
HAL Id: hal-02616268
https://hal.inria.fr/hal-02616268

Submitted on 19 Aug 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Key Performance Indicators of the Reference 6TiSCH
Implementation in Internet-of-Things Scenarios

Mališa Vučinić, Tengfei Chang, Božidar Škrbić, Enis Kočan, Milica
Pejanović-Djurišić, Thomas Watteyne

To cite this version:
Mališa Vučinić, Tengfei Chang, Božidar Škrbić, Enis Kočan, Milica Pejanović-Djurišić, et al.. Key
Performance Indicators of the Reference 6TiSCH Implementation in Internet-of-Things Scenarios.
IEEE Access, IEEE, 2020, 8, pp.79147 - 79157. �10.1109/ACCESS.2020.2990278�. �hal-02616268�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/362233177?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-02616268
https://hal.archives-ouvertes.fr


Abstract

Tens of thousands of wireless industrial monitoring deployments ex-
ist today, logging more than 18 billion operating hours. These solutions
have been around for over a decade and are based on standards such as
WirelessHART and ISA100.11a to provide performance guarantees to the
applications. The new trend in industry deployments is the convergence
of operational and information technologies happening through the In-
dustrial Internet of Things (IIoT) paradigm. The challenge is to bridge
the performance of these well-proven industrial standards with the inter-
operability of IP-based systems. The Internet Engineering Task Force
(IETF), the organization behind most of the technical solutions of the
Internet, has produced a set of specifications with this requirement in
mind. The output of this effort is the 6TiSCH protocol stack based on
open standards, such as those that have played a key role in the Internet’s
ubiquitous adoption. The standardization of 6TiSCH is done. The state-
of-the-art research work focus is on important, but niche, optimizations
and performance evaluations of the 6TiSCH stack. This paper takes a dif-
ferent approach – it evaluates the performance of the standards-compliant
6TiSCH solution from the end user point of view. It does so on two ex-
perimental testbeds, in typical IoT test scenarios based on a well-defined
experimentation methodology. We provide a set of Key Performance In-
dicators (KPIs) useful for the end user to decide whether the 6TiSCH
technology is a good fit performance-wise for a particular use case. We
demonstrate reliability of a vanilla open-source implementation of 6TiSCH
above 99.99%, upstream latency on the order of a second and radio duty
cycle well below 1%.

Internet of Things, 6TiSCH, Experimentation, Testbed Repeatability, Re-
producibility.

1



Key Performance Indicators of the Reference
6TiSCH Implementation in Internet-of-Things

Scenarios

Mališa Vučinić1, Tengfei Chang1, Božidar Škrbić2, Enis Kočan2,
Milica Pejanović-Djurišić2, and Thomas Watteyne1

1Inria, 2 rue Simone Iff, 75012 Paris, France (e-mail:
firstname.lastname@inria.fr)

2Faculty of Electrical Engineering, University of Montenegro,
Bulevar Džordža Vašingtona bb (e-mail:

firstname.lastname@ucg.ac.me)

1 Introduction
The Industrial Internet of Things (IIoT) introduces the convergence of opera-
tional and information technologies in the industry deployments. It facilitates
their integration with novel web-based systems through the usage of interop-
erable solutions. The de-facto wireless communication technology in industrial
applications is Timeslotted Channel Hopping (TSCH), used for more than a
decade in standards such as WirelessHART and ISA100.11a. Through the work
of the Internet Engineering Task Force (IETF) and its 6TiSCH working group,
TSCH technology is now ready to be used in IPv6 networks. The result of
this effort that spanned several years and a mix of academic and industrial
participants is the 6TiSCH protocol stack. The 6TiSCH stack bridges the per-
formance of existing industrial standards while benefiting from the Internet’s
IPv6 interoperability. The stack is based on open standards, such as those that
have played a key role in the Internet’s ubiquitous adoption. The goal of this
paper is to define Key Performance Indicators (KPIs) of the 6TiSCH stack,
a methodology for their collection, and to present the results of an extensive
experimentation campaign using a reference 6TiSCH implementation.

The 6TiSCH protocol stack is based on a modular architecture. A key
component influencing the performance of the stack is the “Scheduling Function”
(SF). The 6TiSCH working group standardized one example of a scheduling
function called Minimal Scheduling Function (MSF) [1] that is suited for best-
effort traffic. A wide variety of scheduling functions have been proposed in the
academic literature [2–6], each tailored to different application requirements.

2



Figure 1: Overview of the OpenBenchmark functionality.

With many SFs available, how can one compare the performance in the con-
text of different application requirements?

While there are many academic papers published on 6TiSCH, they typically
discuss niche optimizations and their related performance improvements. While
often very thorough, such evaluations fail to give a high-level view of the per-
formance of the technology. The end users, e.g. product designers, are then left
with a scattered view before deciding on whether to use a given technology. It
is hard to find unbiased performance benchmark results for other IoT technolo-
gies either, although there is a plethora of academic proposals and evaluations
available. We therefore approach the problem of an unbiased performance eval-
uation of the 6TiSCH protocol stack, as it was standardized by the IETF. We
do not propose new optimizations, but rather evaluate the standards-compliant
solution. We produce the KPIs that an industrial user would expect before
deciding whether a technology suits its requirements.

To achieve this, we design a novel software-based platform called OpenBenchmark1,
which uses a black-box approach to benchmarking a 6TiSCH implementation.
The concept of the platform is that the user should not worry about network
specifics, but rather obtain high-level KPIs of a 6TiSCH implementation. The
black-box approach facilitates the use of the platform by users that are not
experts in low-power networking and firmware design. The user uploads the
6TiSCH firmware image, selects the test scenario and launches the experiment

1The article is an extension of the paper [7] published in the INFOCOM 2019 CNERT
workshop. This version complements with the produced KPIs through an extensive experi-
mentation campaign performed using the OpenBenchmark platform.

3



(see Fig. 1). The platform takes care of testbed resource provisioning, firmware
programming, data collection and processing, and presents the user with a set
of KPIs.

In order for the benchmark to be valuable to industrial users, OpenBenchmark
instruments the firmware in real time during the experiment to adhere to a
given test scenario. Test scenarios are defined to capture real-life use cases
of a technology and therefore test its applicability. Since the test environment,
i.e. a testbed, often plays an important role in performance results, the platform
allows the experiments to be executed on different testbeds. For the purpose of
this paper, we evaluate the reference 6TiSCH implementation, the OpenWSN
stack [8], in industrial monitoring and home automation scenarios, each on two
different testbeds to give performance insights.

In both scenarios, we observed reliability above 99%, which depending on the
test environment goes up to 99.99%. Latency observed was on the order of a sec-
ond and the radio duty cycle is well below 1%. It is important to stress that these
results come from a vanilla open-source implementation of 6TiSCH. As each im-
plementation can take different choices when implementing the standard, the
performance of the implementations is likely to vary. As a consequence, these re-
sults should not be generalized as “performance of 6TiSCH”. They should rather
be seen as an example of a baseline when a reference open-source implementa-
tion of 6TiSCH is used. Furthermore, if application requirements are known in
advance, many enhancements are possible. However, such optimizations are out
of scope of this work.

The contribution of this paper is threefold:

• We obtain performance datasets of a reference 6TiSCH implementation
in two test scenarios on two different testbeds and publish them under
open-data licence2;

• We analyze the datasets and discuss KPIs of the reference 6TiSCH imple-
mentation in each case;

• We design and implement in open-source OpenBenchmark and enable the
community to leverage it for further evaluations or comparisons3. OpenBenchmark
was developed as part of the SODA project [9] at the University of Mon-
tenegro.

The remainder of the article is organized as follows. Section 2 summarizes
the related work on the subject of 6TiSCH performance evaluation. Section 3
presents the design of OpenBenchmark. Section 4 details the obtained KPIs in
both test scenarios. Section 5 concludes this article.

2Datasets are available at https://zenodo.org/record/3472626
3As an online addition to this article, the source code of OpenBenchmark is published under

a BSD open-source license at https://github.com/openwsn-berkeley/openbenchmark

4



2 Related Work
The work on standardizing 6TiSCH is complete. Core documents [1,10–13] have
been published or are in the process of becoming Request for Comments (RFCs).
During the process, 6TiSCH has sparked the interest of different communities,
including open-source implementation projects, standardization and research.

The reference 6TiSCH implementation used during ETSI testing events for
interoperability is the OpenWSN stack [8]. The two other major IoT open-source
projects, Contiki-NG [14] and RIOT [15], implement 6TiSCH. The 6TiSCH sim-
ulator [16] implements a Python-based discrete-event simulation tool focusing
exclusively on 6TiSCH. Other tools have also been developed focusing on inter-
operability and conformance testing of 6TiSCH implementations [17].

The performance evaluation of 6TiSCH networks has been a subject of in-
terest of many academic works. The SF is the major component influencing
the performance of the stack as it constructs the communication schedule of
the network. Therefore, it comes to no surprise that the majority of the work
in the literature proposes new scheduling functions [18]. Examples are De-
TAS [2], Morell et al. [3], ReSF [4], LLSF [5], TREE [6]. Other work focuses
on optimizing the joining [19, 20], interplay with routing [21], co-existence [22],
applications [23] to time-critical scenarios [24,25].

Many of these works evaluate their proposals in realistic conditions on dif-
ferent testbeds. While often very thorough, in the majority of cases, each work
benchmarks its particular proposal with no common methodology and scenario
followed. One consequence of this practice is that it is hard for an industrial
user to find a comprehensive evaluation useful from the application requirements
point of view. Our article fills this gap, by defining and following a methodology
to evaluate the 6TiSCH network in scenarios relevant to the applications.

3 OpenBenchmark Platform
OpenBenchmark automates the experimentation and network performance bench-
marking on selected testbeds supporting Internet of Things devices compliant
with the IEEE802.15.4 standard. OpenBenchmark instruments the execution of
an experiment in real time, following the pre-defined test scenarios, and collects
the data to calculate the network KPIs in a fully automated manner.

Test scenarios are generic and derived from industrial requirements. A test
scenario is mapped to an executable logic that runs concurrently with the exper-
iment in the testbed. OpenBenchmark sends commands to trigger the desired
actions of the firmware: configure radio transmit power, trigger application
packet. The commands are sent to the Network Gateway, which processes
and translates them into the potentially proprietary format expected by the
firmware Implementation Under Test (IUT). The Network Gateway may run at
the testbed infrastructure and be physically connected to the serial port of IUTs,
or run at OpenBenchmark premises and communicate with the IUTs over an em-
ulated serial port. This emulated serial port is provided through the software

5



component of the companion OpenTestbed project [26], which transports the
serial data over the MQTT protocol. OpenBenchmark provides the necessary in-
tegration and provisioning of the OpenTestbed software on supported testbeds,
such that this complexity is hidden from the user. This allows the user to fo-
cus on the protocol aspects of the firmware, while the performance evaluation
is entirely handled by OpenBenchmark through the Application Programming
Interfaces (APIs) exposed by compliant firmware projects.

3.1 Token-based Benchmarking
The benchmarking process of OpenBenchmark is based on random tokens. OpenBenchmark
sends commands to the System Under Test (SUT) in real time, instrumenting
it so that a node in the 6TiSCH network initiates the sending of an application
packet. The command contains a 5-byte token that is to be transferred over the
network by the originator node. Fig. 2 illustrates the process of OpenBenchmark,
instrumenting node E to send an application packet to node A with a random
token 3424. The command is received by the SUT Gateway and translated to
the format understandable by the 6TiSCH Implementation Under Test (IUT).
Upon the reception of the command, node E prepares an application packet
and includes the token 3424 in its payload. SUT generates an MQTT event
packetSent that is handled by OpenBenchmark, communicating the time in-
stant at which the packet was sent, as well as other information necessary to
calculate the KPIs. The packet is then handled by the 6TiSCH network and
upon reception at node A, a new MQTT event is generated: packetReceived.
The pair of packetSent and packetReceived events allows to calculate the la-
tency of the packet and the number of hops traversed per packet. The absence
of the packetReceived event indicates to OpenBenchmark that the packet has
been dropped in the network, which consequently impacts the reliability.

One deficiency of the proposed design is in non-deterministic network delays
between OpenBenchmark and the SUT Gateway. Since the commands that trig-
ger the sending of a packet in the network are sent in real time, non-deterministic
network delays between OpenBenchmark and the SUT Gateway do influence the
reproducibility of the platform. To overcome this challenge, it would be neces-
sary to implement a timestamp-based approach, where OpenBenchmark would
communicate the exact timestamp at which the SUT Gateway should trigger
the sending of an application packet in the network. The implementation of
such timestamp-based approach is part of our future work.

3.2 Software Architecture
The OpenBenchmark platform consists of the following components (see Fig. 3) [7]:

• Agent. A component running at the Network Gateway side, translating
OpenBenchmark commands to the format that the IUT implements, and
also converting performance data from the IUT to the format expected
by OpenBenchmark. The Agent component acts as both MQTT publisher

6



B

D

C

E

A

6TiSCH network

OpenBenchmark

Gateway

sendPacket
E → A
token: 3424

packetSent
token: 3424 
timestamp: 2312

packetReceived
token: 3424 
timestamp: 2413

1.

2.

3.

Latency: 101

Figure 2: Token-based benchmarking illustration.

and subscriber. It publishes the events coming from the network towards
the OpenBenchmark platform, needed to calculate the KPIs. It subscribes
to the commands that the SUT should adhere to, coming from the Exper-
iment Orchestrator.

• Experiment Controller. A component in charge of testbed node reser-
vation, firmware flashing, and launching the necessary software compo-
nents that run at testbed infrastructure side. The Experiment Controller
bootstraps the testbed infrastructure by opening an SSH connection with
each embedded computer in the testbed, and starting the execution of the
MQTT publish/subscribe component in charge of emulating serial ports
of the devices. The serial port emulation software (OpenTestbed) makes
the testbed nodes appear to the Network Gateway as if they were phys-
ically connected. The Experiment Controller also starts the execution
of the Network Gateway that can run either on OpenBenchmark or user
premises and of the PHP backend that runs locally on OpenBenchmark
premises.

• Experiment Orchestrator. A component in charge of orchestrating the
SUT according to the selected test scenario. The Experiment Orches-
trator interprets the test scenario files and instruments the experiment
based on the interpreted data. The Experiment Orchestrator acts as an
MQTT publisher and publishes to the broker the commands that the SUT
needs to adhere to. The broker then dispatches these commands to the
OpenBenchmark Agent based on the subscription to the common MQTT
topics.

7



• Performance Event Handler. A component in charge of handling perfor-
mance data events coming from the SUT. Based on these events, Perfor-
mance Event Handler generates the experiment data sets and calculates
the KPIs. The Performance Event Handler acts as an MQTT subscriber
and receives events from the SUT, which it then uses to calculate the
KPIs.

• Web server. A Laravel-based (PHP) backend and Vue.js-based frontend al-
lowing the user to access the OpenBenchmark platform through a graphical
interface. The backend serves as a bridge between the frontend and the rest
of the OpenBenchmark components that are implemented in Python. The
backend provides a RESTful API that enables the use of OpenBenchmark
by 3rd party applications.

3.3 Test Scenarios
The goal of an OpenBenchmark test scenario is to capture real-life use cases of a
technology in order to benchmark its performance in a setting that is relevant to
the end users: companies adopting the technology for their products and their
customers. A test scenario also allows the experiment to be fully reproducible
and the results easily and fairly comparable, desirable properties from a research
point of view.

Each scenario describes the application traffic pattern and load, and the
desirable coverage requirements in terms of number of IEEE802.15.4 hops. At a
later stage, we plan on adding support for controllable interference generation.
The description of a scenario is generic, with testbed-specific mappings.

3.3.1 Scenario Definition: Home Automation

Home automation systems typically consist of sensors monitoring some physical
quantity, event sensors triggered by human action such as a button press, and
different actuators. They are controlled by a central Control Unit (CU). The
traffic consists of the mix of upstream and downstream traffic. The scenario
has been derived from the requirements discussed in RFC5826 [27] and the
emulated topology of a smart house discussed in Vučinić et al. [28]. Tables 1
and 2 summarize different logical roles a node in the network can have and the
traffic pattern for each logical role.

3.3.2 Scenario Definition: Industrial Monitoring

Industrial monitoring systems can be generalized to consist of two types of sen-
sors: 1) traditional monitoring sensors for temperature, pressure, fluid flow,...;
2) sensors that transmit large quantities of data, for example vibration monitors.
They are controlled by a central Gateway. The traffic is typically upstream. Ta-
bles 3 and 4 summarize different logical roles a node in the network can have
and the traffic pattern for each logical role. The scenario has been derived from
the requirements discussed in RFC5673 [29].

8



6TiSCH
IUT

OpenTestbed 
software

Serial

6TiSCH
IUT

OpenTestbed 
software

Serial

6TiSCH
IUT

OpenTestbed 
software

Serial

...Network Gateway

OpenBenchmark
Agent

MQTT broker

Experiment 
Controller

Vue.js
Frontend

MySQL

Performance Event 
Handler

SSH

RESTful
API

OpenBenchmark

PHP
Backend

IUT: Implementation Under Test

OpenBenchmark infrastructure

Testbed infrastructure

User or OpenBenchmark infrastructure

Figure 3: Software architecture of the OpenBenchmark platform. The System
under Test (SUT) consists of the Network Gateway and firmware Implementa-
tions under Test (IUTs).

9



Table 1: Scenario “Home Automation”: logical roles in the network.

Logical
role Occurrence Description

Monitoring
Sensor
(MS)

49%
Sensor monitoring a phys-
ical value, e.g. tempera-
ture, humidity

Event Sen-
sor (ES) 21%

Asynchronous event de-
tection sensors, e.g. hu-
man presence

Actuator
(A) 30%

Node performing some
physical action, e.g. light
dimmer, relay

Control
Unit (CU) 1/network Central unit controlling

the automation system

Table 2: Scenario “Home Automation”: traffic pattern.

Sender Dest. Traffic pattern and
load Ack

MS CU Periodic, uniformly in
[3, 5] minutes No

ES CU Poisson, mean of 10
packets/hour Yes

A CU Periodic, uniformly in
[3, 5] minutes Yes

CU multiple
A

Poisson, mean of 10 5-
packet bursts/hour Yes

Table 3: Scenario “Industrial Monitoring”: logical roles in the network.

Logical
role Occurrence Description

Sensor (S) 90%
Traditional monitoring
sensor: temperature,
pressure, fluid flow, . . .

Bursty Sen-
sor (BS) 10%

Monitoring sensor trans-
mitting large quantities of
data: e.g. vibration moni-
tor

Gateway
(G) 1/network Application gateway

10



Table 4: Scenario “Industrial Monitoring”: traffic pattern.

Sender Dest. Traffic pattern and
load Ack

S G Periodic, uniformly in
[10, 60] seconds No

BS G Periodic, uniformly in
[1, 60] minutes No

3.4 Key Performance Indicators (KPIs)
In the following, we give a brief summary of implemented KPIs.

Reliability. Refers to the ratio between packets received and packets sent
by the application. Therefore, this KPI indicates the end-to-end reliability.
A packet may fail a transmission on a given link and later be re-transmitted.
However, a failed packet transmission on a given link does not influence the
end-to-end reliability if the packet eventually arrives at the destination. We
present separately upstream reliability, referring to the packets destined for the
Network Gateway, downstream reliability, referring to the packets originated by
the Network Gateway and destined for one of the nodes in the 6TiSCH network,
and P2P reliability, referring to the packets exchanged between a pair of 6TiSCH
nodes.

Latency. Refers to the time interval between the instant packet is generated
at the application layer of the sender, and the instant the packet is received by
the application layer of the destination. We present separately upstream latency,
downstream latency and P2P latency.

Radio Duty Cycle (RDC). Refers to the ratio between the cumulative
time that the radio chip is powered and the measurement period. We present
separately average duty cycle, minimal duty cycle and maximal duty cycle.

Network Formation Time. Refers to the initial phase when the network
is forming. It is an important KPI from the installation point of view. The KPI
refers to the end of the secure joining phase of the network.

3.5 Example Use Cases
We envision three main use cases of OpenBenchmark, with different target groups:
IoT industry stakeholders, research community and firmware developers.

3.5.1 Referent Benchmark of an IoT Technology

Although there are many variants of IoT communication stacks (e.g. 6TiSCH,
WirelessHART, ZigBee, ZigBee IP, Thread), it is quite challenging to point
to a document that gives a fair and industry-relevant performance comparison
among them. We designed OpenBenchmark to be used to tackle this challenge.

11



3.5.2 Research Proposal Benchmarking

The research community also benefits from OpenBenchmark. We hope to attract
researchers to use our benchmarking service for the evaluations of their research
proposals. OpenBenchmark facilitates the extraction of experiment data by hid-
ing the unnecessary testbed complexity. Moreover, it also leads to the increased
confidence in the results: OpenBenchmark is in its entirety open source and can
be reviewed and improved by the community.

3.5.3 Continuous Delivery Benchmarking

Firmware always evolves. Updates to the standards, newly discovered security
vulnerabilities in the code, new features, all require the firmware development
community to constantly update the code base of different IoT open-source
projects. The best practices of continuous integration testing are already in
place for the popular repositories. However, unit and functional testing do not
indicate whether a software patch introduces unwanted performance loopholes.
Does the proposed patch improve or degrade existing performance? In what
conditions was the “existing performance” measured couple of years ago when we
first merged that feature? To answer such questions, OpenBenchmark is designed
to provide a “continuous delivery benchmarking” service to firmware developers.
We are working on integrating OpenBenchmark with the continuous integration
procedures of the OpenWSN firmware project, the referent implementation of
the 6TiSCH protocol stack. This allows the code maintainers to run automated
nightly experiments and assess the performance of the latest patches, before
their release.

4 Performance Evaluation

4.1 Methodology
The two test scenarios defined in 3.3 were instantiated and executed in order
to collect data on two testbeds: Fed4Fire’s w-iLab.t [30] in Ghent and Inria’s
OpenTestbed [26] in Paris. The data collection procedure was as following. Each
scenario was instantiated for a total of 30 nodes in a generic setting including the
root of the network. Then, a mapping was provided for each testbed, consisting
of the testbed node_id to use, as well as the radio transmission power that is
to be configured by OpenBenchmark. Listing 1 illustrates an example scenario
instantiation and its mapping on w-iLab.t testbed.

The duration of each scenario execution was set to 3 hours and 30 minutes,
with 30 minutes of allowance time for the network to form and stabilize before
the benchmarking process would begin. We executed the two scenarios on w-
iLab.t’s Datacenter deployment using nodes nuc28 to nuc43, each equipped
with a pair of Zolertia Re-motes Rev. B. On OpenTestbed, we executed the
scenarios using 30 OpenMote-B nodes in Building A of Inria-Paris deployment.
In both cases, each scenario was executed using the same nodes, allowing us

12



Listing 1: An example JSON snippet
showing a test scenario instantiation
(left) and its mapping to the w-iLab.t
testbed (right).
" i d e n t i f i e r " : "home−automation

" ,
"duration_min" : 180 ,
"number_of_nodes" : 30 ,
"nf_time_padding_min" : 30 ,
"nodes " : {

"openbenchmark00" : {
" r o l e " : " cont ro l−uni t " ,
" area " : nu l l ,
" t ra f f i c_send ing_po in t s " :

[
{

" time_sec" : 142 .499 ,
" payload_size " : 10 ,
" d e s t i n a t i on " : "

openbenchmark24 " ,
"packets_in_burst " : 5 ,
" con f i rmab le " : t rue

} ,
{

" time_sec" : 265 .507 ,
" payload_size " : 10 ,
" d e s t i n a t i on " : "

openbenchmark22 " ,
"packets_in_burst " : 5 ,

" con f i rmab le " : t rue
} ,
. . .

"openbenchmark00" : {
"node_id" : "nuc10−1",
"transmission_power_dbm" : 0

} ,
"openbenchmark01" : {

"node_id" : "nuc10−2",
"transmission_power_dbm" : 0

} ,
"openbenchmark02" : {

"node_id" : "nuc10−3",
"transmission_power_dbm" : 0

} ,
"openbenchmark03" : {

"node_id" : "nuc10−4",
"transmission_power_dbm" : 0

} ,
"openbenchmark04" : {

"node_id" : "nuc10−5",
"transmission_power_dbm" : 0

} ,
"openbenchmark05" : {

"node_id" : "nuc10−6",
"transmission_power_dbm" : 0

} ,
. . .

13



Table 5: Default parameters of the OpenWSN stack used for evaluation.

Parameter Value
Application traffic scenario-dependent
RPL DIO period 10 s
RPL DAO period 60 s
MSF max. number of cells 32
TSCH slotframe length 101 slots
TSCH slot duration 20 ms
TSCH EB transmission probability 0.1
TSCH max. number of retransmissions 15
Number of radio channels 16

to compare: 1) performance across scenarios; 2) performance across different
testbeds and radio propagation conditions. We used the vanilla OpenWSN
open-source project, with main parameters specified in Table 5.

We present KPIs in a tabular form, except for the network formation time
that is presented as a Cumulative Distribution Function (CDF). For each KPI,
we present the mean value, minimum, maximum and the 99th percentile (P99%,
i.e. the value below which 99% of observations can be found) of at least 10
experiment runs. For example, if the discussed KPI is average latency, we
present the mean, minimum, maximum and P99% values over the experiment
runs, where each measurement is the average latency in the network.

4.2 Network Formation Time
All the scenarios were executed using the same radio transmit power. As a
consequence, due to the fixed physical topologies in the testbed, network for-
mation time KPI is common across the scenarios. The plotted CDF (see Fig. 4)
contains node join times across different scenarios.

From Fig. 4 we can see that it takes less than 20 minutes to form a 30-node
network. This time is acceptable from the installation point of view as it does
not require installers to spend an unreasonable amount of time on-site once
the network is deployed. The time is consistent across the testbeds, which is
interesting due to the fact that the deployments are quite different. w-iLab.t
deployment used was the one in the Datacenter where all nodes have line-of-sight
visibility of each other and OpenTestbed is deployed in a smart office setting
across the floor of Inria-Paris building A. Even so, the network formed on w-
iLab.t had a similar logical topology with the one formed on OpenTestbed in
terms of the number of hops each packet would need to traverse. On w-iLab.t,
the average number of hops was 2.5 while on OpenTestbed deployment in Paris,
the average number of hops was 2.6.

14



0 5 10 15 20
Minutes

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

OpenTestbed
w-iLab.t

Figure 4: Network formation time CDF for different testbeds.

15



Table 6: Upstream reliability in “Industrial Monitoring” scenario.

Testbed Mean Min Max P99%

w-iLab.t 0.999954516 0.999795292 1 1
OpenTestbed 0.994725953 0.980388 0.999401854 0.999376399

Table 7: Reliability of bursty traffic in “Industrial Monitoring” scenario.

Testbed Mean Min Max P99%

w-iLab.t 1 1 1 1
OpenTestbed 0.993197279 0.952380952 1 1

4.3 Industrial Monitoring
Industrial monitoring scenario consists of exclusively upstream traffic with oc-
casional bursts coming from bursty sensor node types. Each scenario execution
run consisted of 10,861 packets being sent by different nodes in the network.

4.3.1 Reliability

Table 6 and Table 7 present the calculated reliability in the network for upstream
and bursty traffic, respectively. During the experiments on w-iLab.t testbed in
the Datacenter deployment, we observed four nines of reliability with some
experiment runs without any losses.

The same scenario executed on OpenTestbed showed greater losses, equiv-
alenting to 99.47% reliability of upstream communication. One explanation for
this result is the radio interference present in the OpenTestbed deployment,
causing higher losses on the radio channel.

We further studied the reliability of the traffic belonging to a burst and
present the results in Table 7. We can see that during the experiment runs on
w-iLab.t not a single packet belonging to a burst has been lost, which is not the
case with the runs executed on the OpenTestbed deployment.

4.3.2 Latency

Table 8 presents the observed latency during the experiments, in TSCH slots
and the equivalent in seconds for the slot length of 20ms used in the experiments.
The interesting point to note here is that the results from the two testbeds are
quite similar. This is a consequence of the logical network topologies built, with
average hop distance from the root in both cases being less than 3 hops.

We further studied the latency of packets belonging to a burst and present
the results in Table 9. We can see that the average latency of packets belonging
to a burst is higher by a factor of 3 due to the queuing in nodes’ buffers.
Interestingly, the observation of similar latencies on two testbeds does not hold
in the case of bursty traffic.

16



Table 8: Upstream latency in “Industrial Monitoring” scenario.

Testbed Mean Min Max P99%

Slots Sec. Slots Sec. Slots Sec. Slots Sec.
w-iLab.t 179.93 3.60 142.12 2.84 221.76 4.44 220.18 4.40
OpenTestbed 179.34 3.59 150.11 3.00 200.94 4.02 200.85 4.02

Table 9: Latency of bursty traffic in “Industrial Monitoring” scenario.

Testbed Mean Min Max P99%

Slots Sec. Slots Sec. Slots Sec. Slots Sec.
w-iLab.t 619.54 12.39 506.47 10.13 761.78 15.24 757.36 15.15
OpenTestbed 476.65 9.53 387.14 7.74 598.24 11.96 595.72 11.91

4.3.3 Radio Duty Cycle

Radio duty cycle is an important KPI from the energy consumption point of
view as the radio transceiver typically accounts for the majority of current drawn
on an IoT device. We present average duty cycle for the network in Table 10
and best case and worst case observations in Table 11 / Table 12, respectively.
Best case, resp. worst case, refers to the lowest, resp. highest, observed duty
cycle in a run.

From Table 11, we can see that the best-case result is quite consistent across
the two testbeds and amounts to approximately 0.5%. The worst-case duty
cycle in the network (see Table 12) is around 1.8% for the network formed on
w-iLab.t and around 3.2% for the network formed on OpenTestbed. This is
a consequence of the logical topology of the networks formed, as nodes closer
to the root have more data to forward than the leaf nodes in the network.
At 5 mA current drawn from the radio, a figure typical for state-of-the-art
radio transceivers, this results in the average current draw from the radio at
about 90uA on w-iLab.t and 160uA on OpenTestbed. To put this number into
context, consider that a typical AA battery holds 2200mAh, so a worst-case
node would approximately have 2.8 years of lifetime on a pair of AA batteries
on w-iLab.t and 1.6 years on OpenTestbed, disregarding the microcontroller and
sensor consumption. For comparison, the best-case node at the radio duty cycle
of 0.5%, would need over 10 years before depleting a pair of AA batteries.

Table 10: Radio duty cycle (%) for the network in “Industrial Monitoring”
scenario.

Testbed Mean Min Max P99%

w-iLab.t 0.731962963 0.709333333 0.753 0.752706667
OpenTestbed 0.855952381 0.805333333 1.076 1.06228

17



Table 11: Best case (minimum) radio duty cycle (%) for the network in “Indus-
trial Monitoring” scenario.

Testbed Mean Min Max P99%

w-iLab.t 0.495555556 0.49 0.51 0.5092
OpenTestbed 0.522857143 0.5 0.54 0.5394

Table 12: Worst case (maximum) radio duty cycle (%) for the network in “In-
dustrial Monitoring” scenario.

Testbed Mean Min Max P99%

w-iLab.t 1.793333333 1.62 2.11 2.0964
OpenTestbed 3.281428571 2.05 9.26 8.8478

4.4 Home Automation
Home automation scenario consists of a mix of upstream and downstream traffic.
Downstream traffic consists of bursts as well as the application-layer acknowl-
edgment packets. Each scenario run lasting 3 hours and 30 minutes consisted
of 1272 packets being sent by different nodes in the network.

4.4.1 Reliability

Observed reliability of upstream traffic in the home-automation scenario is pre-
sented in Table 13. We can see that the average observed on w-iLab.t testbed
is around 99,7%, while the same KPI observed on OpenTestbed deployment
is 98,05%. We attribute this difference to the radio interference and different
propagation conditions on the two testbeds.

For the case of downstream bursts, reliability is presented in Table 14. In
both cases, downstream burst reliability is around 97%. The losses are at-
tributed to the queue overflows due to the bursty nature of the traffic and the
slow link capacity adaptation algorithm.

Table 15 presents the observed latency of upstream traffic. We observed
average latency of 3.5 seconds on w-iLab.t and 4.8 seconds on OpenTestbed.
Higher latency on OpenTestbed is partly the result of the deeper networks
formed during the home automation scenario runs, where each packet traversed
on average 2.86 hops, while on w-iLab.t each packet traversed on average 2.62
hops.

Table 13: Upstream reliability in “Home Automation” scenario.

Testbed Mean Min Max P99%

w-iLab.t 0.997097123 0.995515695 0.999188312 0.99911248
OpenTestbed 0.980507976 0.878919861 0.99918897 0.999188851

18



Table 14: Reliability of downstream bursty traffic in “Home Automation” sce-
nario.

Testbed Mean Min Max P99%

w-iLab.t 0.971791888 0.968503937 0.976923077 0.976874016
OpenTestbed 0.968386473 0.93442623 0.984251969 0.983608223

Table 15: Upstream latency in “Home Automation” scenario.

Testbed Mean Min Max P99%

Slots Sec. Slots Sec. Slots Sec. Slots Sec.
w-iLab.t 173.32 3.47 139.80 2.80 226.06 4.52 225.51 4.51
OpenTestbed 239.36 4.79 163.69 3.27 346.01 6.92 339.37 6.79

Table 16 presents the latency results for downstream bursty traffic. The
observed latency for packets within a burst was 8.7 seconds on w-iLab.t while it
was 12.2 seconds on OpenTestbed. It is important to note here that this result
could be improved with the usage of shorter slots, as the default slot length
in IEEE802.15.4 TSCH is 10ms, instead of 20ms used within the OpenWSN
reference image. Indeed, using 10ms slots would halve the absolute latency in
seconds.

Finally, Table 17 presents the downstream latency for non-bursty down-
stream traffic. Observed latency in case of w-iLab.t testbed was 3.96 seconds
while on OpenTestbed it was 5.2 seconds.

4.4.2 Radio Duty Cycle

Table 18, Table 19, Table 20 present the observed results of radio duty cycle in
the network while application traffic pattern is following the home automation
scenario. Compared to the industrial monitoring scenario where the traffic load
is higher, we can see that the duty cycle results are even better in the home
automation case. The worst-case duty cycle in the network for home-automation
was observed at 1.49% for w-iLab.t, and 1.68% for OpenTestbed.

Table 16: Latency of bursty traffic in “Home Automation” scenario.

Testbed Mean Min Max P99%

Slots Sec. Slots Sec. Slots Sec. Slots Sec.
w-iLab.t 436.23 8.72 366.03 7.32 713.79 14.28 689.39 13.79
OpenTestbed 611.31 12.23 447.98 8.96 768.25 15.37 765.09 15.30

19



Table 17: Latency of downstream traffic in “Home Automation” scenario.

Testbed Mean Min Max P99%

Slots Sec. Slots Sec. Slots Sec. Slots Sec.
w-iLab.t 198.21 3.96 148.51 2.97 282.03 5.64 278.07 5.56
OpenTestbed 261.22 5.22 192.62 3.85 335.91 6.72 332.36 6.65

Table 18: Radio duty cycle (%) for the network in “Home Automation” scenario.

Testbed Mean Min Max P99%

w-iLab.t 0.6748 0.665333333 0.695 0.69383
OpenTestbed 0.7163 0.703666667 0.736333333 0.735133333

Table 19: Best case (minimum) radio duty cycle (%) in “Home Automation”
scenario.

Testbed Mean Min Max P99%

w-iLab.t 0.489 0.48 0.49 0.49
OpenTestbed 0.506 0.48 0.51 0.51

Table 20: Worst case (maximum) radio duty cycle (%) in “Home Automation”
scenario.

Testbed Mean Min Max P99%

w-iLab.t 1.491 1.23 1.66 1.66
OpenTestbed 1.682 1.32 2.16 2.1321

20



5 Conclusion
The article presents the design of a benchmarking platform for IoT use cases
OpenBenchmark and the benchmarking results of the reference implementation of
the 6TiSCH protocol stack, the OpenWSN open-source project. OpenBenchmark
is designed with end users in mind; it abstracts network and firmware specifics
from the user and as an output presents the user with a set of KPIs relevant from
the industrial point of view. The platform is also useful for evaluating research
proposals using a well-defined methodology and a common set of KPIs. The
source code of OpenBenchmark is available in open source.

We used OpenBenchmark to evaluate the performance of the reference im-
plementation of 6TiSCH in industrial monitoring and home automation test
scenarios. Each scenario was executed in two different radio environments, In-
ria’s OpenTestbed in Paris, France and w-iLab.t in Ghent, Belgium.

From the results presented in previous section, we draw here some key take-
away in respect to the applicability of 6TiSCH as a technology to different
application domains. We could see in industrial monitoring scenario that the
observed reliability was above 99%, with experimental runs regularly showing
100% reliability. We observe high reliability also in the home automation sce-
nario where some traffic is generated according to the Poisson distribution,
mimicking human actions. In both scenarios, the observed latency can be up
to 12 s in bursty traffic scenarios. This result can be easily improved by using
shorter TSCH slot lengths or different scheduling approaches specifically for in-
teractive applications. In both scenarios, the observed radio duty cycle below
1%, attesting of the low-power nature of the 6TiSCH technology. While the
battery lifetime is a board-level aspect with the attached sensors and the micro-
controller also playing an important role, we could see that the consumption of
the radio transceiver was negligible and allowing, alone, for a battery lifetime
on a pair of AA batteries over 10 years.

Finally, it is important to note here that we used a vanilla version of the
OpenWSN firmware image of 6TiSCH without any specific optimizations to a
specific use case. Knowing the application traffic patterns and load in advance,
it is straightforward to further tune the solution to find a different trade-off
between latency and energy consumption for example.

As part of our future work, we plan on extending OpenBenchmark to other
IoT technologies and platforms. Indeed, it would be interesting to compare re-
sults between different IoT technologies for common application traffic patterns,
as defined by our test scenarios.

References
[1] T. Chang, M. Vučinić, X. Vilajosana, and D. Dujovne, 6TiSCH Minimal

Scheduling Function (MSF), Internet Engineering Task Force Std. draft-
ietf-6tisch-msf (work in progress), December 2019.

21



[2] N. Accettura, M. R. Palattella, G. Boggia, L. A. Grieco, and M. Dohler,
“Decentralized Traffic Aware Scheduling for Multi-Hop Low Power Lossy
Networks in the Internet of Things,” in 2013 IEEE 14th International
Symposium and Workshops on a World of Wireless, Mobile and Multimedia
Networks (WoWMoM), June 2013, p. 1–6.

[3] A. Morell, X. Vilajosana, J. L. Vicario, and T. Watteyne, “Label switching
over IEEE802. 15.4 e networks,” Transactions on Emerging Telecommuni-
cations Technologies, Wiley Online Library, vol. 24, no. 5, pp. 458–475,
2013.

[4] G. Daneels, B. Spinnewyn, S. Latré, and J. Famaey, “ReSF: Recurrent low-
latency scheduling in IEEE 802.15. 4e TSCH networks,” Ad Hoc Networks,
Elsevier, vol. 69, pp. 100–114, Feb. 2018.

[5] T. Chang, T. Watteyne, Q. Wang, and X. Vilajosana, “LLSF: Low Latency
Scheduling Function for 6TiSCH Networks,” in International Conference on
Distributed Computing in Sensor Systems (DCOSS). IEEE, May 2016, pp.
93–95.

[6] T. van der Lee, G. Exarchakos, and S. H. de Groot, “Swarm-based energy
efficient scheduling for wireless sensor networks,” in 2019 IEEE Conference
on Standards for Communications and Networking (CSCN). IEEE, 2019,
pp. 1–6.

[7] M. Vučinić, B. Škrbić, E. Kočan, M. Pejanović-Djurišić, and T. Watteyne,
“OpenBenchmark: Repeatable and Reproducible Internet of Things Exper-
imentation on Testbeds,” in IEEE INFOCOM, CNERT workshop. IEEE,
2019.

[8] T. Watteyne, X. Vilajosana, B. Kerkez, F. Chraim, K. Weekly, Q. Wang,
S. Glaser, and K. Pister, “OpenWSN: a standards-based low-power wireless
development environment,” Transactions on Emerging Telecommunications
Technologies, vol. 23, no. 5, pp. 480–493, 2012.

[9] M. Vučinić, M. Pejanović-Djurišić, and T. Watteyne, “SODA: 6TiSCH
Open Data Action,” in 2018 IEEE Workshop on Benchmarking Cyber-
Physical Networks and Systems (CPSBench). IEEE, 2018, pp. 42–46.

[10] X. Vilajosana, K. S. Pister, and T. Watteyne, Minimal IPv6 over the TSCH
Mode of IEEE 802.15.4e (6TiSCH) Configuration, Internet Engineering
Task Force Std. RFC8180, May 2017.

[11] Q. Wang, X. Vilajosana, and T. Watteyne, 6TiSCH Operation Sublayer
(6top) Protocol (6P), Internet Engineering Task Force Std. RFC8480,
November 2018.

[12] M. Vučinić, J. Simon, K. S. Pister, and M. Richardson, Constrained Join
Protocol (CoJP) for 6TiSCH, Internet Engineering Task Force Std. draft-
ietf-6tisch-minimal-security-15 (work in progress), December 2019.

22



[13] P. Thubert, An Architecture for IPv6 over the TSCH mode of IEEE
802.15.4, IETF Std. draft-ietf-6tisch-architecture-20 [work-in-progress],
2019.

[14] S. Duquennoy, A. Elsts, A. Nahas, and G. Oikonomou, “TSCH and 6TiSCH
for Contiki: Challenges, Design and Evaluation,” in International Con-
ference on Distributed Computing in Sensor Systems (DCOSS), Ottawa,
Canada, June 2017, pp. 1–8.

[15] E. Baccelli, O. Hahm, M. Günes, M. Wählisch, and T. Schmidt, “RIOT
OS: Towards an OS for the Internet of Things,” in IEEE International
Conference on Computer Communications (INFOCOM), Turin, Italy, April
2013.

[16] E. Municio, G. Daneels, M. Vučinić, S. Latre, J. Famaey, Y. Tanaka,
K. Brun-Laguna, K. Muraoka, X. Vilajosana, and T. Watteyne, “Simu-
lating 6TiSCH networks,” Transactions on Emerging Telecommunications
Technologies, Wiley, vol. 30, no. 3, Mar. 2019.

[17] S. Ziegler, S. Fdida, T. Watteyne, and C. Viho, “F-Interop - Online Confor-
mance, Interoperability and Performance Tests for the IoT,” in Conference
on Interoperability in IoT (InterIoT), Paris, France, October 2016.

[18] A. Elsts, S. Kim, H.-S. Kim, and C. Kim, “An Empirical Survey of Au-
tonomous Scheduling Methods for TSCH,” IEEE Access, 2020.

[19] B. Al Nahas, S. Duquennoy, and O. Landsiedel, “Network Bootstrapping
and Leader Election in Low-power Wireless Networks,” in ACM SenSys.
ACM, 2017.

[20] M. Vučinić, T. Watteyne, and X. Vilajosana, “Broadcasting Strategies in
6TiSCH Networks,” Wiley Internet Technology Letters, November 2017.

[21] F. Righetti, C. Vallati, G. Anastasi, and S. Das, “Performance Evalua-
tion the 6top Protocol and Analysis of its Interplay with Routing,” in
Smart Computing (SMARTCOMP), 2017 IEEE International Conference
on. IEEE, 2017, pp. 1–6.

[22] S. B. Yaala, F. Théoleyre, and R. Bouallegue, “Cooperative resynchroniza-
tion to improve the reliability of colocated IEEE 802.15. 4-TSCH networks
in dense deployments,” Ad Hoc Networks, vol. 64, pp. 112–126, 2017.

[23] A. Karaagac, J. Haxhibeqiri, I. Moerman, and J. Hoebeke, “Time-critical
communication in 6TiSCH networks,” in 2018 IEEE Wireless Communi-
cations and Networking Conference Workshops (WCNCW). IEEE, 2018,
pp. 161–166.

[24] L. Toka, B. Lajtha, É. Hosszu, B. Formanek, D. Géhberger, and J. Tapolcai,
“A resource-aware and time-critical iot framework,” in IEEE INFOCOM
2017-IEEE Conference on Computer Communications. IEEE, 2017, pp.
1–9.

23



[25] P. Štefanič, M. Cigale, A. C. Jones, L. Knight, I. Taylor, C. Istrate, G. Su-
ciu, A. Ulisses, V. Stankovski, S. Taherizadeh et al., “SWITCH work-
bench: A novel approach for the development and deployment of time-
critical microservice-based cloud-native applications,” Future Generation
Computer Systems, pp. 197–212, 2019.

[26] J. Muñoz, F. Rincon, T. Chang, X. Vilajosana, B. Vermeulen, T. Walcarius,
W. Van de Meerssche, and T. Watteyne, “OpenTestBed: Poor Man’s IoT
Testbed,” in IEEE INFOCOM, CNERT workshop. IEEE, 2019.

[27] A. Brandt, J. Buron, and G. Porcu, Home Automation Routing Require-
ments in Low-Power and Lossy Networks, Internet Engineering Task Force
Std. RFC5826, April 2010.

[28] M. Vučinić, B. Tourancheau, and A. Duda, “Performance comparison of
the RPL and LOADng routing protocols in a home automation scenario,”
in Wireless Communications and Networking Conference (WCNC), 2013
IEEE. IEEE, 2013, pp. 1974–1979.

[29] K. Pister, P. Thubert, S. Dwars, and T. Phinney, Industrial Routing Re-
quirements in Low-Power and Lossy Networks, Internet Engineering Task
Force Std. RFC5673, October 2009.

[30] “Wireless Testlab and OfficeLab,” https://doc.ilabt.imec.be/ilabt/wilab/,
accessed December, 13th 2019.

[31] T. Qiu, B. Li, W. Qu, E. Ahmed, and X. Wang, “TOSG: A topology
optimization scheme with global small world for industrial heterogeneous
Internet of Things,” IEEE Transactions on Industrial Informatics, vol. 15,
no. 6, pp. 3174–3184, 2018.

[32] N. Chen, T. Qiu, X. Zhou, K. Li, and M. Atiquzzaman, “An Intelligent
Robust Networking Mechanism for the Internet of Things,” IEEE Commu-
nications Magazine, vol. 57, no. 11, pp. 91–95, 2019.

Mališa Vučinić is a Research Scientist with the EVA team of Inria in Paris,
France. He received the Engineering degree from the University of Montene-
gro in 2010, the joint Master’s (Hons.) degree from the Politecnico di Torino
and the Grenoble Institute of Technology in 2012, and the Ph.D. degree from
the Grenoble Alps University in 2015. From 2012 to 2015, he was a Research
Engineer with STMicroelectronics, and was a Visiting Scholar with the Uni-
versity of California at Berkeley in 2015. Mališa is active in the IETF where
he co-chairs the LAKE working group on security and leads the security stan-
dardization work in 6TiSCH. He is a core developer of the OpenWSN project,
the reference 6TiSCH implementation, and a co-lead of the 6TiSCH simulator.
His current research interests include the intersection of communication security
and performance analysis in Internet-of-Things scenarios.

24



Tengfei Chang is a Postdoc Research Engineer at Inria-EVA, Paris. He
obtained his Ph.D. degree in Computer System Architecture at 2017 from Uni-
versity of Science and Technology, Beijing. At 2014, he was visiting at the
University of California, Berkeley as visiting scholar. From November 2015 to
October 2017, he joined Inria-EVA team as a Pre-Postdoc Research Engineer,
leading the project of OpenWSN, which is an Open Source project founded by
UC Berkeley. At 2017, he joined the F-Interop project as a Postdoc Research
Engineer, which is an H2020 European research project. He is also one of the
main implementors of IETF 6TiSCH standard protocol stack. He has worked as
technical support for 6TiSCH interoperability plugtest. He has huge interests
on Wireless Sensor and Actuator Network, Swarm Robotic and any Embedded
System design.

Božidar Škrbić received B.Sc degree in 2015 at University of Montenegro,
Faculty of Electrical Engineering in Podgorica, at the department of Electronics,
Telecommunications and Computer sciences, earning Best student award. In
2016 he finished postgraduate studies and earned Spec.Sci degree in Computer
Sciences. As a software engineer he was part of BIO-ICT Centre of Excellence
at the Faculty of Electrical Engineering in Podgorica, from October 2016 to
September 2018, participating in the development of several major prototypes
and software solutions. From September 2018 until September 2019 he was a
software developer at SODA, a project of University of Montenegro funded by
the H2020 Fed4FIRE+ consortium. Currently, he is a student of master studies
at University of Montenegro, Faculty of Electrical Engineering, specializing in
machine learning.

Enis Kočan is an associate professor at Faculty of Electrical Engineering,
University of Montenegro. He received MSc and PhD degrees in Telecommuni-
cations in 2005 and 2011, respectively, both from the University of Montenegro.
Part of his PhD research Enis has conducted at Aristotle University of Thessa-
loniki. He has published more than 70 scientific papers in international journals
and peer reviewed conferences. He is recipient of the Best Paper Award at
the International conference on Wireless Personal Multimedia Communications
(WPMC 2013), held in the frame of the Global Wireless Summit in 2013. His
research areas include digital communications over fading channels, with partic-
ular emphasis on the OFDM based cooperative communications, solutions for
5G networks, IoT wireless communication solutions and techniques for exposure
reduction in wireless communication systems.

Milica Pejanović-Djurišić is full professor in telecommunications at the Uni-
versity of Montenegro, Faculty of Electrical Engineering, Podgorica, Montene-
gro. She has published more than 200 scientific papers in peer-reviewed interna-
tional and national journals and conference proceedings, being the author of four
books and a number of book chapters. Her main research interests are: wireless
communications, 5G wireless networks, wireless IoT, cooperative and energy
efficient transmission techniques, ICT trends and applications, optimization of
telecommunication development policy. Prof. Pejanović-Djurišić has consid-
erable industry and operating experiences working as industry consultant and
Telecom Montenegro Chairman of the Board. She has been in charge of wire-

25



less networks design and implementation in Montenegro and in the region of
SE Europe. Prof. Pejanović-Djurišić has been leading and coordinating many
internationally and EU funded ICT projects and initiatives. She is a member
of IEEE and IEICE, with a long engagement in the field of telecommunication
regulation and standardization. In addition to work on national and regional
levels, she has participated, in cooperation with ITU, in a number of global mis-
sions and activities related with regulation issues, development strategies and
new technological solutions.

Thomas Watteyne is an insatiable enthusiast of low-power wireless mesh
technologies. He holds a Research Director position at Inria in Paris, in the
EVA research team, where he leads a team that designs, models and builds
networking solutions based on a variety of Internet-of-Things (IoT) standards.
Since 2013, he co-chairs the IETF 6TiSCH working group, which standardizes
how to use IEEE802.15.4e TSCH in IPv6-enabled mesh networks, and is mem-
ber of the IETF Internet-of-Things Directorate. Prior to that, Thomas was a
postdoctoral research lead in Prof. Kristofer Pister’s team at the University
of California, Berkeley. Between 2005 and 2008, he was a research engineer at
France Telecom, Orange Labs. He holds a PhD in Computer Science (2008), an
MSc in Networking (2005) and an MEng in Telecommunications (2005) from
INSA Lyon, France. He is Senior member of IEEE. He is fluent in 4 languages.

26


