = 3, ¤D−0 > 0} of the linear/nonlinear orbit. In order to approximate g, a
non-admissible solution is considered, see the gray branch in Figure 13. Suppose that the initial
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condition is not on the Poincaré section: D(0) = 3 (1 + n), n > 0 and ¤D(0) = 0. The solution is
then D(C) = 3 (1 + n) coslC and since at C = g, D(g) = 3, it follows that 3 (1 + n) coslg = 3. A
Taylor expansion in the neighborhood of g = 0 and n = 0 reads

1 − l
2g2

2
+$ (g4) = 1 − n +$ (n2) (A.7)

l2g2 = 2(n +$ (n2) +$ (g4)). (A.8)

Accordingly, lg =
√

2n +$ (n2) =
√

2n +$ (n3/2) and the period of the nonlinear solution is

)0 = ) − 2g = ) − 2
l

√
2n +$ (n2) = ) − 2

l

√
2n +$ (n3/2). (A.9)

Thus, the square-root singularity emerges in the FRT. However, this is slightly misleading because
the derivations proposed in the paper are expressed in terms of ¤D−. In this one-dof example, the
total energy reads l232 + ( ¤D−0 )2 = l232(1 + n)2 thus n = ( ¤D−0 )2/(2l232) + $ (( ¤D−0 )2) and the
FRT becomes:

)0 = ) −
2 ¤D−0
3l2 +$ (( ¤D

−
0 )2) (A.10)

keeping in mind that W> = (,1,,2) = (D0, ¤D−0 ) = (3, ¤D−0 ). Another reason why there is no
square-root singularity for the FRT is that Assumption 2.3 is not verified. The details are as follows:
Φ(C,W) = Φ(C,,1,,2) = Φ(C, D0, ¤D−0 ) = D0 coslC + ¤D−0 /l sinlC. However, m,2Φ = ¤D−0 = 0 for
the sole grazing orbit. Accordingly, Assumption 2.3 which reduces to mF2Φ ≠ 0 is not satisfied.

Also, in this one-dof model, the FRM is the identity function F (U) = U, ∀U ∈ HP and hence
it is smooth with respect to the initial data.

Appendix B. Power-root singularity for a mass-spring chain

In the case of a chain, there is a simpler proof for Proposition 4.4 as stated below.

Lemma B.1. Suppose u(C) is a solution to (1.1) which models a chain of # masses and has a
closing contact at C = 0. Under the assumption that : 9+1, 9 ≠ 0 for all 9 = 1, . . . , # − 1, then
mult( ¤D−

#
) (0) ≤ 2#−1. Moreover, if there is sticking phase at C = 0, thenmult( ¤D#−1) (g) ≤ 2#−3.

Proof. The proof includes two parts. The first part shows that mult( ¤D−
#
) (0) ≤ 2# −1. Otherwise,

mult( ¤D−
#
) (0) ≥ 2# , i.e. ¤D−

#
(0) = . . . = D(2#−1)−

#
(0) = D(2#)−

#
(0) = 0 and it is shown thatu(0) = 0

and ¤u(0) = 0.
Let v = ¤u, then outside the closing contacts, v is the solution of the linear system

M¥v +Kv = 0 (B.1)

Moreover, E# = ¤D# , from the assumption, E# satisfies E (ℓ)
#
(0) = 0 for all 1 ≤ ℓ ≤ 2# − 1. From

the last equation of (B.1): <# ¥E# + :#,#−1E#−1 + :##E# = 0, and :#,#−1 ≠ 0, it follows that
E#−1(0) = . . . = E (2#−3)

#
(0) = 0. Similarly, from the (# − 1)th equation and by the assumption

that :#−1,#−2 ≠ 0, this yields E#−2(0) = . . . = E (2#−5)
#−2 (0) = 0. In the end, the second equation

and :21 ≠ 0 give E1(0) = ¤E1(0) = 0. As a consequence, we have v(0) = 0, ¤v(0) = 0 and the
corresponding solution is v ≡ 0, ¤v ≡ 0. Thus, ¤u ≡ 0 and ¥u ≡ 0. Substitution of these identities
into (1.1) yields Ku = 0. This induces u ≡ 0 since det(K) ≠ 0. However, this contradicts the
fact that D# (0) = 3 > 0, i.e. the solution cannot rest at its equilibrium 0.
The next part shows that mult( ¤D#−1) (g) ≤ 2# − 3 when a sticking phase arises after C = 0.

Based on the last equation of (1.1), <# ¥D# + :#,#−1D#−1 + :##D# = 0, the end of the sticking
phase at C = g satisfies

:#,#−1D#−1(g) = −:##3 (B.2)
:#,#−1D#−1(g + X) > −:##3, ∀0 < X < 1 (B.3)
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The sticking system is then a (# − 1) degree-of-freedom non-homogeneous system M¥u +Ku = c
where c = [0, . . . , 0, :#−1,#3]>. Now, assume that mult( ¤D#−1) (g) ≥ 2# −2, then ¤D#−1(g) = . . .
= D
(2#−2)
#−1 (g) = 0. By a similar argument for the reduced (# − 1) × (# − 1) system with the last

entry of the solution being D#−1 instead of D# , it follows that mult( ¤D#−1) (g) ≤ 2# − 3. �
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