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Abstract

Background: Reliable information is an essential component for responding to the COVID-19 epidemic, especially regarding the
availability of critical care beds (CCBs). We propose three contributions: a) ICUBAM (ICU Bed Availability Monitor), a tool which
both collects and visualizes information on CCB availability entered directly by intensivists. b) An analysis of CCB availability and
ICU admissions and outcomes using collected by ICUBAM during a 6-week period in the hard-hit Grand Est région of France, and c)
Explanatory and predictive models adapted to CCB availability prediction, and fitted to availability information collected by ICUBAM .
Methods: We interact directly with intensivists twice a day, by sending a SMS with a web link to the ICUBAM form where they enter 8
numbers: number of free and occupied CCBs (ventilator-equipped) for both COVID-19 positive and COVID-19- negative patients,
the number of COVID-19 related ICU deaths and discharges, the number of ICU refusals, and the number of patients transferred to
another région due to bed shortages. The collected data are described using univariate and multivariate methods such as correspondence
analysis and then modeled at different scales: a medium and long term prediction using SEIR models, and a short term statistical
model to predict the number of CCBs.
Results: ICUBAM was brought online March 25, and is currently being used in the Grand Est région by 109 intensivists representing 40
ICUs (95% of ICUs). ICUBAM allows for the calculation of CCB availability, admission and discharge statistics. Our analysis of data
describes the evolution and extent of the COVID-19 health crisis in the Grand Est region: on April 6th, at maximum bed capacity, 1056
ventilator-equipped CCBs were present, representing 211% of the nominal regional capacity of 501 beds. From March 19th to March
31st, average daily COVID-19 ICU inflow was 68 patients/day, and 314 critical care patients were transferred out of the Grand Est
region. With French lockdown starting on March 17th, a decrease of the daily inflow was found starting on April 1st: 23 patients/day
during the first fortnight of April, and 7 patients/day during the last fortnight. However, treatment time for COVID-19 occupied CCBs
is long: 15 days after the peak on March 31st, only 20% of ICU beds have been freed (50% after 1 month). Region-wide COVID-19
related in-ICU mortality is evaluated at 31%. Models trained from ICUBAM data are able to describe and predict the evolution of bed
usage for the Grand Est region.
Conclusion: We observe strong uptake of the ICUBAM tool, amongst both physicians and local healthcare stakeholders (health agencies,
first responders etc.). We are able to leverage data collected with ICUBAM to better understand the evolution of the COVID-19 epidemic
in the Grand Est region. We also present how data ingested by ICUBAM can be used to anticipate CCB shortages and predict future
admissions. Most importantly, we demonstrate the importance of having a cross-functional team involving physicians, statisticians and
computer scientists working both with first-line medical responders and local health agencies. This allowed us to quickly implement
effective tools to assist in critical decision-making processes.

I. Introduction

In 5 to 10% of patients admitted for COVID-19, there are complica-
tions characterized by acute respiratory failure requiring admission
to intensive care units (ICUs) with mechanical ventilation [Gras-
selli et al., 2020]. France has been been the 3rd most impacted
country in Europe and the pandemic spread most quickly in the
French Grand Est région (population of 5.5 million), beginning in
the end of February. ICUs were quickly overwhelmed and reliable
information on the availability and location of ventilator-equipped
critical care beds (CCBs) quickly became essential for efficient
patient and resource dispatching. Predicting the future load of the
various ICUs also became necessary to better anticipate transfers
and bed openings.
To meet these needs, a consortium including intensivists, com-

puter scientists, statisticians and physicians developed ICUBAM1

(Intensive Care Unit Bed Availability Monitor), which allows a
network of intensivists to provide information in real-time on the
capacity of their unit. This information can then be visualized on
a map for use by intensivists and health authorities2. Supported
by Inria (French national research institute for the digital sci-
ences), ICUBAM is an open-source web-based application, available
at GitHub and can be easily deployed elsewhere. ICUBAM is cur-
rently used by 130 ICU wards in 40 départements3, and inventories
more than 2,000 ICU beds capable of accommodating a COVID-19
patient.

1https://icubam.github.io/about/
2See Appendix A for a more thorough description of the genesis of ICUBAM.
3Representing a combined population of > 23 million people - See Appendix

B for a description of the French administrative divisions.
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ICUBAM’s effectiveness results from the direct involvement of
intensivists in the field who enter their ICU’s data directly into the
system (see Appendix E for comparison of ICUBAM data with other
administrative sources). Analysis of the collected data is used to
monitor the burden on ICUs during the pandemic, and allows for
anticipating CCB needs as well as for modeling the epidemic’s
evolution.
This paper has three main contributions: In Section II, we

present the open-source ICUBAM tool and demonstrate how it can
be used by intensivists at patient’s bedside as well as by health
authorities, to obtain reliable information on the availability of
CCBs in the Grand Est région March 18t to April 30th. We
provide a brief description of the tool and the data collected to
highlight its ease-of-use and pertinence during the crisis. In section
III, we present descriptive statistics and visualizations which testify
to the importance of having real-time data during such a crisis.
Finally, in section IV, we propose a SEIR model to describe the
course of the pandemic using ICUBAM data, and show that it has
better descriptive and predictive performances for patient inflow
(number of patients admitted to ICU) and outflow (number of
deceased and discharged ICU patients) than models calibrated on
public data only or even on both sources of data. We complement
this medium-horizon modeling by a short-horizon analysis using
simpler statistical models to predict daily bed requirements.

II. ICUBAM: a tool for bed availability monitoring.

Figure 1: The form used by physicians to enter data into ICUBAM.
Large or inconsistent entries trigger warnings. Previous values are
pre-filled to encourage consistency.

The ICUBAM application was built in response to the urgent need
for intensivists to know real-time ICU bed availability over the
Grand Est region. The first iteration was built in 3 days, and the
system currently works as follows:

• Intensivists receive a text message 2 times per day (morning
and evening) 4 requesting bed information and containing a
link to a web-based form.

• Physicians enter data into the form (fig. 1) and can also access
the map (fig. 2, fig. 3) with the number of beds currently
available for each région and ICU, as well as the ICUs’ contact
information.

Figure 2: Map of available beds in France - April 18. Red indicates
that more than 80% of the beds are occupied, orange between 50
and 80% and green less than 50%

Data entry can be performed in less than 15 seconds. The
choice of variables in (fig. 1) was performed in collaboration with
physicians from the Grand Est region, thus ensuring the relevance
of the chosen statistics for both real-time use and downstream
analysis. The 8 variables collected by ICUBAM allow study of the
course of the pandemic on the ICU and are as follows: the number
of free and occupied “COVID+” beds (in a COVID-19 floor), the
number of free and occupied “COVID-” beds (in a non-COVID
floor), the cumulative number of ICU-deceased COVID-19 patients,
the cumulative number of ICU-discharged COVID-19 patients, the
cumulative number of patients not accepted for entry due to lack of
available CCBs and the cumulative number of patients transferred
out of the ICU for capacity reasons (most often to other regions
by medical trains). Some patients were also transferred to ICUs
specialized in the management of refractory ARDS by VV-ECMO,
which is identifiable when a transfer occurs while there are no
refusals.

The national lockdown began on March 17th, and ICUBAM began
operation on March 25. Partial data was manually collected be-
ginning on March 18th and has been combined with the ICUBAM

4In practice, doctors enter the latest data from their unit in the form in
real time, i.e. as soon as there is a change.
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Figure 3: Number of beds occupied versus total number of beds
in a département ’s ICUs. The numbers reflect the last values
indicated by the ICU. If the last input was more than a day ago,
a warning is displayed to make it clear that the reported number
might not be up to date.

data. The analysis presented in this paper uses data until April
29th, and is performed at at the scale of a département.

ICUBAM was quickly adopted by 95% (40 out of 42) of hospitals in
the Grand Est région and provided much-needed visibility to pro-
fessionals on bed availability in their area. Authenticated accesses
to map information are provided to regional health authorities.
More details concerning the front and back-end of ICUBAM are
provide in Appendix C.

III. Visualization of data collected in the région Grand Est
from 18th March to 29th of April

This section presents an analysis both of the patient flows &
outcomes, as well as an analysis of ICU bed availability over the
period of March 18th to April 29th.

III.1. Patient admissions and outcomes

Data collected through ICUBAM during the study period allows us
to understand patient admission and outcome dynamics for each
ICU.

During the initial onset, it is crucial for health professionals and
authorities to understand the pandemic’s evolution in order to
react appropriately. This can be by public policy measures, but
also by allocating resources and de-congesting saturated hospitals.

We can observe the evolution of the epidemic in the Grand Est
région by following the evolution in admissions. Daily COVID-19
ICU admissions are presented in Figure 4. The number of patients
entering is defined by

Ej = ∆(Nocc.
j ) +Ndeath

j +Ndischarged
j +N transfer

j

where Nj is the quantity N on day j, and ∆(Nj) represents the
change in quantity N between day j and day (j − 1). The number
of patients refused due to CCB shortages is not taken into account
as they are often rerouted to an in-région ICU. Since April 1st, a
decrease in the daily number of patients entering the ICU of the

Grand Est is visible for all départements. This is most likely due to
the lockdown measures put in place on March 17th, which suggests
a two-week delay (mean duration between time from contamination
to hospital admission) in system response to confinement measures
[Zhu et al., 2020].
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Figure 4: Daily number of COVID-19 ICU admissions for each
département over the study period. Remark: the first value is
disproportionate because it accounts for all patients of the period
before the start of our data (March 18).

Patient outcomes are also important for understanding the situ-
ation. Cumulative deaths, discharges (living) and transfers from
ICU are presented in Figure 5. In this Figure, we can see that both
deaths and discharge statistics follow the same slope until March
27th, at which point the discharge rate increases while the death
rate decreases. This might be due to an evolution in admission
criteria of COVID-19 patients, as well as time-to-discharge being
significantly longer than time-to-death. Details by département
are given in Figure 14 in Appendix D.
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Figure 5: Cumulative value for patient deaths, discharges and
transfers in the Grand Est région between March 18th and 29th
of April. We can see that death and discharge rates are initially
similar, but eventually discharges rate increases while death rate
decreases.

Figure 6 visualizes patient outcomes during the study period for
each département. In-ICU mortality 2 months after the onset of the
pandemic’s start is 31.4%. This in-ICU mortality significantly lower
than mortality reported by [Richardson et al., 2020]. Although
the outcome of transferred patients is currently unknown, patients
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selected for transfer were generally more stable. One possible
reason for this discrepancy is that ICU stay correlates strongly
with outcome, and so patients likely to decease do so early on,
whereas successful discharges happen much later. The longer time
window of our study may therefore better capture the ultimate
mortality rate of ICU stays.
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Figure 6: Summary of patient outcomes during the studied period
for each département : total number of COVID-19-related deceased,
discharged, or transferred patients as well as number of patients
still in intensive at the end of the period. The sum of these four
quantities represents the cumulative flow, over the period under
consideration, of patients requiring admission to ICUs in each
département.

III.2. Evolution of supply and demand of CCBs
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Figure 7: Number of beds occupied by COVID-19+ patients, non-
COVID-19 patients, and total number of free ICU beds (regardless
of COVID-19 status). The red curve represents the number of
occupied beds plus the number of patients transferred to another
region. Note that data before March 25th does not contain the
number of transferred patients.

Figure 7 shows the evolving demand and supply of CCBs in the
Grand Est region. This figure also demonstrates the impressive
increase in CCB capacity, going from a nominal capacity of 501 beds
to 1056 beds in 12 days i.e. 211% of nominal capacity. Nevertheless,
this sudden increase in capacity was not enough to satisfy the need

for CCBs, and almost 600 patients had to be transferred out of
région to avoid surpassing the available CCB capacitys. After the
pandemic’s apex, the decrease in the number of occupied CCBs
is observable, but evolves slowly. COVID-19 CCB bed use went
from 250 to 500 in 6 days (from 03/18 to 03/24), however the
decrease from 750 to 500 has taken a total of 24 days (from 03/30
to 04/23), 4 times slower than the rate of admissions. This slow
rate of discharges means that the system is still over-saturated,
and a second wave of admissions would be difficult to absorb.
We can see that these region-wide evolutions are present in all

individual départements through Figure 8. We have placed a dot to
indicates the first date on which the nominal capacity is exceeded.
The Bas-Rhin stands out, with a number of occupied beds which
increased sharply on March 27. The number of people transferred
was also significant at the time and started to decrease from March
30 (not represented here).
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Figure 8: Evolution of the number of COVID+ CCBs for each
département. The point indicates the first date on which the
normal capacity is exceeded. Not all département have the same
base population, but smaller département do not host many ICU
beds.

As the epidemic evolved in the Grand Est region, different dé-
partements evolved differently in terms of CCB availability and
demand. Temporal evolutions of each départements’ CCB occu-
pation can be compared using a correspondence analysis [Husson
et al., 2017, Lê et al., 2008]. Figure 9 can be interpreted as follows:
two départements are close if they have the same evolution over
time in terms of proportion of COVID+ occupied beds, and two
dates are close if the distribution of occupied beds in the different
départements is approximately the same. For the interpretation
of the positions of a date and a département, we can say that a
département goes towards the dates it is the most associated with,
and away from dates it is the least associated with: a département
is associated to a date if the number of occupied beds is high for
this département at this date comparing to what happen in this
département in the other dates, and also comparing to what happen
at this date in the other départements. What is noticeable is that
we can observe three clusters 3 of temporal behavior: between the
18 and 26 March (dates in red) the bed use increases significantly,
between March 27th and April 14th (dates in orange) bed use is
stable between départements and from April 15th to April 29th
(dates in green) the number of beds start to go down.

The horizontal dimension naturally separates the départements
in two: on the right side, départements such as Haut-Rhin (and
to a lesser extent Meurthe-et-Moselle) that had many occupied
CCBs at the beginning of the epidemic (i.e. dates in red from
March 18th to 26th), and on the left side the other départements
(Ardennes, Aube, Haute-Marne, Marne) that had relatively more
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occupied CCBs at the end of the period relative to the beginning.
The vertical dimension creates a division between the Meurthe-et-
Moselle and Vosges départements who reduce CCBs occupation
earlier than other départements: they are at the opposite side of
the green dates (beginning on April 15th) which suggests that their
CCB occupation begins decreasing significantly earlier.
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Figure 9: Correspondence analysis on the number of occupied
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correspondences between dates, as well as départements, brought
into the same plot. Some labels are not drawn.

IV. Modeling CCB availability

A key objective during the initial surge of patients is to properly
allocate resources in a predictive rather than reactive manner,
which requires predicting the number of critical care beds needed
for each region. We therefore propose modeling the spread of the
current pandemic using ordinary differential equations (ODEs)
that are appropriate to describe the number of patients in ICUs
and the number of cumulative deaths, as well as to provide a
medium and long term prediction of CCB use. We also consider
simple statistical models for short-term prediction of the number
of released CCBs.

IV.1. Modeling the evolution of the pandemic with SIR and SEIR
models

A large number of epidemiological models are available to describe
the epidemic spread and the flows between the different states,
either with the simplest SIR type model (susceptible, infected, re-
covered), or with more complex models, such as SEIR models (sus-
ceptible, exposed/incubation state, infected, recovered/deceased
see e.g. [Hethcote, 2000, Allen, 2017]). These models can be made
more complex to take into account the specifics of the particular
epidemic and the available data. Many teams around the world
are using official data to model the evolution of the pandemic at
different scales in different countries. One can mention the re-
source center John Hopkins University [2020], the work of Lavielle
[2020] which gives very good adjustments for the evolution of the
pandemic at the scale of each country, and on French data, a study
on the pre and post lockdown periods [Di Domenico et al., 2020].

For the Grand Est region, we have also found that it is possible
to give a good account of the evolution of the epidemic based
on public data, in each département, with classical models of the
SIR or SEIR type. Another possibility is to combine public data
with ICUBAM data (although the various sources are not always
easy to align as illustrated in Appendix E). Nevertheless, we have
obtained accurate descriptions and predictions of the number of
patients in intensive care as described by ICUBAM data by modeling

the underlying pandemic with a model calibrated on public data
[Santé Publique France, 2020] for the number of hospitalized,
discharged and deceased patients, and on ICUBAM data for CCB
occupation. Indeed, the number of hospitalized patients is an
additional element of data which is important to leverage. We
may expect that the global dynamics of the number of hospitalized
patients will constrain in the fits the one of the ICU patients.
Somewhat surprisingly, we found that a model using only ICUBAM
data gives as good results as more complex models based on both
datasets. This also means that we get as good or better results with
a smaller number of parameters, which suggests better predictive
power for the purely ICUBAM-based model. For this reason, we
present here the ICUBAM-only results.

Figure 10 illustrates the model used. It is a simple SEIR model
which assumes that the different départements are independent
(the data are collected after lockdown), and uses the number of
patients admitted to ICUs and the number of exits (discharged and
deceased patients), but considers a lengthy time-to-exit by adding
a period before exiting (ICU1 → ICU2 → exit) to account for the
time of recovery (or death). More details are given in Appendix
F. We calibrate the model parameters in order to have the best





b 
1

2


Figure 10: Flow shart of the SEIR type model with incubation
compartment. In blue, the parts corresponding to the ICUBAM
data on which the model is calibrated: number of patients in
ICU, cumulative number of patients leaving the ICU (X for eXit,
discharged and deceased patients).

agreement between the observed data and the model outcome (with
a maximum likelihood criterion). The proposed family of models
have predictive capabilities as shown in Figure 11 and in Figure 17
in Appendix F. The modeling allows us to see a global trajectory
and the coherence of the observations in relation to the evolution of
the pandemic. For example, for the Meuse département in Figure
17 we can see that the observations ‘catch up’ with the model’s
predictions.

However, predicting the number of released CCBs faces several
problems. Models of the SIR type are well suited to account for the
current number of patients in intensive care and the cumulative
number of discharged and deceased patients. The number of
released CCBs is calculated as the difference between the change
in each of these numbers between two consecutive days. For large
numbers, the differences will vary greatly for small variations in
the estimated quantities. For a fit calibrated on data up to 26
April, for example, a number of CCBs released during the two
following days, 27 and 28 of April, is predicted which is correct
for the départements Haut-Rhin (9, observed 6), Marne (7 or 8,
observed 10), Moselle (13 or 14, observed 11), but gives a large
difference for the Bas-Rhin and Meurthe-et-Moselle. This can
be understood by looking at figure 17: the predicted trajectory
deviates slightly from the data, with the formation of quasi plateau
that a SIR model cannot account for. A more refined modeling of
the dynamics of the evolution of the patients’ condition - resulting
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Figure 11: Fit a SEIR model for département Meurthe-et-Moselle
using data up to the 27 of April (vertical dotted line; data: circles)
and with prediction for the following days (crosses: data on 28 and
29 of April). Model ’susceptible/exposed/infected/ICU/exit’, with
recovery (or death) period. Red: number of patients currently
in ICU. Grey: cumulative number of patients either deceased or
discharged from intensive care units.

in a wide distribution of ICU residence times, as discussed below -
could be incorporated into the model.

IV.2. Modeling the number of beds released with statistical models

To get short-term (per day) and refined prediction of the number
of released CCBs (either due to death or discharge), we consider
disconnecting the prediction of the number of admissions, which
depends on the evolution of the pandemic, to the prediction of the
number of beds released.
We evaluated several types of statistical models that leveraged

number of ICU admissions in the preceding days as explanatory
features. We ran regression models with variable selection, random
forests, but also the simple average of the number of ICU admissions
between 1 and 20 days before the date for which we want to predict
the release. This latter simple method comes from the observation
that the distribution of the number of days with invasive mechanical
ventilation times is not significantly different from a Uniform
distribution (see figure 12). Note that the data is obtained from a
single hospital with a hundred of patients and should be refined.
We also add, as a benchmark, the naive method that predicts the
number of critical care beds released by the last observation of the
number of critical care beds released.
To evaluate the models, we define a training set of all data

until a date (called “Last training day” in Table 1) and then we
calculate the predictions for the 2 days after. Table 1 gives the
mean absolute error of prediction of the number of beds that
would be released the next two days for each département when
the models are trained using data until the last training day (1st
column). It turns out that the average method gives the smallest
errors (2.03) and improves significantly upon the last observation
carried forward method (day before).
If we wanted to predict at D+5, the method with the average

remains the best since the mean of the error (last row of the table)
would be 8.76 for linear model, 5.44 for random forest, 3.53 for the
average and 9.30 for the last day.
We can also predict the number of exits for May 1 and 2 (see

0.00

0.05

0.10

0.15

0.20

0 10 20 30
Duration of invasive mechanical ventilation

de
ns

ity

status

discharged

died

Figure 12: Duration of invasive mechanical ventilation before death
or discharge.

Last training day lm RF average day before
2020-04-28 1.19 1.49 1.35 3.44
2020-04-27 1.81 1.77 2.19 3.71
2020-04-26 3.19 2.57 2.18 2.78
2020-04-25 3.65 3.22 2.61 2.30
2020-04-24 3.54 3.23 2.44 4.65
2020-04-23 3.72 2.27 1.80 2.85
2020-04-22 2.64 1.77 2.22 3.52
2020-04-21 2.04 1.17 1.49 2.75

Mean 2.72 2.19 2.03 3.25

Table 1: Mean absolute error of prediction between observed
values and predicted values given by four models: linear model
(lm), random forests (RF), the average of inputs between D-1 and
D-20 and the entry observed the day before; models learned with
data from the 18 of March until the last training day (1st column)
and predict for the 2 days after.

table 2).

V. Conclusion

V.1. Quality data, a flexible processes and an inter-disciplinary team

The great strength and particularity of ICUBAM is to be supported
by an inter-disciplinary team of intensivists, engineers, researchers,
statisticians, physicists and computer scientists who, together,
designed and built the entire pipeline, from data collection to anal-
ysis, and communication of results in real-time to meet operational
needs in an emergency context.

Data quality is a key challenge in the management of this crisis
and the flexibility of the data collection as well as the direct contact
with stakeholders to get and exploit important information (such
as time spent in critical care) is essential.
Nevertheless, ICUBAM data, although granular, provide only a

partial view of the pandemic as data were only collected for critical
care beds. In addition, the strength of this tool is to collect data
directly from the intensivists but it also implies that the data are
necessarily limited: only the data that is immediately useful for
intensivists are entered, and it is obviously not possible to increase
their workload by asking them to enter more information – the
lightweight interaction with our systems was key in having be used
by so many ICUs.
The customized nature of ICUBAM also allowed it to be easily

adapted as new needs arose (addition of a non-COVID ICU map,
displaying age of the data, live plotting for physicians and health
agencies).

6



lm RF average
Ardennes 0 1 1
Aube 0 1 0
Bas-Rhin 1 3 2
Haut-Rhin 4 5 5
Haute-Marne 1 1 1
Marne 2 4 3
Meurthe-et-Moselle 1 2 4
Meuse 0 1 0
Moselle 3 4 5
Vosges 0 1 0

Table 2: Prediction of the number of exits (sum of deaths and
discharged) for May 1st and 2nd obtained with the linear model
(lm), random forests (RF) and the average of the ICU admissions
between D-1 and D-20; the models learned with the data until
April 30.

V.2. Impact of ICUBAM

From direct discussions with intensivists from the Grand Est re-
gion, ICUBAM has aided in disseminating information along two
important axes: First, horizontally amongst other intensivists the
Grand Est region. ICUBAM quickly gained traction amongst these
front-line physicians by creating both visibility of the situation in
nearby ICU wards, but also by creating an important information
connection between private and public-sector ICUs to easily share
their availability in a unified platform.
Secondly, ICUBAM has proven to be a useful tool for sharing

information vertically from the physician-level, and up through
authorities. This distribution of information from ICUBAM hopefully
contributed to the balance between demand and availability of
critical care beds in the Grand Est region.

From a public and clinical health perspective, better understand-
ing of the epidemic’s mechanisms and better planning of resource
needs and triage of critical care patients can have a substantial
impact on patient care and possibly save lives. We hope that
ICUBAM can be useful to assist the decision-making process by pro-
viding a framework to collect and analyze detailed and reliable
data, and that the analyses provided herein give some insights on
how COVID-19 can quickly overload even a well-structured health
system.
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Appendix

A. Genesis of ICUBAM

The project is the result of a personal initiative by an Antoine Kimmoun M.D., and intensivist from the Grand Est région of France
who identified the urgent need to visualize occupied COVID-19 CCBs in a real-time manner. He started to develop a prototype on
March 18, 2020 to collect the data on the availability of beds by placing phone calls and centralizing the information in a spreadsheet.
ICUBAM development began on Sunday March 22, 2020 after a meeting between Antoine and team of engineers and researchers from
Polytechnique, Inria, and elsewhere. On Wednesday March 25, 2020, we launched ICUBAM in the Grand Est région in agreement with
the ARS (Regional Health Agency). Other regions quickly started using ICUBAM (Center Val-de-Loire, Brittany, AURA, New Aquitaine,
etc.). ICUBAM is currently used by 130 ICUs in 40 départements, which represents more than 2,000 COVID-19 CCBs.

B. French administrative divisions – The Grand Est région

The three main French administrative divisions are: the commune (municipality); at a larger scale the département (96 départements
in Metropolitan France, labelled from 1 to 95, with 2A and 2B for Corsica); and the région (12 in Metropolitan France, excluding
Corsica), aggregating several neighbouring départements. The typical diameter of a département is 100 km, and the one of a région,
250 km. The Grand Est région, in the North-East part of France, is composed of the following départements: Ardennes (08), Aube
(10), Marne (51), Haute-Marne (52), Meurthe-et-Moselle (54), Meuse (55), Moselle (57), Bas-Rhin (67), Haut-Rhin (68), Vosges (88).

C. ICUBAM open-source software

C.1. User flow

The user’s journey on ICUBAM has been thought with physicians to ease their way through finding quickly bed availability nearby, under
the particular stress constraints witnessed in pandemic times.
It starts with a text message (usually SMS, but other means are also supported) sent to the user on a regular schedule. This

messages contains as token, that is generated specifically for a given user of a given ICU. ICUBAM also supports automatic refreshing of
tokens periodically.

This link containing the token is needed to access the the availability form in which the user can easily enter the 8 counts described
in this document. To prevent typos, big changes in number from an update of those counts to the other triggers a warning, inviting
the user to double check the values.
Having entered the current state of bed availability in their ICU, the users are eventually redirected to the map page, where color

codes and warning signs helps the physician narrowing down his search of bed availability to nearby ICUs.
The user’s journey ends up with one or several call to some ICUs, directly from the map.

C.2. Architecture

ICUBAM is divided into four web services: communication with the database, the web interface for physicians, a back office web interface
for administrators and a message scheduler service.

C.3. Dashboards

A dashboard (fig. 13) is available for some users with granted access through the ICUBAM backoffice, which is a web interface to manage
ICUBAM’s ecosystem. It contains summary statistics (appendix C.4) and some of the plots presented in this very document.

C.4. Data

Note that the data collected for this study is done so by an instance of ICUBAM hosted by Inria and not part of the open-source software.
External developers as well as external deployments of ICUBAM have no access whatsoever to this data, but do own their own data.
This separation between data and software guarantees both data security and reproducibility of the ICUBAM service outside of the
French context.
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Figure 13: Dashboard for medical doctors: Excerpt from the April 18 dashboard.
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D. Descriptive statistics
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Figure 14: Daily number of deaths in ICU (top) and ICU’s discharged (bottom) per département.
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E. Comparison between ICUBAM and official public data

The analysis of ICUBAM data and the use of public data [Santé Publique France, 2020] has also highlighted the difficulty of comparing
the data collected, which often represent different realities. For example, ICUBAM’s scope only covers resuscitation beds equipped with a
ventilator, whereas very often critical care beds include equipped or not with ventilators. However, this implies that the number of
ICU patients should be larger in the public data case, which is not always the case, as can be seen in the right panel of fig. 16.
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Figure 16: Top: Time evolution of the number of hospitalized patients (official public data Santé Publique France [2020]). Bottom:
comparison of the evolution of the number of ICU patients according to the official public data Santé Publique France [2020] (dotted
lines) and the ICUBAM data (continuous lines).

The discrepancy in the number of patients in resuscitation at the time of reporting between the ICUBAM data and the public data is
also visible in figure 16. We have observed that the data from ICUBAM could be ‘ahead’ from some sources of information (sometimes by
two days) indicating that they better represent the reality of the day.
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F. SEIR model calibrated on the ICUBAM Grand Est data

Modeling approach The ICUBAM data give access, for each day t, to the number of patients occupying an ICU bed, noted here C(t)
(’C’ for Critical Care), the number of transfers taking place on that day t, and the number of refusals that day t. We also know the
number of deceased patients, and the number of discharged cases cumulated on day t. We only consider the total number of beds
released, X(t) (’X’ for eXit) (deaths + discarged cases). One writes ordinary differential equations (ODEs) describing the underlying
contagion dynamics. In a given département, with population size N , at each time there is a number S(t) of susceptible individuals
(S(t0) = N), I(t) of infected individuals (denoting ∆A(t) the variation of a quantity A between day t and day t+ 1) :

∆S(t) = −β I(t)S(t)

N

∆I(t) = β
I(t)S(t)

N
− ωicI(t)− ωirI(t)

∆C(t) = ωicI(t)− ωcxC(t)

∆X(t) = ωcxC(t)

The model used for the figures takes into account an incubation phase (exposed state, SEIR model) and a long exit time, obtained
by adding one sub ICU compartment:

∆S(t) = −βEtSt

N
;

∆E(t) = +β
EtSt

N
− ωeiEt

∆I(t) = ωeiEt − ωicIt − ωirIt

∆C1(t) = ωicIt − ωccC1t

∆C2(t) = ωccC1t − ωcxC2t

∆X(t) = ωcxC2t

Here the total number of ICU patients is Ct = C1t + C2t.
Importantly, in the above models we do not consider the refused and transferred patients. One difficulty is that the outcome of these

critical care patients initially admitted and thereafter transferred by medical train were unknown. Thus, the models implicitly take
into account the local critical care bed capacity. Future work will explore how to incorporate these flows of patients into the modelling
approach.

We calibrate all the model parameters in order to have the best agreement between the observed data and the model outcome (with
a maximum likelihood criterion, assuming Gaussian noise), the observations being the number of critical care patients and the total
number of deceased and discharged alive patients, along the study period.
Since the data do not cover the full epidemic period, we initialize the model by going backward in time: for each département, we

look for the date t0 < t1 such that one gets the best fit by assuming that the epidemic starts at time t0.
Figures fig. 17 present the results. In Figure fig. 17 (right) we show the Bayesian credible regions [Kruschke, 2015] (see below). For

the Aube département, there was clearly a data entry problem during the first two weeks, with an abrupt entry made at the time of the
peak. Remarkably, the observations seem to ‘catch up’ with the model’s prediction. Similarly, for the Meuse département, on the
last dates the data ‘come back’ onto the model trajectory. Consideration should also be given to the decreasing quality of the data.
Thus, for some départements, as the Vosges, we can observe an inconsistency in the data for the last few days, suggesting a non-entry
of departures, while the number of patients in ICU is decreasing. The correct number of patients leaving the ICU is thus slightly
increasing in the last days, in better agreement with the model predictions.

Credible regions The general idea is the following. Given the observed data, one computes the statistical ensemble of the most
plausible scenarii (trajectories) from the Bayesian view point. Let us denote by X the observed data set {Ct, Xt, t = 1, ..., T} and
Ω = {β, ωei, ωic, ..., ωcx} the set of parameters. We are interested in the posterior P (Ω|X ) = P (X|Ω)p(Ω)/P (X ). The probability
P (X|Ω) is the result of the model assuming Gaussian noise. p(Ω) is the prior on the parameters, and we choose the uniform distribution
for every parameter on [0, 1]. Given the observed data X , one can then generate sets of parameters in order to cover 95% of the
distribution (more precisely, we consider the 95% highest density region, see [Hyndman, 1996]). This is done with the Slice sampling
algorithm (a Markov chain Monte Carlo algorithm method). For each one of these sets of parameters, one generates the associated
trajectory X̂ . The envelope of these trajectories then defines the 95% credible region. For the variance of the Gaussian noise, we
choose a time-independent but département specific value estimated from the data.
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Figure 17: Left: Fits for ICU patients, and the number of (deaths + discharged cases), from the SEIR type model (see text). Model
calibrated on ICUBAM data as of 29 April 2020. Right: Fits and predictions for ICU patients, model calibrated on ICUBAM data as of
27 April 2020 (vertical dotted line; data: circles) and extrapolated for the 4 following days (crosses: data 28 and 29 of April). Red:
patients currently in ICU. Black: cumulative number of patients either deceased or discharged from intensive care units. Colored zones
(right panel): 95% credible regions (see text).
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