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Abstract

A non-overlapping domain decomposition method (DDM) is proposed for the parallel finite-
element solution of large-scale time-harmonic wave problems. It is well-known that the convergence
rate of this kind of method strongly depends on the transmission condition enforced on the inter-
faces between the subdomains. Local conditions based on high-order absorbing boundary conditions
(HABCs) have proved to be well-suited, as a good compromise between basic impedance conditions,
which lead to suboptimal convergence, and conditions based on the exact Dirichlet-to-Neumann
(DtN) map related to the complementary of the subdomain — which are too expensive to compute.
However, a direct application of this approach for configurations with interior cross-points (where
more than two subdomains meet) and boundary cross-points (points that belong to both the exte-
rior boundary and at least two subdomains) is suboptimal and, in some cases, can lead to incorrect
results.

In this work, we extend a non-overlapping DDM with HABC-based transmission conditions ap-
proach to efficiently deal with cross-points for lattice-type partitioning. We address the question of
the cross-point treatment when the HABC operator is used in the transmission condition, or when
it is used in the exterior boundary condition, or both. The proposed cross-point treatment relies on
corner conditions developed for Padé-type HABCs. Two-dimensional numerical results with a nodal
finite-element discretization are proposed to validate the approach, including convergence studies
with respect to the frequency, the mesh size and the number of subdomains. These results demon-
strate the efficiency of the cross-point treatment for settings with regular partitions and homogeneous
media. Numerical experiments with distorted partitions and smoothly varying heterogeneous media
show the robustness of this treatment.

1 Introduction

The efficient and accurate finite element solution of high-frequency time-harmonic wave problems, such
as scattering and wave propagation problems, remains a challenging issue in computational engineer-
ing. Indeed, first, the unbounded domain must be truncated, which requires a specific treatment to
simulate the outward propagation of outgoing waves. Then, the discretization of formulations related to
Helmholtz-type problems leads to very large, complex and indefinite (dense or sparse) linear systems,
especially in the high-frequency regime, corresponding to the situation where the wavelength is small
compared with the characteristic size of the scatterer.

Various approaches have been designed for solving high-frequency scattering problems. Among the
most popular ones, the boundary element method (BEM) based on the discretization of a boundary
integral equation [19, 63], in conjunction with a preconditioned Krylov subspace iterative solver [1, 20]
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and fast compression algorithms of integral kernels [15, 16, 67], is a first direction. An alternative for
engineering applications is to introduce a boundary condition on a fictitious surface or an absorbing
boundary layer enclosing the scatterer to truncate the domain and then to discretize the associated
variational formulation in the bounded volume domain e.g. using a finite element method (FEM). Many
possibilities exist to bound the computational domain. Basically, there is always a trade-off between
accuracy and computational effort when choosing one of the truncation strategies. The most basic
absorbing boundary condition (i.e. Sommerfeld’s condition) is easy to use but is not very accurate. Non-
local non-reflective boundary conditions [11, 48] and BEM–FEM coupling [26] have been proposed, which
give the perfect accuracy but yield expensive additional costs due to their non-local nature, leading to
dense matrix blocks into the discrete weak formulation. As a good compromise between accuracy and
computational cost, local high-order absorbing boundary conditions (HABCs) [3, 34, 51] and perfectly
matched layers (PMLs) [8, 9, 75] provide high accuracy (at least for problems with homogeneous media)
at the price of a larger number of unknowns and associated computational cost. The accuracy and the
cost can be controlled by choosing the order of the HABC or the thickness of the PML. Usually, PMLs
are easier to implement than HABCs, but the selection of the tuning parameters of a HABC is simpler
to manage. In this article, we consider the HABC developed in [61].

Once the weak formulation is discretized thanks to the FEM with HABCs, the sparse linear system
remains to be solved. It is well-known that this issue is still problematic since the sparse complex-
valued linear system is very large and highly indefinite, most particularly for high frequencies. A direct
solver cannot be used and standard Krylov iterative solvers are extremely difficult to make converge. A
natural alternative solution which has been introduced more than 30 years ago is to use an iterative/direct
hybrid approach based on a domain decomposition of the large global computational domain, and iterate
between the subdomains where local subproblems are solved in parallel by a direct solver. Tremendous
efforts have been made to develop efficient domain decomposition methods (DDMs) with good rate of
convergence (see e.g. [30, 66, 74] for general introductions). For Helmholtz-type problems, we can mention
Schwarz methods with overlap [17, 44, 53] or without overlap [6, 23, 40], FETI algorithms [27, 37–39]
and the method of polarized traces [78], which are eventually combined with preconditioning techniques
(see e.g. [25, 46, 49, 69, 70, 76]). A recent overview of these methods has been proposed by Gander and
Zhang [45].

In this work, we investigate a domain decomposition approach with non-overlapping subdomains,
which minimizes the data transfer between subdomains. It is admitted that the convergence rate of the
non-overlapping DDMs strongly depends on the transmission condition enforced on the interfaces between
the subdomains. The optimal transmission operator corresponds to the non-local Dirichlet-to-Neumann
(DtN) map related to the complementary of the subdomain, which is a Schur complement at the discrete
level. Since the cost of computing the exact DtN is prohibitive, strategies based on approximate DtN
operators started to be investigated in the late 80’s and early 90’s (see e.g. [50, 62]). For Helmholtz-
type problems, Després [6, 28] used Robin-type transmission conditions and proved that the iterative
DDM converges. The Robin-type operator is a coarse approximation of the exact DtN operator which
is sometimes used as a basic absorbing boundary condition (Sommerfeld’s ABC). Improved Schwarz
methods with optimized transmission conditions based on modified second-order transmission operators
have next been introduced in [40, 65]. In parallel, FETI methods were adapted to Helmholtz problems
as FETI-H [27, 37] and FETI-DPH [39] techniques, which can be interpreted as substructuring DDMs
with optimized transmission conditions and preconditioning techniques. Later, domain decomposition
strategies with HABC-based transmission conditions were developed to improve the convergence rate
and robustness of the methods [13, 14, 52, 57], as well as PML-based approaches [4, 68, 69, 76] and
non-local transmission conditions [24, 54, 71]. As for ABCs, transmission boundary conditions related to
HABCs and PML represent a good compromise between the basic impedance conditions (which lead to
suboptimal convergence) and the exact Dirichlet-to-Neumann (DtN) map related to the complementary
of the subdomain (which is expensive to compute).

In the perspective of large-scale applications, the DDMs must be applicable with domain partitions
having interior cross-points (where more than two subdomains meet) and boundary cross-points (that
belong to both the exterior boundary and at least two subdomains). For non-overlapping DDMs, the
cross-points require special care at both continuous and discrete levels. For Robin-type operators, the
convergence is proved for the continuous case and mixed finite element discretizations in [6, 28]. These
proofs are extended for more general abstract operators in [23]. Several approaches have been proposed
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for nodal finite element discretizations. In the FETI framework, dual methods, of which [27, 37] are
examples, lead to saddle point problems with constraints associated to the cross-points. These constraints
can be redundant (see e.g. [30, 66, 74] for more details). The direct discretizations of the optimized
Schwarz methods described in [40, 65] belong to this category. In the context of elliptic problems, several
non-standard discretizations at the cross-points have been investigated in [41–43, 56]. With primal–dual
methods, such as FETI-DPH [39] and the method proposed in [7, 12], global variables are associated to
the physical fields at the cross-points. When combined with a preconditioning technique, this approach
improves the convergence, but it requires all-to-all communications to solve a global system, which could
deteriorate the parallel scaling of the method. Recently, cross-point treatments have been investigated
for second-order transmission operators [29, 64] and non-local transmission approaches [21, 22]. PML-
type operators have been tested in configurations with cross-points, but only in the context of DDM
preconditioning [4, 55, 68]. The treatment of interior cross-points for optimized solvers with HABC-
based, PML-based and non-local transmission conditions is a complicated problem which has, to the
best of our knowledge, not been carefully addressed.

In the present paper and following [14], we consider an optimized non-overlapping DDM with a trans-
mission condition based on a Padé-type HABC operator. In [14], no specific cross-point treatment was
used on both interior and boundary cross-points. In addition, only first- and second-order exterior ABCs
were considered. Here, we address the question of the cross-point treatment when the HABC operator
is used in the transmission condition, or when it is used in the exterior boundary condition, or both.
By contrast with the works reviewed in the previous paragraph, a specific care is required already at
the continuous level. Indeed, for a complete definition of the local problems defined on the subdomains,
additional conditions are required at the interior corners of the subdomains. Following the recent con-
tribution [61] on the treatment of corners with HABCs, we introduce suited corner conditions into the
variational formulation of the subproblems and additional transmission variables at the cross-points. The
obtained cross-point treatment accelerates the convergence of the method with a very limited overcost.
When a HABC is used as an exterior condition, the cross-point treatment is actually necessary, since
the method cannot converge without it. While the approach is designed for regular lattice-type domain
partition (i.e. with only parallel and perpendicular interfaces) and wave propagation in homogeneous
media, it gives very good results with distorted partitions and smoothly varying heterogeneous media.

The paper is organized as follows. In Section 2, we present the Helmholtz boundary-value problem
with a HABC and its suitable corner treatment based on adding suitable boundary conditions. The
nodal FEM formulation is given next. Section 3 introduces the optimized Schwarz DDM with high-order
transmission boundary conditions. The cross-point treatment is detailed for two subdomains and then
for the multi-subdomain decomposition. The FEM formulation is next stated and some technical aspects
about the algorithmic procedure are discussed. In Section 4, we propose some numerical examples to
analyze the behavior of the proposed method. Three model configurations with lattice-type partitions
are considered for the convergence study. The sensitivity of the method to the tuning parameters of the
HABC operator is studied, as well as the influence of the frequency, the mesh refinement and the number
of subdomains. After, a numerical investigation with heterogeneous media and distorted partitions is
proposed. Finally, we conclude in Section 5.

2 Helmholtz problem with HABC and corner treatment

To describe the method, we consider a two-dimensional Helmholtz problem defined on a rectangular
computational domain Ω, {

−∆u− κ2u = s, in Ω,

∂nf
u+ Bfu = 0, on each Γf ,

(1)

where κ is the wavenumber, assumed to be a positive constant, and s(x) is a source term. In the
numerical simulations, the source term is replaced with a scattering object. The edges of the rectangle
are denoted by Γf (f = 1 . . . 4). For each edge Γf , ∂nf

is the (exterior) normal derivative and Bf is an
impedance operator which takes into account the behavior of waves outside the computational domain,
that we suppose to be the free-space here. We take the convention that the time-dependence of the fields
is e−ıωt, where ω is the angular frequency and t is the time.
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To simulate wave propagation in free-space, the simplest boundary condition is the Sommerfeld
Absorbing Boundary Condition (ABC), which corresponds to using the impedance operator Bf = −ıκ
on the edges. This condition is cheap and easy to use, but the accuracy is known to be poor. In this work,
we consider Padé-type high-order absorbing boundary conditions (HABCs) [3, 34, 51, 61], which provide
a better accuracy. To preserve the accuracy at the corners of the rectangle, a specific treatment based
on compatibility relations derived in [61] is used leading to very low spurious reflections at the boundary.
For the HABC, a finite element implementation of the problem is described later. Let us remark that
other alternative solutions could be considered for truncating the free-space, like for example by using the
well-known Perfectly Matched Layer (PML) approach introduced by Bérenger in [8] and studied e.g. in
[9, 75] for Helmholtz-type problems. Nevertheless, we do not address this situation here since PMLs are
related to the introduction of a surrounding layer which is out of the framework presented here.

2.1 High-order absorbing boundary condition (HABC)

The Padé-type HABC is obtained by approximating an exact non-reflecting boundary condition derived
for planar boundaries. Assuming that the exterior medium is homogeneous and free of sources, solving
the exterior half-space problem gives the exact (non-local) boundary condition ∂nu+Bexu = 0, with the
(pseudo-differential) impedance operator Bex defined as

Bex = −ıκ
√

1 + ∂ττ/κ2, (2)

where ∂n and ∂τ are respectively the (exterior) normal and tangential derivatives (see e.g. [34]). Following
[59], this operator is localized by using a Padé approximation of the square-root after a rotation of the
branch-cut. For each face Γf , this leads to the HABC impedance operator

Bf = −ıκαf

1 +
2

Mf

Nf∑
i=1

cf,i

(
1− α2

f (cf,i + 1)
[
(α2
fcf,i + 1) + ∂τfτf /κ

2
]−1
) , (3)

with αf = eıφf/2, cf,i = tan2(iπ/Mf ) and Mf = 2Nf +1. The accuracy of the Padé-type HABC depends
on the number of terms Nf and the angle of rotation φf (see [51, 61] for further details). In particular,
the parameters Nf = 0 and φf = 0 yield Bf = −ıκ, which corresponds to the basic ABC.

For the effective implementation of the HABC, Nf auxiliary fields {ϕf,i}i=1...Nf
are defined on Γf ,

and the boundary condition is rewritten as

∂nf
u+Bf

(
u, {ϕf,i}i=1...Nf

)
= 0, on Γf , (4)

with the operator Bf defined as

Bf

(
u, {ϕf,i}i=1...Nf

)
= −iκαf

u+
2

Mf

Nf∑
i=1

cf,i (u+ ϕf,i)

 . (5)

The additional fields are governed by the auxiliary equations

−∂τfτfϕf,i − κ2
[
(α2
fcf,i + 1)ϕf,i + α2

f (cf,i + 1)u
]

= 0, on Γf . (i = 1 . . . Nf ) (6)

The linear multivariate function Bf is introduced to simplify the expressions in the remainder of the
paper.

2.2 Corner treatment

When the HABC is prescribed on a boundary with corners, a specific treatment must be used at the
corners. Because of the second-order spatial derivative in equation (6), boundary conditions must be
added on the auxiliary fields at the extremities of each edge, which are at the corners of the domain.
In a previous work [61], we have analyzed several strategies to preserve the accuracy of the solution at
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the corners. For configurations with right angles, the best approach consists in using a different set of
auxiliary fields for each edge, with compatibility relations to couple the auxiliary fields of adjacent edges
at the common corner.

Consider two adjacent edges Γf and Γf ′ meeting at the corner Pf,f ′ = Γf ∩ Γf ′ . Two sets of surface
fields {ϕf,i}i=1...Nf

and {ϕf ′,i′}i′=1...Nf′ are defined on Γf and Γf ′ , respectively. Globally, a total of
Nf + Nf ′ boundary conditions must be written on these auxiliary fields at the corner Pf,f ′ . Following
the approach detailed in [61], well-suited conditions are such that

∂nf′ϕf,i +Bf ′

(
ϕf,i, {ψff ′,ii′}i′=1...Nf′

)
= 0, on Pff ′ , (i = 1 . . . Nf ) (7)

∂nf
ϕf ′,i′ +Bf

(
ϕf ′,i′ , {ψf ′f,i′i}i=1...Nf

)
= 0, on Pff ′ , (i′ = 1 . . . Nf ′) (8)

with Nf ×Nf ′ auxiliary variables {ψff ′,ii′}i=1...Nf ,i′=1...Nf′ defined as

ψff ′,ii′ = −
α2
f ′(cf ′,i′ + 1)ϕf,i + α2

f (cf,i + 1)ϕf ′,i′

α2
fcf,i + α2

f ′cf ′,i′ + 1
, on Pff ′ . (i = 1 . . . Nf , i

′ = 1 . . . Nf ′) (9)

Let us remark that ψf ′f,i′i = ψff ′,ii′ . In a nutshell, the HABC defined on the field u on one edge is
also imposed on the auxiliary fields living on the adjacent edge at the common corner [61], with new
auxiliary variables defined at the corner. For instance, the HABC set on Γf ′ is also forced on the fields
{ϕf,i}i=1...Nf

at Pf,f ′ (equation (7)).

As a particular case, let us consider a configuration with a HABC given on Γf and the basic ABC
set on the adjacent edge Γf ′ , i.e.

∂nf
u+Bf

(
u, {ϕf,i}i=1...Nf

)
= 0, on Γf , (10)

∂nf′u− ıκu = 0, on Γf ′ . (11)

At the corner Pf,f ′ , Nf boundary conditions must be imposed on the auxiliary fields living on Γf .
Following the approach, the basic ABC must be prescribed

∂nf′ϕf,i − ıκϕf,i = 0, on Pf,f ′ , (i = 1 . . . Nf ) (12)

which corresponds to equation (7) with Nf ′ = 0 and φf ′ = 0.

2.3 Finite element formulation

The problem finally consists in solving the main field u on the rectangular domain with a HABC on each
edge by (4). Auxiliary fields defined on the edges are governed by 1D Helmholtz equations through (6)
and are coupled at the corners by auxiliary relations by (7)-(8) and auxiliary variables using (9). If the
basic ABC is given for the main field on an edge, there is no auxiliary field on that edge, and the basic
ABC is prescribed on the auxiliary variables living on the adjacent edges at the common corners.

In order to solve the problem with a finite element scheme, we straightforwardly adapt the bilinear
form of the Helmholtz equation. The variational formulation of the problem reads: find u ∈ H1(Ω) and
ϕf,i ∈ H1(Γf ), for f = 1 . . . 4 and i = 1 . . . Nf , such that∫

Ω

[
∇u · ∇v − κ2uv

]
dΩ +

4∑
f=1

∫
Γf

Bf
(
u, {ϕf,i}i=1...Nf

)
v dΓ =

∫
Ω

sv dΩ, ∀v ∈ H1(Ω),

and∫
Γf

[(
∂τfϕf,i

) (
∂τf ρf

)
− κ2

(
(α2
fcf,i + 1)ϕf,i + α2

f (cf,i + 1)u
)
ρf
]
dΓ

+
∑
f ′

[
Bf ′
(
ϕf,i, {ψff ′,ii′}i′=1...Nf′

)
ρf

]
Pff′

= 0, ∀ρf ∈ H1(Γf ).

In the last equation, the index f ′ corresponds to any edge Γf ′ adjacent to Γf , and the variables
{ψff ′,ii′}i′=1...Nf′ are defined on Pff ′ by equation (9). Standard Lagrange finite elements can then
be used to discretize the problem.
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Figure 1: Terminology and transmission variables across the interface edges. In this example, the continuity of
the local solution u1 and u2 on the interface edge Γ1,f = Γ2,g is ensured thanks to the transmission variables g1,f
and g2,g.

3 Domain decomposition method with cross-point treatment

In this section, we present a non-overlapping domain decomposition method (DDM) for lattice-type
partitions of the domain. The convergence of the method is accelerated by using a Padé-type HABC as a
transmission condition with a novel strategy to deal with cross-points. This strategy relies on the corner
treatment derived for the HABCs in the previous section. The DDM and the cross-point strategy are
presented in Sections 3.1 and 3.2, respectively. The finite element scheme and the algorithmic procedure
are described in Section 3.3.

We consider a partition of the rectangular domain Ω into a grid of rectangular non-overlapping
subdomains ΩI (I = 1 . . . Ndom). The edges of each subdomain ΩI are denoted by ΓI,f (f = 1 . . . 4). Each
edge is either a boundary edge if it belongs to the boundary of the global domain (ΓI,f ⊂ ∂Ω), or an
interface edge if there is a neighboring subdomain beyond the edge (ΓI,f 6⊂ ∂Ω). In this decomposition,
two kinds of points deserve attention: the boundary cross-points that belong to two subdomains and that
touch the boundary of the global domain, and the interior cross-points belonging to four subdomains
and that do not touch the boundary of the global domain. These edges and points are illustrated in
Figure 1 for a 2× 2 partition.

3.1 Optimized Schwarz-type domain decomposition method (DDM)

Following the standard optimized Schwarz-type method, the global problem (1) is decomposed into local
subproblems defined on the subdomains. The solution uI for the subdomain ΩI is obtained by solving{

−∆uI − κ2uI = s, in ΩI ,

∂nI,f
uI + BI,fuI = gI,f , on each ΓI,f ,

(13)

where BI,f is an impedance operator and gI,f is a transmission variable which is set to zero if ΓI,f
is a boundary edge, while it depends on the local solution belonging to the neighboring subdomain if
ΓI,f is an interface edge. In the latter case, to ensure the compatibility with the global problem, the
transmission variable is defined as

gI,f = ∂nI,f
uJ + BI,fuJ , (14)

where uJ is the solution of the neighboring subdomain ΩJ . Since a subproblem similar to system (13) is
defined on ΩJ , another transmission condition is prescribed on the edge shared by ΩI and ΩJ . Denoting
the shared interface edge as ΓJ,g = ΓI,f , the transmission condition reads

∂nJ,g
uJ + BJ,guJ = gJ,g (15)

with a supplementary transmission variable defined as gJ,g = ∂nJ,g
uI + BJ,guI . If we assume that the

impedance operators used on both sides of the interface are the same, which means BI,f = BJ,g, we have

gI,f = −gJ,g + 2BJ,guJ , (16)
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by combining equations (14) and (15).

In the global iterative DDM procedure, each iteration consists in solving concurrently all the sub-
problems (13) and updating the transmission variables using equation (16) (see Section 3.3 for further
details). For a fast convergence of this procedure, the impedance operators used at the interface edges
must be chosen wisely. Ideally, for a given subdomain, the operators should correspond to the DtN map
related to the complementary of the subdomain. Approximations of this DtN map are also used to define
ABCs. Indeed, if there is no source outside the subdomain, the transmission variables in the local system
(13) are canceled, and the transmission conditions should be non-reflecting boundary conditions.

Following [14], the impedance operators for the transmission conditions are based on Padé-type
HABCs. For each subdomain ΩI , the local solution uI verifies −∆uI − κ2uI = s, in ΩI ,

∂nI,f
uI +BI,f

(
uI , {ϕI,f,i}i=1...NI,f

)
= gI,f , on each ΓI,f ,

(17)

with the transmission variable gI,f that verifies

gI,f =

0, if ΓI,f ⊂ ∂Ω,

− gJ,g + 2BJ,g

(
uJ , {ϕJ,g,j}j=1...NJ,g

)
, if ΓI,f 6⊂ ∂Ω.

(18)

The second equation of system (17) is a boundary condition if ΓI,f is a boundary edge, or a transmission
condition if ΓI,f is an interface edge. In both cases, if NI,f > 0, auxiliary fields {ϕI,f,i}i=1...NI,f

are
defined on the edge, and are governed by

−∂τI,fτI,fϕI,f,i − κ2
[
(α2
I,fcI,f,i + 1)ϕI,f,i + α2

I,f (cI,f,i + 1)uI
]

= 0, on ΓI,f , (19)

with i = 1 . . . NI,f . The parameters of the transmission conditions used on both sides of an interface
edge must be the same (i.e. NI,f = NJ,g and φI,f = φJ,g, with ΓI,f = ΓJ,g), since we assumed that the
impedance operators are the same on a shared interface. For consistency, the same boundary condition
must be prescribed on the boundary edges of the subdomains and on the corresponding edges of the
global domain.

Boundary conditions must be set on the auxiliary fields at the extremities of the edges because of
the second-order partial derivative in the governing equation (19). The extremities of an edge are at
corners of a subdomain, and correspond to interior cross-points, boundary cross-points or corners of the
global domain. The cross-point treatment, described in the next section, actually provides the missing
boundary conditions at the cross-points.

3.2 Dealing with cross-points

The cross-point treatment relies on the corner treatment described in Section 2. It is applied at the cor-
ners of the subdomains. Depending on the configuration, it provides boundary conditions or transmission
conditions for the auxiliary fields at the cross-points. In the latter case, new transmission variables are
defined at the cross-points.

3.2.1 Two-subdomain case

To describe the approach, we first consider a partition of the rectangular domain Ω into two rectangular
subdomains with an interface Γ and two boundary cross-points. Three configurations, represented on
Figure 2, are studied: the basic ABC prescribed on ∂Ω with a HABC-based transmission condition
on Γ (Configuration 1), a HABC on ∂Ω with a transmission condition based on the basic ABC on Γ
(Configuration 2), and the HABC operator used both for ∂Ω and Γ (Configuration 3). Because the
HABC is used on the exterior boundary and/or the interface, a specific treatment must be used at the
boundary cross-points.

In the first configuration (Figure 2a), auxiliary fields are defined on both sides of the interface. These
fields require boundary conditions at the extremities of the interface, which are corners of the subdomains.
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(a) Configuration 1
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(b) Configuration 2
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(c) Configuration 3
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Figure 2: Three configurations for two-subdomain case. The exterior boundary condition is a basic ABC or a
HABC, and the transmission condition is based on the HABC operator or the basic ABC operator. The thin
gray lines illustrate the position of auxiliary fields. The black arrows indicate where boundary conditions are
required for auxiliary fields. The red arrows indicate transmission conditions on the edge or at the cross-points.

The basic ABC is set on the adjacent edges (i.e. the upper and lower boundary edges). Following the
strategy of Section 2, the basic ABC is also given on the auxiliary fields at the boundary cross-points.

In the second configuration (Figure 2b), a HABC is given on each global edge Γf in the global
problem, auxiliary fields are defined on each edge and the corner treatment is used. After the domain
partition, a HABC is imposed on each boundary edge ΓI,f of each subdomain ΩI , and a set of auxiliary
fields is defined on each of these edges. For the consistency of the global problem, the parameters of the
HABC on ΓI,f must be the same as the parameters of the HABC given on the global edge Γf ⊃ ΓI,f .
For a global edge Γf that has been divided by the partitioning (upper and lower edges in Figure 2b), the
continuity of the auxiliary fields must be enforced at the cross-points. As the ABC-based transmission
condition is used on the main field on the interface, this transmission condition is also used on each
auxiliary field at the boundary cross-points and auxiliary transmission variables are defined at these
points.

The last configuration combines the difficulties. The exterior boundary condition and the transmission
condition are based on HABCs (Figure 2c). The auxiliary fields living on every edge require boundary
conditions at the boundary cross-points. To deal with this case, we recall that the operators used on
the edges of each subdomain should approximate the DtN map of the free-space if the exterior medium
relative to each subdomain is homogeneous. If the transmission variables are canceled, it corresponds to
forcing a HABC on every edge. Therefore, we apply the corner treatment described in Section 2 to all the
corners of the subdomains, which gives boundary conditions for the auxiliary fields. If the transmission
variables are not canceled, the continuity of the fields {uI}I=1,2 is enforced at the interface thanks to the
right-hand side of the second equation of system (13). For the auxiliary fields living on the boundary
edges, the boundary conditions at the cross-point become transmission conditions by adding transmission
variables in the right-hand sides, as for the second configuration. These transmission variables verify
relations similar to equation (18) at the cross-points.

3.2.2 Multi-subdomains case

In the general case, the rectangular domain Ω is partitioned into a grid of rectangular subdomains, with
interior and boundary cross-points. The strategy relies on the following principles, which generalize the
approaches used for the three previous configurations:

• The same transmission condition is used on both sides of each interface edge. The boundary
condition used on each boundary edge is the same as the one prescribed on the corresponding edge
of the global domain. In the domain partition, the HABC operators used on edges that are on a
same line have the same parameters (e.g. in Figure 3: the top edges of Ω1 and Ω2, the top edges
of Ω3 and Ω4, the left edges of Ω1 and Ω4, . . . ).

• If auxiliary fields are defined on an edge ΓI,f of a subdomain ΩI , boundary conditions or trans-
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for cross points

Γ1,f

Γ1,f ′

Γ4,g′

Γ4,g

Figure 3: Transmission variables across the boundary and interior cross-points, if the HABC operator is used both
in the exterior boundary condition and in the interface conditions. In the example, the continuity of the auxiliary
fields ϕ1,f,i and ϕ4,g,i (defined on the aligned edges Γ1,f and Γ4,g) at the interior cross-point P1,ff ′ = P4,gg′ is
ensured thanks to the transmission variables g1,ff ′,i and g4,gg′,i. These variables verify equation (21).

mission conditions must be set on these fields at the extremities of this edge (which can be interior
cross-points, boundary cross-points, or corners of Ω). These conditions are given by the condition
already used for uI on the adjacent edges. If a transmission condition is used on uI on an adjacent
edge, transmission conditions are considered on the auxiliary fields at the cross-point, and new
transmission variables are introduced.

• The corner treatment described in Section 2 is used at the corners of each subdomain, which gives
boundary conditions to the auxiliary fields living on the edges. At the cross-points, these conditions
can become transmission conditions by adding transmission variables in the right-hand sides, which
are similar to equation (18).

Following these principles, the description of the problem with domain decomposition can be completed.

For each subdomain ΩI , the local solution uI verifies equations (17). For each edge ΓI,f , the transmis-
sion variable gI,f satisfies equation (18). Each auxiliary field ϕI,f,i (i = 1 . . . NI,f ) defined on a boundary
or interface edge ΓI,f is such that

−∂τI,fτI,fϕI,f,i − κ2
(
(α2
I,fcI,f,i + 1)ϕI,f,i + α2

I,f (cI,f,i + 1)uI

)
= 0, on ΓI,f ,

∂nI,f′ϕI,f,i +BI,f ′

(
ϕI,f,i, {ψI,ff ′,ii′}i′=1...NI,f′

)
= gI,ff ′,i, on each PI,ff ′ ,

(20)

with the transmission variable gI,ff ′,i

gI,ff ′,i =

0, if ΓI,f ′ ⊂ ∂Ω,

− gJ,gg′,i + 2BJ,g

(
ϕJ,g,i, {ψJ,gg′,ii′}i′=1...NJ,g′

)
, if ΓI,f ′ 6⊂ ∂Ω.

(21)

In these relations, ΓI,f ′ is any edge that is adjacent to ΓI,f , and PI,ff ′ = ΓI,f ∩ΓI,f ′ is the corner that is
shared by these edges. The second equation of system (20) is a boundary condition if ΓI,f ′ is a boundary
edge, or a transmission condition if ΓI,f ′ is an interface edge. The transmission variable is set to zero in
the former case, and it depends on the solution of the other side of ΓI,f ′ in the latter case. The variables
ψI,ff ′,ii′ are defined using equation (9).

In equation (21), the indices are chosen in such a way that ΩJ is the neighboring subdomain on the
other side of ΓI,f ′ , the edge ΓJ,g′ is shared by the subdomains (i.e. ΓI,f ′ = ΓJ,g′), and the edge ΓJ,g is
aligned with ΓI,f (i.e. f = g), as illustrated in Figure 3. The variable gJ,gg′,i is used in a transmission
condition for an auxiliary field ϕJ,g,i living on ΓJ,g. Therefore, the transmission conditions enforce the
continuity of the auxiliary fields ϕI,f,i and ϕJ,g,i, which live on edges that are on the same line. Let
us note that, since the HABC parameters are the same for edges that are aligned, NI,f = NJ,g and
φI,f = φJ,g.
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3.3 Finite element scheme and algorithmic procedure

Each step of the DDM iterative procedure consists in solving a local subproblem on each subdomain, and
updating the transmission variables both on the interface edges and at the cross-points. The numerical
solution of the subproblems is performed with a standard nodal finite element scheme built on a conformal
mesh made of triangles or quadrangles. For each subdomain ΩI , the variational formulation of the
subproblem reads: find uI ∈ H1(ΩI) and ϕI,f,i ∈ H1(ΓI,f ), with i = 1 . . . NI,f and f = 1 . . . 4, such that

∫
ΩI

[
∇uI · ∇vI − κ2uIvI

]
dΩI +

4∑
f=1

∫
ΓI,f

BI,f

(
uI , {ϕI,f,i}i=1...NI,f

)
vI dΓI,f

=

∫
ΩI

svI dΩI +

4∑
f=1

∫
ΓI,f

gI,fvI dΓI,f , ∀vI ∈ H1(ΩI), (22)

and∫
ΓI,f

[
(∂τI,fϕI,f,i) (∂τI,f ρI,f )− κ2

(
(α2
I,fcI,f,i + 1)ϕI,f,i + α2

I,f (cI,f,i + 1)uI

)
ρI,f

]
dΓI,f

+
∑
f ′

[
BI,f ′

(
ϕI,f,i, {ψI,ff ′,ii′}i′=1...NI,f′

)
ρI,f

]
PI,ff′

=
∑
f ′

[
gI,ff ′,i ρI,f

]
PI,ff′

, ∀ρI,f ∈ H1(ΓI,f ). (23)

In the last equation, the index f ′ corresponds to any edge ΓI,f ′ adjacent to ΓI,f , and PI,ff ′ = ΓI,f∩ΓI,f ′

is the shared corner. The variables ψI,ff ′,ii′ are defined using (9). This variational formulation is an
extension of the one used in [14] (see equation (62) in that reference). In that work, there is only one set
of auxiliary fields and equations on the subdomain boundary ∂ΩI . Here, there is one set for each edge
ΓI,f of the subdomain, and new terms appear in (23) to deal with the corners of the subdomain.

In the DDM iterative procedure, the transmission variables computed at an iteration n are used
in the right-hand side of equations (22)-(23) to compute the local fields of the iteration n + 1. The
transmission variables are then updated using equations (18)-(21). Therefore, at each iteration, the
interface transmission variables are computed using

g
(n+1)
I,f = −g(n)

J,g + 2BJ,g

(
u

(n+1)
J , {ϕ(n+1)

J,g,j }j=1...NJ,g

)
, (24)

for each interface edge ΓI,f 6⊂ ∂Ω. Similarly, the cross-point transmission variables are updated through

g
(n+1)
I,ff ′,i = −g(n)

J,gg′,i + 2BJ,g

(
ϕ

(n+1)
J,g,i , {ψ

(n+1)
J,gg′,ii′}i′=1...NJ,g′

)
, (25)

at each cross-point PI,ff ′ , with ΓI,f ′ 6⊂ ∂Ω.

The global process can be recast as one application of an iterative operator A : G → G defined by

g(n+1) = Ag(n) + b, (26)

where g(n) ⊂ G is the set of transmission data, and b depends on the source term s. This can be seen
as one iteration of the Jacobi method to solve the linear system (I − A)g = b, where I is the identity
operator. Following a well-known strategy (see e.g. [7, 14]), a GMRES Krylov subspace iterative solver
is used on the top of the DDM procedure to solve this linear system efficiently. Here, by contrast with
most of the works, the transmission data contains transmission variables associated to both interfaces
and cross-points.

4 Numerical results

This section reports some finite element simulations to study the HABC-based domain decomposition
method with cross-point treatment. After a description of three benchmarks in Section 4.1, we analyze the
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(a) Configuration 1 (b) Configuration 2 (c) Configuration 3

Figure 4: Scattering benchmarks: real part of the scattered field of the reference numerical solution for the three
configurations with κ = 4π. The basic ABC, a HABC and the second-order Bayliss–Turkel ABC are set on the
exterior border, respectively.

convergence history (Section 4.2), the sensitivity to the HABC parameters (Section 4.3) and the influence
of the wavenumber, the mesh density and the number of subdomains on the convergence rate (Section
4.4). Finally, configurations with distorted domains partitions and smoothly varying heterogeneous
media are investigated in Section 4.5.

4.1 Description of the benchmarks

The reference benchmark used through this section is the scattering of an incident plane wave uinc(x) =
eıκx by a sound-soft circular scatterer. For a circle of radius R centered at the origin, the scattered field
is given by

uref(r, θ) = −
∞∑
m=0

εmı
m Jm(κR)

H
(1)
m (κR)

H(1)
m (κr) cos(mθ), r ≥ R, (27)

where (r, θ) are the polar coordinates, Jm is the mth-order Bessel’s function, H
(1)
m is the mth-order first-

kind Hankel function, and εm is the Neumann function which is equal to 1 for m = 0 and 2 otherwise.

Three configurations are considered. For the first configuration (Figure 4a), the finite element simula-
tions are performed on the square computational domain [−1.25, 6.25]× [−1.25, 6.25] with checkerboard
partitions. The scatterer is the unit disk centered at the origin. The basic ABC, i.e. ∂nu − ıκu = 0,
is set on the exterior boundary of the domain. Because this boundary condition is a rather inaccurate
non-reflecting boundary treatment, the numerical solution contains both the scattered field and spurious
waves reflected on the exterior boundary. For the second configuration (Figure 4b), the HABC is used
on the edges of the square domain with the suited treatment at the corners. The HABC parameters
N = 6 and φ = 0.3π have been selected to avoid any visible modeling error in the numerical solution
(i.e. the numerical error due to the finite element scheme is significantly larger than the modeling error
due to the approximate boundary condition — see [61]). For the third configuration (Figure 4c), we have
considered a circular domain of radius R1 = 4 with radial/longitudinal partitions. The second-order
Bayliss–Turkel ABC [2, 5]

∂ru− ıκu+
1

2R1
u− 1

8R2
1(R−1

1 − ıκ)
u− 1

2(R−1
1 − ıκ)

∂ττu = 0, (28)

is given on the exterior circular boundary, where ∂τ = R−1
1 ∂θ is the tangential derivative over the circle

of radius R1 in polar coordinates (r, θ).

For all the configurations, the finite element scheme is based on meshes made of second-order curvi-
linear triangular elements and quadratic polynomial basis functions (P2). The Dirichlet BC u = −uinc
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is set at the boundary of the (sound-soft) scatterer. By default, the wavenumber is κ = 4π and the
characteristic number of vertices per wave length is nλ = 10. The meshes of the square domain and the
circular domain are made of 56 538 and 49 718 triangles, respectively. For the three configurations, the
relative L2-errors of the finite element solutions compared to the reference solution (27) are 2.2× 10−1,
2.4× 10−3 and 1.7× 10−3, respectively. We used the GetDDM framework [73] which combines the mesh
generator Gmsh [47] and the finite element solver GetDP [31].

4.2 Convergence analysis

We begin by analyzing the convergence of the DDM procedure with cross-point treatment for the different
configurations. The relative L2-errors and the relative residuals are plotted as functions of the number of
the GMRES iterations in Figure 5 for the three configurations. The L2-error is calculated by comparing
the solution obtained in each subdomain to the reference numerical solution computed on the same
mesh without domain decomposition. In every case, HABC-based transmission conditions with different
numbers of auxiliary fields are tested (N = 0, 2, 4 and 6 with φ = 0.3π). The effect of the cross-point
treatment is analyzed by keeping or removing the corresponding terms in the finite element scheme. The
latter case consists in setting a homogeneous Neumann BC on the auxiliary fields at the cross-points.
On all the figures, the dotted lines are associated to results without the cross-point treatment.

For the first configuration (i.e. square domain with basic ABC), the relative residual and the relative
error have the same order of magnitude in all the cases (Figures 5a-5b) and decrease during the iterations.
Using the cross-point treatment clearly accelerates the convergence, especially for transmission conditions
with large values of N . The number of iterations to reach a relative error of magnitude 10−6 is reduced
by 20% to 40% thanks to the treatment. When the cross-point treatment is enabled, the decay of residual
and error can be accelerated further, up to a certain point, by taking a number of auxiliary fields N
sufficiently large. Taking higher values for N does not change the results, while, without the cross-point
treatment, increasing N slightly slows down the decays.

The good results obtained with the cross-point treatment and N sufficiently large can be interpreted
by looking at the numerical solution after each iteration (Figure 6). At the initialization, the right-
hand side term of the iteration system is computed by solving each subproblem with source terms
only (see Section 3). Here, only the subdomain containing the scattering disk has a source, and then
non-zero solution (Figure 6a). The numerical solution in this subdomain is already rather accurate
since the transmission condition acts as a HABC, and the cross-point treatment behaves as the suited
corner treatment. Since there is neither source nor very significant reflected waves generated outside
the subdomain, the HABC and the corner treatment constitute a very good boundary treatment for
the subdomain. During the iterations, the signal is propagated from subdomain to subdomain. At the
fourth iteration, the signal reaches the last subdomain. This coincides with a sharp reduction of both
the residual and error by an order one in magnitude.

For the second configuration (i.e. square domain with HABC), the impact of the cross-point treatment
is more important. When the cross-point treatment is not enabled, the residuals decrease with the
iterations (Figure 5c), but the relative errors reach a plateau and stagnate at 10−1 (Figure 5d). This can
be explained by noting the only difference with the previous configuration: a HABC is prescribed on the
exterior boundary instead of a basic ABC, and auxiliary fields defined on the edges of the domain Ω.
Without the cross-point treatment, the derivative of these auxiliary fields is set to zero at the boundary
cross-points. Then, the problem with domain decomposition is not compatible with the original problem,
and the iterative schemes converge towards a wrong solution. To fix this, the continuity of the auxiliary
fields living on the boundary edges must be enforced at the boundary cross-points. With the cross-point
treatment, transmission conditions are set at the boundary cross-points, and the error decays together
with the residual, as it should be. It is worth to note that the absence of cross-point treatment in the
first configuration does not break the convergence of the error because no auxiliary fields are defined on
the boundary edges. In that case, the problem with domain partition is compatible with the original
problem.

When comparing the results of the two first configurations for high values of N , we observe that the
error decays faster for the second configuration, especially between the iterations 3 and 4, where the
error drops by at least 3 orders of magnitudes. This tremendous result is likely due to the specificity
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(a) Residual history for configuration 1
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(b) L2-error history for configuration 1
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(c) Residual history for configuration 2
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(d) L2-error history for configuration 2
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(e) Residual history for configuration 3
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(f) L2-error history for configuration 3

0 10 20 30 40 50
GMRES iteration

10−6

10−5

10−4

10−3

10−2

10−1

100

R
el

at
iv

e
L

2
−

er
ro

r

N = 0

N = 2

N = 4

N = 6

Figure 5: Evolution of relative residual (left) and relative L2-error (right) in the course of the GMRES iterations
for the three configurations represented in Figure 4. HABC-based transmission conditions with N = 0, 2, 4, 6
auxiliary fields and φ = 0.3π are used. The dotted lines correspond to the results obtained when the cross-point
treatment is not used. Handling the cross-point procedure is represented by continuous lines.
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(a) Solution after initialization (b) Solution after 1 iteration (c) Solution after 2 iterations

(d) Solution after 3 iterations (e) Solution after 4 iterations (f) Solution after 5 iterations

Figure 6: Evolution of the solution during the GMRES iterations for configuration 1 and the HABC-based
transmission condition with N = 4 and φ = 0.3π. The first picture is obtained after initialization of the right-
hand side of the transmission system.

of the benchmark: the exact scattering solution verifies the exact free-space boundary condition on the
boundary and the interfaces. Since the HABC is used both as exterior BC and transmission condition,
the exact behavior of the solution is captured with a few iterations. By contrast, when the basic ABC
is used as exterior BC, small waves reflected on the ABC must travel towards the subdomains.

For the third configuration (i.e. circular domain with Bayliss–Turkel ABC), both the relative residual
and the relative error decrease in all the cases. Again, the decay is faster with the cross-point treatment.
Let us highlight that no treatment is used at the boundary cross-points, which corresponds to the junction
of interface edges with the exterior boundary (with a Bayliss–Turkel ABC) or the border of the circular
scatterer (with an inhomogeneous Dirichlet BC). The method can then be applied to settings with such
boundary conditions without any issue.

4.3 Sensitivity to the HABC parameters

The efficiency of the transmission condition depends on the number N of auxiliary fields and the rotating
angle φ. To study the sensitivity of the convergence to these parameters, we perform the DDM procedure
with several values of N and φ for the three configurations. The number of GMRES iterations to reach
the relative residual 10−6 is reported in Figure 7 for the first configuration.

For any given φ, increasing the number of auxiliary fields N accelerates the convergence, up to a
certain limit, as already mentioned in the previous section. The only exception is for φ = 0. Nevertheless,
increasing N leads to a higher computational cost and the amount of data to exchange at the cross-points.
It is then advantageous to take the smallest N yielding the best convergence. For practical applications,
the optimal N would likely depend on the configuration.

The selection of the parameter φ is an important matter, because it accelerates the convergence of
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Figure 7: Number of GMRES iterations to reach the relative residual 10−6 in configuration 1 for different values
of the number of auxiliary fields N and rotating angle φ. For each column (i.e. each value of N), cells in yellow
correspond to the minimal number of iterations, while cells in gray are up to 10% from the minimal number of
iterations.

the iterative process at no additional cost. We observe first that the Padé case (φ = 0) gives the worst
result in all the cases, and it should be avoided. The optimal value for φ, represented for each N by
yellow cells in Figure 7, depends on the number N of auxiliary fields. This can make the parameter
selection rather tricky. Fortunately, the number of iterations is not very sensitive to φ as soon as φ is
sufficiently large (i.e. larger than π/4 here). The range of the nearly-optimal values of φ, represented by
the gray zone in Figure 7, is indeed rather wide.

The results for the other configurations lead to similar conclusions. They are not reported here for
the sake of conciseness. In the remainder of the paper, we always use φ = 0.3π, which is a nearly-optimal
value for all the configurations.

4.4 Influence of the wavenumber, the mesh density and the number of sub-
domains

In this section, we study the sensitivity of the method with respect to the wavenumber κ, the mesh
density nλ and the number of subdomains. High frequency simulations are challenging because they
require fine meshes with high mesh densities to avoid the pollution effect. The efficiency of the method
for large values of κ and nλ is therefore an important issue.

Figure 8 shows the number of iterations to reach the relative residual 10−6 with respect to κ and nλ for
the various configurations and several values of N . For configurations 1 and 3, the dotted lines correspond
to cases where the cross-point treatment is not used. As discussed in Section 4.2, the compatibility is
not ensured for configuration 2 if the cross-point treatment is not used.

We first analyze the influence of κ on the convergence. For N = 0, the number of iterations increases
with respect to κ in all the cases (Figures 8a, 8c and 8e). The increase is very slow for the second
configuration, and faster for the third one. For higher values of N , the convergence does not change
significantly with κ when the cross-point treatment is used. As already observed, higher values of N
accelerate the convergence, and the convergence is slower if the cross-point treatment is not used.

For the first and third configurations, the number of iterations increases with the mesh density nλ
for all the values of N (Figures 8b and 8f). Fortunately, the number of iterations can be kept constant
when increasing nλ by taking N larger: the number of iterations then remains approximately 20 for
the first configuration and 17 for the third configuration. Therefore, a convergence independent of the
mesh density can be achieved provided that N is sufficiently large. This was already observed in [14] on
benchmarks without cross-points treatment. The results are slightly different for the second configuration
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(a) Number of iterations vs κ for configuration 1
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(b) Number of iterations vs nλ for configuration 1
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(c) Number of iterations vs κ for configuration 2
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(d) Number of iterations vs nλ for configuration 2
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(e) Number of iterations vs κ for configuration 3
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(f) Number of iterations vs nλ for configuration 3
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Figure 8: Number of GMRES iterations to reach the relative residual 10−6 as a function of the wavenumber κ
with a fixed mesh density nλ = 10 (left) or as a function of the mesh density nλ with a fixed wavenumber κ = 4π
(right) to assert the scaling of the solution with κ and nλ.
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(a) Scaling for configuration 1 (b) Scaling for configuration 3

Figure 9: Number of GMRES iterations to reach the relative residual 10−6 for different number of subdomains
to assert the scaling of the procedure. The size of the main domain increases with the number of subdomains in
the x-, y- and r-directions.

(Figure 8d): the number of iterations increases very slowly for N = 0 and 2, while it decreases until
a plateau for N = 6 and 12. The plateau is lower for N = 12 than for N = 6. This is likely due to
the fact that the numerical solution is closer to the exact free-space scattering solution, and that the
HABC-based transmission condition is perfectly suited to this specific case.

These results then indicate that the method is well-adapted to high-frequency problems with high
density meshes, provided that N is sufficiently large.

Figure 9 shows the evolution of the number of GMRES iterations with respect to the number of
subdomains for the first and third configurations. The simulations have been performed with increased
numbers of subdomains in the x- and y-directions for the square domain (resp. Ndom,x and Ndom,y)
and in the r- and θ-directions for the circular domain (resp. Ndom,r and Ndom,θ). The size of the
domains increases with the number of subdomains: the square domain is [−1.25, 2.5Ndom,x − 1.25] ×
[−1.25, 2.5Ndom,y − 1.25] and the circular domain is {(r, θ) : r ∈ [1, 1 + Ndom,r], θ ∈ [0, 2π]}. The
results for the second configuration are similar to those for the first one. They are not reported for the
sake of shortness. The strong scaling analysis for the third configuration (i.e. increasing the number of
subdomains without increasing the size of the domain) also leads to similar results.

The scaling behavior of the method is as expected: the number of iterations increases linearly with
the number of subdomains in each direction (Figures 9a and 9b). Indeed, since the transmission of
propagating waves from subdomain to subdomain is local with the transmission conditions, a larger
number of iterations is required to allow the propagation of waves across a larger number of subdomains.
Preconditioning techniques based on sweeps (e.g. [35, 69, 72, 76, 77]) and coarse spaces (e.g. [4, 10, 25, 37])
allow for global transmissions of information between the subdomains with improved convergences. The
combination of our approach with preconditioning techniques is currently under investigation.

4.5 Experiments with non-right angles and heterogeneous media

The proposed DDM is a priori suited only to wave propagation in homogeneous media and lattice-type
domain partitions with right angles. Indeed, the HABC operator used in the transmission condition
is built under the hypothesis of a homogeneous medium, and the compatibility relations used in the
cross-point treatment are derived for corners with right angles (see Section 2). Nevertheless, the HABC
can be used as a good approximation with smoothly-varying heterogeneous media, since it can represent
locally the transmission of waves at the interface (see e.g. [60]). The compatibility relations derived for
right-angle corners can be used as an approximate treatment with non-right angles [61].

In this section, our approach is tested for configurations where the corner treatment is not exact:
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(a) Velocity model

(b) Real part of the numerical solution u

Figure 10: Snapshot of the velocity model (a) and the reference numerical solution (b) for the benchmark with
heterogeneous medium.

first, for wave propagation in heterogeneous media (Section 4.5.1) and second for domain partitions with
non-right interior angles (Section 4.5.2).

4.5.1 Benchmark with a smoothly varying heterogeneous medium

As a preliminary study to analyze the effectiveness of the method with heterogeneous media, we consider
the Marmousi model (Figure 10), a velocity map c(x) that represents a geological structure. This model
is frequently used to evaluate modeling and imaging techniques.

The Helmholtz equation with spatially varying wavenumber is solved on the domain,

−∆u− κ(x)2u = δ(x− xsou), on Ω,

with k(x) = 2πν/c(x) and Ω = [0, 9192m] × [−2904m, 0]. The basic ABC is prescribed on all the sides
of the domain, and a source point is placed at the position xsou. The simulations are performed for the
frequency ν = 30 s−1 and the characteristic mesh size h ≈ 10m. The mesh is made of 718 584 triangles
and 1 439 613 second-order nodes. Second-degree polynomial basis functions are used.

The domain is partitioned into 4 × 15 rectangular subdomains. The spatially varying κ(x) is used
as is in the equations of the DDM initially derived for a constant wavenumber. The Dirac source point
could be placed on an interior mesh node of any subdomain without difficulty. Here we chose to place
the source on an interior cross-point, at coordinates xsou = (6128m,−1452m), in order to demonstrate
how such a choice can be combined with the cross-point treatment. To preserve the equivalence with
the original problem, the source should be taken into account only in one of the subproblems, which
could correspond to any of the four subdomains touching the cross-point. Equivalently, sources could be
included in the four subproblems, albeit with their magnitudes determined to sum up to the magnitude of
the original source. The treatment of sources on an interface between two subdomains could be handled
in a similar way.

Because the parameter analysis performed in Section 4.3 is not longer valid, the HABC-type trans-
mission condition is tested with several numbers of auxiliary fields and rotating angles. The number
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Table 1: Number of GMRES iterations to reach the relative residual 10−4 for the benchmark with heterogeneous
medium.

φ → 0 0.1π 0.2π 0.3π 0.4π 0.5π

N = 0 120 94 88 91 103 123
No cross-point N = 1 >200 56 51 48 48 49

treatment N = 2 >200 51 47 47 47 48
N = 3 >200 51 47 47 47 47
N = 4 >200 51 47 47 47 47

N = 0 120 94 88 91 103 123
With cross-point N = 1 >200 54 49 47 46 48

treatment N = 2 >200 47 45 44 44 44
N = 3 >200 45 43 43 44 44
N = 4 >200 43 43 43 44 44

of GMRES iterations to reach the relative residual 10−4 with several values for N and φ are shown on
Table 1. A preliminary study with coarser meshes, not presented here, has shown that the final relative
L2-error is about 10−4 in all the cases. This confirms that the decomposed problems are equivalent to
the original problem, despite the heterogeneous medium and the source point on the cross-point.

We observe that using the HABC-based transmission condition (with N ≥ 1) instead of the basic
impedance condition (corresponding to N = 0) still accelerates the convergence for every value of φ ≥
0.1π. However, the speedup is limited and stagnates rather rapidly when increasing N : using N = 1
or 2 is sufficient. This is expected since the HABC operator is not designed for heterogeneous media.
Nevertheless, it provides a significant speedup in comparison with the basic impedance condition, with
a moderate supplementary computational cost. In addition, the result is not very sensitive to the value
of the parameter φ: the values in the range [0.3π, 0.5π] give similar results.

Finally, we observe that, in all the cases, using the cross-point treatment accelerates the convergence.
The speedup is rather small, but this is also expected since the issue here is related to the quality of the
transmission condition, more than the treatment of the cross-points. Nevertheless, this preliminary study
shows that the cross-point treatment remains effective, despite of the smoothly varying heterogeneous
medium and the source point at the cross-point. To improve the convergence of the global domain
decomposition approach, alternative HABC-based transmission conditions more suited to heterogeneous
media should be considered, accelerated with preconditioning techniques, and eventually combined with
a cross-point treatment similar to the one proposed here. This approach is currently investigated.

4.5.2 Configurations with distorted partitions

To analyze the method for partitions with non-right angles, we consider the scattering benchmark and
the three configurations described in Section 4.1. The partitions are deformed by moving the cross-
points, which create acute and obtuse angles, as shown in Figure 11. The points are shifted for the
two first configurations (on distances 0.5, 1 and 1.5) and twisted for the third one (by angles 0.1π, 0.2π
and 0.3π). In every case, HABC-based transmission conditions with different numbers of auxiliary fields
are tested (N = 0, 2, 4 and 6 with φ = 0.3π). The effect of the cross-point treatment is analyzed by
keeping or removing the corresponding terms in the finite element scheme. The terms implemented for
the right-angle case are used without modification for non-right angles.

Table 2 shows the number of GMRES iterations to reach the relative residual 10−6 for each case.
The relative L2-error (not shown for the sake of shortness) is always close to 10−6, except for the second
configuration (i.e. square domain with a HABC on the exterior border) without cross-point treatment.
As discussed in Section 4.2, the compatibility is not ensured at the boundary cross-points for that case.
We have observed that, when using the cross-point treatment, the method converges towards the correct
solution, even with an important distortion of the partition. In that case, several interfaces starting from
boundary cross-points are not perpendicular to the exterior border.

In nearly all the cases, the number of GMRES iterations increases when the distortion of the partitions
is amplified. For the first configuration, the increase is rather small, with and without cross-point
treatment. For the two other configurations, the number of iterations increases more rapidly when the
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(a) Shift 0 (b) Shift 0.5 (c) Shift 1 (d) Shift 1.5

(e) Twist 0 (f) Twist 0.1π (g) Twist 0.2π (h) Twist 0.3π

Figure 11: Snapshot of the distorted partitions for the square domain (configurations 1 and 2, Figure 11a-11d)
and the circular domain (configuration 3, figures 11e-11h).

Table 2: Number of GMRES iterations to reach the relative residual 10−6 for the different configurations with
distorted domain partitions. The final relative L2-error is also approximately 10−6 for every case, except for the
second configuration without cross-point treatment (results not shown) where the method is not consistent.

Configuration 1 Configuration 2 Configuration 3
Shift/Twist → 0 0.5 1 1.5 0 0.5 1 1.5 0 0.1π 0.2π 0.3π

N = 0 52 55 58 66 - - - - 76 81 85 91
No cross-point N = 2 29 32 32 34 - - - - 34 38 38 38

treatment N = 4 29 31 32 33 - - - - 32 34 33 34
N = 6 31 32 33 34 - - - - 33 32 31 32

N = 0 52 55 58 66 51 57 60 67 76 81 85 91
With cross-point N = 2 23 24 25 28 18 22 25 27 24 29 32 34

treatment N = 4 20 20 21 24 14 18 20 23 19 24 28 30
N = 6 19 19 20 22 12 17 20 21 17 23 26 28

cross-point treatment is used. Nevertheless, in all the cases, using the cross-point treatment accelerates
the convergence. The speedup is smaller for the third configuration, but it is still significant. For the
most distorted configurations (i.e. shift with 1.5 and twist with 0.3π), the smallest numbers of iterations
always correspond to the cases with both the largest N and the cross-point treatment. These results
show the robustness of the approach with non-right angles.

5 Conclusion

In this work, a non-overlapping DDM with HABC-based transmission operators was considered for the
parallel finite-element solution of scattering and wave propagation problems. We presented a suitable
way to tackle the cross-point problem for settings with lattice-type domain partitions. In particular, we
addressed cases where a Padé-type HABC operator is used for the transmission condition (to accelerate
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the convergence of the procedure), for the exterior boundary condition (to improve the accuracy of the
solution) or for both conditions.

To handle the cross-points, suitable relations and additional transmission variables were introduced
at the points. Numerical results have shown that the convergence rate of the obtained DDM is improved.
We systematically studied the way the convergence depends on the tuning parameters of the method
as well as the frequency, the mesh refinement and the number of subdomains. Configurations with
distorted partitions and heterogeneous media were tested. While the method was conceived for lattice-
type partitions with right angles, it also performed very well with partitions having non-right angles.
As expected, the efficiency of the approach for configurations with heterogeneous media was not as
performant. Current approaches to tackle this problem are based on non-local methods (see e.g. [24, 71,
72, 78]) and preconditioners (see e.g. [4, 25, 36, 46]).

The extension to the 3D Helmholtz equation can be obtained by adapting the developments of the
present paper and the technical details given in [61]. Even if the DDM gains in efficiency thanks to the
cross-point treatment, the reported scalability results show that the method is intrinsically dependent on
the number of subdomains since the iterated wave field needs to be propagated through the subdomains,
translating hence the nonlocal nature of wave-like problems, whatever is the optimized local transmission
condition. Furthermore improvements to avoid the problem are currently being developed by using fast
sweeping preconditioners [72, 76, 77] and coarse space approximations [4, 25]. Finally, extensions to
other time-harmonic wave problems, in particular for electromagnetic [32, 33] and elastic waves [18, 58],
are still needed. This is under study but the problem is technically much more complicated.
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