
HAL Id: hal-02865105
https://hal.inria.fr/hal-02865105

Submitted on 11 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Please Remember Me: Security Analysis of U2F
Remember Me Implementations in The Wild

Gwendal Patat, Mohamed Sabt

To cite this version:
Gwendal Patat, Mohamed Sabt. Please Remember Me: Security Analysis of U2F Remember Me
Implementations in The Wild. Actes SSTIC 2020, 18ème Symposium sur la sécurité des technologies
de l’information et des communications (SSTIC 2020), 2020, Rennes, France. �hal-02865105�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/362232446?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-02865105
https://hal.archives-ouvertes.fr

Please Remember Me: Security Analysis of U2F

Remember Me Implementations in The Wild

Gwendal Patat and Mohamed Sabt
gwendal.patat@irisa.fr

mohamed.sabt@irisa.fr

Univ Rennes, CNRS, IRISA

Abstract. Users and service providers are increasingly aware of the
security issues that arise because of password breaches. Recent studies
show that password authentication can be made more secure by relying
on second-factor authentication (2FA). Supported by leading web service
providers, the FIDO Alliance defines the Universal 2nd Factor (U2F)
protocols, an industrial standard that proposes a challenge-response 2FA
solution. The U2F protocols have been thoughtfully designed to ensure
high security. In particular, U2F solutions using dedicated hardware tokens
fare well in term of security compared to other 2FA authentication systems.
Thus, numerous service providers propose U2F in their authentication
settings.

Although much attention was paid to make U2F easy to use, many users
express inconvenience because of the repeated extra step that it would
take to log in. In order to address this, several service providers offer a
remember me feature that removes the need for 2FA login on trusted
devices. In this paper, we present the first systematic analysis of this
undocumented feature, and we show that its security implications are not
well understood. After introducing the corresponding threat models, we
provide an experimental study of existing implementations of remember

me. Here, we consider all the supporting websites considered by Yubico.

The findings are worrisome: our analyses indicate how bad implementa-
tions can make U2F solutions vulnerable to multiple attacks. Moreover,
we show that existing implementations do not correspond to the initial
security analysis provided by U2F. We also implement two attacks using
the identified design flaws. Finally, we discuss several countermeasures
that make the remember me feature more secure.

We end this work by disclosing a practical attack against Facebook in
which an attacker can permanently deactivate the enabled 2FA options
of a targeted victim without knowing their authentication credentials.

1 Introduction

Passwords are by far the most popular method of end-user authenti-
cation on the web. Password breaches, due for instance to sophisticated
phishing attacks, seriously multiply the risk of authentication compromise.

2 Please Remember Me

Worse, these risks are compounded by poor user practices, as illustrated
by reusing passwords across multiple accounts [26]. Aware of such security
issues, a growing number of service providers couple passwords with an-
other authentication factor: this is known as second factor authentication
(2FA). The use of 2FA is not new. However, recent studies show that their
adoption rate is stagnant over the last five years because of a fragmented
ecosystem [5]. Furthermore, most users still use their mobile phone as
second factor which can lead to critical security issues like what happened
with Twitter CEO Jack Dorsey [17].

In this context, Google and Yubico join the effort within the FIDO
Alliance to standardize a set of 2FA protocols that they call the Universal
Second Factor (U2F) authentication. Their design ambition is to guaran-
tee a strong security level (through hardware tokens and cryptographic
operations) while maintaining a pleasant user experience. Several formal
analyses theoretically show that the U2F authentication protocol actually
achieves its security goals [15, 21]. Google describe U2F as an opportu-
nity to “improve the state of the art for practical authentication for real
consumers” [16].

The starting point of our work is to underline a practical aspect within
the U2F implementations that is often overlooked. Indeed, some U2F
solutions provide a remember me feature that, once enabled, allows users
to authenticate to a given website without presenting their U2F token
on a given device. According to [7], this feature is important for better
user acceptability. However, to the best of our knowledge, no document
specifies how U2F and remember me shall be combined without negatively
affecting the security of the resulted protocol.

We notice that the lack of specifications of the remember me feature
brings confusion and contributes to the misconception of U2F solutions.
Thus, motivated by Bonneau’s framework [4], we start our work by defining
a set of security properties upon which we construct our analysis. We
also recall the threat models that should be considered when performing
security evaluations of U2F.

In our work, we achieve the first study about the impact of the
remember me feature on the overall security. In particular, we inspect
the related implementations of all the websites proposing remember me
that are included in the Yubico inventory [30] (67 websites in total).
Interestingly, we have found that the analyzed U2F solutions use very
diverse implementation choices. Then, we uncover several design aspects
that can lead to several attacks. For instance, we show that U2F solutions
become vulnerable to Man-in-the-Middle attacks, contrary to what is

G. Patat, M. Sabt 3

suggested by FIDO [18]. This is unfortunate, since the U2F protocols
are designed to protect against such powerful attackers. We verify the
soundness of our analyses by conducting several attacks using the identified
flaws. In this regard, our paper invalidates the results of [21] and [15] that
formally prove the security of U2F protocols.

Our analysis has also pointed out problems related to the recovery
methods defined for lost FIDO authenticators. In particular, we disclose a
practical attack against Facebook in which attackers are able to perma-
nently deactivate the enabled U2F option in the victims accounts, thereby
removing any interest of using U2F. To our surprise, attackers do not need
users credentials in order to achieve their attacks; they solely need to get
a code received by SMS on the victim’s mobile phone. In summary, this
paper makes the following contributions:

— we define a general threat model for U2F implementations;
— we analyze all remember me solutions, we report undocumented

details about their underlying implementations and we evaluate
them using our secure design rules;

— we identify attacks and weaknesses in the analyzed websites. For
each attack, we provide a proper attacker model and point out the
corresponding violations regarding our model;

— we implement effective scenarios in which attackers can success-
fully bypass the second factor using a device that has never been
remembered before;

— we expand our analysis to include the recovery mechanisms. Here,
we show how U2F fails its security goals to replace other 2FA
solutions. In particular, we reveal unpublished effective attack
against Facebook and show its actual practicality. Impatient readers
can refer to our demo video.1

2 Related Work

2.1 2FA Solutions

For a long time the community has been looking beyond passwords to
ensure the security of users accounts against credentials breaches [1, 29].
The main trend is to employ two-factor authentication, namely to ask
users to prove the possession of “something they have" in addition to
passwords “something they know".

1. The demo is available as an unlisted YouTube video: https://youtu.be/

OrQJ7JSyhsI

https://youtu.be/OrQJ7JSyhsI
https://youtu.be/OrQJ7JSyhsI

4 Please Remember Me

One-time-password (OTP) codes through SMS are one of the 2FA
first methods. Despite their popularity, their use is being recently discour-
aged by the NIST (National Institute of Standards and Technology) [20].
GoogleAuthenticator [22], installed more than 10,000,000 from Google
Play, is an Android app that locally generates OTP codes relying on
specific algorithms [12,14]. However, these OTP schemes fail to protect
against phishing attacks.

Hardware tokens [13,24] are deployed to secure accounts, especially for
online banking. Those tokens periodically generate an OTP that is valid
for a short period of time. Unfortunately, these OTP tokens do not counter
phishing attacks neither. More advanced solutions implement challenge-
response 2FA protocols, such as FIDO U2F [25] and PhoneAuth [8], and
thus offer protection against phishing attacks. In spite of their security
benefits, hardware-backed 2FA solutions suffer from stagnant adoption, as
illustrated by Elie Bursztein in his blog [5]. This is because such solutions
may be expensive to deploy, and there might be usability issues if the user
authenticates in a machine with a USB-C port while she owns a USB-A
token, or vice versa.

2.2 2FA Usability

Since the seminal work of Bonneau et al. [4], much two-factor authenti-
cation research has recognized the need for user-friendly implementations
to promote adoption. Indeed, Bonneau et al.’s high-level evaluation rated
existing two-factor systems as more secure, but generally less usable than
passwords. In response to such concern, subsequent 2FA solutions have
strived for better usability, hence FIDO U2F protocols. Lang et al. [16]
fervently promote the usability of YubiKeys in enterprise environments.
However, later results show that the Google experiments were somehow
biased, and complement them with more qualitative evaluation.

Indeed, Das et al. [9] distinguish usability from acceptability. Based
on users feedback, authors find out that improving usability does not
necessarily lead to greater acceptability. Reynolds et al. [23] yield more
insights into the usability of YubiKeys in conducting a laboratory and
longitudinal experiments in a non-enterprise environment. They noticed,
on one hand, that participants have struggled to set their YubiKeys as
a second factor of authentication. On the other hand, they were positive
regarding YubiKeys and 2FA in general. For wide adoption, authors in [7]
state that almost all participants in their usability survey highlight that
using remember me made using 2FA solutions more pleasant, especially
when regularly accessing the same accounts from the same devices.

G. Patat, M. Sabt 5

2.3 U2F Security Analysis

Bonneau et al. [4] study the security of different web authentication
protocols: they provide a set of security benefits that they informally define
in order to capture the most common security threats for authentication
services. However, its informal nature raises some issues in the security
community.

In 2017, Pereira et al. presented the first formal analysis of FIDO
U2F authentication protocol. They modeled the protocol using applied
pi-calculus and prove their model using ProVerif. Their analysis showed
that the protocol is secure under their threats model if the FIDO client
does not miss the optional step of verifying the appID. Nevertheless, the
defined model starts after the establishment of the TLS channel between
the FIDO client and the relying party. In order to address this limitation,
Jacomme and Kremer [15] performed another formal analysis while taking
into account computers malware and communication through TLS. The
ProVerif tool was also used to accomplish the automated protocol analysis.

The formal analysis of [15] includes the remember me functionality.
The model assumes that this functionality is only implemented by some
secret value that is stored locally in the FIDO client, and that the relying
party verifies alongside the fingerprint of users devices (e.g. IP addresses,
browsers version, etc.). We can see that their model suffers from a main
shortcoming; it does not faithfully consider various aspects of remember
me. Indeed, it does not cover any technical detail related to HTTP cookies.
In addition, it does not regard the fact that the relying parties actually
store the remember me cookies. Moreover, our experiments show that the
fingerprint of users device has little or no impact: remember me cookies
remain valid even if used from different browsers running on different
computers that are connected from different countries. Therefore, the
results of [15] have a limited scope, and many of our identified attacks are
not relevant to their model.

3 FIDO U2F Protocol

In this section, we provide an overview of the Universal 2nd Factor
(U2F) protocol functionality. This overview covers its two main operations,
including the process of registering and authenticating a user to a service
provider.

6 Please Remember Me

3.1 Industrial Context

The FIDO (Fast IDentity Online) Alliance [2] is an industrial working
group that proposes technical standards for online authentication systems
reducing or discarding the reliance on passwords. This alliance was formed
by PayPal, Lenovo and NokNok Labs in 2013 to define an interoperable
set of authentication mechanisms that reinforce a fragmented ecosystem.
Two protocols are being developed, namely the Universal Authentication
Framework (UAF) [19] and the Universal Second Factor authentication
(U2F) [25]. Both protocols might work either together, or independently.
Here, we focus solely on the U2F protocols.

In contrast to UAF, the U2F protocol does not supplant the use
of passwords. Indeed, a user logs on using a username and a password,
then the protocol prompts the user to present a second factor device for
authentication. U2F often requires carrying a distinct hardware token. A
popular U2F-compliant token is Yubico Security Key called YubiKey [31].
This device comes mostly as a hardware USB token and can support NFC
communications. To use this token, users need only to insert it in the USB
port of the computer and to press a button during authentication. An
important feature is that it is independent of the operating system.

Since recently, the FIDO U2F gains increasing support from online
services and web browsers. Today, 67 service providers achieve U2F com-
pliance [30], including Google Account (such as Gmail and YouTube),
Dropbox and Facebook. In addition, major browsers add native support
for the U2F protocol: Google Chrome (since version 38), Opera (since
version 40) and Firefox (enabled by default since version 67). We include
Figure 1 that shows the current U2F adoption status in the most popular
browsers. Thus, U2F knows increasing adoption from both websites and
hardware token manufacturers.

3.2 U2F Terminology

FIDO details the U2F specifications by employing a particular set of
terminology that we describe. Henceforth, we will restrict ourselves to
use the FIDO jargon. The U2F protocol defines three main actors: FIDO
Authenticator, FIDO Client and Relying Party.

The FIDO Authenticator is responsible for generating asymmetric key
pair and signing authentication challenges. For better security, it shall be
a special-purpose hardware device that no entity has a direct access to its

2. https://caniuse.com/#feat=u2f

https://caniuse.com/#feat=u2f

G. Patat, M. Sabt 7

Fig. 1. Browsers’ U2F compliance 2

inner memory. The Authenticator might connect to the users’ computer via
different interfaces. For example, YubiKeys implement USB HID (Human
Interface Device) connection.

The FIDO Client is typically a web browser that relays the messages
between the FIDO Authenticator and the Relying Party. Moreover, it
processes some FIDO messages by performing further verification or
collecting more information.

The Relying Party (RP) includes two entities: (1) the web server
to which the user authenticates, and (2) the server that can verify the
authenticity of the used FIDO Authenticator. The RP communicates with
the FIDO Client through some JavaScript API [3].

3.3 Protocol Outline

U2F is a challenge-response protocol. Its core idea is standard public
key cryptography in which the FIDO authenticator generates a new key
pair and shares the associated public key to the registering relying party.
For an ongoing authentication, the RP will send a request to the user’s
authenticator to be signed. Several cryptographic algorithms can be used.
For instance, the Yubikey NEO uses RSA-1024 and RSA-2048. The U2F

8 Please Remember Me

protocol supports two operations: registration and authentication. The
two operations are illustrated in Figures 2 and 3. Below, we provide more
details.

Registration The goal is to register a FIDO authenticator by binding it
with a user account. As shown in Figure 2, it begins by the relying party
issuing a random challenge. Upon reception, the FIDO client creates a
client data structure that includes the type of the request (registration or
authentication) and the received challenge. The client sends the hash of
this structure alongside some RP related values, called the origin, to the
authenticator. After the device is touched by the user, the authenticator
creates a new credential in the form of a public key Kpub, a private key
Kpriv and a key handle. The key handle is used to refer to the Kpriv. The
handle and the Kpub are returned back to the client with the associated
signature to ensure that the client data was not tampered with. The final
step of registration concludes with the relying party storing the handle
and the Kpub that it received from the client.

FIDO Client Relying PartyFIDO Authenticator

challengeh
︷ ︸︸ ︷

hash(ClientData), origin

create: kpub, kpriv

save: origin, kpriv

kpub, handle, sign(h, kpub, handle)
︸ ︷︷ ︸

s

ClientData, kpub, handle, s
check if
s is valid

using kpub

database:
kpub,

handle

Fig. 2. FIDO U2F Registration

Authentication The aim of this process, illustrated in Figure 3, is to
prove the possession of a registered key pair. After verifying the user’s
credentials, the relying party retrieves the associated Kpub and key handle
from the registration process. The RP sends the key handle with a new
challenge to the FIDO client. In turn, the client builds a new client data
structure (including the challenge) to the authenticator that signs it using
the Kpriv retrieved from the key handle. The FIDO client passes this

G. Patat, M. Sabt 9

signature back to the RP that verifies the signature and authenticates the
user.

FIDO Client Relying PartyFIDO Authenticator

handle, challengeh
︷ ︸︸ ︷

hash(ClientData), origin, handle

retrieve: kpriv

sign(h) ClientData, sign(h)

check if
sign(h) is valid

using kpubauthenticate

Fig. 3. FIDO U2F Authentication

4 Threat Models and Initial Security Analysis

The primary goal of any authentication system is to prevent attackers
from impersonating other users. In 2FA systems, attackers should break
the two factors to breach the solution security. In this paper, we focus
on the concrete security offered by U2F solutions when coupled with
hardware-backed tokens, such as YubiKeys. Thus, we always assume that
attackers could guess users passwords. However, we suppose that attackers
cannot break into FIDO authenticators, neither compromise cryptographic
primitives. In particular, they cannot extract Kpriv from the related key
handle.

Now, we introduce the threat model that we use to capture our security
analyses. We first define the different attacker capabilities that the U2F
specifications take into account in their risk analysis [18]. Second, we
recall the definitions of the relevant security benefits from Bonneau et
al. [4] in order to account for maximum coherence in our study. Third, we
show a brief security analysis of the U2F authentication protocol, as it
is presented in [25]. This will play the role of a reference analysis when
we examine the effective security of U2F solutions with remember me in
Section 6.4.

10 Please Remember Me

4.1 Attacker Capabilities

We provide a list of attacker capabilities that are relevant to the four
entities participating in the U2F protocol: FIDO authenticator, FIDO
client, the communication channel, and the relying party. The capabilities
are presented in this respective order.

The Physical Proximity [PP] capability consists in having closer access
to users belongings, including the FIDO authenticator and even to their
mobile phones. This capability allows attackers to steal objects or observe
the authentication process.

The Man-in-the-Browser [MitB] capability allows attackers to compro-
mise the FIDO client. Thus, for instance, attackers might install malicious
plugins or read browsers files, such as cookies.

A Man-In-The-Middle [MitM] capability refers to scenarios in which
attackers could sneak into the secure communication channels between
the FIDO client and the relying party.

The Intrusion capability consists in breaking into the relying party,
allowing attackers to read, write or execute arbitrary code inside the
authentication context of the RP. This capability also concerns curious or
malicious relying parties attempting to authenticate to other users’ service
providers.

4.2 Security Benefits

We consider the following security benefits that are originally defined
by Bonneau et al. [4]. We adapt their definitions to U2F:

SB1 Resilient-to-Physical-Observation: Means that attackers cannot
impersonate users by observing the authentication process one or
several times. This includes shoulder surfing and recording users
keyboard.

SB2 Resilient-to-Input-Observation: Intercepting users input by a
malicious software (e.g. keylogger) is not sufficient to achieve ille-
gitimate authentication. Our definition covers intercepting commu-
nications with the U2F authenticator.

SB3 Resilient-to-Communication-Observation: Eavesdropping all the
web communications offers no advantage to attackers.

SB4 Resilient-to-Leaks: Breaking into a relying party does not make
impersonations on the same relying party any smoother.

G. Patat, M. Sabt 11

SB5 Resilient-to-Leaks-from-Other-Verifiers: Intrusion into one rely-
ing party is of no help when compromising another relying party.
This prevents “hack once, hack everywhere”.

SB6 Resilient-to-Phishing: Spoofing relying parties shall not leverage
any attempt of impersonation against the real RP.

SB7 Resilient-to-Theft: Stealing the FIDO authenticator is not enough
to be able to use it.

SB8 Long-Term-Resilient-to-Theft: This refers to the ability by users
of effortlessly revoking registered authenticators. This is critical,
for instance, in case of theft or during the process of deprecating
vulnerable hardware tokens.

SB9 Unlinkable: This privacy-preserving benefit implies that two or
more colluding relying parties cannot find out by combining their
information whether the same user is authenticating to both using
the same authenticator.

Fig. 4. Security Benefits of YubiKey-Backed U2F

12 Please Remember Me

4.3 Yubikey’s Security Analysis

Here, we will use the attacker capabilities and the security benefits
defined above in order to evaluate the U2F protocol based on the hardware
FIDO authenticator from Yubico, namely Yubikey. As already mentioned,
we solely focus on the second factor; the first factor, usually based on pass-
words, is not regarded. Figure 4 shows a summary of our security analysis.
We notice that our findings are consistent with Bonneau et al.’s [4] (except
for the Resilient-to-Theft). Simply put, YubiKey-backed U2F solutions, as
defined in the standard and without considering actual implementations,
fare well in security when compared to other authentication solutions.

The U2F protocol instructs users consent in both registration and
authentication. This is achieved by requesting users to press a button on
the YubiKey. In fact, the only physical and observable interaction with the
YubiKey is this button pressing. Thus, attackers leveraging the Physical
Proximity capability can only observe this action that reveals nothing
about the used YubiKey. Consequently, this allows U2F solutions to be
Resilient-to-Physical-Observation.

Attackers can, by the Physical Proximity capability, steal YubiKeys
and effortlessly use them to sign U2F challenges. Therefore, YubiKeys are
not Resilient-to-Theft. However, users can limit the damage of theft by
revoking their registered FIDO authenticator, hence granting the Long-
Term-Resilient-to-Theft benefit.

Attackers have no access to the internal memory of YubiKeys. Indeed,
the U2F interface is the only way to communicate with this hardware
token. Thus, by one of the MitB, the MitM and the Intrusion capabilities,
attackers are able to observe the exchanged data between the authenticator
and the relying party: users’ Kpub, their key handle, fresh session data
(e.g. challenges) and valid signatures. In this setting, the security of the
U2F protocol is formally proven in [10] and [15] even if the attackers have
access to these data. This corresponds to the benefits: Resilient-to-Input-
Observation, Resilient-to-Communication-Observation and Resilient-to-
Phishing.

More on the Intrusion capability, according to [18], the security of the
U2F authentication should also be guaranteed under the hypothesis of
corrupted or malicious relying parties. The U2F protocol specifies that the
RP only stores the different Kpub and key handles of users. As previously
assumed, key handles cryptographically protect Kpriv, and no attacker can
break into this protection. Pereira et al. in [21] prove that such information
leak from relying parties is not enough to impersonate users on the same
or on another RP. This concerns the Resilient-to-Leaks and Resilient-

G. Patat, M. Sabt 13

to-Leaks-from-Other-Verifiers benefits. Moreover, if we do not consider
side-channel attacks, colluding relying parties cannot conclude whether
the same YubiKey was behind different public and key handles, thereby
leading to the Unlinkable benefit.

5 U2F Remember Me

As shown in the previous section, authentication solutions based on
FIDO U2F achieve a decent level of security when associated with a
hardware-backed authenticator. Nevertheless, such solutions require from
users to constantly carry around yet another object. For Yubikeys, the
used authenticator must be inserted into a USB-port to complete their
authentication. Very often, users tend to keep their authenticators con-
nected to their personal computers in order to avoid continually repeating
this extra step.

Regardless of all the efforts made to improve usability, users still express
inconvenience, especially when they regularly log in the same services
from the same computers. In [7], authors show the general displeasure of
users experimenting the 2FA solution of the Carnegie Mellon University.
The study shows that users found it annoying despite its ease of use.

Therefore, some relying parties propose a remember me option making
the 2FA login necessary only once in a while for the device or browser
on which it is enabled. Once this feature activated, users will solely be
asked for their credentials. This option knows wide approval; in [7] study,
almost all participants (95%) stated that using remember me made the
2FA authentication more pleasant.

Obviously, enabling the remember me functionality vastly improves
the user experience. However, this does not come without any security
consequence. Indeed, it removes the added security of the U2F protocol
if the attacker gains physical access to the victim’s computer. Still, the
attacker would need the victim’s account credentials. If strictly imple-
mented, only authentication attempts from a remembered computer shall
succeed without the second factor. In other words, the computer (or the
browser) plays the role of the authenticator, except for the step implying
consent. Thus, the security analysis of the Section 4.3 should be still valid.

Yet, the FIDO U2F standard does not say anything about this feature.
As a result, websites did not wait and provided their own solution. Al-
though U2F specifications are public, we could not find any documentation
that describes the remember me design, or even assesses its security guar-
antees. We think that it becomes important to have good understanding

14 Please Remember Me

of it, since its wide adoption has a profound implication on the security of
U2F-compliant authentication services. This is even more important for
websites, such as Facebook, in which the remember me option is ticked by
default.

In this section, we first briefly present the overall architecture of
remember me solutions. Second, we distill the attributes that should be
followed to achieve a good security level.

5.1 Exhaustive Remember Me

There are 67 services supporting U2F [30]. We do not consider OS-
based tools, such as computer login with Linux PAM. Instead, we focus on
web service providers. We have done exhaustive research and we only found
five relying parties proposing remember me: Gmail, Dropbox, Facebook,
FastMail and login.gov. Note that we mention Gmail as an example of
the Google Suite (Youtube, Google Apps, etc) as they all provide the
same authentication mechanisms.

5.2 Remember Me Overview

We notice that all the examined remember me solutions (refer to the
next section for more details) rely on browser cookies. The principle is
simple: the cookies are stored by the browser that sends them back with
the next authentication request to the related relying party. Despite their
disparities, all the solutions of remember me share almost the same user
experience. Below, we introduce the U2F protocol when we take cookies
into consideration.

Activate Remember Me while Authentication When not yet en-
abled, each time users sign in, they can choose to activate remember me
by ticking the corresponding box. For Facebook and Google accounts, the
checkbox is ticked by default. As for deactivation, there is no trivial way
to make the service provider forget the remembered device. Simply put,
it is straightforward to remember a device, but not trivial to forget a
remembered one.

The U2F authentication workflow remains almost unchanged from
Figure 3: users send their credentials and receive a new challenge from
the relying party. The connected authenticator signs the challenge with
the private key extracted from the key handle. At this stage, a checkbox
proposes to remember the device. If ticked, the relying party generates a

G. Patat, M. Sabt 15

cookie after a successful authentication (except for Facebook that generates
the cookie before any authentication attempt). The RP stores the generated
cookie in its database and sends it to the FIDO client. The browser
associates this cookie to the RP domain. The cookie has special enabled
flags:

— secure: this means that the cookie is transmitted only over a secure
channel, typically HTTP over Transport Layer Security (TLS), so
that it cannot be eavesdropped.

— httpOnly: this implies that JavaScript cannot read this cookie,
thereby mitigating Cross-Site Scripting (XSS) attacks.

These flags improve upon the security of these U2F cookies: resist XSS
exploitation and are sent only over HTTPS connection. Attackers still
can bypass such a protection by the Cross-Site Tracing (XST) attack - a
combination of XSS and HTTP TRACE method [11]. It is worth noting
that this method is mostly deprecated today, as modern browsers prevent
TRACE methods from being made.

Use Remember Me While Authentication Once the option is acti-
vated, the U2F cookies are sent alongside users credentials to the corre-
sponding relying party. The RP verifies that at least one of these cookies
is both valid and bound to the authenticating users. Otherwise, the RP
starts the U2F second factor mechanism. In contrast to a complete U2F
authentication, no explicit consent is provided, since no action is required
from users.

5.3 Remember Me Evaluation Criteria

Note that each relying party has its own solution for remember me.
For our comparative study, four properties are distinguished:

EC1 Inner-Structure: For each service provider, we look at the content
of the generated remember me cookies. In particular, we note
several aspects: size, fixed patterns and their different fields when
we succeed in decoding them.

EC2 Ephemerality: remember me cookies shall be persistent with
short lifetime. The goal is to set a temporal limit to cookie exploits.
We consider that any expiring duration greater than one month
does not satisfy Ephemerality.

EC3 Effectiveness-of-Revocation: In real life, every once in a while,
users might like to revoke some remembered computers because

16 Please Remember Me

of, for instance, planned replacement of obsolete equipment. An-
other reason might also be the loss or the theft of personal de-
vices, so that attackers would have shorter time to finish their
exploit. Furthemore, relying parties might deprecate some versions
of authenticators (because of recently discovered vulnerabilities [6]),
hence revoking anything in relation with these authenticators. Here,
we do not consider the trivial solution consisting of deleting the
U2F cookies on the local storage device, since cookies can be easily
copied and stored elsewhere. Surprisingly, no relying party proposes
an easy-to-use interface to clear the remember me option. Thus, we
explore two less-trivial solutions: (1) revocation by changing the
associated FIDO authenticator, and (2) revocation by changing
users credentials (i.e. passwords).

EC4 SameSite: Cookies have two security related flags: secure and
httpOnly. In addition to these flags, cookies are now using an
attribute named SameSite defined by Google and Mozilla in [28].
It is used to prevent Cross-Site Request Forgery (CSRF) and it
takes the values None, Lax or Strict. In Strict mode, the cookie
is not sent on cross-site queries, but only on resources that have the
cookie domain as the origin. In Lax mode, the browser will send
the cookie with a very limited number of cross-site queries, such as
GET queries. As its name indicates, the None mode allows cookies
to deactivate the SameSite feature. Major browsers, including
Chrome, Firefox, Edge, Safari, Opera and their mobile versions,
already support this feature [27].

6 U2F Remember Me in the Wild

In this section, we shed light on the remember me solutions in the wild.
We start by describing the settings and the framework of our experiments.
Then, we examine the different websites proposing this feature: Google,
Dropbox, Facebook, FastMail and login.gov. We end this section by
revisiting the security analysis of U2F when remember me is taken into
account.

6.1 Experimentation Settings

In our experiments, our U2F environment is as follows:
— FIDO Authenticators: the Yubikey NEO with the firmware

version 3.4.9 and the Security Key by Yubico with the firmware
version 5.1.2.

G. Patat, M. Sabt 17

— FIDO Clients: Mozilla Firefox 67.0.4 for x86_64-pc-linux-gnu
and Google Chrome 75.0.3770.100 Official Build 64-bit.

— Relying Parties: Gmail, Dropbox, Facebook, FastMail and lo-
gin.gov.

6.2 Testing Methodology

All our observations have been obtained through various experiments.
For each relying party, we have created two users with different passwords
and different FIDO Authenticators. We used two geographically sepa-
rate networks with two different computers. Thus, each experiment has
been repeated several times with different settings: user, relying party,
Authenticator, FIDO Client. We did not observe any different behavior
when the settings change for a particular experiment. For our evaluation,
we created several cookies for different users on the same device or for
different devices of the same user. Then, we test our criteria as follows:

— Inner-Structure: First, we generate three cookies for each user by
varying these settings: the user’s password, the FIDO Authenticator,
and the trusted computer. In total, we obtain six cookies for each
service provider. Then, we study whether a fixed pattern exists
and relates to a specific setting. Finally, we try to decode their
value by using the following encoding schemes: Base64, Base32 and
Base16. We also attempt to forge a new valid cookie by modifying
the values of the existing cookies. Of course, this says nothing
about their (un)forgeability.

— Ephemerality: We generate several cookies and look at their expi-
ration date. We are aware that a cookie might be only a pointer to
a server database entry, and therefore their lifetime might not be
equal to their browser expiration date. Thus, once generated, we
waited for one month and also for six months without connection
and then tested the cookies again. Of course, our experiments
do not prove that a 10-year expiration duration actually means
such a lifetime. However, we do at least show that they have an
unnecessarily long lifetime. Moreover, to support our results, we
have a 3-year-old remember me cookie for a Gmail account and we
still can use it to bypass the U2F authentication.

— Effectiveness-of-revocation: The authentication page for any rely-
ing party does not offer the possibility to “forget” a remembered
computer. Here, we test other revocation means that may make re-
lying parties clear their database and refuse a previously-generated
cookie. Our methodology is: we first generate a remember me cookie

18 Please Remember Me

on a given device for a given user, then we perform one of our
revocation methods, and finally we attempt to log in using the
same cookie. If the relying party asks to insert the U2F token, we
conclude that the revocation method is effective. As mentioned
above, we evaluate two revocation means: (1) changing the asso-
ciated FIDO authenticator to a new one, or (2) modifying the
account password. For each test, we properly log out and clear all
session cookies (except for the remember me one) before evaluating
the effectiveness of any revocation method.

— SameSite: Here, we only look at the corresponding cookie flag and
note its value: none, lax or strict.

6.3 Remember Me Implementations

Throughout this section, for brevity and consistency, each “Evaluation
Criteria” defined above will be referred to with its short title. Now,
we provide our observations regarding widely-deployed remember me
implementations. Figure 5 summarizes our findings.

Google Google proposes the remember me option across its different
services: Gmail, YouTube and G Suites. During authentication, when
a second factor is registered, the remember me checkbox is selected by
default. After a successful authentication, if no further action taken by the
user, a new cookie named SMSV is created and associated to the domain
accounts.google.com. The cookie expires after ten years of its creation,
thus not satisfying our definition of Ephemerality. Experimentally, we test
several remember me cookies and verify that they were still valid after
one month, six months and even three years of their generation. Google
sets the SameSite attribute to None.

Google U2F cookies always begin with the same first six characters that
are equal to “ADHTe-”. Its length is 119 characters. We did not succeed
in decoding this structure using different encoding schemes, including
Base64, Base32 and Base16. Cookie values seem random, but we have no
clue how the cookie values are generated.

Regarding cookies revocation, the effective method is to revoke the
associated FIDO authenticator (Effectiveness-of-Revocation (1)). Indeed,
a user that changes her password still bypasses the U2F authentication in
remembered devices. We also verify the possibility of devices revocation
using the Google dashboard.3 We found that even if users force the

3. https://myaccount.google.com/device-activity

https://myaccount.google.com/device-activity

G. Patat, M. Sabt 19

remembered devices to sign out or indicate that they do not recognize
them, the remember me cookies do not only remain valid, but also browsers
do not clear them out.

Google maintains only one cookie on the same device even if several
users select the remember me option. We noticed that the cookie length
grows with respect to the number of remembered users. This shared cookie
is not revoked when a new cookie is created. A peculiar observation is
that the cookies keep their size despite users revocation. This makes us
assume that actual remember me values are stored on the RP side.

Dropbox Dropbox allows users to remember their FIDO authenticators.
The cookie is associated to the .www.dropbox.com domain. Its name is
trusted_$i, where $i is the user’s account numerical ID. Its expiration
date is set after ten years, thereby breaking the Ephemerality property. In
addition, our 1-month and 6-month old cookies were still valid to bypass
U2F. The SameSite attribute is set to None. The cookie value, encoded
in Base64, has the structure:

{

" value ": {"h": $0 , "tkey": $1},

" signature ": $2

}

where $0, $1 and $2 are respectively 46, 15 and 46 characters long and
are bound together: switching values from different valid tuples is not
enough to forge a cookie even for the same user. Despite its decodable
structure, we cannot tell exactly how the cookie values are generated, or
what cryptographic algorithms are used.

During our evaluation, we noticed that the values of tkey and
signature systematically change for each newly created cookie. How-
ever, h remains constant for a specific account and will only differ when
the user modifies their password. In addition, we notice that if users
enter an old password again, they do not find previously generated h.
Thus, modifying users’ passwords is an effective method of cookies revo-
cation (Effectiveness-of-Revocation(2)). However, users who revoke their
FIDO authenticator and associate a new one to Dropbox still can log
into their account without presenting the recently added authenticator on
remembered devices. The consequence is that the RP cannot safely revoke
vulnerable authenticators, since new ones (possibly more secure) can be
bypassed with cookies generated for the old ones.

The cookie values are not bound to the remembered device: a valid
tuple (h, tkey, signature) remains valid on other devices and browsers.

20 Please Remember Me

Unlike Google, Dropbox generates a different cookie for each remember
me even on the same computer. If different users share the same computer,
the browser will transmit all the remember me cookies of all users each
time one user attempts to authenticate.

Facebook Facebook, with its 2.41 billion monthly active users [32],
implements remember me with two cookies, called datr and sb, linked to the
.facebook.com domain. To our surprise, these cookies work independently:
users need to transmit only one of them to bypass the U2F authentication.
Moreover, erasing only one of them has no apparent impact. Unlike
all other relying parties, the remember me cookies are set before users
authentication; just when users arrive at Facebook homepage. They expire
two years after their creation, hence not satisfying the Ephemerality
property. In addition, experimentally, cookies keep their validity even after
six months. The SameSite attribute is set to None for both cookies. We
could not decode the cookie values.

The default behavior is to remember authenticating users unless other-
wise expressed. If a user does nothing, and so accepts to remember their
device, the datr and sb cookies, which are already sent to users, will be
linked to their account and stored in the authentication service database.
Similar to Google, this makes us think that some entries must be stored
in the RP side. This process implies that multiple users can have the same
cookie when using the same browser. Thus, dangerously, two users shar-
ing the same computer but using two different FIDO authenticators get
the same remember me cookie. This is because the cookies are produced
independently of users or their devices (generated before logging in).

As for revocation, we have not succeeded in revoking valid cookies.
Indeed, users who modify their passwords and replace their authenticator
by a new one still can bypass U2F when one of the datr and sb cookies
is presented. Thus, we think that Effectiveness-of-Revocation is not im-
plemented at all. We argue that this property greatly exacerbates several
attacks, since one leaked cookie can never be dissociated from their linked
accounts. The scenario becomes worse if multiple users share the same
cookie.

FastMail FastMail supports U2F into its authentication system. It pro-
vides a remember me implementation similar to the one from Dropbox.
After a successful authentication, if the users tick the remember me check-
box, a U2F cookie is set into the FIDO client with the .www.fastmail.com

domain. The cookie is called f_$i, where $i is a string of eight hexadecimal

G. Patat, M. Sabt 21

Fig. 5. Experimental Analysis of Remember Me Solutions

numbers representing the user’s account ID. The cookie expires ten years
after its creation, thus falling Ephemerality property. Similar to the other
solutions, a 1-month and a 6-month-old cookies are still valid. As for the
SameSite attribute, it is set to None.

When we decode the cookies, we observe the following structure:

1;$0;1;$1

where $0 is the epoch of creation and $1 is the variable size. This string
seems random, but we do not know how it was produced.

Furthermore, similar to Facebook, there is no way to forget remem-
bered computers: the cookies continue bypassing U2F despite modifying
users’ FIDO authenticator or setting new password. We can say that
Effectiveness-of-Revocation is not available.

login.gov login.gov is an official web service of the United States govern-
ment providing a single sign-on (SSO) solution for multiple participating
government agencies. The registration of a 2AF or U2F authenticator is
mandatory to sign up in order to increase the authentication security.

Similar to most relying parties that we study, login.gov creates
the remember me cookie after a successful authentication. The option
checkbox is not ticked by default. The cookie is named remember_device,
and it is linked to the secure.login.gov domain. Its expiration date

22 Please Remember Me

is set after one month of its creation, which makes it the only site to
satisfy our definition of Ephemerality. The implementation of login.gov

is distinguished from other relying parties by two characteristics: (1) a
cookie cannot be used after one or six months (even if we manually change
the browser expiration date), and (2) the SameSite attribute takes the
Lax value.

After decoding, we observe that cookie values are of size 366 characters.
There is no discernible structure that can attest their forgeability. In
addition, all valid cookies can be revoked by removing the registered
FIDO authenticator and adding a new one (Effectiveness-of-Revocation(1)).
Changing users password does not clear the entries of the associated
remember me devices.

Discussion. Our findings highlight four points. First, the structure of
remember me cookies are often opaque, which hinders our understanding
about their values generation. Second, the implemented solutions set a
lifetime unnecessarily long for these cookies. It is true that remember
me makes U2F more pleasant, however, there is no study showing that
enforcing the second factor on trusted devices every now and then would
decrease the acceptability of such solutions. Third, it is peculiar that
revocation is not easier. Worse still, two service providers, namely Facebook
and FastMail, do not offer such a possibility to invalidate previously
generated cookies. This can be partially explained by the fact that cookies
are not bound to both the authenticator and the user account (including
password). We believe that it is important to be able to forget devices
that were remembered in the past. Fourth, the SameSite is still widely
overlooked even for major service providers.

6.4 Security Analysis of U2F with Remember Me

Here, we provide more insights by revisiting the security analysis
using the security benefits of Section 4. We will show the actual security
resulted from a bad remember me implementation when combined with
U2F authentication protocols.

As usual, we consider that attackers can easily defeat the security
offered by passwords. We highlight our findings by evaluating the U2F
solutions of the examined relying parties through the security benefits that
we defined in Section 4.2 and that are widely used across the literature [4].
Our results are summarized in the Figure 6.

First of all, the resulted security analysis cannot be better than the
one given in Section 4.3. Therefore, current remember me solutions are not

G. Patat, M. Sabt 23

Resilient-to-Theft. However, the use of remember me worsens this scenario:
the attackers impersonate the victim and remember their computers.
Then, the attackers can discreetly return the FIDO authenticator. The
generated remember me cookie will allow the attackers to bypass the
U2F verification. Thus, the victim might never be aware of the theft.
Second, Facebook and FastMail do not allow cookies revocations, and
therefore the compromise will remain valid even if the victim replaces
their authenticator. Furthermore, the lack of revocations in some relying
parties makes the underlying solutions not Long-Term-Resilient-to-Theft.

Given their nature, cookies are vulnerable to any form of observa-
tion: physical, internal and communication. No ephemerality exacerbates
the situation: stolen U2F cookies can be used as a long-term master
key that bypasses U2F authentication. This is due to the fact that a
cookie is independent from its remember me environment, since it is only
bound to a user account and a given relying party within a static setting.
Furthermore, the current implementations of remember me rely on web
cookies that are locally stored with long validity duration. Malicious soft-
ware inside the browser can achieve their goals by several means. First,
the easiest way is to get the cookies and transmit their values to the
attackers. Second, because no integrity protection is guaranteed, they
can modify the cookies domain or set off their attributes: secure and
http-only. Thus, attackers can easily steal the cookies through XSS
vulnerabilities or phishing websites. To recapitulate, the physical, Man-in-
the-Browser and Man-in-the-Middle capabilities allow attackers to compro-
mise the Resilient-to-Physical-Observation, Resilient-to-Input-Observation
and Resilient-to-Communication-Observation security benefits. We note
that each compromise leads to a large number of impersonation before
the expiration date.

Protection against servers intrusion is ensured by the U2F protocols,
since no exploitable data are stored on the RP. Nevertheless, our experi-
ments show that relying parties tend to store the remember me cookies in
order to be able to revoke them in case, for instance, the U2F authenticator
is replaced by another one. To the best of our knowledge, there is no
document specifying how these cookies shall be securely stored. Assuming
no secure storage, any intrusion into the RP database allows retrieving
all users cookies. Here, we can claim that Facebook implementation is
the most vulnerable one, since the cookies are created even before any
successful authentication. Simply put, bad remember me implementations
are evaluated not to be Resilient-to-Leaks. However, we observe that U2F
cookies are implemented, so that they are strongly bound to the generating

24 Please Remember Me

relying parties. Therefore, we suggest that the examined solutions are
Resilient-to-Leaks-from-Other-Verifiers.

Fig. 6. Comparative Analysis of Authentication Mechanisms Regarding Security
Benefits

Concerning the Resilient-to-Phishing property, we note that the direct
damage is limited, since the U2F cookies will be only transmitted to the
origin domain. However, a malicious website can still set some traps to
the user by including some HTML elements to perform CSRF attacks. We
consider a successful impersonation via cross-site authentication queries
as a kind of phishing attacks.

As for the Unlinkable property, it is hard to assess anything about it
from the structures that we obtained while decoding the cookie values.
No technical detail plausibly stipulates any deducible relationship with
the associated users account.

7 Attacks and Weaknesses

In the previous section, we have shown that the analyzed U2F solutions
use very diverse remember me implementations that do contain bad design
choices, such as long validity duration of more than six months. We now

G. Patat, M. Sabt 25

exploit these design flaws to bypass U2F without compromising the trusted
remembered devices.

Two attacks are defined and implemented. For each attack scenario,
we provide a detailed description discussing the attacker settings, and
how the remember me cookies are exploited. Unless mentioned otherwise,
our attacks work successfully against all the previously examined relying
parties. We begin this section by recalling the required threats model.

7.1 Threats Model

In order to perform our attacks, we consider a weaker version of the
capabilities defined in Section 4.1. Indeed, we only consider two capabilities:
(1) an attacker who can include a malicious plugin into a browser, and (2)
an attacker executing some phishing attacks.

One may argue that our threats model are not plausible. At first glance,
one may say that such attacks will trivially defeat any authentication
mechanism. Nevertheless, we argue that many U2F design choices are
motivated to mitigate these powerful attackers (access to passwords, Man-
in-the-Browser, etc.). For instance, the FIDO Security Reference [18]
claims to resist “online attacks by adversaries able to actively manipulate
network traffic”. All parties supporting U2F adoption (e.g. Google, W3C)
think that such a threat model is reasonable enough for wide adoption.
We have just considered the created threat model by FIDO and shown
that several attacks are still possible because of the remember me feature.

Furthermore, we suppose that the remembered devices are trustworthy,
and no malicious software run on them.

7.2 Remember Me on Untrusted Device

The remember me feature, as its currently implemented, shifts the
security of the U2F authentication to a small file saved into the browser
file system. Recovering the value of this file allows attackers to bypass
the U2F verification step from other devices for a long time. The U2F
cookies have well-identified names and format for each relying party. Thus,
attackers would have no problem pinpointing them if they get access
to the remembered devices. However, we suppose that attackers cannot
compromise these devices, since we assume that users only remember
trusted devices.

Our attack starts from this observation: remember me cookies are not
bound to their remembered devices. We validate this observation through
various experiments. In particular, for a given user on a given relying

26 Please Remember Me

party, we generate the remember me cookie on computer “A”. Then, the
cookie is copied into computer “B” that was never remembered before.
Computers “A” and “B” use different browsers and are connected to
separate networks. Finally, we test if U2F is bypassed on computer “B”.
Our experiments confirm that all the analyzed relying parties have their
cookies independent from the remember me environment. We also perform
the experiment in which the same cookie is used to establish two parallel
connections. We notice that no RP finds this behavior suspicious.

We implemented the following scenario. The attacker succeeds in
installing some malicious browser plugin in an untrusted device. The
malicious plugin can copy cookies and modify queries content before
transmission. Somehow, the victim would like to access to their account
using this untrusted device. Of course, the victim will not tick the remember
me option while authenticating. Now, the malicious plugin alters the
authentication query by selecting the remember me checkbox, and thereby,
unbeknownst to the victim, creating a U2F cookie. This is true because
we can remember devices without explicit consent from users. Finally, the
plugin copies the cookie and sends it to the attacker who can exploit it.
These hijacked cookies in the wild make hopeless some relying parties that
do not offer the possibility to revoke them.

7.3 Cross-Site Request Forgery

As we explained, the remember me cookies are valuable; getting their
values is enough for successful impersonation in all the relying parties
that we inspected. The previous scenario implies that attackers somehow
would put their hands on these values and use them from other computers.
Nevertheless, there is another attack vector against cookies: attackers can
just ask victims to transmit their cookies to accomplish their malicious
queries. At first sight, this assumption does not sound plausible, but this
is how browsers deal with cookies by default. Indeed, cookies are sent by
the browser to the relying party when an HTTP request starts, and they
are sent back from the relying party when their content is edited. This
default behavior has caused the well-known Cross-Site Request Forgery
(CSRF) attack.

Unfortunately, none of the studied websites, except for login.gov,
leverage the SameSite attribute: Google, Dropbox, Facebook and Fast-
Mail use the None mode, while login.gov uses the Lax mode. Therefore,
attackers can take advantage from this, since any cross-site authentication
request from a remembered device would make the browser include the
remember me cookie, and thereby bypassing the U2F authentication.

G. Patat, M. Sabt 27

We implement CSRF by including some HTML elements that force
the browser into sending HTTP(s) queries to a remembered relying party.
This does not require any user intervention, e.g. invisible forms submitted
via JavaScript. The vulnerability comes from the fact that the browser
will gladly include all the associated cookies. Therefore, assuming these
requests contain valid credentials, U2F is bypassed unless the SameSite

flag is properly set.

8 Countermeasures

Yubico describes U2F as "a protocol that offers protection from phishing
and Man-in-the-Middle attacks". U2F gets many of its security properties
from its challenge-response nature, and the fact that the cryptographic
keys never leave the trusted hardware token. This comes in contradiction
with how remember me is implemented through cookies. Indeed, these
cookies play the role of a master key that allows users to bypass their
second factor. However, we show that these cookies are not just stored
on the trusted devices, but also are sent over the Internet and are stored
on the RP side. Therefore, phishing and MitM attacks become possible,
thereby raising security issues as we demonstrated in the previous sections.

Thus, we believe that U2F and remember me cookies do not go well
together. As a result, we propose to keep the challenge-response logic even
when remember me is activated. Indeed, we suggest that the remember
me process triggers the generation of a soft U2F token. Here, the FIDO
Client, namely the browser, would generate a random key and a key pair.
Then, the latter is encrypted using the former to compute a key handler
that is sent to the RP alongside with the associated public key. The RP
registers this soft token and associates it to the authenticating user. This
will not raise a compatibility issue, since most relying parties already
allow users to register more than one authenticator. During authentication
on a trusted device, the RP should detect the presence of a soft token,
and automatically switches to it. The U2F authentication protocol runs
normally except for the step that requires users consent. Indeed, we think
that it would be better for acceptability that the RP sets the attribute
isFreshUserVerificationRequired from the U2F standard as false in
order to carry out the complete authentication without any action from
the user.

Assuming that remembered devices are trustworthy, we can easily show
that (refer to Section 4) such a solution is Resilient-to-Communication-
Observation, Resilient-to-Leaks, Resilient-to-Leaks-from-Other-Verifiers

28 Please Remember Me

and Resilient-to-Phishing. Obviously, the remember me threat model is not
compatible with the Resilient-to-Physical-Observation and Resilient-to-
Input-Observation benefits, since this would break the assumption about
trusted devices.

We did not provide any reference implementation, because we believe
that each RP would adapt it to suit its own flow. Given our study in
Section 6, we recommend the following properties:

— Short-Lifetime: remember me tokens shall be persistent with short
lifetime. A secure implementation shall automatically clear out
users soft tokens once in a while in order to force the use of the
authenticator.

— Ease-of-Revocation: users should be able to forget remembered
devices in more intuitive way. Moreover, any authenticator revo-
cation or password modification shall result in revoking all the
remembered devices by the user.

— Notification: users should be informed about newly remembered
devices. Enforcing this property limits attacks leveraging the lack
of integrity protection of remember me queries.

There is still one last property that we discuss: Hard-to-use-Elsewhere.
As its name indicates, the remember me feature is intended to recognize
some computers as personal or trustworthy. Therefore, the RP should
accept the soft tokens if, and only if, they are used from the remembered
device in which they were generated. In other words, if an attacker succeeds
in retrieving the secret keys of U2F soft tokens, they shall be unable to
bypass the U2F second factor authentication by merely using them from
another device. This property is hard to accomplish. We leave the question
of strong binding with the remembered device for future work.

9 Practical Attack Against Facebook

Similarly to passwords, the relying parties supporting U2F define a
couple of policies in case of losing or forgetting the FIDO authenticator.
The most used recovery method is to support alternative authentication
methods, so that users can regain access to the account to delete (de-
associate) the lost or stolen authenticator from their account. We stress
that the recovery method should guarantee a decent level of security, since
it allows users to deactivate their U2F authentication. Therefore, sending
a reset link to a backup email is not satisfactory, especially when the email
provider does not support any 2FA mechanism.

G. Patat, M. Sabt 29

Thus, the relying parties enable multiple forms of 2FA, so that users
can apply any to access to their account. In practice, we notice that the
relying parties always enable at least another 2FA mechanism for recovery
purposes; the most popular one is SMS-based OTP. Ironically, the design
of FIDO U2F was motivated to replace these 2FA solutions that offer less
security. Readers can refer to [16] for in-depth analysis.

In all the relying parties that we examined (namely Google, Dropbox,
Facebook, FastMail and login.gov), the settings interface imperatively asks
for a phone number before enabling the U2F authentication. This number
is used to receive OTP in case the FIDO authenticator is lost or stolen.
Users experience is slightly different for Google, since the phone number
is required for the account creation, and is automatically associated when
U2F is activated.

It is straightforward to see that the resulted security is as weak as
the weakest enabled 2FA. The deployed U2F solutions allow attackers
to target a weaker 2FA mechanism in order to permanently deactivate
the enabled U2F authentication. The attack scenario is as follows: the
attackers guess users credentials, compromise SMS-based OTP and disable
U2F authentication. The remember me feature can make this scenario
worse, because users will not detect such a modification in their security
settings.

However, this scenario relies on the assumption that attackers must
first compromise users credentials. Even though such an assumption is
quite common, it does not lead to practical attacks. During our analyses,
we identified an equivalent attack scenario against Facebook in which
attackers are not required to have victims’ credentials; they only need to
get into the SMS-based OTP once in order to deactivate U2F for good.
The recent attack against the CEO of Twitter [17] in September 2019
shows that our scenario can lead to effective attacks in practice.

9.1 Responsible Disclosure

We have notified Facebook about this security vulnerability through
their bug program. The security team acknowledged the attack and closed
our Whitehat report of number #112614246876669 on December 2nd
2019.

9.2 Attack Description

We suppose that the victim has already enabled U2F on her Facebook
account. We also suppose that the attacker has a Facebook account and

30 Please Remember Me

knows the victim’s phone number. The goal is to make the victim more
vulnerable by completely disabling U2F. The attack works as follows:

— The attacker signs in her own Facebook account.
— She enters the victim’s number phone while activating the U2F

authentication.
— Facebook sends a code by SMS to the victim’s phone.
— The attacker gets this code by the Physical Proximity capability

or by tricking the victim.
— When the attacker enters the verification code, Facebook vali-

dates the attacker request and associates the phone number to the
attacker.

— Facebook finds it strange that a phone number is linked to two
accounts. Therefore, it decides to silently deactivate all the 2FA
mechanisms of the victim’s account. Facebook only sends a notifi-
cation about the association of the phone number, nothing about
the deactivation of 2FA.

To sum up, Facebook cannot associate the same phone number to two
different U2F accounts. Indeed, when the same number is used twice, the
first U2F activation is disabled permanently. We claim that this scenario
is a serious attack vector for multiple reasons. First, it can be carried out
remotely though phishing websites. Indeed, a malicious website can fake
some authentication problem and ask the victim to enter the received
code. Second, it can be automated if the attacker can read the victim’s
SMS; which is easier than compromising the FIDO authenticator. Third, it
requires to target the victim only once for a permanent 2FA deactivation.
Fourth, no security alert is made by Facebook about the deactivation. In
addition, the settings are not trivial, so we expect that victims detect the
attack much lately.

10 Conclusion

This work provides the first systematic analysis on the undocumented
U2F remember me option. We show that its security impact is not well mas-
tered and often underestimated. Our study points out that the solutions
found in the wild significantly weaken the initial security proposed by U2F.
Our attack against Facebook abusing its 2FA recovery option and new
attack vectors led by remember me solutions shows that U2F needs to be
better understood to stay secure. Nevertheless, we consider these options
essential for usability and acceptability of this protocol by the greatest

G. Patat, M. Sabt 31

number. We expect that this paper will highlight current weaknesses and
offer the leads for service providers to improve user security.

References

1. Anne Adams and Martina Angela Sasse. Users are not the enemy. Commun. ACM,
42(12):40–46, 1999.

2. FIDO Alliance. Simpler, stronger authentication. https://fidoalliance.org.
Accessed: 2020-03-01.

3. Dirk Balfanz, Arnar Birgisson, and Juan Lang. Fido u2f javascript api v1.0.
Technical report, FIDO Alliance, May 2015.

4. Joseph Bonneau, Cormac Herley, Paul C. van Oorschot, and Frank Stajano. The
quest to replace passwords: A framework for comparative evaluation of web authen-
tication schemes. In IEEE Symposium on Security and Privacy, pages 553–567.
IEEE Computer Society, 2012.

5. Elie Bursztein. The bleak picture of two-factor authentication adoption in the
wild. https://elie.net/blog/security/the-bleak-picture-of-two-factor-

authentication-adoption-in-the-wild. Accessed: 2020-03-01.

6. Naked Security by Sophos. Yubico recalls fips yubikey tokens after flaw found.
https://bit.ly/2RjiUlL. Accessed: 2020-03-01.

7. Jessica Colnago, Summer Devlin, Maggie Oates, Chelse Swoopes, Lujo Bauer,
Lorrie Faith Cranor, and Nicolas Christin. "it’s not actually that horrible": Exploring
adoption of two-factor authentication at a university. In CHI, page 456. ACM,
2018.

8. Alexei Czeskis, Michael Dietz, Tadayoshi Kohno, Dan S. Wallach, and Dirk Balfanz.
Strengthening user authentication through opportunistic cryptographic identity
assertions. In ACM Conference on Computer and Communications Security, pages
404–414. ACM, 2012.

9. Sanchari Das, Andrew Dingman, and L Jean Camp. Why johnny doesn’t use
two factor a two-phase usability study of the fido u2f security key. In Financial

Cryptography, Lecture Notes in Computer Science. Springer, 2018.

10. Antonio González-Burgueño, Damián Aparicio-Sánchez, Santiago Escobar, Cather-
ine A. Meadows, and José Meseguer. Formal verification of the yubikey and yubihsm
apis in maude-npa. In LPAR, volume 57 of EPiC Series in Computing, pages
400–417. EasyChair, 2018.

11. Jeremiah Grossman. Cross-site tracing (xst). Technical report, WhiteHat Security,
Janvier 2003.

12. Network Working Group. Hotp: An hmac-based one-time password algorithm.
https://tools.ietf.org/html/rfc4226. Accessed: 2020-03-01.

13. HSBC. Secure key. https://bit.ly/2KdVY5u. Accessed: 2020-03-01.

14. Internet Engineering Task Force (IETF). Totp: Time-based one-time password
algorithm. https://tools.ietf.org/html/rfc6238. Accessed: 2020-03-01.

15. Charlie Jacomme and Steve Kremer. An extensive formal analysis of multi-factor
authentication protocols. In CSF, pages 1–15. IEEE Computer Society, 2018.

https://fidoalliance.org
https://elie.net/blog/security/the-bleak-picture-of-two-factor-authentication-adoption-in-the-wild
https://elie.net/blog/security/the-bleak-picture-of-two-factor-authentication-adoption-in-the-wild
https://bit.ly/2RjiUlL
https://tools.ietf.org/html/rfc4226
https://bit.ly/2KdVY5u
https://tools.ietf.org/html/rfc6238

32 Please Remember Me

16. Juan Lang, Alexei Czeskis, Dirk Balfanz, Marius Schilder, and Sampath Srinivas.
Security keys: Practical cryptographic second factors for the modern web. In
Financial Cryptography, volume 9603 of Lecture Notes in Computer Science, pages
422–440. Springer, 2016.

17. Dave Lee. Twitter CEO and co-founder Jack Dorsey has account hacked. https:

//www.bbc.com/news/technology-49532244. Accessed: 2020-03-01.

18. Rolf Lindemann, Davit Baghdasaryan, and Brad Hill. Fido security reference v1.0.
Technical report, FIDO Alliance, December 2014.

19. Salah Machani, Rob Philpott, Sampath Srinivas, John Kemp, and Jeff Hodges.
Fido uaf architectural overview v1.1. Technical report, FIDO Alliance, February
2017.

20. NIST. Digital identity guidelines. https://pages.nist.gov/800-63-3/sp800-

63b.html. Accessed: 2020-03-01.

21. Olivier Pereira, Florentin Rochet, and Cyrille Wiedling. Formal analysis of the
FIDO 1.x protocol. In FPS, volume 10723 of Lecture Notes in Computer Science,
pages 68–82. Springer, 2017.

22. Google Play. Google authenticator. https://bit.ly/1kuly5f. Accessed: 2020-03-
01.

23. Joshua Reynolds, Trevor Smith, Ken Reese, Luke Dickinson, Scott Ruoti, and
Kent E. Seamons. A tale of two studies: The best and worst of yubikey usability.
In IEEE Symposium on Security and Privacy, pages 872–888. IEEE Computer
Society, 2018.

24. RSA. Rsa securid hardware tokens. https://www.rsa.com/content/dam/en/data-

sheet/rsa-securid-hardware-tokens.pdf. Accessed: 2020-03-01.

25. Sampath Srinivas, Dirk Balfanz, Eric Tiffany, and Alexei Czeskis. Universal 2nd
factor (u2f) overview v1.2. Technical report, FIDO Alliance, April 2017.

26. Blase Ur, Fumiko Noma, Jonathan Bees, Sean M. Segreti, Richard Shay, Lujo
Bauer, Nicolas Christin, and Lorrie Faith Cranor. "i added ’!’ at the end to make
it secure": Observing password creation in the lab. In SOUPS, pages 123–140.
USENIX Association, 2015.

27. Can I Use. Samesite cookie attribute. https://caniuse.com/#feat=same-site-

cookie-attribute. Accessed: 2020-03-01.

28. Mike West and Mark Goodwin. Same-site cookies. https://tools.ietf.org/

html/draft-ietf-httpbis-cookie-same-site-00. Accessed: 2020-03-01.

29. Jeff Jianxin Yan, Alan F. Blackwell, Ross J. Anderson, and Alasdair Grant. Password
memorability and security: Empirical results. IEEE Security & Privacy, 2(5):25–31,
2004.

30. Yubico. Works with yubikey catalog. https://www.yubico.com/works-with-

yubikey/catalog. Accessed: 2020-03-01.

31. Yubico. Yubikey. www.yubico.com/products/yubikey-hardware. Accessed: 2020-
03-01.

32. ZEPHORIA. The top 20 valuable facebook statistics – updated july 2019. zephoria.

com/top-15-valuable-facebook-statistics. Accessed: 2020-03-01.

https://www.bbc.com/news/technology-49532244
https://www.bbc.com/news/technology-49532244
https://pages.nist.gov/800-63-3/sp800-63b.html
https://pages.nist.gov/800-63-3/sp800-63b.html
https://bit.ly/1kuly5f
https://www.rsa.com/content/dam/en/data-sheet/rsa-securid-hardware-tokens.pdf
https://www.rsa.com/content/dam/en/data-sheet/rsa-securid-hardware-tokens.pdf
https://caniuse.com/#feat=same-site-cookie-attribute
https://caniuse.com/#feat=same-site-cookie-attribute
https://tools.ietf.org/html/draft-ietf-httpbis-cookie-same-site-00
https://tools.ietf.org/html/draft-ietf-httpbis-cookie-same-site-00
https://www.yubico.com/works-with-yubikey/catalog
https://www.yubico.com/works-with-yubikey/catalog
www.yubico.com/products/yubikey-hardware
zephoria.com/top-15-valuable-facebook-statistics
zephoria.com/top-15-valuable-facebook-statistics

	Please Remember Me
	G. Patat, M. Sabt

