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Abstract. Despite strong stability properties, the persistent homology of filtrations
classically used in Topological Data Analysis, such as, e.g. the Čech or Vietoris-Rips
filtrations, are very sensitive to the presence of outliers in the data from which they
are computed. In this paper, we introduce and study a new family of filtrations, the
DTM-filtrations, built on top of point clouds in the Euclidean space which are more
robust to noise and outliers. The approach adopted in this work relies on the notion of
distance-to-measure functions, and extends some previous work on the approximation
of such functions.

Numerical experiments. A Python notebook here https://github.com/GUDHI/

TDA-tutorial/blob/master/Tuto-GUDHI-DTM-filtrations.ipynb and some animations
https://www.youtube.com/playlist?list=PL_FkltNTtklAOt4dkygG8Zv_-wUvlaz07.
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1 Introduction

The inference of relevant topological properties of data represented as point clouds in
Euclidean spaces is a central challenge in Topological Data Analysis (TDA).

Given a (finite) set of points X in Rd, persistent homology provides a now classical
and powerful tool to construct persistence diagrams whose points can be interpreted as
homological features of X at different scales. These persistence diagrams are obtained
from filtrations, i.e. nested families of subspaces or simplicial complexes, built on top of
X. Among the many filtrations available to the user, unions of growing balls ∪x∈XB(x, t)
(sublevel sets of distance functions), t ∈ R+, and their nerves, the Čech complex
filtration, or its usually easier to compute variation, the Vietoris-Rips filtration, are
widely used. The main theoretical advantage of these filtrations is that they have been
shown to produce persistence diagrams that are stable with respect to perturbations of
X in the Hausdorff metric [6].

Unfortunately, the Hausdorff distance turns out to be very sensitive to noise and
outliers, preventing the direct use of distance functions and classical Čech or Vietoris-
Rips filtrations to infer relevant topological properties from real noisy data. Several
attempts have been made in the recent years to overcome this issue. Among them,
the filtration defined by the sublevel sets of the distance-to-measure (DTM) function
introduced in [4], and some of its variants [10], have been proven to provide relevant
information about the geometric structure underlying the data. Unfortunately, from
a practical perspective, the exact computation of the sublevel sets filtration of the
DTM, that boils down to the computation of a k-th order Voronöı diagram, and its
persistent homology turn out to be far too expensive in most cases. To address this
problem, [8] introduces a variant of the DTM function, the witnessed k-distance, whose
persistence is easier to compute and proves that the witnessed k-distance approximates
the DTM persistence up to a fixed additive constant. In [3, 2], a weighted version of
the Vietoris-Rips complex filtration is introduced to approximate the persistence of the
DTM function, and several stability and approximation results, comparable to the ones
of [8], are established. Another kind of weighted Vietoris-Rips complex is presented in
[1].

Contributions. In this paper, we introduce and study a new family of filtrations based
on the notion of DTM. Our contributions are the following:

� Given a set X ⊂ Rd, a weight function f defined on X and p ∈ [1,+∞], we
introduce the weighted Čech and Rips filtrations that extend the notion of sublevel
set filtration of power distances of [3]. Using classical results, we show that these
filtrations are stable with respect to perturbations of X in the Hausdorff metric
and perturbations of f with respect to the sup norm (Propositions 3.2 and 3.3).

� For a general function f , the stability results of the weighted Čech and Rips
filtrations are not suited to deal with noisy data or data containing outliers. We
consider the case where f is the empirical DTM-function associated to the input
point cloud. In this case, we show an outliers-robust stability result: given two
point clouds X,Y ⊆ Rd, the closeness between the persistence diagrams of the
resulting filtrations relies on the existence of a subset of X which is both close to
X and Y in the Wasserstein metric (Theorems 4.5 and 4.10).
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Practical motivations. Even though this aspect is not considered in this paper, it is
interesting to mention that the DTM filtration was first experimented in the setting of
an industrial research project whose goal was to address an anomaly detection problem
from inertial sensor data in bridge and building monitoring [9]. In this problem, the
input data comes as time series measuring the acceleration of devices attached to the
monitored bridge/building. Using sliding windows and time-delay embedding, these
times series are converted into a series of fixed size point clouds in Rd. Filtrations are
then built on top of these point clouds and their persistence is computed, giving rise to a
time-dependent sequence of persistence diagrams that are then used to detect anomalies
or specific features occurring along the time [11, 13]. In this practical setting it turned
out that the DTM filtrations reveal to be not only more resilient to noise but also
able to better highlight topological features in the data than the standard Vietoris-Rips
filtrations, as illustrated on a basic synthetic example on Figure 1. One of the goals of
the present work is to provide theoretical foundations to these promising experimental
results by studying the stability properties of the DTM filtrations.

Time series without rapid shift Time series with rapid shift

Time series
and time delay
embedding

Conventional
filtration

DTM-
filtration

Figure 1: A synthetic example comparing Vietoris-Rips filtration to DTM filtration.
The first row represents two time series with very different behavior and their
embedding into R3 (here a series (x1, x2, . . . , xn) is converted in the 3D point cloud
{(x1, x2, x3), (x2, x3, x4), . . . , (xn−2, xn−1, xn)}). The second row shows the persistence
diagrams of the Vietoris-Rips filtration built on top of the two point clouds (red and green
points represent respectively the 0-dimensional 1-dimensional diagrams); one observes
that the diagrams do not clearly ‘detect’ the different behavior of the time series. The
third row shows the persistence diagrams of the DTM filtration built on top of the two
point clouds; a red point clearly appears away from the diagonal in the second diagram
that highlights the rapid shift occurring in the second time series.
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Organisation of the paper. Preliminary definitions, notations, and basic notions
on filtrations and persistence modules are recalled in Section 2. The weighted Čech
and Vietoris-Rips filtrations are introduced in Section 3, where their stability properties
are established. The DTM-filtrations are introduced in Section 4. Their main stability
properties are established in Theorems 4.5 and 4.10, and their relation with the sublevel
set filtration of the DTM-functions is established in Proposition 4.6. For the clarity of
the paper, the proofs of several lemmas have been postponed to the appendices.

The various illustrations and experiments of this paper have been computed with the
GUDHI library on Python [14].

Acknowledgements. This work was partially supported by a collaborative research
agreement between Inria and Fujitsu, and the Advanced Grant of the European Research
Council GUDHI (Geometric Understanding in Higher Dimensions).

2 Filtrations and interleaving distance

In this subsection, we consider interleavings of filtrations, interleavings of persistence
modules and their associated pseudo-distances. Their definitions, restricted to the
setting of the paper, are briefly recalled in this section.

Let T = R+ and E = Rd endowed with the standard Euclidean norm.

Filtrations of sets and simplicial complexes. A family of subsets (V t)t∈T of E =
Rd is a filtration if it is non-decreasing for the inclusion, i.e. for any s, t ∈ T , if s ≤ t
then V s ⊆ V t. Given ε ≥ 0, two filtrations (V t)t∈T and (W t)t∈T of E are ε-interleaved if,
for every t ∈ T , V t ⊆ W t+ε and W t ⊆ V t+ε. The interleaving pseudo-distance between
(V t)t∈T and (W t)t∈T is defined as the infimum of such ε:

di((V
t)t∈T , (W

t)t∈T ) = inf{ε : (V t) and (W t) are ε-interleaved}.

Filtrations of simplicial complexes and their interleaving distance are similarly defined:
given a set X and an abstract simplex S with vertex set X, a filtration of S is a
non-decreasing family (St)t∈T of subcomplexes of S. The interleaving pseudo-distance
between two filtrations (St1)t∈T and (St2)t∈T of S is the infimum of the ε ≥ 0 such that
they are ε-interleaved, i.e. for any t ∈ T , St1 ⊆ S

t+ε
2 and St2 ⊆ S

t+ε
1 .

Notice that the interleaving distance is only a pseudo-distance, as two distinct
filtrations may have zero interleaving distance.

Persistence modules. Let k be a field. A persistence module V over T = R+ is a pair
V = ((Vt)t∈T , (vts)s≤t∈T ) where (Vt)t∈T is a family of k-vector spaces, and (vts : Vs →
Vt)s≤t∈T a family of linear maps such that:

� for every t ∈ T , vtt : V
t → V t is the identity map,

� for every r, s, t ∈ T such that r ≤ s ≤ t, vts ◦ vsr = vtr.

Given ε ≥ 0, an ε-morphism between two persistence modules V and W is a family of
linear maps (φt : Vt → Wt+ε)t∈T such that the following diagrams commute for every
s ≤ t ∈ T :
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Vs Vt

Ws+ε Wt+ε

φs

vts

φt

wt+εs+ε

If ε = 0 and each φt is an isomorphism, the family (φt)t∈T is said to be an isomorphism
of persistence modules.

An ε-interleaving between two persistence modules V and W is a pair of ε-morphisms
(φt : Vt →Wt+ε)t∈T and (ψt : Wt → Vt+ε)t∈T such that the following diagrams commute
for every t ∈ T :

Vt Vt+2ε

Wt+ε

φt

vt+2ε
t

ψt+ε

Vt+ε

Wt Wt+2ε

φt+εψt

wt+2ε
t

The interleaving pseudo-distance between V and W is defined as

di(V,W) = inf{ε ≥ 0,V and W are ε-interleaved}.

In some cases, the proximity between persistence modules is expressed with a function.
Let η : T → T be a non-decreasing function such that for any t ∈ T , η(t) ≥ t. A η-
interleaving between two persistence modules V and W is a pair of families of linear
maps (φt : Vt → Wη(t))t∈T and (ψt : Wt → Vη(t))t∈T such that the following diagrams
commute for every t ∈ T :

Vt Vη(η(t))

Wη(t)

φt

v
η(η(t))
t

ψη(t)

Vη(t)

Wt Wη(η(t))

φη(t)ψt

v
η(η(t))
t

When η is t 7→ t+c for some c ≥ 0, it is called an additive c-interleaving and corresponds
with the previous definition. When η is t 7→ ct for some c ≥ 1, it is called a multiplicative
c-interleaving.

A persistence module V is said to be q-tame if for every s, t ∈ T such that s < t, the
map vts is of finite rank. The q-tameness of a persistence module ensures that we can
define a notion of persistence diagram—see [5]. Moreover, given two q-tame persistence
modules V,W with persistence diagrams D(V), D(W), the so-called isometry theorem
states that db(D(V), D(W)) = di(V,W) ([5, Theorem 4.11]) where db(·, ·) denotes the
bottleneck distance between diagrams.

Relation between filtrations and persistence modules. Applying the homology
functor to a filtration gives rise to a persistence module where the linear maps between
homology groups are induced by the inclusion maps between sets (or simplicial complexes).
As a consequence, if two filtrations are ε-interleaved then their associated homology
persistence modules are also ε-interleaved, the interleaving homomorphisms being induced
by the interleaving inclusion maps. Moreover, if the modules are q-tame, then the
bottleneck distance between their persistence diagrams is upperbounded by ε.

The filtrations considered in this paper are obtained as union of growing balls.
Their associated persistence module is the same as the persistence module of a filtered
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simplicial complex via the persistent nerve lemma ([7], Lemma 3.4). Indeed, consider
a filtration (V t)t∈T of E and assume that there exists a family of points (xi)i∈I ∈ EI
and a family of non-decreasing functions ri : T → R+ ∪ {−∞}, i ∈ I, such that, for
every t ∈ T , V t is equal to the union of closed balls

⋃
I B(xi, ri(t)), with the convention

B(xi,−∞) = ∅. For every t ∈ T , let Vt denote the cover {B(xi, ri(t)), i ∈ I} of V t, and
St be its nerve. Let V be the persistence module associated with the filtration (V t)t∈T ,
and VN the one associated with the simplicial filtration (St)t∈T . Then V and VN are
isomorphic persistence modules. In particular, if V is q-tame, V and VN have the same
persistence diagrams.

3 Weighted Čech filtrations

In order to define the DTM-filtrations, we go through an intermediate and more general
construction, namely the weighted Čech filtrations. It generalizes the usual notion of
Čech filtration of a subset of Rd, and shares comparable regularity properties.

3.1 Definition

In the rest of the paper, the Euclidean space E = Rd, the index set T = R+ and a real
number p ≥ 1 are fixed. Consider X ⊆ E and f : X → R+. For every x ∈ X and t ∈ T ,
we define

rx(t) =

{
−∞ if t < f(x),(
tp − f(x)p

) 1
p otherwise.

We denote by Bf (x, t) = B(x, rx(t)) the closed Euclidean ball of center x and radius
rx(t). By convention, a Euclidean ball of radius −∞ is the empty set. For p = ∞, we
also define

rx(t) =

{
−∞ if t < f(x),

t otherwise,

and the balls Bf (x, t) = B(x, rx(t)). Some of these radius functions are represented in
Figure 2.

Figure 2: Graph of t 7→ rx(t) for f(x) = 1 and several values of p.
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Definition 3.1. Let X ⊆ E and f : X → R+. For every t ∈ T , we define the following
set:

V t[X, f ] =
⋃
x∈X

Bf (x, t).

The family V [X, f ] = (V t[X, f ])t≥0 is a filtration of E. It is called the weighted Čech
filtration with parameters (X, f, p). We denote by V[X, f ] its persistence (singular)
homology module.

Note that V [X, f ] and V[X, f ] depend on fixed parameter p, that is not made explicit
in the notation.

Introduce Vt[X, f ] = {Bf (x, t)}x∈X . It is a cover of V t[X, f ] by closed Euclidean
balls. Let N (Vt[X, f ]) be the nerve of the cover Vt[X, f ]. It is a simplicial complex
over the vertex set X. The family N (V[X, f ]) = (N (Vt[X, f ]))t≥0 is a filtered simplicial
complex. We denote by VN [X, f ] its persistence (simplicial) homology module. As a
consequence of the persistent nerve theorem [7, Lemma 3.4], V[X, f ] and VN [X, f ] are
isomorphic persistence modules.

When f = 0, V [X, f ] does not depend on p ≥ 1, and it is the filtration of E by the
sublevel sets of the distance function to X. We denote it by V [X, 0]. The corresponding
filtered simplicial complex, N (V[X, 0]), is known as the usual Čech complex of X.

When p = 2, the filtration value of y ∈ E, i.e. the infimum of the t such that
y ∈ V t[X, f ], is called the power distance of y associated to the weighted set (X, f)
in [3, Definition 4.1]. The filtration V [X, f ] is called the weighted Čech filtration ([3,
Definition 5.1]).

Example. Consider the point cloud X drawn on the right
(black). It is a 200-sample of the uniform distribution on
[−1, 1]2 ⊆ R2. We choose f to be the distance function to
the lemniscate of Bernoulli (magenta). Let t = 0,2. Figure 3
represents the sets V t[X, f ] for several values of p. The balls
are colored differently according to their radius.

p = 1 p = 2 p = 3 p =∞

Figure 3: The sets V t[X, f ] for t = 0,2 and several values of p.

The following proposition states the regularity of the persistence module V[X, f ].

Proposition 3.1. If X ⊆ E is finite and f is any function, then V[X, f ] is a pointwise
finite-dimensional persistence module.

More generally, if X is a bounded subset of E and f is any function, then V[X, f ] is
q-tame.
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Proof. First, suppose that X is finite. ThenN (V[X, f ]) is a filtration of a finite simplicial
complex, and thus VN [X, f ] is pointwise finite-dimensional. It is also the case for V[X, f ]
since it is isomorphic to VN [X, f ].

Secondly, suppose that X is bounded. Consider the ‘filtration value’ function:

tX : E −→ R+

y 7−→ inf
{
t ∈ R+, ∃x ∈ X, y ∈ Bf (x, t)

}
For every y ∈ E, x ∈ X and t ≥ 0 the assertion y ∈ Bf (x, t) is equivalent to

(
‖x− y‖p +

f(x)p
) 1
p ≤ t. Therefore the function tX can be written as follows:

tX(y) = inf{
(
‖x− y‖p + f(x)p

) 1
p , x ∈ X}.

It is 1-Lipschitz as it is the infimum of the set of the 1-Lipschitz functions y 7→
(
‖x −

y‖p + f(x)p
) 1
p . It is also proper as X is bounded.

Let Ṽ be the filtration of E defined for all t ≥ 0 by Ṽ t = t−1
X (] −∞, t]). Let Ṽ be

its persistent homology module. The last two properties of tX (continuous and proper)
imply that Ṽ is q-tame ([5], Corollary 3.34).

Notice that, since X may not be compact, V t[X, f ] may not be equal to Ṽ t. However,
it follows from the definition of tX that V [X, f ] and Ṽ are ε-interleaved for every ε > 0.
Therefore, V[X, f ] also is q-tame.

3.2 Stability

We still consider a subset X ⊆ E and a function f : X → R+. Using the fact that two
ε-interleaved filtrations induce ε-interleaved persistence modules, the stability results for
the filtration V [X, f ] of this subsection immediately translate as stability results for the
persistence module V[X, f ].

The following proposition relates the stability of the filtration V [X, f ] with respect
to f .

Proposition 3.2. Let g : X → R+ be a function such that supx∈X |f(x) − g(x)| ≤ ε.
Then the filtrations V [X, f ] and V [X, g] are ε-interleaved.

Proof. By symmetry, it suffices to show that, for every t ≥ 0, V t[X, f ] ⊆ V t+ε[X, g].
Let t ≥ 0. Choose y ∈ V t[X, f ], and x ∈ X such that y ∈ Bf (x, t), i.e.

(
‖x − y‖p +

f(x)p
) 1
p ≤ t. Let us prove that y ∈ Bg(x, t+ ε), i.e.

(
‖x− y‖p + g(x)p

) 1
p ≤ t+ ε.

From g(x) ≤ f(x) + ε, we obtain
(
‖x − y‖p + g(x)p

) 1
p ≤

(
‖x − y‖p + (f(x) + ε)p

) 1
p .

Now, consider the function η 7→
(
‖x − y‖p + (f(x) + η)p

) 1
p . Its derivative is η 7→(

f(x)+η(
‖x−y‖p+(f(x)+η)p

) 1
p

)p−1
. It is consequently 1-Lipschitz on R+. The Lipschitz property

implies that (
‖x− y‖p +

(
f(x) + ε)p

) 1
p ≤

(
‖x− y‖p + f(x)p

) 1
p + ε.

Hence
(
‖x−y‖p+g(x)p

) 1
p ≤

(
‖x−y‖p+(f(x)+ε)p

) 1
p ≤

(
‖x−y‖p+f(x)p

) 1
p +ε ≤ t+ε.

The following proposition states the stability of V [X, f ] with respect to X. It
generalizes [3, Proposition 4.3] (case p = 2).
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Proposition 3.3. Let Y ⊆ E and suppose that f : X ∪ Y → R+ is c-Lipschitz, c ≥ 0.
Suppose that X and Y are compact and that the Hausdorff distance dH(X,Y ) ≤ ε. Then

the filtrations V [X, f ] and V [Y, f ] are k-interleaved with k = ε(1 + cp)
1
p .

Proof. It suffices to show that for every t ≥ 0, V t[X, f ] ⊆ V t+k[Y, f ].
Let t ≥ 0. Choose z ∈ V t[X, f ], and x ∈ X such that z ∈ Bf (x, t), i.e. ‖x− z‖ ≤ rx(t).
From the hypothesis dH(X,Y ) ≤ ε, there exists y ∈ Y such that ‖y − x‖ ≤ ε. Let us
prove that z ∈ Bf (y, t+ k), i.e. ‖z − y‖ ≤ ry(t+ k).

By triangle inequality, ‖z− y‖ ≤ ‖z− x‖+ ‖x− y‖ ≤ rx(t) + ε. It is enough to show
that rx(t) + ε ≤ ry(t+ k), i.e.(

(t+ k)p − f(y)p
) 1
p︸ ︷︷ ︸

ry(t+k)

−
(
tp − f(x)p

) 1
p︸ ︷︷ ︸

rx(t)

≥ ε.

The left-hand side of this expression is decreasing in f(y). Moreover, since f is c-
Lipschitz, f(y) is at most f(x) + cε. Therefore:

((t+ k)p − f(y)p)
1
p − (tp − f(x)p)

1
p

≥ ((t+ k)p − (f(x) + cε)p)
1
p − (tp − f(x)p)

1
p .

It is now enough to prove that this last expression is not less than ε, which is the content
of Lemma A.1.

Notice that the bounds in Proposition 3.2 and 3.3 are tight. In the first case, consider
for example E = R, the set X = {0}, and the functions f = 0 and g = ε. For every t < ε,
we have V t[Y, f ] = ∅, while V t[X, f ] 6= ∅. Regarding the second proposition, consider
E = R, f : x 7→ cx, X = {0} and Y = {ε}. We have, for every t ≥ 0, V t[X, f ] = B(0, t)

and V t[Y, f ] = B(ε, (tp − (cε)p)
1
p ). For every t < ε(1 + cp)

1
p , we have (tp − (cε)p)

1
p < ε,

hence 0 /∈ V t[Y, f ]. In comparison, ∀t ≥ 0, 0 ∈ V t[X, f ].

When considering data with outliers, the observed set X may be very distant from the
underlying signal Y in Hausdorff distance. Therefore, the tight bound in Proposition 3.3
may be unsatisfactory. Moreover, a usual choice of f would be dX , the distance function
to X. But the bound in Proposition 3.2 then becomes ‖dX − dY ‖∞ = dH(X,Y ). We
address this issue in Section 4 by considering an outliers-robust function f , the so-called
distance-to-measure function (DTM).

3.3 Weighted Vietoris-Rips filtrations

Rather than computing the persistence of the Čech filtration of a point cloud X ⊆ E,
one sometimes consider the corresponding Vietoris-Rips filtration, which is usually easier
to compute.

If G is a graph with vertex set X, its corresponding clique complex is the simplicial
complex over X consisting of the sets of vertices of cliques of G. If S is a simplicial
complex, its corresponding flag complex is the clique complex of its 1-skeleton.

We remind the reader that N (Vt[X, f ]) denotes the nerve of Vt[X, f ], where Vt[X, f ]
is the cover {Bf (x, t)}x∈X of V t[X, f ].
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Definition 3.2. We denote by Rips(Vt[X, f ]) the flag complex of N (Vt[X, f ]), and by
Rips(V[X, f ]) the corresponding filtered simplicial complex. It is called the weighted
Rips complex with parameters (X, f, p).

The following proposition states that the filtered simplicial complexes N (V[X, f ])
and Rips(V[X, f ]) are 2-interleaved multiplicatively, generalizing the classical case of
the Čech and Vietoris-Rips filtrations (case f = 0).

Proposition 3.4. For every t ≥ 0,

N (Vt[X, f ]) ⊆ Rips(Vt[X, f ]) ⊆ N (V2t[X, f ])

Proof. Let t ≥ 0. The first inclusion follows from that Rips(Vt[X, f ])) is the clique
complex of N (Vt[X, f ]). To prove the second one, choose a simplex ω ∈ Rips(Vt[X, f ])).
It means that for every x, y ∈ ω, Bf (x, t)∩Bf (y, t) 6= ∅, i.e. B(x, rx(t))∩B(y, ry(t)) 6= ∅.
We have to prove that ω ∈ N (V2t[X, f ]), i.e.

⋂
x∈ω B(x, rx(2t)) 6= ∅.

For every x ∈ ω, one has rx(2t) ≥ 2rx(t). Indeed,

rx(2t) =
(
(2t)p − f(x)p

) 1
p

= 2
(
tp − (

f(x)

2
)p
) 1
p

≥ 2
(
tp − f(x)p

) 1
p = 2rx(t)

Using the fact that doubling the radius of pairwise intersecting balls is enough to make
them intersect globally, we obtain that ω ∈ N (V2t[X, f ]).

Using Theorem 3.1 of [1], the multiplicative interleaving Rips(Vt[X, f ]) ⊆ N (V2t[X, f ])

can be improved to Rips(Vt[X, f ]) ⊆ N (Vct[X, f ]), where c =
√

2d
d+1 and d is the

dimension of the ambient space E = Rd.

Note that weighted Rips filtration shares the same stability properties as the weighted
Čech filtration. Indeed, the proofs of Proposition 3.2 and 3.3 immediately extend to this
case.

In order to compute the flag complex Rips(Vt[X, f ]), it is enough to know the
filtration values of its 0- and 1-simplices. The following proposition describes these
values.

Proposition 3.5. Let p < +∞. The filtration value of a vertex x ∈ X is given by
tX({x}) = f(x).
The filtration value of an edge {x, y} ⊆ E is given by

tX({x, y}) =

{
max{f(x), f(y)} if ‖x− y‖ ≤ |f(x)p − f(y)p|

1
p ,

t otherwise,

where t is the only positive root of

‖x− y‖ = (tp − f(x)p)
1
p + (tp − f(y)p)

1
p (1)
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When ‖x− y‖ ≥ |f(x)p − f(y)p|
1
p , the positive root of Equation (1) does not always

admit a closed form. We give some particular cases for which it can be computed.

� For p = 1, the root is tX({x, y}) = f(x)+f(y)+‖x−y‖
2 ,

� for p = 2, it is tX({x, y}) =

√(
(f(x)+f(y))2+‖x−y‖2

)(
(f(x)−f(y))2+‖x−y‖2

)
2‖x−y‖ ,

� for p = ∞, the condition reads ‖x − y‖ ≥ max{f(x), f(y)}, and the root is

tX({x, y}) = ‖x−y‖
2 . In either case, tX({x, y}) = max{f(x), f(y), ‖x−y‖2 }.

Proof. The filtration value of a vertex x ∈ X is, by definition of the nerve, tX({x}) =
inf{s ∈ T,Bf (x, s) 6= ∅}. It is equal to f(x).

Also by definition, the filtration value of an edge {x, y}, with x, y ∈ X and x 6= y, is
given by

tX({x, y}) = inf{s ∈ R, Bf (x, s) ∩Bf (y, s) 6= ∅}

Two cases may occur: the balls Bf (x, t({x, y})) and Bf (x, t({x, y})) have both positive
radius, or one of these is a singleton. In the last case, t({x, y}) = max{f(x), f(y)}. In

the first case, we have ‖x−y‖ = rx(t)+ry(t), i.e. ‖x−y‖ = (tp−f(x)p)
1
p +(tp−f(y)p)

1
p .

Notice that Equation (1) admits only one solution since the function t 7→ (tp−f(x)p)
1
p +

(tp − f(y)p)
1
p is strictly increasing on [max{f(x), f(y)},+∞).

We close this subsection by discussing the influence of p on the weighted Čech and
Rips filtrations. Let D0(N (V[X, f, p])) be the persistence diagram of the 0th-homology
of N (V[X, f, p]). We say that a point (b, d) of D0(V[X, f, p]) is non-trivial if b 6= d. Let
D0(Rips(V[X, f, p])) be the persistence diagram of the 0th-homology of Rips(V[X, f, p]).
Note that D0(N (V[X, f, p])) = D0(Rips(V[X, f, p])) since the corresponding filtrations
share the same 1-skeleton.

Proposition 3.6. The number of non-trivial points in D0(Rips(V[X, f, p])) is non-
increasing with respect to p ∈ [1,+∞). The same holds for D0(N (V[X, f, p])).

Proof. The number of points in D0(Rips(V[X, f, p])) is equal to the cardinal of X. Any
p ≥ 1 being fixed, we can pair every x ∈ X with some edge {y, z} ∈ Rips(V[X, f, p])
such that the points of D0(Rips(V[X, f, p])) are of the form

(
tX({x}), tX({y, z})

)
.

Notice that the filtration values of the points in X do not depend on p: for all
p ≥ 1 and x ∈ X, tX({x}) = f(x). Moreover, the filtration values of the edges in
Rips(V[X, f, p]) are non-increasing with respect to p. Indeed, for all {y, z} ∈ Rips(V[X, f, p])
with y 6= z, according to Proposition 3.5, the filtration value tX({y, z}) is either max{f(x), f(y)}
if ‖x−y‖ ≤ |f(x)p−f(y)p|

1
p , or is the only positive root of Equation (1) otherwise. Note

that the positive root of Equation (1) is greater than max{f(x), f(y)} and decreasing in

p. Besides, the term |f(x)p − f(y)p|
1
p is non-decreasing in p.

These two facts ensure that for every x ∈ X, the point of D0(Rips(V[X, f, p])) created
by x has an ordinate which is non-increasing with respect to p. In particular, the number
of non-trivial points in D0(Rips(V[X, f, p])) is non-increasing with respect to p.

Figure 8 in Subsection 4.4 illustrates the previous proposition in the case of the
DTM-filtrations. Greater values of p lead to sparser 0th-homology diagrams.
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Now, consider k > 0, and let Dk(N (V[X, f, p])) be the persistence diagram of the
kth-homology of N (V[X, f, p]). In this case, one can easily build examples showing that
the number of non-trivial points of Dk(N (V[X, f, p])) does not have to be non-increasing
with respect to p. The same holds for Dk(Rips(V[X, f, p])).

4 DTM-filtrations

The results of previous section suggest that in order to construct a weighted Čech
filtration V [X, f ] that is robust to outliers, it is necessary to choose a function f
that depends on X and that is itself robust to outliers. The so-called distance-to-
measure function (DTM) satisfies such properties, motivating the introduction of the
DTM-filtrations in this section.

4.1 The distance to measure (DTM)

Let µ be a probability measure over E = Rd, and m ∈ [0, 1) a parameter. For every
x ∈ Rd, let δµ,m be the function defined on E by δµ,m(x) = inf{r ≥ 0, µ(B(x, r)) > m}.

Definition 4.1. Let m ∈ [0, 1[. The DTM µ of parameter m is the function:

dµ,m : E −→ R
x 7−→

√
1
m

∫m
0 δ2

µ,t(x)dt

When m is fixed—which is the case in the following subsections—and when there is no
risk of confusion, we write dµ instead of dµ,m.

Notice that when m = 0, dµ,m is the distance function to supp(µ), the support of µ.

Proposition 4.1 ([4], Corollary 3.7). For every probability measure µ and m ∈ [0, 1),
dµ,m is 1-Lipschitz.

A fundamental property of the DTM is its stability with respect to the probability
measure µ in the Wasserstein metric. Given two probability measures µ and ν over E, a
transport plan between µ and ν is a probability measure π over E ×E whose marginals
are µ and ν. The Wasserstein distance with quadratic cost between µ and ν is defined

as W2(µ, ν) =
(

infπ
∫
E×E ‖x − y‖

2dπ(x, y)
) 1

2
, where the infimum is taken over all the

transport plans π. When µ = µX and ν = µY are the empirical measures of the finite
point clouds X and Y , i.e the normalized sums of the Dirac measures on the points of
X and Y respectively, we write W2(X,Y ) instead of W2(µX , µY ).

Proposition 4.2 ([4], Theorem 3.5). Let µ, ν be two probability measures, and m ∈
(0, 1). Then

‖dµ,m − dν,m‖∞ ≤ m−
1
2W2(µ, ν).

Notice that for every x ∈ E, dµ(x) is not lower than the distance from x to supp(µ),
the support of µ. This remark, along with the propositions 4.1 and 4.2, are the only
properties of the DTM that will be used to prove the results in the rest of the paper.
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In practice, the DTM can be computed. If X is a finite subset of E of cardinal n, we
denote by µX its empirical measure. Assume that m = k0

n , with k0 an integer. In this
case, dµX ,m reformulates as follows: for every x ∈ E,

d2
µX ,m

(x) =
1

k0

k0∑
k=1

‖x− pk(x)‖2,

where p1(x), ..., pk0(x) are a choice of k0-nearest neighbors of x in X.

4.2 DTM-filtrations

In the following, the two parameters p ∈ [1,+∞] and m ∈ (0, 1) are fixed.

Definition 4.2. Let X ⊆ E be a finite point cloud, µX the empirical measure of X, and
dµX the corresponding DTM of parameter m. The weighted Čech filtration V [X, dµX ],
as defined in Definition 3.1, is called the DTM-filtration associated with the parameters
(X,m, p). It is denoted by W [X]. The corresponding persistence module is denoted by
W[X].

Let Wt[X] = Vt[X, dµX ] denote the cover of W t[X] as defined in section 3, and let
N (Wt[X]) be its nerve. The family N (W[X])) = (N (Wt[X]))t≥0 is a filtered simplicial
complex, and its persistent (simplicial) homology module is denoted by WN [X]. By the
persistent nerve lemma, the persistence modules W[X] and WN [X] are isomorphic.

As in Definition 3.2, Rips(Wt[X]) denotes the flag complex of N (Wt[X]), and
Rips(W[X]) the corresponding filtered simplicial complex.

Example. Consider the point cloud X drawn on the right. It
is the union of X̃ and Γ, where X̃ is a 50-sample of the uniform
distribution on [−1, 1]2 ⊆ R2, and Γ is a 300-sample of the uniform
distribution on the unit circle. We consider the weighted Čech
filtrations V [Γ, 0] and V [X, 0], and the DTM-filtration W [X], for
p = 1 and m = 0,1. They are represented in Figure 4.2 for the
value t = 0,3.

V t[Γ, 0] V t[X, 0] W t[X]

Figure 4: The sets V t[Γ, 0], V t[X, 0] and W t[X] for p = 1, m = 0,1 and t = 0,3.

Because of the outliers X̃, the value of t from which the sets V t[X, 0] are contractible
is small. On the other hand, we observe that the set W t[X] does not suffer too much
from the presence of outliers.
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We plot in Figure 5 the persistence diagrams of the persistence modules associated
to Rips(V[Γ, 0]), Rips(V[X, 0]) and Rips(W[X]) (p = 1, m = 0,1).

D(Rips(V[Γ, 0])) D(Rips(V[X, 0])) D(Rips(W[X]))

Figure 5: Persistence diagrams of some simplicial filtrations. Points in red (resp. green)
represent the persistent homology in dimension 0 (resp. 1).

Observe that the diagrams D(Rips(V[Γ, 0])) and D(Rips(W[X])) appear to be close
to each other, while D(Rips(V[X, 0])) does not.

Applying the results of Section 3, we immediately obtain the following proposition.

Proposition 4.3. Consider two measures µ, ν on E with compact supports X and Y .
Then

di(V [X, dµ], V [Y, dν ]) ≤ m−
1
2W2(µ, ν) + 2

1
pdH(X,Y ).

In particular, if X and Y are finite subsets of E, using µ = µX and ν = νY , we obtain

di(W [X],W [Y ]) ≤ m−
1
2W2(X,Y ) + 2

1
pdH(X,Y ).

Proof. We use the triangle inequality for the interleaving distance:

di(V [X, dµ], V [Y, dν ]) ≤ di(V [X, dµ], V [Y, dµ])︸ ︷︷ ︸
(1)

+ di(V [Y, dµ], V [Y, dν ])︸ ︷︷ ︸
(2)

.

(1) : From Proposition 3.3, we have di(V [X, dµ], V [Y, dµ]) ≤ (1 + cp)
1
pdH(X,Y ), where

c is the Lipschitz constant of dµ. According to Proposition 4.1, c = 1. We obtain

di(V [X, dµ], V [Y, dµ]) ≤ 2
1
pdH(X,Y ).

(2) : From Proposition 3.2, we have di(V [Y, dµ], V [Y, dν ]) ≤ ‖dµ − dν‖∞. According to

Proposition 4.2, ‖dµ − dν‖∞ ≤ m−
1
2W2(µ, ν).

The second point follows from the definition of the DTM-filtrations: W [X] = V [X, dµX ]
and W [Y ] = V [Y, dµY ]

Note that this stability result is worse than the stability of the usual Čech filtrations,
which only involves the Hausdorff distance. However, the term W2(X,Y ) is inevitable,
as shown in the following example.
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Let E = R, and ε ∈ (0, 1). Define µ = εδ0 +(1−ε)δ1, and ν = (1−ε)δ0 +εδ1. We have
X = supp(µ) = supp(ν) = Y . If ε ≤ m ≤ 1− ε, then dν(0) = 0, while dµ(0) =

√
1− ε

m .
We deduce that di(V [X, dµ], V [Y, dν ]) ≥ dµ(0)− dν(0) =

√
1− ε

m .

In comparison, the usual Čech filtrations V [X, 0] and V [Y, 0] are equal and does not
depend on µ and ν. In this case, it would be more robust to consider these usual Čech
filtrations. Now, in the case where the Hausdorff distance dH(X,Y ) is large, the usual
Čech filtrations may be very distant. However, the DTM-filtrations may still be close,
as we discuss in the next subsection.

4.3 Stability when p = 1

We first consider the case p = 1, for which the proofs are simpler and the results stronger.

We fix m ∈ (0, 1). If µ is a probability measure on E with compact support supp(µ),
we define

c(µ,m) = sup
supp(µ)

(dµ,m).

If µ = µΓ is the empirical measure of a finite set Γ ⊆ E, we denote it c(Γ,m).

Proposition 4.4. Let µ be a probability measure on E with compact support Γ. Let dµ
be the corresponding DTM. Consider a set X ⊆ E such that Γ ⊆ X. The weighted Čech
filtrations V [Γ, dµ] and V [X, dµ] are c(µ,m)-interleaved.

Moreover, if Y ⊆ E is another set such that Γ ⊆ Y , V [X, dµ] and V [Y, dµ] are
c(µ,m)-interleaved.

In particular, if Γ is a finite set and µ = µΓ its empirical measure, W [Γ] and
V [X, dµΓ ] are c(Γ,m)-interleaved.

Proof. Let c = c(µ,m). Since Γ ⊆ X, we have V t[Γ, dµ] ⊆ V t[X, dµ] for every t ≥ 0.
Let us show that, for every t ≥ 0, V t[X, dµ] ⊆ V t+c[Γ, dµ]. Let x ∈ X, and choose

γ ∈ Γ a projection of x on the compact set Γ, i.e. one of the closest points to x in Γ.
By definition of the DTM, we have that dµ(x) ≥ ‖x− γ‖. Together with dµ(γ) ≤ c, we
obtain

t+ c− dµ(γ) ≥ t ≥ t− dµ(x) + ‖x− γ‖,

which means that Bdµ(x, t) ⊆ Bdµ(γ, t + c). The inclusion V t[X, dµ] ⊆ V t+c[Γ, dµ]
follows.

If Y is another set containing Γ, we obtain V t[X, dµ] ⊆ V t+c[Γ, dµ] ⊆ V t+c[Y, dµ] for
every t ≥ 0.

Theorem 4.5. Consider two measures µ, ν on E with supports X and Y . Let µ′, ν ′ be
two measures with compact supports Γ and Ω such that Γ ⊆ X and Ω ⊆ Y . We have

di(V [X, dµ], V [Y, dν ]) ≤ m−
1
2W2(µ, µ′)+m−

1
2W2(µ′, ν ′)+m−

1
2W2(ν ′, ν)+c(µ′,m)+c(ν ′,m).

In particular, if X and Y are finite, we have

di(W [X],W [Y ]) ≤ m−
1
2W2(X,Γ) +m−

1
2W2(Γ,Ω) +m−

1
2W2(Ω, Y ) + c(Γ,m) + c(Ω,m).

Moreover, with Ω = Y , we obtain

di(W [X],W [Ω]) ≤ m−
1
2W2(X,Γ) +m−

1
2W2(Γ,Ω) + c(Γ,m) + c(Ω,m).
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Proof. Let dX = dµ, dY = dν , dΓ = dµ′ and dΩ = dν′ . We prove the first assertion by
introducing the following filtrations between V [X, dX ] and V [Y, dY ]:

V [X, dX ]←→ V [X, dΓ]←→ V [Γ ∪ Ω, dΓ]←→ V [Γ ∪ Ω, dΩ]←→ V [Y, dΩ]←→ V [Y, dY ].

We have:

• di(V [X, dX ], V [X, dΓ]) ≤ m−
1
2W2(µ, µ′) (Propositions 4.2 and 3.2),

• di(V [X, dΓ], V [Γ ∪ Ω, dΓ]) ≤ c(µ′,m) (Proposition 4.4),

• di(V [Γ ∪ Ω, dΓ], V [Γ ∪ Ω, dΩ]) ≤ m−
1
2W2(µ′, ν ′) (Propositions 4.2 and 3.2),

• di(V [Γ ∪ Ω, dΩ], V [Y, dΩ]) ≤ c(ν ′,m) (Proposition 4.4),

• di(V [Y, dΩ], V [Y, dY ]) ≤ m−
1
2W2(ν ′, ν) (Propositions 4.2 and 3.2).

The inequality with X and Y finite follows from defining µ, ν, µ′ and ν ′ to be the
empirical measures on X,Y,Γ and Ω, and by recalling that the DTM filtrations W [X]
and W [Y ] are equal to the weighted Čech filtration V [X, dµ] and V [Y, dν ].

The last inequality of Theorem 4.5 can be seen as an approximation result. Indeed,
suppose that Ω is some underlying set of interest, and X is a sample of it with, possibly,
noise or outliers. If one can find a subset Γ of X such that X and Γ are close to
each other—in the Wasserstein metric—and such that Γ and Ω are also close, then the
filtrations W [X] and W [Ω] are close. Their closeness depends on the constants c(Γ,m)
and c(Ω,m). More generally, if X is finite and µ′ is a measure with compact support
Ω ⊂ X not necessarily finite, note that the first inequality gives

di(W [X], V [Ω, dµ′ ]) ≤ m−
1
2W2(X,Γ) +m−

1
2W2(µΓ, µ

′) + c(Γ,m) + c(µ′,m).

For any probability measure µ of support Γ ⊆ E, the constant c(µ,m) might be
seen as a bias term, expressing the behaviour of the DTM over Γ. It relates to the
concentration of µ on its support. A usual case is the following: a measure µ with
support Γ is said to be (a, b)-standard, with a, b ≥ 0, if for all x ∈ Γ and r ≥ 0,
µ(B(x, r)) ≥ min{arb, 1}. For example, the Hausdorff measure associated to a compact
b-dimensional submanifold of E is (a, b)-standard for some a > 0. In this case, a simple
computation shows that there exists a constant C, depending only on a and b, such that
for all x ∈ Γ, dµ,m(x) ≤ Cm

1
b . Therefore, c(µ,m) ≤ Cm

1
b .

Regarding the second inequality of Theorem 4.5, suppose for the sake of simplicity
that one can choose Γ = Ω. The bound of Theorem 4.5 then reads

di(W [X],W [Y ]) ≤ m−
1
2W2(X,Γ) +m−

1
2W2(Γ, Y ) + 2c(Γ,m).

Therefore, the DTM-filtrations W [X] and W [Y ] are close to each other if µX and µY
are both close to a common measure µΓ. This would be the case if X and Y are
noisy samples of Γ. This bound, expressed in terms of Wasserstein distance rather than
Hausdorff distance, shows the robustness of the DTM-filtration to outliers.

Notice that, in practice, for finite data sets X,Y and for given Γ and Ω, the constants
c(Γ,m) and c(Ω,m) can be explicitly computed, as it amounts to evaluating the DTM
on Γ and Ω. This remark holds for the bounds of Theorem 4.5.
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Example. Consider the set X = X̃ ∪ Γ as defined in the example page 13. Figure 6
displays the sets W t[X], V t[X, dµΓ ] and W t[Γ] for the values p = 1, m = 0.1 and t = 0.4
and the persistence diagrams of the corresponding weighted Rips filtrations, illustrating
the stability properties of Proposition 4.4 and Theorem 4.5.

W t[X] V t[X, dµΓ ] W t[Γ]

D(Rips(W[X])) D(Rips(V[X, dµΓ ])) D(Rips(W[Γ]))

Figure 6: Filtrations for t = 0.4, and their corresponding persistence diagrams.

The following proposition relates the DTM-filtration to the filtration of E by the
sublevels sets of the DTM.

Proposition 4.6. Let µ be a probability measure on E with compact support K. Let
m ∈ [0, 1) and denote by V the sublevel sets filtration of dµ. Consider a finite set X ⊆ E.
Then

di(V,W [X]) ≤ m−
1
2W2(µ, µX) + 2ε+ c(µ,m),

with ε = dH(K ∪X,X).

Proof. First, notice that V = V [E, dµ]. Indeed, for every t ≥ 0, we have V t ⊆ V t[E, dµ]
by definition of the weighted Čech filtration. To prove that V t[E, dµ] ⊆ V t, let x ∈
V t[E, dµ], and y ∈ E such that x ∈ Bdµ(y, t). We have ‖x − y‖ ≤ t − f(y). For dµ is
1-Lipschitz, we deduce f(x) ≤ f(y) + ‖x− y‖ ≤ f(y) + t− f(y) ≤ t. Hence x ∈ V t.

Then we compute:

di(V,W [X]) = di(V [E, dµ], V [X, dµX ])

≤ di(V [E, dµ], V [X ∪K, dµ]) + di(V [X ∪K, dµ], V [X, dµ]) + di(V [X, dµ], V [X, dµX ])

≤ c(µ,m) + 2ε+m−
1
2W2(µ, µX),

using Proposition 4.2 for the first term, Proposition 3.3 for the second one, and Proposition
3.2 and Proposition 4.4 for the third one.
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As a consequence, one can use the DTM-filtration to approximate the persistent
homology of the sublevel sets filtration of the DTM, which is expensive to compute in
practice.

We close this subsection by noting that a natural strengthening of Theorem 4.5 does
not hold: let m ∈ (0, 1) and E = Rn with n ≥ 1. There is no constant C such that, for
every probability measure µ, ν on E with supports X and Y , we have:

di(V [X, dµ,m], V [Y, dν,m]) ≤ CW2(µ, ν).

The same goes for the weaker statement

di(V[X, dµ,m],V[Y, dν,m]) ≤ CW2(µ, ν).

We shall prove the statement for E = R. Let q ∈ (0, 1) such that q < m < 1 − q,
and ε ∈ [0, q). Let x ∈ (−1, 0) to be determined later. Define µ = qδ−1 + (1− q)δ1, and
νε = (q− ε)δ−1 + (1− q)δ1 + εδx, with δ denoting the Dirac mass. Let X = {−1, 1} ⊂ E
and Y = {−1, x, 1}.

It is clear that W2(µ, νε) = (x+ 1)ε < ε. Using the triangle inequality, we have:

di(V[X, dµ,m],V[Y, dνε,m]) ≥ di(V[X, dµ,m],V[Y, dµ,m])− di(V[Y, dνε,m],V[Y, dµ,m])

≥ di(V[X, dµ,m],V[Y, dµ,m])−m−
1
2 ε

Thus it is enough to show that di(V[X, dµ,m],V[Y, dµ,m]) is positive.
Since 1 − q > m, we have dµ,m(1) = 0. Using Proposition 3.5, we deduce that the

persistence barcode of the 0th homology of V [X, dµ] consists of the bars [0,+∞[ and
[dµ,m(−1), 1

2(dµ,m(−1) + dµ,m(1) + 2)].
Similarly, the persistence barcode of the 0th homology of V [Y, dµ] consists of the bars

[0,+∞[, [dµ,m(−1), 1
2(dµ,m(−1) + dµ,m(x) + (1 +x))] and [dµ,m(x), 1

2(dµ,m(x) + (1−x))].
Notice that, since q > 0 and x < 0, by definition of the DTM, we have dµ,m(x) < 1−x.

Hence the last bar is not a singleton. Moreover, if x is close enough to 0, we have
dµ,m(−1) < dµ,m(x) + 1 − x. Indeed, with x = 0, dµ,m(x) + 1 − x = 2, and we have

dµ,m(−1) = 2
√

m−q
m < 2. Hence the second bar is not a singleton as well.

As a consequence, if x is close enough to 0, the interleaving distance between these
two barcodes is positive.

4.4 Stability when p > 1

Now assume that p > 1, m ∈ (0, 1) being still fixed. In this case, stability properties turn
out to be more difficult to establish. For small values of t, Lemma 4.8 gives a tight non-
additive interleaving between the filtrations. However, for large values of t, the filtrations
are poorly interleaved. To overcome this issue we consider stability at the homological
level, i.e. between the persistence modules associated to the DTM filtrations.

Let us show first why one cannot expect a similar result as Proposition 4.4. Consider
the ambient space E = R2 and the sets Γ = {0} and X = Γ ∪ {1}. We have dµΓ(1) = 1

and, for all t ≥ 1, W t[Γ] = B(0, t) and V t[X, dµΓ ] = B(0, t) ∪ B
(
1, (tp − 1)

1
p
)
. The sets

V t[X, dµΓ ] are represented in Figure 7 for t = 1,5, t = 5 and several values of p.

For p = 1, the ball B
(
1, (tp − 1)

1
p
)

is contained in B(0, t). Whereas for p > 1, the

radius (tp − 1)
1
p is asymptotically equal to t + ot→+∞( 1

tp−1 ). Therefore, an ε ≥ 0 for
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which the ball B
(
1, (tp − 1)

1
p
)

would be included in B(0, t + ε) for all t ≥ 0 should not
be lower than 1 = dH(Γ, X). Therefore, di(W [Γ], V [X, dµΓ ]) = 1 = dH(Γ, X).

p = 1 p = 4 p =∞

Figure 7: Some sets V t[X, dµΓ ] for t = 1,5 (first row) and t = 5 (second row).

Even though the filtrations W [Γ] and V [X, dµΓ ] are distant, the set V t[X, dµΓ ] is
contractible for all t ≥ 0, and therefore the interleaving distance between the persistence
modules W[Γ] and V[X, dµΓ ] is 0.

In general, and in the same spirit as Proposition 4.4, we can obtain a bound on the
interleaving distance between the persistence modules W[Γ] and V[X, dµΓ ] which does
not depend on X—see Proposition 4.7.

If µ is a probability measure on E with compact support Γ, we define

c(µ,m, p) = sup
Γ

(dµ,m) + κ(p)tµ(Γ),

where κ(p) = 1 − 1
p , and tµ(Γ) is the filtration value of the simplex Γ in N (V[Γ, dµ]),

the (simplicial) weighted Čech filtration. Equivalently, tµ(Γ) is the value t from which
all the balls Bdµ(γ, t), γ ∈ Γ, share a common point.
If µ = µΓ is the empirical measure of a finite set Γ ⊆ E, we denote it c(Γ,m, p).

Note that we have the inequality 1
2diam(Γ) ≤ tµ(Γ) ≤ 2diam(Γ), where diam(Γ)

denotes the diameter of Γ. This follows from writing tµ(Γ) = inf{t ≥ 0,∩γ∈ΓBdµ(γ, t) 6=
∅} and using that ∀γ ∈ Γ, dµ(γ) ≤ diam(Γ).

Proposition 4.7. Let µ be a measure on E with compact support Γ, and dµ be the
corresponding DTM of parameter m. Consider a set X ⊆ E such that Γ ⊆ X. The
persistence modules V[Γ, dµ] and V[X, dµ] are c(µ,m, p)-interleaved.

Moreover, if Y ⊆ E is another set such that Γ ⊆ Y , V[X, dµ] and V[Y, dµ] are
c(µ,m, p)-interleaved.

In particular, if Γ is a finite set and µ = µΓ its empirical measure, W[Γ] and V[X, dµΓ ]
are c(Γ,m, p)-interleaved.
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The proof involves the two following ingredients, whose proofs are postponed to
Subsection 4.5. The first lemma gives a (non-additive) interleaving between the filtrations
W [Γ] and V [X, dµΓ ], relevant for low values of t, while the second proposition gives a
result for large values of t.

Lemma 4.8. Let µ,Γ and X be as defined in Proposition 4.7. Let φ : t 7→ 2
1− 1

p t +
supΓ dµ. Then for every t ≥ 0,

V t[Γ, dµ] ⊆ V t[X, dµ] ⊆ V φ(t)[Γ, dµ].

In the remainder of the paper, we say that a homology group Hn(·) is trivial if it is
of rank 0 when n > 0, or if it is of rank 1 when n = 0. We say that a homomorphism
between homology groups Hn(·) → Hn(·) is trivial if the homomorphism is of rank 0
when n > 0, or if it is of rank 1 when n = 0.

Proposition 4.9. Let µ,Γ and X be as defined in Proposition 4.7. Consider the
map vt∗ : Vt[X, dµ] → Vt+c[X, dµ] induced in homology by the inclusion vt : V t[X, dµ] →
V t+c[X, dµ]. If t ≥ tµ(Γ), then vt is trivial.

Proof of Proposition 4.7. Denote c = c(µ,m, p). For every t ≥ 0, denote by vt : V t[X, dµ]→
V t+c[X, dµ], wt : V t[Γ, dµ] → V t+c[Γ, dµ] and jt : V t[Γ, dµ] → V t[X, dµ] the inclusion
maps, and vt∗, w

t
∗, and jt∗ the induced maps in homology.

Notice that, for t ≤ tµ(Γ), the term 2
1− 1

p t + supΓ dµ which appears in Lemma 4.8
can be bounded as follows:

2
1− 1

p t+ sup
Γ
dµ = t+ (2

1− 1
p − 1)t+ sup

Γ
dµ

≤ t+ (2
1− 1

p − 1)tµ(Γ) + sup
Γ
dµΓ

≤ t+ (1− 1

p
)tµ(Γ) + sup

Γ
dµΓ

= t+ c

where, for the second line, we used 2
1− 1

p − 1 ≤ 1 − 1
p (Lemma B.1). Consequently, for

every t ≤ tµ(Γ), we have V t[X, dµ] ⊆ V t+c[Γ, dµ]. Thus, for t ≥ 0, we can define a
map πt : Vt[X, dµ] → Vt+c[Γ, dµ] as follows: πt is the map induced by the inclusion if
t ≤ tµ(Γ), and the zero map if t ≥ tµ(Γ).

The families (πt)t≥0 and (jt∗)t≥0 clearly are c-morphisms of persistence modules. Let
us show that the pair ((πt)t≥0,(jt∗)t≥0) defines a c-interleaving between V[Γ, dµ] and
V[X, dµ].

Let t ≥ 0. We shall show that the following diagrams commute:

Vt[X, dµ] Vt+c[X, dµ]

Vt+c[Γ, dµ]
πt

vt∗

jt+c∗

Vt[X, dµ]

Vt[Γ, dµ] Vt+c[Γ, dµ]

πt
jt∗

wt∗
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If t ≤ tµ(Γ), these diagrams can be obtained by applying the homology functor to the
inclusions

V t[Γ, dµ] ⊆ V t[X, dµ] ⊆ V t+c[Γ, dµ] ⊆ V t+c[X, dµ].

If t ≥ tµ(Γ), the homology group Vt[Γ, dµ] is trivial. Therefore the commutativity of
the second diagram is obvious, and the commutativity of the first one follows from
Proposition 4.9. This shows that V[Γ, dµ] and V[X, dµ] are c-interleaved.

If Y is another set containing Γ, define, for all t ≥ 0, the inclusions ut : V t[Y, dµ] →
V t+c[Y, dµ] and kt : V t[Γ, dµ] → V t+c[Y, dµ]. We can also define a map θt : Vt[Y, dµ] →
Vt+c[Γ, dµ] as we did for πt : Vt[X, dµ]→ Vt+c[Γ, dµ].

We can compose the previous diagrams to obtain the following:

Vt[X, dµ] Vt+c[X, dµ] Vt+2c[X, dµ]

Vt+c[Γ, dµ] Vt+2c[Γ, , dµ]

Vt+c[Y, dµ]

πt

vt∗

πt+c

vt+c∗

jt+c∗

kt+c∗

wt+c∗

jt+2c
∗

θt+c

Since all the triangles commute, so does the following:

Vt[X, dµ] Vt+2c[X, dµ]

Vt+c[Y, dµ]
kt+c∗ πt

vt+2c
∗

jt+2c
∗ θt+c

We can obtain the same interchanging X and Y . Therefore, by definition, the persistence
modules V[X, dµΓ ] and V[Y, dµΓ ] are c-interleaved, with the interleaving ((kt+c∗ πt)t≥0, (j

t+c
∗ θt)t≥0).

Theorem 4.10. Consider two measures µ, ν on E with supports X and Y . Let µ′, ν ′ be
two measures with compact supports Γ and Ω such that Γ ⊆ X and Ω ⊆ Y . We have

di(V[X, dµ],V[Y, dν ]) ≤ m−
1
2W2(µ, µ′)+m−

1
2W2(µ′, ν ′)+m−

1
2W2(ν ′, ν)+c(µ′,m, p)+c(ν ′,m, p).

In particular, if X and Y are finite, we have

di(W[X],W[Y ]) ≤ m−
1
2W2(X,Γ)+m−

1
2W2(Γ,Ω)+m−

1
2W2(Ω, Y )+c(Γ,m, p)+c(Ω,m, p).

Moreover, with Ω = Y , we obtain

di(W[X],W[Γ]) ≤ m−
1
2W2(X,Γ) +m−

1
2W2(Γ,Ω) + c(Γ,m, p) + c(Ω,m, p).

Proof. The proof is the same as Theorem 4.5, using Proposition 4.7 instead of Proposition
4.4.

Notice that when p = 1, the constant c(Γ,m, p) is equal to the constant c(Γ,m)
defined in Subsection 4.3, and we recover Theorem 4.5 in homology.
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As an illustration of these results, we represent in Figure 8 the persistence diagrams
associated to the filtration Rips(W[X]) for several values of p. The point cloud X is
the one defined in the example page 13. Observe that, as stated in Proposition 3.6, the
number of red points (homology in dimension 0) is non-increasing with respect to p.

p = 1 p = 2 p =∞

Figure 8: Persistence diagrams of the simplicial filtrations Rips(W[X]) for several values
of p.

4.5 Proof of Lemma 4.8 and Proposition 4.9

We first prove the lemma stated in the previous subsection.

Proof of Lemma 4.8. Denote f = dµ. Let x ∈ X, and γ a projection of x on Γ. Let us
show that for every t ≥ 0,

Bf (x, t) ⊆ Bf (γ, 2
1− 1

p t+ f(γ)),

and the lemma will follow.
Define d = f(γ). Let u ∈ E. By definition of the balls, we have{

u ∈ Bf (γ, t) ⇐⇒ t ≥
(
‖u− γ‖p + f(γ)p

) 1
p ,

u ∈ Bf (x, t) ⇐⇒ t ≥
(
‖u− x‖p + f(x)p

) 1
p .

We shall only use {
u ∈ Bf (γ, t) ⇐= t ≥ ‖u− γ‖+ d,

u ∈ Bf (x, t) =⇒ t ≥
(
‖u− x‖p + ‖x− γ‖p

) 1
p .

Let u ∈ Bf (x, t). Let us prove that u ∈ Bf (γ, 2
1− 1

p t+ d). If ‖u− γ‖ ≤ ‖γ−x‖, then

t ≥ ‖u− γ‖, and we deduce u ∈ Bf (γ, t+ d) ⊆ Bf (γ, 2
1− 1

p t+ d).

Else, we have ‖u − γ‖ ≥ ‖γ − x‖. Consider the line segment [γ, u] and the sphere
S(γ, ‖γ − x‖) of center γ and radius ‖γ − x‖. The intersection S(γ, ‖γ − x‖)∩ [γ, u] is a
singleton. Call its element x′. The situation is represented in Figure 9.
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Figure 9: Definition of the point x′.

We have ‖u− x′‖ ≤ ‖u− x‖ and ‖γ − x′‖ = ‖γ − x‖. Therefore(
‖u− x′‖p + ‖x′ − γ‖p

) 1
p ≤

(
‖u− x‖p + ‖x− γ‖p

) 1
p .

We also have ‖γ − u‖ = ‖γ − x′‖ + ‖x′ − u‖ and
(
‖u − x‖p + ‖x − γ‖p

) 1
p ≤ t. Thus it

follows from the last inequality that(
‖u− x′‖p + (‖u− γ‖ − ‖u− x′‖)p

) 1
p ≤ t.

The left-hand term of this inequality is not lower than 2
1
p
−1‖u − γ‖. Indeed, consider

the function s 7→
(
sp + (‖u− γ‖− s)p

) 1
p defined for s ∈ [0, ‖u− γ‖]. One shows directly,

by computing its derivative, that its minimum is 2
1
p
−1‖u− γ‖, attained at s = ‖u−γ‖

2 .

We deduce that 2
1
p
−1‖u−γ‖ ≤ t, and ‖u−γ‖ ≤ 2

1− 1
p t. Thus u ∈ Bf (γ, 2

1− 1
p t+d).

Notice that the previous lemma gives a tight bound, as we can see with the following
example. Consider set Γ = {0} ⊂ R, L > 0, and X = Γ ∪ {x} with x = L

2 . Let

m < 1
2 , and f = dµΓ , which is the function distance to Γ. For all t ≥ 2

1
p
−1
L, we have

L ∈ Bf (x, t). Indeed, rx(2
1
p
−1
L) =

(
(2

1
p
−1
L)p − (L2 )p

) 1
p = L

2 . In comparison, for every

t < φ(2
1
p
−1
L) = L, L /∈ Bf (0, t).

Following this example, we can find a lower bound on the interleaving distance
between the persistence modules W[Γ] and V[X, dµΓ ]. Consider L > 0, the set Γ =
{0, 2L} ⊂ R, x = L

2 , and X = Γ ∪ {x, 2L − x}. Let m < 1
2 , and f = dµΓ . The

persistence diagram of the 0th-homology of W [Γ] consists of two points, (0,+∞) and
(0, L). Regarding V [X, f ], the point of finite ordinate in the persistence diagram of

its 0th-homology is (0, 2
1
p
−1
L). Indeed, for t = 2

1
p
−1
L, we have L ∈ Bf (x, t) and

L ∈ Bf (L−x, t), hence the set V t[X, dµΓ ] is connected. We deduce that these persistence

modules are at least (1− 2
1
p
−1

)L-interleaved.
In comparison, the upper bound we prove in Proposition 4.7 is (1− 1

p)L.

We now prove the proposition stated in the previous subsection.

Proof of Proposition 4.9. Denote f = dµ. Let t ≥ tµ(Γ). By definition of tµ(Γ), there
exists a point OΓ ∈

⋂
γ∈ΓBf (γ, tµ(Γ)).
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In order to show that vt∗ : Vt[X, dµ]→ Vt+c[X, dµ] is trivial, we introduce an intermediate
set between V t[X, dµΓ ] and V t+c[X, dµΓ ]:

V t[X, dµΓ ] =
⋃
x∈X\ΓBf (x, t) ∪

⋃
γ∈ΓBf (γ, t),

Ṽ t :=
⋃
x∈X\ΓBf (x, t) ∪

⋃
γ∈ΓBf (γ, t+ c),

V t+c[X, dµΓ ] =
⋃
x∈X\ΓBf (x, t+ c) ∪

⋃
γ∈ΓBf (γ, t+ c).

Since t ≥ tµ(Γ), we have OΓ ∈ Ṽ t. Let us show that Ṽ t is star-shaped around OΓ.
Let x ∈ X and consider γ a projection of x on Γ. We first prove that Bf (x, t) ∪

Bf (γ, t + c) is star-shaped around OΓ. Let y ∈ Bf (x, t). We have to show that the
line segment [y,OΓ] is a subset of Bf (x, t) ∪ Bf (γ, t + c). Let D be the affine line
going through y and OΓ, and denote by q the orthogonal projection on D. We have
[y,OΓ] ⊆ [y, q(x)] ∪ [q(x), OΓ]. The first line segment [y, q(x)] is a subset of Bf (x, t).
Regarding the second line segment [q(x), OΓ], let us show that q(x) ∈ Bf (γ, t+ c), and
[q(x), OΓ] ⊆ Bf (γ, t+ c) will follow. The situation is pictured in Figure 10.

Bf (x, t) ∪Bf (γ, t) Bf (x, t) ∪Bf (γ, t+ c)

Figure 10: Construction of an intermediate set Ṽ t.

According to Lemma B.2,

‖γ − q(x)‖2 ≤ ‖x− γ‖2 + ‖x− q(x)‖(2‖γ − q(γ)‖ − ‖x− q(x)‖).

Let d = ‖x− q(x)‖. Since d = ‖x− q(x)‖ ≤
(
tp − dµ(x)p

) 1
p ≤

(
tp − ‖x− γ‖p

) 1
p , we have

‖x − γ‖ ≤ (tp − dp)
1
p . Moreover, ‖γ − q(γ)‖ ≤ ‖γ − OΓ‖ ≤ tµ(Γ). The last inequality

then gives

‖γ − q(x)‖2 ≤ (tp − dp)
2
p + d(2tµ(Γ)− d).

According to Lemma B.3, we obtain that ‖γ − q(x)‖ is not greater than t + κ(p)tµ(Γ).
Therefore, we have the inequality(

(t+ κ(p)tµ(Γ) + f(γ))p − f(γ)p
) 1
p ≥

(
t+ κ(p)tµ(Γ) + f(γ)

)
− f(γ) ≥ ‖γ − q(x)‖,

and we deduce q(x) ∈ Bf

(
γ, t+ κ(p)tµ(Γ) + f(γ)

)
⊂ Bf (γ, t+ c).
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In conclusion, [y,OΓ] ⊂ Bf (x, t)∪Bf (γ, t+c). This being true for every y ∈ Bf (x, t),
and obviously true for y ∈ Bf (γ, t + c), we deduce that Bf (x, t) ∪ Bf (γ, t + c) is star-

shaped around OΓ. Finally, since OΓ ∈
⋂
γ∈ΓBf (γ, tX(Γ)), we have that Ṽ t is star-

shaped around OΓ.

To conclude, notice that the map vt∗ factorizes through H∗(Ṽ
t). Indeed, consider the

diagram of inclusions:

V t[X, dµΓ ] Ṽ t V t+c[X, dµΓ ].

vt

Applying the singular homology functor, we obtain

Vt[X, dµΓ ] H∗(Ṽ
t) Vt+c[X, dµΓ ].

vt∗

Since Ṽ t is star-shaped, H∗(Ṽ
t) is trivial, and so is vt∗.

5 Conclusion

In this paper we have introduced the DTM-filtrations that depend on a parameter p ≥ 1.
This new family of filtrations extends the filtration introduced in [3] that corresponds
to the case p = 2.

The established stability properties are, as far as we know, of a new type: the
closeness of two DTM-filtrations associated to two data sets relies on the existence of
a well-sampled underlying object that approximates both data sets in the Wasserstein
metric. This makes the DTM filtrations robust to outliers. Even though large values
of p lead to persistence diagrams with less points in the 0th homology, the choice of
p = 1 gives the strongest stability results. When p > 1, the interleaving bound is less
significant since it involves the diameter of the underlying object, but the obtained bound
is consistent with the case p = 1 as it converges to the bound for p = 1 as p goes to 1.

It is interesting to notice that the proofs rely on only a few properties of the
DTM. As a consequence, the results should extend to other weight functions, such that
the DTM with an exponent parameter different from 2, or kernel density estimators.
Some variants concerning the radius functions in the weighted Čech filtration, are also
worth considering. The analysis shows that one should choose radius functions whose
asymptotic behaviour look like the one of the case p = 1. In the same spirit as in [12, 3]
where sparse-weighted Rips filtrations were considered, it would also be interesting to
consider sparse versions of the DTM-filtrations and to study their stability properties.

Last, the obtained stability results, depending on the choice of underlying sets, open
the way to the statistical analysis of the persistence diagrams of the DTM-filtrations, a
problem that will be addressed in a further work.
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A Supplementary results for Section 3

Lemma A.1. Let c, ε and x be non-negative real numbers, and t ≥ a. Define α =

(1 + cp)
1
p and k = εα. Then t+ k ≥ a+ cε, and(

(t+ k)p − (x+ cε)p
) 1
p − (tp − xp)

1
p ≥ ε

Proof. Let D = {(t, x), t ≥ x ≥ 0} ⊆ R2. Let us find the minimum of

Φ : D −→ R
(t, x) 7−→

(
(t+ αε)p − (x+ cε)p

) 1
p − (tp − xp)

1
p

An x > 0 being fixed, we study φ : t 7→ Φ(t, x) on the interval (x,+∞). Its derivative is

φ′(t) =
(t+ αε)p−1(

(t+ αε)p − (x+ cε)p
)1− 1

p

− tp−1

(tp − xp)1− 1
p

We solve:

φ′(t) = 0 ⇐⇒ (t+ αε)p−1(tp − xp)1− 1
p = tp−1((t+ αε)p − (x+ cε)p)

1− 1
p

⇐⇒ (t+ αε)p(tp−xp) = tp((t+ αε)p−(x+ cε)p)

⇐⇒ (t+ αε)pxp = tp(x+ cε)p

⇐⇒ t+ αε

t
=
x+ cε

x

⇐⇒ t =
α

c
x

We obtain the second line by raising the equality to the power of p
p−1 . Hence the

derivative of φ vanishes only at t = α
c x. Together with lim+∞ φ = +∞, we deduce that

φ attains its minimum at t = x or t = α
c x.

Let us show that φ(αc x) = ε.

φ(αc x) = Φ(αc x, x) =
(
(αc x+ αε)p − (x+ cε)p

) 1
p −

(
(αc x)p − xp

) 1
p

=
(
(αc )p(x+ cε)p − (x+ cε)p

) 1
p − x

(
(αc )p − 1

) 1
p

= (x+ cε)
(
(αc )p − 1

) 1
p − x

(
(αc )p − 1

) 1
p

= cε
(
(αc )p − 1

) 1
p

Using α = (1 + cp)
1
p , one obtains that c

(
(αc )p − 1

) 1
p = 1. Therefore, φ(αc x) = ε.

Secondly, consider Φ on the interval {(x, x), x ≥ 0}.
The function t 7→ Φ(x, x) = ((x + αε)p − (x + cε)p)

1
p is increasing. Its minimum is

Φ(0, 0) = ((αε)p − (cε)p)
1
p = ε(αp − cp)

1
p = ε.

In conclusion, on every interval (x,+∞) × {x} ⊆ D, Φ admits ε as a minimum.
Therefore, ε is the minimum of Φ on D.
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B Supplementary results for Section 4

Lemma B.1. For all p ≥ 1, 2
1− 1

p − 1 ≤ 1− 1
p .

Proof. The convexity property of the function x 7→ 2x gives, for all x ∈ [0, 1], 2x ≤ x+1.

Hence 2
1− 1

p − 1 ≤ 1− 1
p .

Lemma B.2. Let γ, x ∈ E, D an affine line, and q(γ), q(x) the projections of γ and x
on D. Then

‖γ − q(x)‖2 ≤ ‖x− γ‖2 + ‖x− q(x)‖(2‖γ − q(γ)‖ − ‖x− q(x)‖).

Proof. We first study the case where γ, x and D lie in the same affine plane. If γ and
x are on opposite sides of D, the result is obvious. Otherwise, the points γ, x, q(γ) and
q(x) form a right trapezoid (see Figure 11).

Figure 11: The points γ, x, q(γ) and q(x) form a right trapezoid.

Using the Pythagorean theorem on the orthogonal vectors γ − q(γ) and q(γ)− q(x),
and on (γ − q(γ))− (x− q(x)) and q(γ)− q(x), we obtain{

‖γ − q(γ)‖2 + ‖q(γ)− q(x)‖2 = ‖γ − q(x)‖2,
‖(γ − q(γ))− (x− q(x))‖2 + ‖q(γ)− q(x)‖2 = ‖γ − x‖2.

Using that ‖(γ − q(γ)) − (x − q(x))‖ =| ‖γ − q(γ)‖ − ‖x − q(x)‖ |, the second equality
rephrases as ‖q(γ)− q(x)‖2 = ‖γ − x‖2 − (‖γ − q(γ)‖ − ‖x− q(x)‖)2. Combining these
two equalities gives

‖γ − q(x)‖2 = ‖γ − q(γ)‖2 + ‖q(γ)− q(x)‖2

= ‖γ − q(γ)‖2 + ‖γ − x‖2 − (‖γ − q(γ)‖ − ‖x− q(x)‖)2

= ‖γ − x‖2 + ‖x− q(x)‖(2‖γ − q(γ)‖ − ‖x− q(x)‖).

Now, if γ, x and D do not lie in the same affine plane, denote by P the affine plane
containing D and x. Let γ̃ the point of P such that ‖γ − q(γ)‖ = ‖γ̃ − q(γ)‖ and
‖γ − q(x)‖ = ‖γ̃ − q(x)‖. Using the previous result on γ̃ and the inequality ‖γ − x‖ ≥
‖γ̃ − x‖, we obtain the result.
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Lemma B.3. Let a, b, d ≥ 0 such that b ≤ a and d ≤ a. Then

(ap − dp)
2
p + d(2b− d) ≤ (a+ κb)2,

with κ = 1− 1
p .

Proof. The equation being homogeneous with respect to a, it is enough to show that

(1− dp)
2
p + d(2b− d) ≤ (1 + κb)2

with b ≤ 1 and d ≤ 1. We shall actually show that (1− dp)
2
p + d(2b− d) ≤ 1 + 2κb.

Note that this is true when d ≤ κ. Indeed, (1−dp)
2
p +d(2b−d) ≤ 1 + 2db ≤ 1 + 2κb.

Now, notice that it is enough to show the inequality for b = 1. Indeed, it is equivalent

to (1 − dp)
2
p − 1 − d2 ≤ 2κb − 2db = 2b(κ − d). For every d ≥ κ, the right-hand side of

this inequality is nonpositive, hence the worst case happens when b = 1. What is left to
show is the following: ∀d ∈ [κ, 1],

(1− dp)
2
p + d(2− d) ≤ 1 + 2κ.

The function x 7→ (1− x)
1
p being concave on [0, 1], we have (1− x)

1
p ≤ 1− 1

px for all

x ∈ [0, 1]. Therefore, (1− dp)
1
p ≤ 1− 1

pd
p. Consider the function

φ : d 7→ (1− 1

p
dp)2 + d(2− d).

Let us show that ∀d ∈ [0, 1], φ(d) ≤ 1 + 2κ.
This inequality is obvious for d = 0. It is also the case for d = 1, since we obtain

(1− 1
pd

p)2 + d(2− d) = (1− 1
p)2 + 1 = κ2 + 1. On the interval [0, 1], the derivative of φ

is φ′(d) = 2
pd

2p−1 − 2dp−1 − 2d + 2. Let d∗ be such that φ′(d∗) = 0. Multiplying φ′(d∗)

by d∗
2 gives the relation 1

pd
2p
∗ − dp∗− d2

∗+ d∗ = 0. Subtracting this equality in φ(d∗) gives

φ(d∗) = 1− (1
p −

1
p2 )d2p

∗ + (1− 2
p)dp∗ + d∗. We shall show that the following function ψ,

defined for all d ∈ [0, 1], is not greater than 1 + 2κ:

ψ : d 7−→ 1− 1

p
(1− 1

p
)d2p + (1− 2

p
)dp + d.

We consider the cases p ≥ 2 and p ≤ 2 separately. In each case, 1− 1
p ≥ 0. Assume

that p ≥ 2. Then dp ≤ 1 and 1− 2
p ≥ 0. Therefore (1− 2

p)dp ≤ 1− 2
p , and we obtain

ψ(d) ≤ 1 + (1− 2

p
)dp + d

≤ 1 + (1− 2

p
)d+ d

= 1 + 2(1− 1

p
)

Now assume that p ≤ 2. We have the following inequality: d − dp ≤ p − 1. Indeed,
by considering its derivative, one shows that the application d 7→ d− dp is maximum for
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d = p
− 1
p−1 , for which

d− dp = d(1− dp−1) = p
− 1
p−1 (1− p−1)

= p
− 1
p−1
−1

(p− 1)

= p
− p
p−1 (p− 1) ≤ p− 1.

Using (2
p − 1) ≥ 0 and dp ≥ d− (p− 1), we obtain (2

p − 1)dp ≥ (2
p − 1)d− (2

p − 1)(p− 1).
Going back to ψ(d), we have

ψ(d) = 1− 1

p
(1− 1

p
)d2p − (

2

p
− 1)dp + d

≤ 1− 1

p
(1− 1

p
)d2p − (

2

p
− 1)d+ (

2

p
− 1)(p− 1) + d

= 1− 1

p
(1− 1

p
)d2p + (2− 2

p
)d+ (

2

p
− 1)(p− 1).

Let us verify that d 7→ 1 − 1
p(1 − 1

p)d2p + 2(1 − 1
p)d + (2

p − 1)(p − 1) is increasing. Its
derivative is

−2p
1

p
(1− 1

p
)d2p−1 + 2(1− 1

p
) ≥ −2p

1

p
(1− 1

p
) + 2(1− 1

p
)

= 0

We deduce that ψ(d) ≤ ψ(1) for all d ∈ [0, 1]. The value ψ(1) is 1 − 1
p(1 − 1

p) + 2(1 −
1
p) + (2

p − 1)(p − 1). Moreover, we have −1
p(1 − 1

p) + (2
p − 1)(p − 1) ≤ 0. Indeed,

−1
p(1− 1

p) + (2
p − 1)(p− 1) = − (p−1)3

p2 . Therefore ψ(1) ≤ 1 + 2(1− 1
p).
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