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Abstract: The problem of output accelerated stabilization of a chain of integrators is
considered. Proposed control law nonlinearly depends on the output and its delayed values,
and it does not use an observer to estimate the unmeasured components of the state. It is
proven that such a nonlinear delayed control law ensures practical output stabilization with
rates of convergence faster than exponential. The effective way of computation of feedback
gains is given. It is shown that closed-loop system stability does not depend on the value of
artificial delay, but the maximum value of delay determines the width of stability zone. The
efficiency of the proposed control is demonstrated in simulations.
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1. INTRODUCTION

Output feedback stabilization of dynamical systems is one
of the central problems in the control theory and applica-
tion. For linear systems with relative degrees greater than
one, output derivatives are necessary to construct a control
law. Since sometimes they cannot be measured directly,
their estimates should be obtained, and usually for this
goal the controller dynamics has to be augmented by an
observer Khalil (2002). In some cases, if our control has
to be embedded in an actuator with a low computational
capacity, any decreasing the control low complexity and
dimension is appreciated. To this end one can use finite
time approximations of velocities (Selivanov and Fridman
(2018)), which can be reconstructed based on the value of
position in the current instant of time and a delayed one.
It has been shown that delayed-induced feedback preserves
the stability for small enough values of artificial delay
(Borne et al. (2000); Fridman and Shaikhet (2016)).
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It is worth to mention that inducing artificial delays has
other benefits also. For instance, in Mazenc and Malisoff
(2016); Mazenc et al. (2019) this technique allows one
to relax the smoothness requirements imposed on the
fictitious controls during backstepping design.

In addition, in many applications convergence rate and
the settling time are the main optimization criteria. In
such cases the problem of non-asymptotic (finite-time and
fixed-time) stable system design arises. For example, a con-
vergence rate of homogeneous systems could be changed
significantly by modifying only their degree of homogene-
ity. Another conventional solution for acceleration consists
in feedback gains increasing. Nevertheless, for the time-
delayed systems such a method has a limited use: for any
given delay h sufficiently large gains make the closed-loop
system unstable.

Non-asymptotic stability analysis could be performed by
using different methods. For instance, homogeneous sys-
tems described by ordinary differential equation can be
investigated in a simple way. The main feature of such
systems is that it is necessary and sufficient to study their
behavior on a sphere in state space. However, time-delayed
systems in general do not inherit such properties (Efimov
et al. (2014)).



One of the main theoretical tools for stability analysis
and control synthesis of nonlinear systems is the Lya-
punov function method (Khalil (2002)). In Polyakov et al.
(2013) the Implicit Lyapunov Function (ILF) method has
been extended to non-asymptotic analysis. Theorems on
Implicit Lyapunov-Krasovskii Functional (ILKF) are pre-
sented in Polyakov et al. (2015). Both implicit meth-
ods allow to check all stability conditions by analyzing
the algebraic equations. Therefore, a simple and effective
procedure for parameter tuning based on Linear Matrix
Inequalities (LMIs) can be obtained (see, for example,
Lopez-Ramirez et al. (2018)).

Nevertheless, stability analysis of time-delay systems can
be done not only in the time domain. For example, in
Kharitonov et al. (2005) necessary conditions for the
existence of multiple delay controllers are presented in
terms of Hurwitz stability of some polynomials. However,
feedback gains and admissible delays could be found only
by solving transcendental equations.

The present work studies the problem of nonlinear output
delay-dependent feedback design providing a practical ac-
celerated (faster than exponential) stabilization of a chain
of integrators. Although the chain of integrators is a quite
simple model, it is also a very useful benchworking tool
since all linear controllable systems and many nonlinear
ones can be transformed into this particular form.

The goal of this work is to extend the results obtained in
Efimov et al. (2018) for the case of a second order system
to the chain of n ≥ 2 integrators. However, in this paper
the closed-loop system is not homogeneous, therefore, for
stability analysis Implicit Lyapunov-Krasovskii functional
is introduced. It is proven that the proposed control law
ensures practical output stabilization with the rates of
convergence faster than exponential. In contrast to Efimov
et al. (2018) the effective way of computation of feedback
gains is given. Moreover, it is shown that closed-loop
system stability does not depend on the value of artificial
delay. Nevertheless, maximum value of delay determines
the width of stability zone.

The outline of this work is as follows. The notations and
auxiliary lemmas are given in Section 2. The Implicit
Lyapunov-Krasovskii approach for stability analysis of
time-delay systems is introduced in Section 3. The finite-
differences approximation of derivatives is touched upon in
Section 4. The problem statement and the control design
with stability analysis are considered in section 5. An
example is presented in Section 6.

2. PRELIMINARIES

2.1 Notations

Through the paper the following notations will be used:

• N is the field of natural numbers;
• a series of integers 1, 2, . . . , n is denoted by 1, n;
• R is the field of real numbers, R>0 := {x ∈ R : x > 0}

and R≥0 := R>0 ∪ 0;
• Ci is a class of i times continuously differentiable

functions R>0 → R;
• d·cα := sign(·)| · |α;
• ‖ · ‖ is the Euclidean norm in Rn ;

• C1
h is the space of continuously differentiable func-

tions [−(n−1)h, 0]→ Rn with the norm ‖·‖h defined
as follows ‖Φ‖h := max

τ∈[−(n−1)h,0]
‖Φ(τ)‖ for Φ ∈ C1

h;

• C1,0
h = {Φ ∈ C1

h : Φ(0) = 0} is a subspace of C1
h;

• diag{λi}nj=1 is the diagonal matrix with the elements

λj ∈ R, j = 1, n on the main diagonal;
• if P ∈ Rn×n is symmetric, then the inequalities P > 0

(P < 0) and P ≥ 0 (P ≤ 0) mean that P is positive
(negative) definite and semidefinite, respectively;

• λmin(P ) and λmax(P ) are the minimal and maximal
eigenvalues of a symmetric matrix P ∈ Rn×n, respec-
tively;

• In ∈ Rn×n is the identity matrix and On ∈ Rn×1 is
the zero column;

•
(
j
i

)
:= j!

i!(j−i)! is the binomial coefficient;

• |ε|A := infη∈A ‖ε− η‖ is the distance between ε ∈ Rn
and A ⊆ Rn.

2.2 Auxiliary lemmas

Lemma 1. (Solomon and Fridman (2013)). Let f, κ : [a, b]
→ [0,∞) and φ : [a, b] → R be such that integration
concerned is well defined. Then:[ b∫

a

κ(s)φ(s)ds
]2
≤

b∫
a

f−1(s)κ(s)ds

b∫
a

f(s)κ(s)φ2(s)ds.

Lemma 2. (Lopez-Ramirez et al. (2018)). For ∀s ∈ [0, 1],
β ∈ R>0 \ {1} the function gβ(s) := |sβ − s| admits the
following estimate

max
s∈[0,1]

gβ(s) ≤ gβ(β1/(1−β)).

3. IMPLICIT LYAPUNOV-KRASOVKSII
FUNCTIONAL APPROACH

Consider the system of the form

ẋ(t) = f(xt), t ∈ R>0, x0 = Φ ∈ D ⊆ C1
h, (1)

where x(t) ∈ Rn, xt ∈ C1
h is the state function defined by

xt(τ) := x(t+ τ) with τ ∈ [−(n− 1)h, 0] with h > 0 (time
delay) and f : C1

h → Rn is a continuous operator. Assume
that the origin is an equilibrium point of the system (1),
i.e. f(0) = 0. A solution of the system (1) with the initial
function Φ ∈ D is denoted by x(t,Φ).

In applications frequently it is only required to stabilize the
origin of the system in some zone, the width of which is
determined by technical requirements. The next definition
present an asymptotically stability with respect to the set.

Definition 3. The system (1) is said to be asymptotically
stable with respect to the set A, if it is:

a) Lyapunov stable with respect to the set A:
for any ε > 0 there exists ∆(ε) > 0 such that
|x(t,Φ)|A ≤ ε for all t ≥ 0 and Φ ∈ D : ‖Φ‖h ≤ ∆;

b) attractive with respect to the set A:
|x(t,Φ)|A → 0 as t→∞ for any Φ ∈ D.

If the set could be chosen as A = 0, then the origin of the
system (1) is asymptotically stable. The set D is called the
domain of attraction of the system (1). If D = C1

h, then
the corresponding stability becomes global. �



In this paper only asymptotic stability is considered.
Therefore, hereafter stability relates to asymptotic one.

Before formulating the theorem concerning stability anal-
ysis of time-delay systems using ILKF, a special class of
comparison functions introduced by the following defini-
tion.

Definition 4. (Polyakov et al. (2015)). The function q :
R2
>0 → R, (ρ, s)→ q(ρ, s) is said to be of the class IK∞ if

and only if:

1) q is continuous on R2
>0;

2) for any s ∈ R>0 there exists ρ ∈ R>0 such that
q(ρ, s) = 0;

3) for any fixed s ∈ R>0 the function q(·, s) is strictly
decreasing on R>0;

4) for any fixed ρ ∈ R>0 the function q(ρ, ·) is strictly
increasing on R>0;

5)
lim
s→0+

(ρ,s)∈Γ

ρ = lim
ρ→0+

(ρ,s)∈Γ

s = 0, lim
s→∞

(ρ,s)∈Γ

ρ =∞,

where Γ = {(ρ, s) ∈ R2
>0 : q(ρ, s) = 0}. �

The next theorem on Implicit Lyapunov-Krasovskii func-
tional presents conditions that guarantee stability of the
nonlinear time-delayed system.

Denote partial derivatives of functional Q(V, χ) at time

instant t as follows: Q′t(V, xt) := ∂Q(V,χ)
∂χ

∣∣∣
χ=xt

f(xt) and

Q′V (V, xt) := ∂Q(V,χ)
∂V

∣∣∣
χ=xt

.

Theorem 5. If there exists a continuous functional Q :
R>0 × C1

h → R such that:

C1) for all χ ∈ C1
h the function (V, τ) → Q(V, χ(τ)) is

continuously differentiable;
C2) for any χ ∈ C1

h there exists V ∈ R>0 such that
Q(V, χ) = 0;

C3) there exist qi ∈ IK∞, i = 1, 2 such that for all
V ∈ R>0

q1(V, ‖χ(0)‖) ≤ Q(V, χ), ∀χ ∈ C1
h \ C

1,0
h ,

Q(V, χ) ≤ q2(V, ‖χ‖h), ∀χ ∈ C1
h \ {0};

C4) Q′V (V, χ) < 0 for all V ∈ R>0 and χ ∈ C1
h such that

Q(V, χ) = 0;
C5) for all (V, xt) ∈ Ω = {(V, xt) ∈ (Vmin, Vmax) × C1

h :
Q(V, xt) = 0} such that xt satisfies (1), we have

Q′t(V, xt) ≤ θV 1+µQ′V (V, xt), ∀t ∈ R>0,

where µ ∈ (−1, 0) ∪ R>0, θ > 0, Vmin, Vmax ∈ R≥0.

Then the system is stable with the domain of attraction

D := {Ψ ∈ C1
h : Q(Vmax,Ψ) ≤ 0} (2)

(globally stable if Vmax = +∞) with respect to the set

A := {Ψ ∈ C1
h : Q(Vmin,Ψ) ≤ 0} (3)

(at the origin if Vmin = 0).

The transition between sets S1 := {Ψ ∈ C1
h : Q(V1,Ψ) =

0} and B2 := {Ψ ∈ C1
h : Q(V2,Ψ) ≤ 0} is bounded as:

T (µ,S1,B2) ≤ (V −µ2 − V −µ1 )/(θµ), (4)

where Vmin ≤ V2 < V1 ≤ Vmax. �

Proof. This Theorem can be proven in the same way
as Theorems 2 and 3 in Polyakov et al. (2015) and for

brevity the proof is omitted. Nevertheless, it is worth to
note that condition C5) provides V̇ ≤ −θV 1+µ, since

Q̇ := Q′t(V, xt)+Q′V (V, χ)V̇ = 0 for all (V, xt) ∈ Ω. Hence,
Theorem 5 implies the stability and the transition time
estimate (4). 2

4. FINITE-DIFFERENCES APPROXIMATION OF
DERIVATIVES

In this section the exact form of finite-differences approx-
imation error δi(t) := ỹi(t)− y(i)(t) is presented.

Proposition 6. (Selivanov and Fridman (2018)). If y ∈ Ci
and y(i) is absolutely continuous with i ∈ N, then the
following relation holds:

δi(t) =
ỹi−1(t)− ỹi−1(t− h)

h
− y(i)(t)

= −
∫ 0

−ih
ϕi(−τ)y(i+1)(t+ τ)dτ,

(5)

where ỹ0(t) := y(t) and

ϕ1(ξ) := 1− ξ/h, ξ ∈ [0, h]

ϕi+1(ξ) :=



∫ ξ

0

ϕi(λ)

h
dλ+

h− ξ
h

, ξ ∈ [0, h],∫ ξ

ξ−h

ϕi(λ)

h
dλ, ξ ∈ (h, ih),∫ ih

ξ−h

ϕi(λ)

h
dλ, ξ ∈ [ih, ih+ h].�

(6)

For further stability analysis some characteristics of the
functions ϕi are introduced.

Proposition 7. The functions ϕi(ξ) defined in (6) and

ψi(ξ) :=
∫ ih
ξ
ϕi(λ)dλ possess the following properties:

P1) ϕ′i ≤ 0;
P2) ϕi(ξ) + ϕi(ih− ξ) = 1;
P3) ψi(0) = ih/2 and ψi(ih) = 0;
P4) ψ′i(ξ) = −ϕi(ξ);
P5) ϕi(ξ) is concave on ξ ∈ [0, ih/2] and convex on

ξ ∈ [ih/2, ih] for i ≥ 2;
P6) ψi(ξ) ≤ (ih/2)ϕi(ξ);

P7) ζi :=
∫ ih

0
ϕ2

i (ξ)
ψi(ξ)

dξ does not depend on h;

P8) for all xi+1(t) = y(i)(t) it holds:∫ 0

−ih
ϕi(−τ)ẋ2

i+1(t+ τ)dτ ≥ 2

ih
δ2
i (t), (7a)∫ 0

−ih
ψi(−τ)ẋ2

i+1(t+ τ)dτ ≥ 1

ζi
δ2
i (t). � (7b)

Proof of the properties P1)–P4) can be found in Selivanov
and Fridman (2018). Other properties can be proven using
P1)–P4) and Lemma 1, but due to space limitation are not
presented in this paper.

It is worth to note that ζi is well-defined. Indeed, function
ϕ̃i(ξ) := ϕ2

i (ξ)/ψi(ξ) is continuous on ξ ∈ [0, ih) and
ϕ̃i(ih−) = 0. Therefore, function ϕ̃i(ξ) is integrable.

5. NONLINEAR DELAY-DEPENDENT CONTROL

5.1 Problem statement

Consider a chain of n ≥ 2 integrators:



{
ẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t),

(8)

where x(t) ∈ Rn is the state vector, u(t) ∈ R is the control
input, y(t) ∈ R is the output available for measurements
and

A =

[
On−1 In−1

0 O>n−1

]
, B = [0 . . . 0 1]

>
, C = [1 0 . . . 0] .

The goal is to design an output-feedback control practi-
cally stabilizing the system (8) with the rate of conver-
gence faster than exponential.

5.2 Main result

Define nonlinear delay-dependent control algorithm as
follows:

u = Kdx̃cα (9)

where

K = [K1 . . . Kn] , dx̃cα = [dx̃1cα1 . . . dx̃ncαn ]
>
,

x̃1(t) := x1(t), x̃i+1(t) :=
x̃i(t)− x̃i(t− h)

h
, i = 1, n− 1,

αj := 1/rj , rj(µ) := 1− (n+ 1− j)µ, j = 1, n. (10)

Let us rewrite control law (9) in a form suitable for
practical implementation:

u(t) =

n∑
j=1

Kj

⌈ j−1∑
i=0

(−1)i

hj−1

(
j − 1

i

)
zi(t)

⌋αj

, (11)

where

zi(t) :=

{
y(t− ih), t > ih,

y(0), t ≤ ih.
Therefore, control (11) depends on only n+ 2 parameters:
h > 0 is the artificial delay, µ ∈ (−1, 0) ∪ (0, 1/n) is
the degree of nonlinearity and Kj < 0, j = 1, n are
feedback gains. The restrictions on effective selection of
these parameters and the conditions to check are given in
the following theorem.

Before formulating the main result, let us introduce an
Implicit Lyapunov-Krasovskii functional (ILKF) by the
equality:

Q(V, χ) := −1 + χ>(0)Λ−rV PΛ−rV χ(0)

+V µ
n−1∑
i=1

∫ 0

−ih
ψi(−τ)

2ζ

ihS

[
V −ri+2 χ̇i+1(τ)

]2
dτ,

(12)

where P = P> > 0 and Λ−rV := diag{V −rj}nj=1.

Theorem 8. Let for some µ ∈ (−1, 0)∪ (0, 1/n) the system
of LMIs:

0 < XHr +HrX ≤ 2ω(µ)X (13a)[
X Y >

Y 1

]
≥ 0,

[
X In
In SIn

]
≥ 0,

[
aIn X
X SIn

]
≥ 0,[

b S
S 1

]
≥ 0, X ≤ 1

2
In,

(13b)

Φ11 b‖σ‖B B Y >

∗ −S 0 b‖σ‖
∗ ∗ −4ζ(1− a) 1
∗ ∗ ∗ −S/ζ

 ≤ 0, (13c)

where

Hr := diag{rj}nj=1, ω(µ) :=

{
1− (n+ 1)µ, µ < 0,

1, µ > 0,

Φ11 := XA> + Y >B> +AX +BY + (ζ + 2)aIn,

σj := gαj
(α

1/(1−αj)
j ), ζ := max

i=1,n−1

∫ i

0

ϕ2
i (ξ̄)∫ i

ξ̄
ϕi(λ̄)dλ̄

dξ̄

be feasible for some S, a, b > 0, X ∈ Rn×n, X = X> > 0,
Y ∈ R1×n, with j = 1, n.

Then for any h > 0 the system (8), (11) with K := Y X−1:

a) is globally stable with respect to the set A (3), where
Vmin := ((n− 1)hS)−1/µ, if µ < 0;

b) is stable at the origin with the domain of attraction
D (2), where Vmax := ((n− 1)hS)−1/µ, if µ > 0;

c) converges from the set S1 to the set B2 with time
estimate (4), where 1/θ := 2ω(µ)S2. �

The proof of Theorem 8 is given in Appendix A.

Corollary 9. If LMIs (13) from Theorem 8 are feasible
for some µmax, then they also hold for all µ = γµmax,
0 ≤ γ ≤ 1. �

Proof. Indeed, rj(µ) could be rewritten as:

rj(µ) = (1−γ)+γ−(n+1−j)γµmax = (1−γ)+γrj(µmax).

Therefore, condition (13a) can be expressed as follows

0 < 2(1− γ)X + γ(XHrmax
+Hrmax

X) ≤ 2ω(µ)X,

where rmax = r(µmax).

Clearly, this condition holds for all µ = γµmax, 0 ≤ γ ≤ 1,
since 0 < XHrmax

+ Hrmax
X ≤ 2ω(µmax)X and ω(µ) =

(1− γ) + γω(µmax).

And taking into account that:

µ
∂σj
∂µ

= µr

rj
1−rj

j

n+ 1− j
1− rj

ln (rj) sign(gαj (α
1/(1−αj)
j )) > 0,

one can deduce that max
µ
‖σ‖ = ‖σ(µmax)‖. Hence, in-

equality (13c) also holds for all µ = γµmax. 2

Therefore, Corollary 9 postulates that sufficiently small µ,
for which LMIs (13) are feasible, always could be found.

The following proposition claims that for any feedback
gains K, obtained as the solution of LMIs (13) from
Theorem 8, and fixed delay h, the nonlinear closed-loop
system (8), (11) with µ 6= 0 is always converging faster
than its linear analog with µ = 0 between properly selected
sets S1 and B2, which depend on µ and h.

Proposition 10. Let conditions of Theorem 8 hold for some
µ ∈ (−1, 0) ∪ (0, 1/n). Then there exist two sets S1 :=
{V1 ≥ 1,Ψ ∈ C1

h : Q(V1,Ψ) = 0} and B2 := {V2 ≤ 1,Ψ ∈
C1
h : Q(V2,Ψ) ≤ 0} such that in the system (8) and the

control (11):

T (µ,S1,B2) < T (0,S1,B2) (14)

for fixed K and h > 0 satisfying

h ≤
{
V −µ2 /((n− 1)S) for µ < 0,

V −µ1 /((n− 1)S) for µ > 0. �

A procedure for selection of sets S1 and B2 is given in the
proof below.

Proof. For linear system µ = 0 the time of convergence
between sets S1 and B2 is lower-bounded:

T (0,S1,B2) ≥ T0(h)(lnV1 − lnV2),



where T0(h) is the fastest time of transition between levels
V ′1 = e and V ′2 = 1 for µ = 0, given delay h and fixed K.

From (4) it follows that condition (14) is verified if:

(V −µ2 − V −µ1 )/(θµ) ≤ T0(h)(lnV1 − lnV2)

or taking into account property c) from Theorem 8

V −µ1 − V −µ2

lnV −µ1 − lnV −µ2

<
T0(h)

2(1− (n+ 1)µ)S2
for µ < 0,

V −µ2 − V −µ1

lnV −µ2 − lnV −µ1

<
T0(h)

2S2
for µ > 0,

which for any µ ∈ (−1, 0) (µ ∈ (0, 1/n)), h > 0 and
V2 ∈ [Vmin, 1] (V1 ∈ [1, Vmax]) could be guaranteed by
decreasing V1 (increasing V2).

Conditions on h guarantee that A ⊂ B2 for µ < 0 and
S1 ⊂ D for µ > 0. 2

Remark 11. Since the system (8), (11) keeps a constant
value of µ for all t ≥ 0, then it is clear that the set S1

represents the set of initial conditions.

Remark 12. Taking into account that V −µ2 ≤ 1 for µ < 0

and V −µ1 ≤ 1 for µ > 0, it follows that the maximum value
of artificial delay is bounded as:

hmax := 1/((n− 1)S). (15)

On the one hand, the greater values of h leads to the bigger
stable set for µ < 0 and smaller domain of attraction
for µ > 0. On the other hand, the smaller values of
h could make the control system (11) unimplementable.
Therefore, there is the minimum value of artificial delay
hmin depending on technical realization.

6. EXAMPLE

Consider a chain of three integrators to show the main ad-
vantages of the proposed control law. Selecting µ = −0.01
and µ = 0.01 one can obtain, respectively, the follow-
ing feedback gains K− = [−0.9754, −2.4398, −1.9303],
K+ = [−0.9667, −2.4473, −1.9459] and S− = 11.4824,
S+ = 11.5149.

According to (15), the maximum value of artificial delay
is hmax = 0.0434 s. Therefore, let us choose the nominal
value as h = 0.025 s to enlarge the stability zone and to
keep the control system implementable.

The norm of the state x(t) obtained in simulation of the
system (8) governed by the proposed nonlinear output
delay-induced feedback (11) (blue solid line) in comparison
with linear one (red solid line), as well as nonlinear (blue
dashed line) and linear (red dashed line) state feedback,
are depicted in figures 1 and 2 in logarithmic scale. For the
sake of clarity, the feedback gains K are chosen the same
for all control schemes as well as parameter µ for both
nonlinear feedback and artificial delay for delay-dependent
control laws.

Obviously, in the nonlinear case the rate of convergence is
faster than in the linear one close to the origin for µ < 0
and far outside for µ > 0. Moreover, proposed control law
and nonlinear state feedback show the same performance.
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Fig. 1. Trajectories of stabilized system with µ = −0.01
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Fig. 2. Trajectories of stabilized system with µ = 0.01

7. CONCLUSION

The paper addresses the problem of output feedback
stabilization of a chain of integrators using a nonlinear
delay-dependent control law that achieves the rates of
convergence faster than exponential. The effective way of
computation of feedback gains is presented. It is shown
that the value of artificial delay does not affect closed-
loop system stability, but determines the width of stability
zone. Simulation results show feasibility of the proposed
control scheme. The efficiency of the proposed approach
is demonstrated in simulations, and a comparison with
a linear analogue as well as nonlinear and linear state
feedback is carried out.
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Appendix A. PROOF OF THEOREM 8

Let us show that ILKF (12) satisfies all conditions from
Theorem 5. Since proof of conditions C1)–C3) can be done
in a straightforward way (see, for example, Polyakov et al.
(2015)), we just focus on conditions C4) and C5).

A. Proof of condition C4) of Theorem 5

The derivative of Q(V, χ) with respect to V is:

V Q′V (V, χ) = −χ(0)>Λ−rV [HrP + PHr]Λ
−r
V χ(0)

−V µ
n−1∑
i=1

(2ri+2 − µ)

∫ 0

−ih
ψi(−τ)

2ζ

ihS

[
V −ri+2 χ̇i+1(τ)

]2
dτ.

Taking into account (13a), one can see that:

0 < HrP + PHr ≤ 2ω(µ)P, max
i=1,n−1

2ri+2 − µ < 2ω(µ).

So we finally conclude that

−ω(µ) ≤ V Q′V (V, χ) < 0 (A.1)

for all V ∈ R>0 and χ ∈ C1
h such that Q(V, χ) = 0.

Therefore, the condition C4) of Theorem 5 hold. 2

B. Proof of condition C5) of Theorem 5

If x(t) is the solution of the system (8), (9), then using
properties P3) and P4), we obtain

Q′t(V, xt) = 2x>Λ−rV PΛ−rV

[
Ax+BKdx̃cα

]
−V µ

n−1∑
i=1

∫ 0

−ih
ϕi(−τ)

2ζ

ihS

[
V −ri+2 ẋi+1(t+ τ)

]2
dτ

+V µ
n−1∑
i=1

ζ

S

[
V −ri+2 ẋi+1(t)

]2
= Σ1 + Σ2 + Σ3.

(A.2)

Taking into account that Λ−rV A = V µAΛ−rV and Λ−rV BK =
V −rnBK = V −1+µBK, the first term in (A.2) could be
rewritten as follows:

Σ1 = 2V µx>Λ−rV P (A+BK)Λ−rV x
+2V µx>Λ−rV PBKd1 + 2V µx>Λ−rV PBKd2,

(A.3)

where

d1 := V −1dx̃cα − Λ−rV x̃ = dV −rx̃cα − Λ−rV x̃,

d2 := Λ−rV x̃− Λ−rV x = Λ−rV [0, δ1, . . . , δn−1]>.

Obviously, disturbance terms d1 and d2 represent nonlin-
ear deviation of feedback and finite-differences approxima-
tion error respectively.

The second term in (A.2) either can be upper-bounded by
using property P6) and supposing that d>1 d1 ≤ ‖σ‖2:

Σ2 ≤ −V µS
( V −µ

(n− 1)hS

)[
1 +

d>1 d1

‖σ‖2
− 2x>Λ−rV PΛ−rV x

]
or by using (7a):

Σ2 ≤ −4ζV µ
( V −µ

(n− 1)hS

)2

Sd>2 d2.

It is easy to see that the term Σ2 could compensate cross-
terms in (A.3) for V ≥ Vmin if µ < 0 or V ≤ Vmax if
µ > 0. Therefore, only global stability with respect to the
set A (3) and stability at the origin with the domain of
attraction D (2) could be obtained for µ < 0 and µ > 0
respectively. Hence, we deduce:

Σ2 ≤ −S−2V µ(1 + ‖σ‖−2d>1 d1 − 2x>Λ−rV PΛ−rV x)

−4ζ(1− S−3)V µSd>2 d2.

Taking into account that from (13b) it follows that:

K>K ≤ P ≤ SIn ≤ aS2P 2 ⇒ 1/S3 ≤ a, S2 ≤ b,
the term Σ2 could be finally estimated as follows:

Σ2 ≤ −S−2V µ − S(b‖σ‖)−2V µd>1 K
>Kd1

+2aV µx>Λ−rV P 2Λ−rV x− 4ζ(1− a)V µd>2 K
>Kd2.

(A.4)

Since S−1In ≤ aP 2, the third term in (A.2) is bounded:

Σ3 ≤ ζV µ(ax>Λ−rV P 2Λ−rV x+ S−1[V −1ẋn]2), (A.5)

where
V −1ẋn = KΛ−rV x+Kd1 +Kd2.

Combining (A.3)–(A.5), applying the Schur complement
with respect to the vector [x>Λ−rV , (b‖σ‖)−1Kd1,Kd2]>

and using (13c), we deduce that Q′t(V, xt) ≤ −S−2V µ.
Taking into account (A.1), we conclude the proof. 2

C. Proof of the estimate d>1 d1 ≤ ‖σ‖2

The nonlinear disturbance term d>1 d1 can be rewritten as:

d>1 d1 =

n∑
j=1

[
|V −rj x̃j |αj − |V −rj x̃j |

]2
. (A.6)

Applying (7b) to (12) for all (V, xt) ∈ Ω, we deduce that:

1 ≥ x>Λ−rV PΛ−rV x+

n−1∑
i=1

2ζ

ζi

(V −µ
ihS

)[
V −ri+1δi

]2
.

Since ζ ≥ ζi for any h > 0 due to P7) and V −µ ≥ (n−1)hS,
the following inequality holds for P ≥ 2In:

1 ≥ 2

n∑
j=1

[
V −rjxj

]2
+ 2

n−1∑
i=1

[
V −ri+1δi

]2
≥

n∑
j=1

[
V −rj x̃j

]2
.

Hence, it follows that |V −rj x̃j | ≤ 1 and, applying Lemma
2 to (A.6), one can finally conclude that d>1 d1 ≤ ‖σ‖2. 2


