
HAL Id: hal-02633985
https://hal.inria.fr/hal-02633985

Submitted on 27 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Communication-Aware Load Balancing of the LU
Factorization over Heterogeneous Clusters

Lucas Nesi, Lucas Mello Schnorr, Arnaud Legrand

To cite this version:
Lucas Nesi, Lucas Mello Schnorr, Arnaud Legrand. Communication-Aware Load Balancing of the LU
Factorization over Heterogeneous Clusters. IEEE International Conference on Parallel and Distributed
Systems (ICPADS), Dec 2020, Hong Kong, France. �hal-02633985�

https://hal.inria.fr/hal-02633985
https://hal.archives-ouvertes.fr


Communication-Aware Load Balancing of the LU
Factorization over Heterogeneous Clusters
Lucas Leandro Nesi

Institute of Informatics
PPGC/UFRGS

Porto Alegre, Brazil
lucas.nesi@inf.ufrgs.br

Lucas Mello Schnorr
Institute of Informatics

PPGC/UFRGS
Porto Alegre, Brazil
schnorr@inf.ufrgs.br

Arnaud Legrand
Univ. Grenoble Alpes, CNRS,

Inria, Grenoble INP, LIG
F-38000 Grenoble, France

arnaud.legrand@imag.fr

Abstract—Large clusters and supercomputers are rapidly
evolving and may be subject to regular hardware updates that
increase the chances of becoming heterogeneous. Homogeneous
clusters may also have variable performance capabilities due to
processor manufacturing, or even partitions equipped with differ-
ent types of accelerators. Data distribution over heterogeneous
nodes is very challenging but essential to exploit all resources
efficiently. In this article, we build upon task-based runtimes’
flexibility to study the interplay between static communication-
aware data distribution strategies and dynamic scheduling of
the linear algebra LU factorization over heterogeneous sets of
hybrid nodes. We propose two techniques derived from the
state-of-the-art 1D×1D data distributions. First, to use fewer
computing nodes towards the end to better match performance
bounds and save computing power. Second, to carefully move
a few blocks between nodes to optimize even further the load
balancing among nodes. We also demonstrate how 1D×1D data
distributions, tailored for heterogeneous nodes, can scale better
with homogeneous clusters than classical block-cyclic distribu-
tions. Validation is carried out both in real and in simulated
environments under homogeneous and heterogeneous platforms,
demonstrating compelling performance improvements.

Index Terms—Data Partitioning, LU Factorization, Load Bal-
ancing, Task-Based Applications, Heterogeneous Clusters

I. INTRODUCTION

Large supercomputers exhibit a wide variety of setups
composed of traditional CPU cores combined with multiple
accelerators such as GPU cards. As we can observe in the
latest Top500 list [1], most clusters are made of identical hy-
brid nodes, facilitating large-scale application deployment with
an equal work partitioning among the nodes. Nevertheless,
these clusters are subject to variable performance capabilities
due to processor manufacturing [2]. They sometimes can also
have partitions with different configurations due to capacity
upgrades along time or to cope with specific application
requirements. For example, the Jean Zay cluster1 (position 79
in Top500) has 1528 CPU-only nodes (2× 20-cores CPUs),
and 261 hybrid nodes equipped with 4× V100 NVidia GPUs.

This study was financed in part by the “Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior” - Brasil (CAPES) - Finance Code 001, the
National Council for Scientific and Technological Development (CNPq), under
grant no 141971/2020-7 to the first author, and the projects: FAPERGS (Data
Science – 19/711-6, MultiGPU 16/354-8, and GreenCloud – 16/488-9), the
CNPq project 447311/2014-0, the CAPES/Brafitec EcoSud 182/15, and the
CAPES/Cofecub 899/18.

1https://www.top500.org/system/179699

Many strategies for data distribution for homogeneous nodes
of a cluster rely on static data partitioning to avoid a significant
communication overhead. A similar approach is possible for
heterogeneous nodes, but such a task is quite challenging
because traditional programming models such as MPI do not
handle very well irregular communication patterns. Modern
task-based runtimes like DAGuE, ParSEC, and StarPU provide
a high-level programming abstraction that can facilitate the
use of sophisticated static data distribution strategies across
heterogeneous nodes. When in use, all communications are
carried out by the runtime transparently.

In this article, we build upon the flexibility of task-based
runtimes to study the interplay between static communication-
aware data distribution strategies and dynamic scheduling of
the linear algebra LU factorization over homogeneous and
heterogeneous sets of hybrid nodes. We focus on the LU
operation as most other linear algebra operations lead to
similar parallelization challenges and require the same kind
of strategies. We review the traditional block-cyclic (BC)
strategy, and the state of the art 1D×1D distribution [3] that
is asymptotically optimal for heterogeneous configurations.
After identifying the potential shortcomings of this distribution
in a dynamic scheduling context, we propose two possible
improvements and evaluate their performance at scale.

The main contributions of this paper are: (a) a demonstra-
tion of the regular scalability of 1D×1D data distributions
even for homogeneous clusters compared to the traditional BC
distribution; (b) a constrained data distribution whose cleaner
structure may save computing power by gradually concentrat-
ing final computations in the fastest nodes (1D×1D-C); (c) an
improvement to this data distribution by carefully shuffling a
few blocks to improve the global load balancing and ensure
a regular progression of the computation; (d) a comprehen-
sive validation both in real and in simulated environments,
comparing our techniques against BC and 1D×1D schemes
in homogeneous and heterogeneous platforms, demonstrat-
ing compelling performance improvements. We analyze all
strategies with a critical eye, clearly outline their performance
benefits, and explain their potential harm and why they should
be employed with care.

The paper is structured as follows. Section II presents
some related work on matrix distribution on homogeneous

https://www.top500.org/system/179699


and heterogeneous platforms, and how modern task-based run-
times facilitates the use of complex distributions. Section III
details our methodology and explains how we relied on both
real experiments and detailed simulation in our investigation.
Section IV presents our first experiments with state of the art
partitioning algorithms, pointing out potential improvements.
Section V presents our strategy to constrain 1D×1D to use
fewer machines gradually as well as the technique to statically
adjust the distribution based on load imbalance estimation
along with the iterations. Section VI presents our performance
evaluation of heterogeneous distributions using large-scale
scenarios. Finally, Section VII discusses the limitations of
our approach and concludes our work with some perspectives.
The companion material of this work is publicly available at
https://gitlab.com/lnesi/cluster2020.

II. RELATED WORK

A. Matrix Distribution for Homogeneous Machines

The de facto standard library for high-performance dense
linear algebra routines over parallel distributed memory ma-
chines is ScaLAPACK [4], which provides efficient and scal-
able implementations for Cholesky, LU, and QR factorization.
We focus on the LU operation as most other operations lead
to similar parallelization challenges and require the same kind
of strategies. Figure 1 sketches the blocked version of the
sequential Gaussian elimination algorithm by relying on three
LAPACK kernels: DGTRF, DTRSM, and DGEMM. The first
remarkable feature of this algorithm in terms of parallelization
is that, when N is large, the two inner loops (m and n)
surrounding the (N − k)2 DGEMM constitute the major part of
computations and are fully parallel (every A[m][n] should
be updated independently from the others). In contrast, there
are dependencies between the different iterations of the outer
loop (even though this can mitigated by look-ahead implemen-
tations). The second remarkable feature is that the portion of
the matrix updated at each iteration of the outer loop gradually
decreases. Therefore, one should make sure that every sub-
matrix A[k . . . N ][k . . . N ] is well distributed between the
computation nodes and that all nodes can efficiently participate
in each update. For homogeneous resources, there is a good
understanding of the needs of this load balancing through-
out the execution, employing a 2D block-cyclic distribution
(BC for short). Popularized by ScaLAPACK [4], BC takes
advantage of the gradual decrease of sub-matrices to provide
good load balance. The block-cyclic feature allows a regular
balance of columns and rows and hence of the sub-matrix
A[k . . . N ][k . . . N ] over the nodes. In contrast, as we will see
in the next subsection, the 2D feature allows for a relatively
low communication during the update (proportional to the
square root of the total number of nodes) compared to a
1D distribution (where it would be proportional to the total
number of nodes). Communication avoiding algorithms relying
on 3D and 2.5D data distributions [5] reduce even further
communication by replicating data, but they also come at the
cost of higher memory usage.

for (k = 0; k < N; k++)
DGTRF-NOPIV(RW, A[k][k]);
for (m = k+1; m < N; m++)

DTRSM(RW, A[m][k], R, A[k][k]);
DTRSM(RW, A[k][m], R, A[k][k]);

for (n = k+1; n < N; n++) // Update
for (m = k+1; m < N; m++)

DGEMM(RW, A[m][n], R, A[m][k],
R, A[k][n]);

NB

L

U

A

N

Fig. 1: The LU algorithm (left) without pivoting (for simpli-
fication), and the regions of A updated at iteration k (right).

B. Matrix Distribution for Heterogeneous Machines

We now review some algorithmic work related to the design
of matrix distributions, which are efficient when the set of
computing nodes is heterogeneous. Figure 1 (right) shows
the A[k . . . N ][k . . . N ] sub-matrix, which is updated with
the product of the row and column k (computed by the
DTRSM). When all nodes have different processing speeds,
one should, thus, foremost ensure that each node receives a
fraction of the sub-matrix, which is proportional to its speed.
Nevertheless, since every node requires fragments of the row
and column k to perform this update, this requirement induces
communication with the nodes owning these blocks. One
should thus ensure that the total amount of communications is
not too large. This problem, known as the Peri-Sum problem,
has been widely studied in the 2000s.

Peri-Sum: Given P nodes, let si denote the relative speed
of nodes so that

∑
i si = 1. Partition the unit square into P

rectangles Ri of dimension (hi, vi) so that hi × vi = si and∑
i hi + vi is minimal.

One-Dimensional Collumn-based Recursive UnconstrainedTwo-Dimensional

Fig. 2: Taxonomy of unit-square partitions [3].

Kalinov and Lastovetsky [6] first introduced this problem.
Although proven to be strong NP-hard in the general case by
Beaumont et al. [7], Figure 2 illustrates particular classes
of partitions for which a solution can be found. Restricting
to 1D partitioning is trivial but leads to very tall rectangles,
hence to terrible communication costs. Conversely, restricting
to 2D partitioning leads to optimal communication costs but
rarely allows to reach an optimal load-balancing. Beaumont
et al. proposed an optimal dynamic programming algorithm
for column-based partitions [8], which provides a 7/4 ap-
proximation for the general case. The resulting partition has
the good property of grouping the faster nodes together
(nodes are sorted by speed before being arranged in columns).
Later, Nagamochi and Abe [9] proposed a recursive splitting
algorithm based on a Divide-and-Conquer approach, which
provides a 5/4 approximation for the general case.

https://gitlab.com/lnesi/cluster2020


Algorithm 1: Shuffling a 1D partition into a 1D distribution
(c1, . . . , cP ) = (0, . . . , 0)
for k = N down to 1 do

p = argmin1≤j≤P (cj + 1)/sj
A[k] = p ; cp = cp + 1

end

Fig. 3: The 1D×1D partition (left) and the reciprocal 1Dx1D
distribution for 14 slow and 7 fast nodes (total of 21 nodes).

Partitions which allow for processing a single Update opera-
tion efficiently are thus available. However, a correct shuffling
of columns and rows is required to obtain a proper load-
balancing throughout the whole execution of the LU algorithm.
Beaumont et al. [3] proposed a simple shuffling procedure
(1D×1D), which is asymptotically optimal, regardless of the
initial rectangle partition, and which we now briefly describe
as we build upon it in Section V.

Let us first consider a 1D partition. Then the optimal alloca-
tion A of columns to nodes can be built through Algorithm 1.
It consists of greedily selecting the processor that minimizes
the processing time of the sub-matrix A[k . . . N ][k . . . N ]. This
algorithm produces an allocation that is optimal for every
k ∈ {1, . . . , N}, and hence optimal overall. An almost optimal
distribution can quickly be built from arbitrary partitions by
extending processor boundaries (see the left of Figure 3)
and applying the previous algorithm for 1D partitions inde-
pendently to virtual rows and virtual columns. The resulting
distribution (see the right of Figure 3) is no more optimal for
every k ∈ {1, . . . , N}. However, it is asymptotically optimal,
i.e., its execution time is no more than 1+O(1/N) times the
one achieved by an ideal distribution.

C. Software Architecture Evolution

Although there have been a few attempts to implement such
approaches in frameworks like ScaLAPACK [10], irregular
distributions are quite painful to maintain and integrate using
MPI, alone especially for more sophisticated factorization
algorithms. Furthermore, this static load balancing procedure,
which focuses on the main computation kernel (the DGEMM
of the Update), is never perfect. The small residual imbalance
is not satisfying and may even raise more problems than it
solves, especially with the growing inner heterogeneity of
nodes (multi-GPUs, multi-core).

Fig. 4: The DAG of the LU factorization (N = 3); each node
is a task of a certain type (color) with its block coordinates.

The growing complexity of hardware recently leads to a
full reorganization of linear algebra libraries using task-based
programming techniques that allow for better synchronization,
load-balancing, and internal heterogeneity management. The
declarative task-based paradigm is appointed as a path to
achieve exascale programs [11]. It works with a description
of the application as a graph of tasks (DAG) where edges
indicate data dependencies. The code of Figure 1 (left) directly
translates through task submission into a DAG, such as the
one depicted in Figure 4. Tasks then execute on top of
computational processing units, which may be CPU cores or
accelerators like GPUs. Sophisticated task scheduling heuris-
tics dynamically define where and when each task will exe-
cute [12]. Modern linear algebra libraries, such as PLASMA,
MAGMA, and Chameleon, build on task-based runtimes like
DAGuE, ParSEC, and StarPU to compute common linear al-
gebra operations on hybrid CPU/GPU nodes. DPLASMA [13]
and Chameleon [14] allow for efficient exploitation of clusters
with hybrid nodes through MPI.

Nevertheless, despite the programming flexibility brought
by this new task-based software architecture, the only avail-
able matrix distribution remains the standard BC distribution,
which is only adequate for a homogeneous set of nodes.
Although there are a few recent works by Eyraud-Dubois and
Lambert [15] about communication avoiding algorithms and
data distributions for a heterogeneous nodes, they only address
the Matrix Multiplication operation inside a hybrid node.

In this work, we revisit the 1D×1D shuffling [3] of column-
based partitions [8], in a distributed doubly heterogeneous
setup (inside and between nodes) and propose communication-
aware load-balancing improvements. This work is possible by
taking advantage of the programming flexibility and commu-
nication abstraction present on modern runtimes.

III. EXPERIMENTAL METHODOLOGY

We adopt StarPU [16] as it provides means for smoothly
running the application in multiple nodes, has extensive tracing
capabilities, and a simulation mode over Simgrid [17].

The StarPU runtime is a task-based runtime for hetero-
geneous multi-core and multi-node platforms. It enables an
interface for an application to submit tasks to the runtime.
StarPU uses the Sequential Task Flow (STF) paradigm [18] for
task submission, where the application sequentially submits



the tasks to the runtime that is responsible for scheduling
then. In StarPU, each resource (CPU Core, GPU) has an
associated entity called worker. The scheduling heuristic in
use assign tasks to workers, dynamically. Each task can have
different implementations for different resources. For example,
a DGEMM task can have two implementations, one for CPU and
another for GPU. During the execution, StarPU determines the
best implementation at a given time. The multi-node execution
is possible by using the StarPU-MPI extension [19]. The main
difference for the application is that data partitioning among
nodes occurs in data declaration, statically. Then each node
unrolls the DAG, handling tasks that write on data they own.

We relied on the LU factorization as implemented in
Chameleon [14] using a block size of 960×960 for all ex-
periments. To facilitate the evaluation of several distribution
strategies, we performed a minimal modification in Chameleon
so that distributions can be defined from a simple file instead
of the default BC algorithm. This minimal change enables
the testing of arbitrary partitions quickly since StarPU will
seamlessly handle all the communications among different
nodes and heterogeneous resources.

Real executions were conducted on the Grid5000 platform
using the Chifflet and Chetemi clusters. Chifflet
comprises eight nodes, each one with two Intel Xeon E5-
2680 v4 (14 cores/CPU) and two NVIDIA GTX 1080Ti while
Chetemi comprises 15 nodes, each one equipped with two
Intel Xeon E5-2630 v4 (10 cores/CPU). A 10Gbps Ethernet
network connects both clusters. We used the StarPU developer
branch from April 2020 and the 0.9.2 Chameleon version,
modified to accept our custom distributions. Our experiments
required some tuning of the StarPU-MPI configuration to
obtain better performance. We relied on the MPI low-latency
implementation from the NewMadeleine suite [20] in its
development version of April 2020 because of our experiments
with OpenMPI [21] did exhibit significant idle times incurred
by abnormal delays in point-to-point operations. We took care
of dedicating a core/thread responsible for task submissions
and one core per node to the MPI thread responsible for
communications among nodes and bound it to the first NUMA
node, where the network card resides. We also took care of
binding each GPU worker thread to the NUMA node that
is physically attached to the corresponding GPU, consider-
ing PCI proximity. We configure the internal StarPU’s GPU
pipeline to have four stages. We also make the scheduler
assume the RAM-GPU-RAM data transfer cost to be ten
times larger than calibrated values. This configuration avoids
an optimistic view of the PCI bus, especially in the NUMA
node attached to the Ethernet card, improving performance.
We relied on the NUMA support for StarPU to consider RAM
locality when scheduling. The binding of all CPU workers
reduces thread migrations achieving more stable results.

To evaluate larger configurations than the one offered by
Grid5000, we resorted to simulations using the SimGrid
framework [22] version 3.24 combined with the StarPU-
Simgrid module [17]. These simulations allow for a full-
fledged emulation of the StarPU runtime while simulating the

consumption on CPU, GPU, PCI bus, and Ethernet resources.
Simulations require performance models for each machine,
which come from the real executions at a smaller scale on
the Chifflet and Chetemi machines. The machines that
do not have a real counterpart assume the performance models
of the last one real machine.

Finally, all the detailed performance analysis of both real
and simulated executions use the enriched traces provided by
StarPU and the StarVZ visualization framework [23] [24]. We
follow the reproducible research and open science principles
by making all the code and data available in our companion
at https://gitlab.com/lnesi/cluster2020.

IV. EXPERIMENTING WITH STATE OF ART PARTITIONING

We first present an in-depth analysis of the performance
of Chameleon/StarPU-MPI over both homogeneous and het-
erogeneous clusters using the state of the art BC and 1D×1D
distributions. We build upon these experiments to hint potential
performance improvements and to show that simulation is suf-
ficiently faithful to conduct such data distribution/scheduling
studies as they capture essential details of load imbalance.

A. Homogeneous Cluster with the BC Distribution

Figure 5 depicts the behavior of two runs considering the
15-node Chetemi cluster, first in reality (left part), and
then in simulation (right). We employ four panels temporally
aligned (in the X-axis) for this comparison. The Application
Workers panel is a space/time view similar to a Gantt chart,
which depicts each CPU worker’s behavior among the 15
nodes. This panel includes each node’s ABE (Area Bound
Estimation, i.e., the optimal runtime when ignoring all de-
pendencies) as a short red line. A red dashed line spanning
all the nodes indicates the global ABE, which is thus an
absolute lower bound on the makespan whose value lies on
the panel’s right. Finally, this panel has a rectangle for each
node on the far right (they are so thin for these traces that they
appear as black lines), which indicates when the node started
being fully idle until the completion of the factorization. The
next two panels indicate the number of submitted and ready
tasks, broken down per node, along time. Finally, the upper
panel (Iteration) is a representation of the progression of the
computation across iterations. The iteration of the outer loop
is represented on the Y-axis while time remains on the X-axis.
Each tiny green rectangle indicates that one node is working
on a particular iteration task during a particular time interval.
The three black lines indicate when the first/median/last task
of each iteration is processed, hence providing an intuition of
how long each iteration is active and how they overlap. For
example, if the runtime did synchronize at each iteration, the
horizontal green lines would not overlap. Fortunately, we can
see here that StarPU does an excellent depth-first progression
on the DAG, enabling a swift release of work on every node.

We can see that the BC distribution keeps all nodes active
until the very end of the execution. This excessive activity
generates many small communications at the end, resulting in
generalized idle time. Using fewer nodes toward the end may

https://gitlab.com/lnesi/cluster2020


Fig. 5: The 3×5 BC partitioning using 15 identical CPU-
only nodes to compare the behavior of a real execution (left)
against the simulation (right): the simulation captures the load
imbalance coming from the BC distribution.

thus be beneficial and result in both a slightly better makespan
and resource usage, as communicating less and stopping some
nodes sooner to put them in a deep sleep mode could save
energy. Furthermore, the per-node ABE indicates that although
the BC distribution leads to a fair load balance, it is not perfect
because of the rounding induced by the rectangular partition
that operates at the granularity of rows and columns of blocks.

We can also observe that the simulation also matches the
real execution well both in terms of general metrics and
the specific behavior of application workers. The first global

indicator of a faithful simulation is the makespan, which is
within the bounds of the natural variability of real executions.
Although simulation traces are a bit more “clean”, if we look
at each node’s specific behavior, we can see that there is an
almost identical amount of work and per-node ABE estimation
in reality and simulation. Note that minor ABE differences
may also appear from the natural day to day performance
variability of nodes that may not entirely correspond to the
model built from a previous experiment. Global metrics such
as submitted and ready tasks and the upper iteration plots
also look very similar along time, which indicates an identical
progression throughout the DAG.

B. Heterogeneous Cluster with the 1D×1D Distribution

Figure 6 depicts the behavior of two runs considering a
(7+14)-node platform (7 fast Chifflet nodes comprising
GPUs and 14 slow Chetemi nodes) in a real configuration
(left part) and in simulation (right). We use the same panels
as already described for Figure 5. The difference is that the
last seven machines (from id 14 to 20) have 2× GPUs each.

The ABE indicates that the 1D×1D algorithm manages to
handle the heterogeneity of the machine well by giving each
node an amount of work proportional to its capacity. Unfortu-
nately, the nodes from 0 to 13 without GPUs end up with an
ABE that is larger than the one from the nodes with GPUs.
The distribution also appears sub-optimal because of the long
idle periods toward the end of the run, especially in the nodes
equipped with GPUs. Similarly to the BC distribution, we can
also imagine that using fewer nodes toward the end may bring
performance improvements by concentrating all the last blocks
in the more powerful nodes.

The comparison between real and simulated runs indicates
that the simulation is once again sufficiently accurate to
capture general scheduling trends as well as details. The ABEs
and the completion time structure are very similar. The general
metrics (submitted and ready tasks) also have similar shapes,
except for task submission, which is faster in simulation on
nodes comprising GPUs. Indeed, in StarPU-SimGrid, the sub-
mission overhead is uniform over nodes, but we decided not
to tune this for the heterogeneous context finely. This choice
results in a slight difference in node progression visible on the
upper panel (with more iterations overlapping in simulation)
and a slightly more optimistic (≈ 2−3%) makespan prediction.
Nevertheless, our other comparisons in various scenarios lead
us to consider this effect to be of sufficiently little significance.

C. Discussion and Motivation

Our experiments with the state-of-the-art algorithms in
homogeneous and heterogeneous setups show that StarPU-
SimGrid is capable of delivering very faithful simulations
with multiple nodes. While previously published results only
considered inner-node behavior [17], we now have reliable
multi-node estimations both for the general metrics and the
ABE that reflects the load imbalance. This combination allows
us to rely on simulation to run large-scale experiments in a
reproducible way with a good level of confidence.



Fig. 6: The 1D×1D partitioning using a configuration with
14 CPU-only nodes plus 7 GPU-equipped nodes to compare
the behavior of a real execution (left) against the simulation
(right): the simulation is optimistic regarding the makespan
but captures the general trend of the load imbalance coming
from the 1D×1D algorithm.

We also observe that these algorithms are not optimal across
nodes, as pointed out by the per-node ABE estimations. One
could expect that per-node ABEs, computed after the load
partitioning, would be very similar. Although it is relatively
good, there is room for improvements as indicated by the
uneven distribution of red lines on the application workers
panels of Figures 5 (for BC) and 6 (for 1D×1D).

V. BALANCING WORK AND USING FEWER NODES

We explain the fact per-node ABE imbalance by the fact
that, first, the 1D×1D distribution is only asymptotically opti-
mal, and only the DGEMM computation kernels are taken into
account when computing the column-based partition. Second,
all the fastest nodes (those with GPUs) are not only slightly
less loaded but mostly idle toward the end of the execution.
Using all 21 nodes toward the end incurs many synchroniza-
tions and communications. The computation would end sooner
if only the faster nodes were working. Furthermore, using
slow nodes toward the end may also negatively impact the
progression along the critical path.

A. Constraining the 1D×1D distribution

We propose to modify the 1D×1D algorithm to enforce the
use of only the faster nodes toward the end of the execution.
The allocation is built incrementally similarly to the 1D×1D
algorithm, by picking the best virtual row and column of
processors for each k from N down to 1, but by restricting to
sections of virtual rows and columns.

We start with a section made of a single virtual column
(right-most column on the partition, with the fastest nodes) and
a single virtual row (the largest one from the fastest node). Let
us denote by Wp(k) the total work (in FLOPS) induced by pro-
cessing sub-matrix A[k . . . N ][k . . . N ] on node p. By dividing
this work by the speed of the node, we obtain ABEp(k),
the minimum time required to process iteration k on node p
and ABE(k) = maxp ABEp(k), the minimum time required
to process iteration N for a given distribution. Since we do
not redistribute the matrix during the factorization, this global
ABE(k) is always larger than the absolute ABE∗(k) defined
as the total work of iteration k divided by the total speed
of all the active nodes of the section. We also compute the
critical path bound CPB(k) of this iteration, i.e., the duration
of the largest sequence of tasks in the DAG (considering
communications). The metric would be the optimal processing
time of iteration k if an infinite number of resources were
available on each node. Since initially (when k ≈ N ) there is
very little work in the sub-matrix A[k . . . N ][k . . . N ], we start
with ABE(k) = ABE∗(k) < CPB(k). When ABE∗(k)
becomes larger than CPB(k), some work of k will surely
have to wait for resources, and we should add new nodes.

We then create a new section by adding one new column
of processors (from the right to the left of the partition, as
column-based partitions of [8] sort nodes by their processing
speed) and several virtual rows sorted by decreasing height and
involving the fastest possible nodes. As the partition has many
more virtual rows than columns, we benefit from releasing



Fig. 7: The 1D×1D-C metrics (CPB, ABE∗ and ABE) for
7+14 machines from iteration 100 to 60 with four sections.

them faster than columns to obtain a better load balance. In
Figure 3, we first release node 20, then nodes 14 – 16, 18, 19;
then nodes 6 – 11, 12, 13, 17; and finally all the nodes.

After adding the new virtual columns and lines, the algo-
rithm keeps allocating rows and columns of the matrix using
the 1D×1D procedure while updating ABE(k) and CPB(k).
The progression of these metrics is showed on Figure 7,
where the blue line is the CPB metric, the green line is
the ABE∗(k) per iteration considering all available resources,
the red line is the ABE(k), and the gray vertical lines point
whenever ABE∗(k) would become larger than CPB(k) to
create a new section. The ABE∗(k) keeps increasing quadrat-
ically within a section, proportionally to the sub-matrix, until it
exceeds the CPB(k), as indicated by dashed lines. Therefore,
we always have ABE∗(k) ≤ CPB(k) unless we run out
processors and cannot create a new section.

In our example of Figure 7, we allocate a 100×100 matrix
on 14 (slow) Chetemi and 7 (fast) Chifflet, which leads
to four sections. The first section corresponds to iterations
100-96 and contains only one Chifflet. Then the section
from iterations 95-85 contains six Chifflet nodes. Then the
section from iterations 84-68 contains seven Chifflet and
eight Chetemi nodes. Finally, the section from iterations 67-1
contains all the nodes. In Figure 7, one may note that the CPB
varies from an iteration to another, which may seem surprising
since the longest path in the sub-DAG corresponding to
iteration k remains the same throughout iterations. The MPI
communications incurred by using several nodes justify the
first increase of CPB in the second section. The second (and
much larger) increase of CPB in the third section appears
because of the addition of slow nodes (Chetemi). Small
differences in the tasks’ execution times between machines
cause remaining fluctuations.

The upper left part of Figure 8 depicts the final resulting data
distribution, called 1D×1D-C, which is way less regular than
the original 1D×1D distribution (see Figure 3) and favors the
use of the faster nodes toward the end. In contrast, the distribu-
tion of the upper parts of the matrix remains relatively similar.
The bottom left part of Figure 8 depicts the execution obtained

with this constrained distribution. A first notable difference
with the execution of a 1D×1D distribution (see Figure 6)
is that now, as indicated by the rightmost white rectangles
on each node (A), the slower processors stop working almost
instantaneously instead of vainly contributing to the end of the
computation. Unfortunately, even though slower nodes finish
their work much sooner, the load is still very imperfectly
imbalanced (as illustrated by the red lines). The faster nodes
still exhibit critical idle periods (B), indicating there is still
room for improvement.

B. Shuffling Blocks

When using the 1D×1D, one often noticed some idle times
in the middle of execution, relatively early. We have identified
that the work imbalance among nodes in the earlier iterations
is the cause of these idle times. Remember that with a
runtime like StarPU, there is no synchronization between each
iteration. Nevertheless, if some nodes progress faster across
iterations than others, they may quickly run out of work. Let
us consider the cumulative ABE per node up to iteration k, i.e.
CABEp(k) =

∑k
j=1 ABEp(j). As illustrated on the left of

Figure 9, where the group of lines represents the CABE per
node, and the red bottom line represents the difference of the
maxp CABEp(k) and minp CABEp(k). For some iterations,
there is a significant imbalance, so the nodes that have less
work have to wait for the most loaded ones. The waiting times
appear because 1D×1D-C tries to balance ABE(k) for k
starting from N downward 1, which corresponds to the reverse
order from what the LU algorithm does.

To alleviate this load imbalance, we propose a Shuffling
mechanism that moves blocks around (therefore potentially
inducing more communications since node alignments may
become broken). Shuffling occurs within a section, say iter-
ation k1 to k2, and aims at balancing the total work of this
section (remember 1D×1D is only asymptotically optimal),
SABEp =

∑k2

j=k1
ABEp(j). The fastest node gets the right-

bottom most block of the slower node once we determine the
least loaded and the most loaded node. This process repeats
until one of the three possible conditions becomes true. (i)
The difference between the SABE of the nodes falls under a
threshold (in our experiments, we use 20ms). (ii) There is no
more block to move from the fastest node (the SABE may
be particularly high because of blocks from previous sections).
(iii) Moving a block would result in trespassing the average
SABEp on the least loaded node. The right of Figure 9 shows
how cumulative CABE evolves after two shuffling operations
are applied, where the red line represents the difference
between the maximum and minimum CABE(k). The top
right of Figure 8 depicts the resulting irregular distribution,
called 1D×1D-C+S, with the runtime behavior.

We first apply this shuffling to the most significant section.
Usually, if the work is sufficient for the total amount of
blocks, it will be the first section containing all nodes. It
may be the case that after a shuffling, the cumulative load
imbalance (maxp CABEp(k) − minp CABEp(k)) remains
high, in which case we incur an additional shuffling at this



Fig. 8: When using 14 CPU-only nodes plus 7 GPU-equipped
nodes, we illustrate the distribution (top) and behavior (bot-
tom) of the 1D×1D-C (left) and the 1D×1D-C+S (right) runs.

Fig. 9: Cumulative ABE prior and after two shufflings.

spike. When applied carefully, this shuffling operation can
allow a smooth progression of the runtime across iterations
and reduce every visible idle period.

The upper right part of Figure 8 depicts the block shuf-
fled distribution, where small glitches can be noticed and
correspond to the few blocks allotted to faster nodes. A
noteworthy aspect of the corresponding execution, depicted
in the bottom right of Figure 8, is that now the ABE of
each node is almost perfectly balanced (see for example
the comparison of ellipses A for the first six nodes). In
this particular example, the makespan improvement is not
significant: 39.30 seconds compared to 39.94 for the original
1D×1D distribution. However, the activity period of all slow
nodes now matches their ABE, which may allow to use them
for another computation or merely to put them into a deep
sleep mode to save energy. Idle periods (see ellipses B) on
the faster nodes are significantly reduced compared to the
distribution without block shuffling. Idling corresponds to the
small load imbalance, which is maximum for iteration 84 and
visible in Figure 9. They appear because of the lack of ready
tasks (see ellipses C). Our experiences to balance this load
further indicate that it is particularly difficult (there is very
little work) and that shuffling should be applied with much
care as it involves balancing the total load from the beginning
with the remaining one.

VI. PERFORMANCE EVALUATION

We evaluate the efficiency of BC, 1D×1D, 1D×1D-C, and
1D×1D-C+S distributions in three different scenarios. We start
in Section VI-B by a quick illustration of the gain of 1D×1D
distributions over BC distributions in a classical homogeneous
setting with a strong-scaling scenario with a fixed matrix size
and where we gradually increase the number of nodes. Then,
we show the gains brought by 1D×1D-C and 1D×1D-C+S
when strong scaling on a heterogeneous platform. Finally,
we present in Section VI-C how distributions compare on a
heterogeneous 46 nodes cluster in terms of performance when
growing the matrix size. Note that we now employ all available
cores in our simulations since the performance loss caused
by the absence of dedicated cores in real-life experiments is
absent in the simulation.



Fig. 10: Strong scaling for a 100×100 matrix in a homoge-
neous 50-node cluster of Chetemis; while 1D×1D grace-
fully scales, BC handles very severely the prime number of
machines that incur lots of communications.

Fig. 11: Execution time (Y-axis) as a function of combinations
of number of machines (X-axis) and distributions (lines).

A. Strong Scaling in a Homogeneous Context

We adopt a fixed matrix size of 100×100 blocks of 960×960,
and we gradually increase the number of Chetemi comput-
ing nodes from 16 to 50. The BC strategy is common for
homogeneous platforms. Unfortunately, it is known that when
the number of machines does not nicely decompose in prime
numbers, the communication overhead may lead to significant
performance degradation. Indeed, for any prime number of
machines, one ends up with a pure one-dimensional distribu-
tion. Instead, as illustrated in Figure 10, the 1D×1D distri-
bution handles such situations gracefully and scales perfectly.
Although 1D×1D distributions originated 20 years ago, to the
best of our knowledge, it is the first time they appear in a real
solver stack. Interestingly, the distance between makespans of
the 1D×1D distribution and the (very optimistic) ABE bound
of all resources is constant, which corresponds to the very end
of the execution that cannot efficiency exploit all computing
nodes. However, in such a regular and homogeneous context,
constraining and shuffling are of little interest and may even
be harmful as the load balance is optimal.

B. Strong Scaling in a Heterogeneous Context

We now consider the scenario where we first use
Chifflet nodes as they comprise GPUs and gradually add
the Chetemi nodes for a heterogeneous platform at the end.
Figure 11 presents the performance of every distribution in
terms of execution time (on the Y-axis) as a function of the
size of the platform (on the X-axis). As expected, as soon as
slower nodes participate, the time required by the BC distri-
bution dramatically increases since now the whole execution
progress at the speed of the slower nodes. In contrast, 1D×1D
distributions gracefully handle the addition of new nodes and
are all very close to the optimal (the ABE with all resources).
Although the gain is relatively small (1 to 2 seconds), 1D×1D-
C and 1D×1D-C+S improve systematically upon 1D×1D. The
inset zoom with the (8+2) node configuration clearly shows
differences between strategies. For larger configurations, the
difference between 1D×1D and 1D×1D-C decreases while
1D×1D-C+S maintains a constant gain of about 2 seconds
over 1D×1D. This constant gain appears because 1D×1D-
C+S manages to ensure smooth progress throughout iterations
and to optimize the end of the execution.

A consequence of constraining the 1D×1D-C distribution to
use fewer nodes toward the end of the computation allows to
release nodes earlier (see Section V). Figure 12 provides, for
every configuration, the total activity time of the nodes from
the first to the last computation task each node executes (we
do not include BC as it is terrible compared to the 1D×1D
variants). This metric is of interest as it relates to the total
energy consumption provided nodes can be put in a deep sleep
state when they are fully idle. As expected, the 1D×1D-C and
1D×1D-C+S significantly improve upon 1D×1D.

Finally, it is also interesting to evaluate how much commu-
nication is incurred by these distributions. Indeed, although
they are all derived from the column-based Peri-Sum partition,
the constraining and the shuffling trade-off some commu-
nications for a better load balancing throughout the whole
execution. When factorizing a 100 × 100 matrix with 8+14
nodes, a pure BC requires transferring 55 329 blocks, while
the 1D×1D reduces this down to 35 417 blocks, and 1D×1D-
C+S requires the transfer of 42 632 blocks. It is thus important
to understand that although the 1D×1D-C+S allows for better
exploitation of computing resources, some communication
overhead costs may become problematic at a larger scale.

C. Performance Gain over a Large Heterogeneous Cluster

We now use a 46 node cluster made of 16 fast Chifflet
nodes and 30 slow Chetemis nodes, and we gradually
increase the matrix size. The goal is thus to evaluate how
quickly we reach the maximum performance (in GFlops).
Figure 13 presents the performance of each distribution for
matrix sizes ranging from 25×25 blocks (which is very small
since each node gets less than 14 blocks in average for a
BC distribution) to 150×150 blocks. Similarly to the previous
evaluation, we depict the maximum achievable performance
computed from the ABE (considering all resources) and the
CPB (without any communication). As expected, the best



Fig. 12: Total machine utilization time (Y-axis) for different
number of machines (X-axis) and data distributions (lines).

Fig. 13: GFlops Performance (Y-axis) for different matrix sizes
(X-axis) and distributions (lines) for a case with 16+30 nodes.

performance achieved by a BC distribution is far smaller than
the peak performance, and the BC distribution is still far from
it even for the 150×150 matrix (about 40% less). The rather
unfavorable geometry for BC distributions (46 = 2 × 23)
has many communications, explaining these results. Variants
of the 1D×1D distribution remain undisturbed by the prime
decomposition of the number of nodes, getting quickly closer
to the peak performance (within 6% for the 150×150 matrix).

Again, the 1D×1D-C+S distribution obtains systematic
gains over both 1D×1D-C and 1D×1D distributions. It is
interesting to note that for small 25×25 matrices, 1D×1D-
C+S and 1D×1D-C distributions are equivalent (there are not
enough blocks to shuffle) and significantly improve upon the
1D×1D distribution (32.5% gain). For large 150×150 matrices,
1D×1D-C and 1D×1D-C obtain a similar performance which
reflects the asymptotically optimal, but imperfect, load bal-
ance. On the other way round, the 1D×1D-C+S significantly
improves the overall load balancing. Last, regarding commu-
nications, the factorization of a 150x150 matrix requires the
communication of 129 164 blocks for 1D×1D. Constraining
the execution on fewer nodes towards the end allows us to
decrease this amount to 123 780 blocks, but shuffling blocks
to achieve a perfect load balancing increases this amount up
to 149 474 blocks.

VII. DISCUSSION AND CONCLUSION

We present an in-depth study of static data distribution
techniques for both homogeneous and heterogeneous sets of
nodes in the context of dynamic task-based runtimes. By
using the linear algebra LU factorization, we demonstrate
how the 1D×1D distributions can be beneficial even for a
homogeneous set of hybrid nodes when compared against BC,
presenting much more stable scalability. In experiments with a
heterogeneous set of hybrid machines, for which the 1D×1D is
also near-optimal, we propose two modifications. The first is to
use fewer and fewer nodes towards the end of the factorization,
gradually intensifying the computation in the more powerful
machines. The second is to apply additional shuffling of
blocks targeting the area bound estimation. The constraining
technique allows for optimizing the end of the run, while
block shuffling allows the reach of a quasi-optimal load
balance across iterations and ensures a smooth progression. A
careful combination of these techniques provides compelling
performance improvements compared to the original 1D×1D,
both in load balancing and execution time.

Our improvements for 1D×1D should also work for
Cholesky or other factorization operations, although this
should be verified. Note that the optimal distribution may be
different, which raises more generally the question of design-
ing heterogeneous distributions which are efficient throughout
the execution of a complex sequence of different linear algebra
operations, without having to move data between each of them.

Another takeaway message from our study is that 1D×1D
distributions are an excellent starting point, which is not so
easy to improve. In practice, it is not clear that the systematic
use of 1D×1D-C and 1D×1D-C+S are beneficial as it requires
a good performance model and may induce communication
overhead. The uncertainty on node performance leads us to
believe that online adjustments may be necessary [25]. Under-
standing the potential and shortcomings of static scheduling
was thus necessary. This first study allowed us to identify
essential quantities for performing such re-balancing and the
consequences of having irregular distributions on the overall
execution. Online data distribution adjustments would have
to be done with great care, as they may interfere with the
task submission mechanism. Any development in this direction
should thus involve runtime developers to tackle the submis-
sion overhead on huge matrices properly.

Finally, although we provided insights on the total amount
of communication induced by these load distributions, StarPU-
MPI does relatively few optimizations regarding their orga-
nization than, for example, HPL, which may be harmful at
massive scale. The recent work of Denis et al. [26] on dynamic
broadcasts should significantly improve this and allow us to
investigate really large supercomputers.
Acknowledgments. Experiments presented in this paper were
carried out using the Grid’5000 testbed, supported by a
scientific interest group hosted by Inria and including CNRS,
RENATER and several Universities as well as other organiza-
tions (see https://www.grid5000.fr).

https://www.grid5000.fr


REFERENCES

[1] J. J. Dongarra, H. W. Meuer, E. Strohmaier et al., “Top500 supercom-
puter sites,” Supercomputer, vol. 13, pp. 89–111, 1997.

[2] Y. Inadomi, T. Patki, K. Inoue, M. Aoyagi, B. Rountree, M. Schulz,
D. Lowenthal, Y. Wada, K. Fukazawa, M. Ueda, M. Kondo, and
I. Miyoshi, “Analyzing and mitigating the impact of manufacturing
variability in power-constrained supercomputing,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’15. New York, NY,
USA: Association for Computing Machinery, 2015. [Online]. Available:
https://doi.org/10.1145/2807591.2807638

[3] O. Beaumont, A. Legrand, F. Rastello, and Y. Robert, “Static LU decom-
position on heterogeneous platforms,” Int. Journal of High Performance
Computing Applications, vol. 15, pp. 310–323, 2001.

[4] L. S. Blackford, J. Choi, A. Cleary, E. D’Azeuedo, J. Demmel,
I. Dhillon, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker,
R. C. Whaley, and J. J. Dongarra, ScaLAPACK User’s Guide. USA:
Society for Industrial and Applied Mathematics, 1997.

[5] L. Grigori, J. W. Demmel, and H. Xiang, “Communication avoiding
gaussian elimination,” in SC ’08: Proceedings of the 2008 ACM/IEEE
Conference on Supercomputing, 2008, pp. 1–12.

[6] A. Kalinov and A. Lastovetsky, “Heterogeneous distribution of compu-
tations solving linear algebra problems on networks of heterogeneous
computers,” J. of Par. and Distr. Comp., vol. 61, no. 4, p. 520, 2001.

[7] O. Beaumont, V. Boudet, F. Rastello, and Y. Robert, “Partitioning a
square into rectangles: NP-completeness and approximation algorithms,”
Algorithmica, vol. 34, pp. 217–239, 2002.

[8] ——, “Matrix multiplication on heterogeneous platforms,” IEEE Trans.
Parallel Distributed Systems, vol. 12, no. 10, pp. 1033–1051, 2001.

[9] H. Nagamochi and Y. Abe, “An approximation algorithm for dissecting
a rectangle into rectangles with specified areas,” Discrete Applied
Mathematics, vol. 155, no. 4, pp. 523–537, 2007.

[10] O. Beaumont, V. Boudet, A. Petitet, F. Rastello, and Y. Robert, “A pro-
posal for a heterogeneous cluster ScaLAPACK (dense linear solvers),”
IEEE Trans. Computers, vol. 50, no. 10, pp. 1052–1070, 2001.

[11] J. Dongarra, S. Tomov, P. Luszczek, J. Kurzak, M. Gates, I. Yamazaki,
H. Anzt, A. Haidar, and A. Abdelfattah, “With extreme computing, the
rules have changed,” Comp. in Sci. Eng., vol. 19, no. 3, p. 52, 2017.

[12] S. Thibault, “On runtime systems for task-based programming on
heterogeneous platforms,” Hab. à diriger des rech., U. Bordeaux, 2018.

[13] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, A. Haidar, T. Herault,
J. Kurzak, J. Langou, P. Lemarinier, H. Ltaief, P. Luszczek, A. YarKhan,
and J. Dongarra, “Flexible development of dense linear algebra algo-
rithms on massively parallel architectures with DPLASMA,” in 2011
IEEE International Symposium on Parallel and Distributed Processing
Workshops and Phd Forum, 2011, pp. 1432–1441.

[14] E. Agullo, C. Augonnet, J. Dongarra, H. Ltaief, R. Namyst, S. Thibault,
and S. Tomov, “Faster, cheaper, better – a hybridization methodology to
develop linear algebra software for GPUs,” in GPU Computing Gems,
W. mei W. Hwu, Ed. Morgan Kaufmann, Sep. 2010, vol. 2.

[15] L. Eyraud-Dubois and T. Lambert, “Using static allocation algorithms
for matrix matrix multiplication on multicores and GPUs,” in ICPP 2018
- 47th International Conference on Parallel Processing, Eugene, OR,
United States, Aug. 2018.

[16] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “StarPU:
A unified platform for task scheduling on heterogeneous multicore
architectures,” Conc. Comp.: Pract. Exp., SI:EuroPar’09, vol. 23, 2011.

[17] L. Stanisic, S. Thibault, A. Legrand, B. Videau, and J.-F. Méhaut, “Faith-
ful performance prediction of a dynamic task-based runtime system for
heterogeneous multi-core architectures,” Concurrency and Computation:
Practice and Experience, p. 16, May 2015.

[18] E. Agullo, A. Buttari, A. Guermouche, and F. Lopez, “Implementing
multifrontal sparse solvers for multicore architectures with sequential
task flow runtime systems,” ACM Tr. Math. Softw., vol. 43, no. 2, 2016.

[19] C. Augonnet, O. Aumage, N. Furmento, R. Namyst, and S. Thibault,
“StarPU-MPI: Task programming over clusters of machines enhanced
with accelerators,” in Proceedings of the 19th European Conference on
Recent Advances in the Message Passing Interface, ser. EuroMPI’12.
Berlin, Heidelberg: Springer-Verlag, 2012, pp. 298–299.

[20] O. Aumage, E. Brunet, N. Furmento, and R. Namyst, “New madeleine:
A fast communication scheduling engine for high performance net-
works,” in 2007 IEEE International Parallel and Distributed Processing
Symposium. IEEE, 2007, pp. 1–8.

[21] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.
Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine et al., “Open
mpi: Goals, concept, and design of a next generation mpi implementa-
tion,” in European Parallel Virtual Machine/Message Passing Interface
Users’ Group Meeting. Springer, 2004, pp. 97–104.

[22] H. Casanova, A. Giersch, A. Legrand, M. Quinson, and F. Suter,
“Versatile, scalable, and accurate simulation of distributed applications
and platforms,” Journal of Parallel and Distributed Computing, vol. 74,
no. 10, pp. 2899–2917, Jun. 2014.

[23] V. G. Pinto, L. M. Schnorr, L. Stanisic, A. Legrand, S. Thibault,
and V. Danjean, “A visual performance analysis framework for task
based parallel applications running on hybrid clusters,” Concurrency and
Computation: Practice and Experience, 2018.

[24] L. Nesi, S. Thibault, L. Stanisic, and L. Schnorr, “Visual performance
analysis of memory behavior in a task-based runtime on hybrid plat-
forms,” in 2019 19th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGRID). IEEE, 2019.

[25] Y. Pei, G. Bosilca, I. Yamazaki, A. Ida, and J. Dongarra, “Evaluation
of programming models to address load imbalance on distributed multi-
core CPUs: A case study with block low-rank factorization,” in 2019
IEEE/ACM Parallel Applications Workshop, Alternatives To MPI (PAW-
ATM), 2019, pp. 25–36.

[26] A. Denis, E. Jeannot, P. Swartvagher, and S. Thibault, “Using dynamic
broadcasts to improve task-based runtime performances,” in Euro-
Par 2020: 26th International European Conference on Parallel and
Distributed Computing, Aug. 2020.

https://doi.org/10.1145/2807591.2807638

	Introduction
	Related Work
	Matrix Distribution for Homogeneous Machines
	Matrix Distribution for Heterogeneous Machines
	Software Architecture Evolution

	Experimental Methodology
	Experimenting with State of Art Partitioning
	Homogeneous Cluster with the BC Distribution
	Heterogeneous Cluster with the 1D1D Distribution
	Discussion and Motivation

	Balancing Work and Using Fewer Nodes
	Constraining the 1D1D distribution
	Shuffling Blocks

	Performance Evaluation
	Strong Scaling in a Homogeneous Context
	Strong Scaling in a Heterogeneous Context
	Performance Gain over a Large Heterogeneous Cluster

	Discussion and Conclusion
	References

