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Interval Observer-based Feedback Control
for Rehabilitation in Tremor

Kwassi H. Degue, Denis Efimov and Jerome Le Ny

Abstract— Tremor, one of the most common health disor-
ders, is defined as a chronic movement disorder. To reduce
tremor in patients, the design of stabilizing techniques is crit-
ical. For this purpose, we consider an uncertain continuous-
time linear time-varying oscillator model of tremor in this
article. We design a state feedback control for deep brain
stimulation technique by considering the practical case in
which only sets of admissible values are given for the nominal
values of the stimulation amplitude, the time-varying tremor’s
angular frequency and the tremor measurement noise. First,
we estimate state signal bounds that include the true unknown
value of the state. Next, we design a stabilizing control input
based on the estimated bounds. The stability of the controlled
system is verified using linear matrix inequalities (LMIs).
We demonstrate the methodology’s performance in numerical
simulations.

I. INTRODUCTION

Tremor, which is an involuntary, approximately sinu-
soidal movement and roughly rhythmic, is one of the most
common types of movement disorders [1]. Indeed, 6.38 to
7.63 million people were living with Essential Tremor in
the USA in 2014 [2]. Tremor has impacts on sundry parts
of the body, but the hands are the most affected. It is not a
life-threatening disease, but it usually seriously lessens the
patients’ quality of life, since they are not able to execute
simple daily tasks such as opening a door or drinking a
glass of water [3].

An effective therapy for pathological tremor is Deep
Brain Stimulation (DBS) [4]–[6]. Namely, in Parkinson
disease patients, one surgically implants electrodes in the
basal ganglia, commonly in the subthalamic nucleus, to
generate electric-pulse stimulation of multifarious neurons
[7], [8]. Some characteristics of the high-frequency elec-
tronic pulse-train that is applied to the brain are pulse-
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width, amplitude and frequency. Over the last decade,
advanced techniques of controlled DBS have been proposed
to decrease tremor in patients [9]–[12]. Feedback control
techniques have been proposed in [10]–[12] by assuming
that one can measure the perfect value of the tremor,
which constitutes a drawback since real measurements are
usually corrupted by noise. An output feedback control
technique has been developed in [9] by assuming that an
estimation of the perfect value of the stimulation amplitude
is possible, which can be a limitation in many cases. Indeed,
it has been shown that an estimation of such a perfect
value can be highly inaccurate in several cases [9]. In
addition, [9] assumes noiseless outputs in their model, i.e.,
they assume that the noise in the tremor signal is totally
removed by means of a band-pass filter. Nevertheless, for
example by using a second-order Butterworth filter from
3 to 10 Hz in case of tremor [13], [14], only noisy mea-
surements are usually available. Moreover, they propose a
static output feedback controller, which does not include
an observer. When considering dynamic systems, a state
feedback control technique has better performances than a
static output feedback controller. Furthermore, when one
has to handle the presence of exogenous disturbances or
uncertain parameters, whose values are only known to
belong to an interval or polytope, all the aforementioned
methodologies that are proposed in the existing literature
(based on point-wise estimation) cannot be applied. The
use of methodologies based on interval estimators [15]–[17]
instead of point-wise observers can address such problems.

The contribution of this article consists in designing for
the first time a stabilizing state feedback control based
on an interval observer methodology to reduce tremor in
patients. We consider an uncertain continuous-time linear
time-varying oscillator model of tremor, with four types of
uncertainty: the initial condition, the nominal value of the
stimulation amplitude, the time-varying tremor’s angular
frequency and the measurement noise. For these parame-
ters, we assume that the exact values are not available, only
bounds are given. Following [18], [19], first, we evaluate
the state signal bounds, assuming that the control signal is
given. Next, we use these bounds to design a stabilizing
control law for the observer’s system. The stabilization of



the state bounds around a vicinity of zero implies the same
property for the state due to the inclusion relation. Note that
only noiseless systems have been considered in [18] when
applying such a methodology. Furthermore, we consider a
stabilizing control design in this article, in contrast to [20]–
[23] that has studied only observer design problems.

We present the problem statement in Section II. Then,
we rewrite the model as a linear parameter-varying (LPV)
system and review some results on the theory of interval
estimation and on positive systems in Section III. We apply
these results to design state signal bounds and a stabilizing
control input in the rest of Section III. Finally, we illus-
trate the performance of our methodology by presenting
numerical simulations to reduce the tremor of a Parkinson’s
disease patient.

Notation. We denote the real numbers by R, the integers
by Z, R+ = {τ ∈ R : τ ≥ 0} and Z+ = Z ∩ R+. We
denote the cones of vectors of dimension n with positive,
nonnegative, and negative components by Rn>0, Rn+ and
Rn<0 respectively. For a vector x ∈ Rn, we denote |x|∞ :=

maxi∈{1,...,n} |xi|, |x| = |x|2 := (
∑k
i=1 |xi|2)1/2 and we

denote the induced 2-norm of a matrix A ∈ Rn×n by |A|.
For a vector-valued signal u : R+ → Rn, we denote its
L∞-norm as ||u||L∞ := ess supt≥0 |u(t)|∞. We denote by
Ln∞ the set of signals u with the property ||u||L∞ <∞. The
n×n identity matrix is denoted In and the matrix with all
elements equal to 0 and dimension p×1 is denoted 0p. For
two vectors x1, x2 ∈ Rn or matrices A1, A2 ∈ Rn×n, the
relations x1 ≤ x2 and A1 ≤ A2 are understood element-
wise. A matrix A ∈ Rn×n is Hurwitz if all its eigenvalues
have negative real parts; it is called Metzler if all its
elements outside of the main diagonal are nonnegative. The
notation P ≺ 0 (P � 0) means that the matrix P ∈ Rn×n
is symmetric and negative (positive) definite.

II. BACKGROUND

One can characterize a DBS signal by several parameters,
including but not limited to, frequency ω and stimulation
amplitude a that are supplied to a stimulus generator in
order to create a stimulus signal [9]. One applies such a
stimulus signal to a particular part of the brain by using an
electrode in order to overcome cognitive disorder’s motor
symptoms. One can quantify the tremor that is caused
by a brain disorder in terms of position, velocity and
acceleration, by using a sensor that is fixed to a patient’s
finger [14]. One can attenuate the noise in the tremor
signal by using a band-pass filter, for example a second-
order Butterworth filter from 3 to 10 Hz [13], [14]. Further
information about the tremor measurement’s process can be
found in [9], [14].

The whole process dynamics can be modeled as a
simple time-varying oscillator, where DBS parameters are

considered as inputs and the filtered tremor signal as the
output. Throughout this article, we consider the following
continuous-time linear time-varying oscillator model of
tremor dynamics [9], whose design has been inspired by
[24]

ẋ1(t) =− ω2(t)x2(t) + u(t)− a
ẋ2(t) =x1(t), (1)

where x :=
[
x1 x2

]T ∈ R2 is the state vector: x1
represents the normalized tremor (normalized with the
strength of amplitude [9]) and x2 is a state variable of
the oscillator, u ∈ R stands for the control input, ω ∈ R
represents the time-varying tremor’s angular frequency and
a is the stimulation amplitude’s nominal value for which the
tremor related to a brain disorder vanishes. The presence of
the parameter a in the model (1) is appropriate since in case
of brain disease such as Parkinson, the tremor of a patient
is controlled by DBS after selecting stimulation parameters
[25]–[27]. As in [9], we assume that the parameter ω(t)
is uncertain but two bounds ω, ω ∈ R+ are known such
that ω ≤ ω(t) ≤ ω,∀t ≥ 0. In contrast with [9], which
have assumed that an estimation of the perfect value of the
parameter a is possible, we assume in this article that a
is unknown but two bounds a, a ∈ R are given such that
a ≤ a ≤ a,∀t ≥ 0. Indeed, it has been proved that an
estimation of a perfect value of a can be highly inaccurate
in several cases [9].

Furthermore, in contrast to [10]–[12], where it is as-
sumed that the tremor is measured perfectly, we consider
the practical case in which measurements consist of the
tremor corrupted by noise as follows

y(t) =x1(t) + v(t), (2)

where v ∈ L∞ represents a measurement noise. We assume
that v is unknown but two bounds v, v ∈ R are given
such that v ≤ v(t) ≤ v,∀t ≥ 0. The presence of such
a measurement noise is natural since by using a band-pass
filter, one has access to a noisy measurement of the tremor
signal only.

In this article, we aim at reducing the tremor caused by
a brain disorder such that x1 tracks a vicinity of a desired
(healthy) trajectory xd1 = 0. Hence, the goal of this paper
consists in stabilizing system (1) around 0.

III. MAIN RESULTS

Recall that ω(t) is an uncertain parameter that satisfies
ω(t) ∈ Θ ⊂ R, where the set Θ is given (Θ = [ω, ω]). By
using the structure of the system (1)-(2), we can rewrite it



as follows

ẋ(t) =(A0 + ∆A(ω(t)))x(t) +Bu(t)−Ba,
yt =Cx(t) + v(t), (3)

with

A0 =

[
0 1
1 0

]
, ∆A(ω(t)) =

[
0 −ω2(t)− 1
0 0

]
,

B =

[
1
0

]
, C =

[
1 0

]
.

We treat a as an unknown input. By using the definitions
of the parameter ω(t) and the set Θ and using the structure
of the system (3), we deduce that the matrix ∆A(ω(t)) is
uncertain but there exist two given matrices ∆A,∆A ∈
R2×2
<0 such that

∆A ≤ ∆A(ω(t)) ≤ ∆A (4)

for any θ ∈ Θ. Indeed, we get

∆A =

[
0 −ω2 − 1
0 0

]
,

∆A =

[
0 −ω2 − 1
0 0

]
.

Since, we aim at tracking a desired (healthy) trajectory
xd = 0, we solve the problem in two stages. First, we
design an interval observer for x(t), i.e., state signal bounds
x(t) ≤ x(t) ≤ x(t),∀t ≥ 0, assuming that the control
signal u(t) is given. Next, with the observer gain that is
designed a priori, we use the interval observer to design
a tracking control law u(t) = f(x(t), x(t)) that implies
x → xd, x → xd and keeps the relation x(t) ≤ x(t) ≤
x(t),∀t ≥ 0. Notice that the tracking of x(t) and x(t)
implies the same property for the state x(t) due to the
inclusion relation.

We assume that the initial condition x(0) is unknown but
two bounds x(0), x(0) are given such that x(0) ≤ x(0) ≤
x(0). First, let us review some basic facts from the theory
of interval estimation.

A. Preliminaries on interval estimation and positive sys-
tems

Given a matrix A ∈ Rm×n, define A+ = max{0, A},
A− = A+ −A (we use the same notation for vectors).

Lemma 1. [28] Let x ∈ Rn be a vector variable with
x ≤ x ≤ x for some x, x ∈ Rn.

(1) If A ∈ Rm×n is a constant matrix, then

A+x−A−x ≤ Ax ≤ A+x−A−x. (5)

(2) If A ∈ Rm×n is a matrix variable and A ≤ A ≤ A
for some A,A ∈ Rm×n, then

A+x+ −A+
x− −A−x+ +A

−
x− ≤ Ax (6)

≤ A+
x+ −A+x− −A−x+ +A−x−.

Notice that when A,A ∈ Rm×n<0 , the inequality (6)
simply reads

Ax+ −Ax− ≤ Ax ≤ Ax+ −Ax−, (7)

since A = −A−, A+ = 0, A = −A− and A
+

= 0 in such
a case. Furthermore, when A ∈ Rm×n<0 , the inequality (5)
simply becomes

Ax ≤ Ax ≤ Ax, (8)

since A = −A− and A+ = 0.
Next, consider the following linear time-invariant (LTI)

system

ẋ =Ax+Bω(t), ω : R+ → Rq+, (9)
y =Cx+Dω(t),

with x ∈ Rn, y ∈ Rp and A ∈ Rn×n a Metzler matrix.

Lemma 2. [29], [30] Any solution of the LTI system (9) is
element-wise nonnegative provided that x(0) ≥ 0 and B ∈
Rn×q+ . Furthermore, the output solution y(t) is nonnegative
if C ∈ Rp×n+ and D ∈ Rp×q+ . A dynamical system satisfying
all these restrictions is called cooperative (monotone) or
nonnegative.

B. Interval observer design

There exists a matrix L ∈ R2×1 such that the matrix
(A0 − LC) is Metzler to ensure nonnegativity for the in-
terval observer’s errors (for example L =

[
0 0

]T
satisfies

such a condition due to the structure of the model (3) ).
Define

α(t) =∆Ax+(t)−∆Ax−(t),

α(t) =∆Ax+(t)−∆Ax−(t).

By applying Lemma 1, it can be inferred that

α(t) ≤ ∆A(ω(t))x(t) ≤ α(t),∀t ≥ 0. (10)

Since −B ∈ R2×1
<0 by using the structure of the model (3),

one can design an interval estimator for (3) as follows

ẋ(t) =(A0 − LC)x(t) + α(t) +Bu(t) + Ly(t)

−Ba− L+v + L−v,

ẋ(t) =(A0 − LC)x(t) + α(t) +Bu(t) + Ly(t)

−Ba+ L−v − L+v,

(11)



where x ∈ R2 and x ∈ R2 stand respectively for the lower
and the upper interval estimates for the state x. Notice the
nonlinear structure of the interval observer (11) because of
the presence of α and α.

Theorem 1. The estimates x(t) and x(t) given by (11)
yield the relations

x(t) ≤ x(t) ≤ x(t),∀t ≥ 0, (12)

provided that x(0) ≤ x(0) ≤ x(0).

We skip the proofs of our results due to space limitations.
One can compute the observer gain L as solution of a linear
program by using [23, Theorem 7] to ensure boundedness
for the estimation errors e and e. A control algorithm design
is required to stabilize x, x and x.

C. Control Design

The idea consists in stabilizing the completely known
system (11) instead of (3). Indeed, when x and x converge
to the desired trajectory xd, x follows the same property
due to (12). First, we can treat the signal y(t) in (11) as a
state dependent disturbance.
Proposition 1. We have

|y(t)| ≤|C|(|x(t)|+ |x(t)|) + max{|v|, |v|}, ∀t ≥ 0.

Hence the output y admits a linear upper bound in terms
of |x(t)| and |x(t)|. We aim at stabilizing the system (11),
i.e., the states x and x, since its stabilization implies the
stabilization of the system (3). Next, let us prove that
we can rewrite the dynamics (11) as a globally Lipschitz
nonlinear system.

Denote ε(t) :=
[
xT(t) xT(t)

]T
, and

H =

[
A0 − LC 0

0 A0 − LC

]
,

ζ =
[
ζT
1 ζT

2

]T
,

ζ1 =(−B)+a− (−B)−a− L+v + L−v,

ζ2 =(−B)+a− (−B)−a+ L−v − L+v,

φ(ε) =

[
α
α

]
.

In the sequel, also define

γφ =

∣∣∣∣[ 0 0 −∆A ∆A
−∆A ∆A 0 0

]∣∣∣∣ .
Corollary 1. One can rewrite the dynamics (11) as follows

ε̇(t) =Hε(t) + φ(ε(t)) + ζ +

[
B
B

]
u(t) +

[
L
L

]
y(t) (13)

where φ : R4 −→ R4 is a nonlinear function globally
Lipschitz at the origin.

Proposition 1 and Corollary 1 ensure uniqueness for the
solution of (11). Then, we need to stabilize the system (11)
with respect to Lipschitz nonlinearities. We deduce that we
can select the control input as a conventional state linear
feedback

u(t) =K x(t) +K x(t), (14)
=Kε(t),

with K =
[
K K

]
, where K and K are two feedback

gains to be designed. Denote B :=
[
BT BT

]T
and L :=[

LT LT
]T

. After substituting (14) in (13), we get

ε̇(t) =(H + BK)ε(t) + φ(ε(t)) + ζ(t) + Ly(t). (15)

Theorem 2. If there exist matrices P T = P � I4, J =
P−1, QT = Q � 0, R ∈ R1×4 and a constant γ > 0 such
that

Z ≺0, (16)

Z =


W J L I4
J J 0 0
LT 0 −1 0
I4 0 0 −γI4

 ,
W =JHT +RTBT +HJ + BR

+ (γφ + 2|C|2)J +Q,

then the solutions of the system (3), (11), (15) with R =
KJ asymptotically converge to a vicinity of xd:

lim sup
t→+∞

|x(t)| ≤

√
λmax(J−1)

λmin(J−1)λmin(Q)
(
√
γ|ζ|+

√
2 max{|v|, |v|}).

The expression of Z is linear in J , Q and R. Hence, one
can solve (16) as an LMI with respect to these variables
by using standard numerical solvers. The control gain can
be deduced as follows K = RJ−1.

IV. NUMERICAL EXPERIMENTS

We illustrate the performance of the proposed method-
ology with a simulated example on the tremor of a Parkin-
son’s disease patient under DBS with constant angular
frequency ω2(t) = 1400,∀t ≥ 0 and the stimulation
amplitude nominal value a = 1 Volt [14]. Consider the
following values as bounds for these parameter values:
ω2 = 1300, ω2 = 500π, a = 0.8 Volt and a = 1.2 Volt.
The measurements of the tremor signal are corrupted by
a noise sequence v(t) that consists of independent and
identically distributed random numbers sampled from a
uniform distribution over the interval [−V, V ], with V =
0.1 Volt. The state’s initial condition is given by x(0) =[
0.5 0.5

]T
. The measurement of tremor y oscillates from
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Fig. 1. Evolution of the measurement of the tremor when u = 0.

−18.8 Volts to 18.8 Volts (Fig. 1), hence it is required to
stabilize the system (3). To design the bounds x, x, we
select x(0) =

[
0.4 0.4

]T
and x(0) =

[
0.6 0.6

]T
.

We compute the observer gain L as solution of a linear
program by using [23, Theorem 7] to ensure bounded-
ness for the estimation errors e and e. We obtain L =[
86963 0

]T
and the matrix

A0 − LC =

[
−86963 1

1 0

]
is Metzler. It can be inferred from the results of the interval
estimation (Fig. 2) that the bounds provided by (11) respect
the inclusion relation (12).

To design the control input u, we solve the linear matrix
inequality (16) by using the YALMIP toolbox for Matlab
[31]. Notice the superiority of our control methodology
since the control technique that has been proposed in [18]
fails to be applied because these authors have considered
only noiseless outputs. The conditions of Theorem 2 are
satisfied for the systems (3), (11) and (15) with

K =
[
−1.33× 105 1.36× 103

]
,

K =
[
−1.33× 105 1.7× 103

]
.

We see on Fig. 3 that the solution x1 (the tremor) of
the systems (3), (11) and (15) asymptotically converge
to a vicinity of 0 after applying the proposed control
methodology, as required.

V. CONCLUSION

We have considered the problem of reducing tremor in
patients, in the case in which only sets of admissible values
are available for the model’s disturbances and uncertainties.
We have designed a state feedback control to stabilize
estimated bounds of the tremor, which are provided by
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an estimator that we have designed. Due to the inclusion
relation, this implies the stabilization of the tremor. The per-
formance of our technique is illustrated through numerical
simulations. As a direction for future research, the problem
of extending this technique to an uncertain oscillator-based
nonlinear tremor model can be considered.
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