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Abstract

To model the morphogenesis of rod-shaped bacterial micro-colony, several individual-based
models have been proposed in the biophysical literature. When studying the shape of micro-
colonies, most models present interaction forces such as attraction or filial link. In this article,
we propose a model where the bacteria interact only through non-overlapping constraints. We
consider the asymmetry of the bacteria, and its influence on the friction with the substrate.
Besides, we consider asymmetry in the mass distribution of the bacteria along their length.
These two new modelling assumptions allow us to retrieve mechanical behaviours of micro-
colony growth without the need of interaction such as attraction. We compare our model to
various sets of experiments, discuss our results, and propose several quantifiers to compare
model to data in a systematic way.

Keywords. micro-colony morphogenesis; rod-shaped bacteria; individual-based model; asym-
metric friction;

1 Introduction

Bacteria are ubiquitous unicellular organisms, whose biomass exceeds that of all other living or-
ganisms, and on which our survival is dependent. From a single organism, they quickly develop
into organised micro-colonies and biofilm structures. The self-organisation of the colony into a
dense aggregate is the result of the interplay of various chemical and biological signalling as well
as mechanical interactions. These interplays, while increasingly studied in the past decade, are
still only partly understood. In particular, the influence of the mechanical or chemical interactions
between the particles such as attraction, repulsion or alignment on the global shape of the colony
is not clear.

To model mathematically and simulate the self-organisation of bacteria, scientists have used
microscopic and macroscopic models. On the one hand, microscopic models consider each particle
individually and interactions are represented by forces or constraints. These models give a high
level of description but also result in computationally costly numerical results. In the context
of bacterial growth, microscopic models mainly take the form of individual-based models (IBM)
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where each rod-shaped bacterium is described by a spherocylinder [11, 15]. In [42, 3, 39], the non-
overlapping constraint on neighbouring bacteria is achieved via a repulsive force based on Hertzian
theory. Some other models represent bacteria as hard-spheres [22] or spring-mass systems [17, 34]
and consider volume exclusion potential [4]. On the other hand, macroscopic models consider
local averages such as densities and describe the evolution of a system through partial differential
equations (PDE). This description reduces the computational cost but is less precise than the one of
a microscopic model. The macroscopic models found in the literature are based on nematodynamic
equations [5, 11, 7]. These have been developed in the context of liquid crystals. The crystal being
rod-shaped, similarly to E. coli and pseudomonas bacteria, the nematic model can be adapted
to bacteria development by the addition of growth. However, these macroscopic models are often
complex and rely on empirical laws, so that they are difficult to relate to the reality of a biological
system.

In this study, our aim is to understand how the mechanical interactions between the bacteria
drive the growth of micro-colonies, which forces are necessary to take into account and which are
not, and to propose quantifiers to estimate the model parameters. Moreover, we focus on the early
steps of the micro-colony morphogenesis, which is the phase where a continuous approximation
would be the less accurate. We therefore chose to develop an IBM model, which allows us a finer
investigation of the influence of each modeling ingredient than a continuous averaging model.

Models have been used to study the different steps of a biofilm formation. Studies have shown
that free-swimming bacteria migrate on surfaces rich in nutrient and transit to a sessile state before
starting the formation of micro-colonies [2, 27, 21, 16]. Once immobile, a given bacterium grows
and divides, giving birth to a small cluster of cells called a micro-colony [33, 31]. The micro-colony
first grows in a two-dimensional organisation before developing into a three-dimensional structure
[17, 35]. Later on, the micro-colony transforms into a mature biofilm. The morphology (filamentous
or mushroom structures [18]) of these biofilms, as well as their physiology (visco-elastic, viscous
[32]), have been widely studied.

The process which is the focus of our study is the formation of a micro-colony from a single
individual. In particular we consider the situation of a non-motile 2D growing colony on a controlled
non-restrictive-space substrate environment [33, 36]. A wide range of models has been developed
to study this situation. Among them we found models considering the extracellular matrix [15],
nutrient [12, 15], substrate adhesion [11, 34], bacteria attraction [11, 34], fillial link [34]... These
models are, however, up to our knowledge, unable to reproduce some spatial characteristics of
micro-colonies. In particular, most models fail to recover the elongated shape of the micro-colony
at an early stage [12, 15, 17, 42]. In [11], the authors show how an asymmetric adhesion can control
the shape of the micro-colony, by a comparison of their model with several types of bacteria and
more or less adhesive substrates. Building on their study, we aim at considering the simplest
possible model able to recover spatial specificity of the micro-colony growth, questioning whether
an attractive potential as proposed in [11] is mandatory or not, and whether asymmetric adhesion
may be taken into account in a simpler way. To compare simulation results to experimental
data, we focus mostly on two characteristics: (C1) the arrangement of colonies composed of four
bacteria; (C2) the elongated shape of micro-colonies. The first point (C1) is supported by biological
experiments [31] which have shown that the first two daughter cells slide side-by-side after the first
division, giving rise to a four-cell array organisation. This configuration is however dependent on
the substrate adhesion [36]. The second characteristic we want to study (C2) is the elongation of
the micro-colony, which have up to now failed to be reproduced without considering interaction
forces other than non overlapping [11] or filial link [34]. In addition of these two characteristics we
consider the organisation of the bacteria inside the colony, the density of bacteria and the angle
observed at division.
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Our approach relies on the consideration that the bacterium may present asymetric features.
The asymmetry can be considered on different levels during the development. In [33], experiments
showed that a bacterium divides into two daughter cells with slightly different growth rates. In
particular, the growth of the daughter cell keeping the original pole of its mother is slown down
with the development of the micro-colony. On the opposite, in [40] the growth rate is stable for the
different generations of bacteria. These contradictory results have been discussed in [6]. The study
concluded that the different observations where likely due to the fact that depending of the study
the bacteria were in transient or stationary phase. For the sake of simplicity, in our model, the
division is considered symmetrical and the growth rate of the daughters independent of the growth
rate of the mother. Nevertheless, the paper [33] has brought out the question of the asymmetry
of the pole of adhesion of the bacterium. A recent study [11] has confirmed this possibility by
computing the adhesion force of the pole on different substrates. The difference of adhesion of the
pole is also suspected to be an explanation for the four-cell array organisation (C1). In this paper,
we consider a similar approach, where instead of adhesion, we consider a non-uniform distribution
of the mass along the length of the bacteria. Besides, we also consider the influence of the shape
of the bacteria on their movement. This is modelled by the choice of asymmetric friction. It
translates the fact that it is easier for a spherocylinder to slide along its longitudinal axis than to
slide transversally. If this type of model has already been considered in [13], the study has however
not been developed in our case, i.e. during the early stage of morphogenesis, where nutrient and
space are unlimited.

These new model assumptions allow us to retrieve the spatial configurations (C1) and (C2)
and to investigate the influence of each parameter of the system. To validate our approach, we
compare our model with two sets of experimental data, respectively published in the two articles
[5, 11]. The model parameters are tuned to fit some characteristics of the experimental micro-
colony such as length distribution and growth rate distribution. Then we compare our model with
the experimental data for a variety of quantifiers. The strength of the model we propose relies on
its ability to reproduce mechanical properties of colony growth observed. An especially interesting
feature is the fact that it did not require the implementation of active attraction or alignment
between the bacteria - interactions which could only be explained by chemical signalling - and
solely relies on the asymmetry of the bacteria and mechanical laws.

This paper is divided in the following four sections. In Section 2 we introduce the IBM developed
to study the growth of a micro-colony. The influence of the parameters of the model as well as
their choice is studied in Section 3. Section 4 contains the comparison between the IBM presented
in this paper and experimental data. Finally in Section 5 a conclusion is presented, together with
a discussion of possible improvements and use for further investigation.

2 The Individual-based model

The Individual-based model we propose is based on models found in the literature [3, 38, 39, 42]. We
consider a population of nonmotile rod-shaped bacteria growing and dividing on a 2D medium, and
interacting via steric forces with their neighbours. Bacterium motion is supposed to be essentially
passive: bacteria repulse each other to avoid overlapping as they grow in length and divide. As the
Reynolds number of the bacteria is very small [24], we suppose that inertial forces can be neglected
and we consider an over-damped regime for bacterial motion.

More specifically, each bacterium is modelled by a spherocylinder described by its centre
(Xi)i∈[1,N ] and orientation vector pi = (cos θi, sin θi). The diameter of a bacterium i ∈ [1, N ]
is supposed to be fixed and denoted by d0 while its time-dependent length is denoted by li. Each
bacterium has an associated time-dependent mass mi (further described). A representation of the
bacterium is provided in Fig. 1. In the following, we detail each component of the model.
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Figure 1: Representation of a bacterium i.

Computation of steric forces. The force between two spherocylinders i and j is approximated
by the force between two spheres of diameter d0, placed along the major axis of the rods at such
positions that their distance is minimal (see Figure 2). Denoting by Xo,j

i (resp. Xo,i
j ) the point on

the spherocylinder i centre line segment (resp. of the spherocylinder j) closest to the spherocylinder
j centre line segment (resp. i), the pairwise interaction force between the spherocylinders i and j
is set to, using Hertzian theory [20]:

Fi,j = Y d
1/2
0 h

3/2
i,j ni,j ,

where Y is the Young’s modulus, hi,j = |Xo,j
i − Xo,i

j | − 2d0 is the overlap distance between the
two spherocylinders, and ni,j is their common unit normal vector given by

ni,j =
Xo,j
i −X

o,i
j

|Xo,j
i −X

o,i
j |

.

This steric force between the spherocylinders i and j generates a torque acting on the centre
of the spherocylinder i of the form:

Ti,j =
(

(Xo,j
i −Xi) ∧ Fi,j

)
· z,

where z is the unit vector perpendicular to the plane of the bacterium.
The total force F si and torque T si sensed by bacterium i due to non-overlapping with its contact

neighbours are then supposed to be the sum of all these elementary pairwise forces and torques:

F si =
∑
j

Fi,j ,

T si =
∑
j

Ti,j ,

where the sum runs over all spherocylinders in contact with the spherocylinder i.

Computation of asymmetric friction forces. In addition to the non-overlapping forces be-
tween the bacteria, we consider the friction force on the substrate. This force is usually of the
form F fi = −miζ

dXi

dt with ζ the friction coefficient, i.e the drag per unit length originating from
the substrate adhesion. However, in this study, we consider an asymmetric friction, in order to
take into account the influence of the shape of the bacteria on the movement [11, 13]. For a given
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Figure 2: Representation of the interaction between two bacteria i and j with an overlapping hi,j .
The bacteria are represented by grey spherocylinders. The two balls by which we approximate the
bacteria for the repulsive force are drawn in blue.

bacterium i, let ζ
||
i and ζ⊥i be the respective coefficients in the directions parallel and perpendicular

to the axis of the cell. In the particular case of rod-shaped bacteria, we consider ζ
||
i ≤ ζ⊥i . Then

the friction matrix in the repository of a given bacterium is given by

(
ζ
||
i 0
0 ζ⊥i

)
. Therefore with

a change of basis, we get that the friction matrix in the general basis is

Ki =

(
ζ
||
i cos(θi)

2 + ζ⊥i sin(θi)
2 (ζ

||
i − ζ⊥i ) cos(θi) sin(θi)

(ζ
||
i − ζ⊥i ) cos(θi) sin(θi) ζ⊥i cos(θi)

2 + ζ
||
i sin(θi)

2

)
.

Then the friction force of a bacterium i is given by

F fi = −miKi
dXi

dt
.

Equations of motion. Altogether, using Newton’s equations in the over-damped regime, the
evolution of the position Xi and the orientation angle θi of the bacterium i is governed by:

dXi

dt
= K−1

i

1

mi
F si , (1)

dθi
dt

=
1

ζ⊥Ii
T si , (2)

where Ii denotes the inertia momentum of bacterium i [13].
The second equation (2) has been obtained by considering the angular momentum L∆(M) of

a point M of the bacterium i with respect to the axis of rotation (∆) passing by Xi orientated by
the unit vector z (perpendicular to the plane of the bacterium). We have

L∆(M) = ((M −Xi) ∧mi
dXi

dt
) · z,

with ∧ the two dimensional vector product. It is well know that L∆(M) ≈ Ii dθidt with Ii the inertia
momentum of the bacterium from the axis of rotation (∆). A small computation gives

((M −Xi) ∧ F fi ) · z = ζ⊥Ii
dθi
dt
.

Using the law of conservation of angular momentum gives (2).
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Exponential growth. The cell cycle followed by the bacteria is composed of two steps: (i) first
the elongation of the cell with an exponential growth rate, and (ii) the division of the bacterium
into two symmetric daughter bacteria. The length growth is supposed to be exponential, as proved
in many studies [29], which is translated by

dli
dt

= gili, (3)

with gi the growth rate respective to the bacterium i. When the increment of length of a bacterium
i reaches a given threshold εil, the bacterium divides, giving birth to two daughter cells of length
0.5 li − d0. At division, we consider a small noise on the orientation dθi in order to break the
alignment of the bacterium. A representation of the division is presented in Fig. 3.

Figure 3: Representation of the division of a bacterium i into two daughter bacteria i and j. The
mother cell is of length li and the two daughter cells are of length l′i = l′j = 0.5 li − d0. The angle
of the daughters are disrupted by dθi and dθj .

Distribution of mass In order to model the redistribution of material during cell division, we
suppose that the mass mi of a bacterium i is not necessarily uniform, but rather pole-dependent.
To this aim, given a bacterium i daughter of a bacterium m, we denote by Xpo

i the old pole, i.e the
extremity of the spherocylinder that was already a pole for the bacterium m, and by Xpn

i the new
pole. We suppose that the masses mpo

i and mpn
i associated to these two poles are not necessarily

equal but distributed such that mpo
i = αimi and mpn

i = (1 − αi)mi, with αi ∈ [0, 1]. In order to
take into account mass variation for cell division, αi is chosen to be time-dependent. The centre
of mass of a bacterium is then given by

Xi =
1

mi
(mpo

i X
po
i +mpn

i Xpn
i ) = αiX

p0
i + (1− αi)Xpn

i .

Remark: As the friction force is proportional to the bacterium mass, considering asymmetric
mass distribution may be viewed as a way to change the friction or substrate adhesion coefficient
along the bacterium, hypothesis which may appear more physically relevant, as shown in [11].

In the numerical simulations the system is always initialised with one bacterium at position
X1 = (0, 0), with orientation angle θ1 = 0, mass m1 = mini and length l1 = lini. The algorithm
implemented to simulate the model is presented in Appendix A.

3 Numerical simulations

In this section, we present some numerical simulations of the model introduced in Section 2. We
first explain the choice of the model parameters to fit a set of experiments. We then study the
influence of the asymmetric friction and the mass distribution on the growth of the micro-colony.
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3.1 Choice of the model parameters

The model parameters are listed below:

• the parameters related to the initialisation: lini, d0,

• the parameters related to the division of the bacteria: the threshold of division (εi)i, the
noise of the angle at division (dθi)i, the growth rate (gi)i.

• the parameters related to the mass distribution: the (possibly time-dependent) mass ratio
(αi)i,

• the parameters related to the non-overlapping force: the Young’s modulus Y ,

• the parameters related to the friction force: (ζi)i, (ζ
||
i )i, (ζ⊥i )i.

• the parameters related to the algorithm: the time step dt and the final time Tmax.

The length and diameter of the bacterium are initialised depending on the set of experiments
we aim to fit. This is also the case for the parameters related to the division of the bacteria. In
this paper, we compare our numerical simulations to three sets of experimental data. The first
two sets of data originated from [11]. In the following of the paper, we denote by Dataset 1 the
data corresponding to colonies of E. coli and Dataset 2 the data corresponding to colonies of
pseudomonas. The third set of data corresponding to E. coli colonies originates from [5]. All data
have been extracted by image segmentation of pictures taken at fixed time intervals from growing
micro-colonies, and have been kindly provided by the authors of [5, 11].

Dataset 1 Data of 7 colonies of E. coli bacteria taken every 3 minutes for final times varying
between 138 and 204 minutes. The first data of each colony contains 2 bacteria.

Dataset 2 Data of 10 colonies of pseudomonas bacteria taken every 5 minutes for final times
varying between 312 and 417 minutes. The first data for each colony contains 2 to 4 bacteria.

Dataset 3 Data of 32 colonies of E. coli bacteria taken growing every minute for final times vary-
ing between 180 and 341 minutes. The first data for each colony contains 1 to 2 bacteria. Note
that the data do not give access to the width of the bacteria. This set of data, while being more
consequent than the other two, presents some mistakes in the segmentation and is therefore more
delicate to deal with. For the sake of the study we thus did not consider any data corresponding
to bacteria observable for less than 15 minutes: we found out that these cases, when observed in
more detail, correspond to segmentation errors leading to a bacterium dividing into two and after
a short time merging again into one.

For each set of experiments, the parameters are defined as follow:

• the diameter of the bacteria d0 is defined according to the average width of the bacteria
available in the dataset. In the case of Dataset 3, the diameter of the bacteria has been
estimated from the images of [5] by linking the length of the bacteria and an image available
in the paper [5].

• the threshold of division εi: a bacterium divides when its increment of length reaches the
threshold εi. This threshold is randomly chosen according to the law of at-division increments
estimated from the experimental data available, see Appendix B for more details. In this
way, we have data-driven parameters, and the modelling assumptions which are currently
the most widely accepted ones for bacterial division [1, 37].
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• the noise in the angle at division dθi is chosen from a uniform distribution U(−Θ/2,Θ/2).
The choice of Θ is made to fit the angle at division of the experimental data. However given
the fact that data are available every 1 or 3 minutes, we do not have access to the real angle
at division. The choice of this parameter is further discussed in Section 3.3.3.

• the growth rate gi: After cell division, each daughter cell is assigned a growth rate gi which
is supposed to be constant all along the bacterium lifetime. This hypothesis is supported
by the observation of the evolution of the growth rate in time in the experimental data and
previous studies [29]. The value gi is chosen according to the growth rate law estimated from
the experimental data available. The growth rate of a bacterium j is computed with the
formula

gj =
1

tdj − tnj
ln(

ldj
lnj

),

with tnj , tdj the time at birth and death respectively and lnj , ldj the length at birth and death
respectively.

• the value of the Young’s modulus is fixed to Y = 4MPa according to the paper [42].

• the friction coefficients ζ = 200Pah according to the paper [42]. For the sake of simplicity,

the longitudinal and normal friction are chosen of the form ζ
||
i = Aiζi and ζ⊥i = ζi

Ai
. The

value of Ai is chosen such that 0 < Ai < 1 to represent the fact that it is easier for the
bacteria to slide in its direction than perpendicular to it. The choice of the value of Ai is
discussed in Section 3.3.1.

• the mass ratio verifies 0 < αi < 1 for all bacteria and its choice is discussed in Section 3.3.2.

• the time parameters: the time step is initially chosen to dt = 10−2 and then adapted to
ensure that the maximal displacement of the bacteria does not exceed a given threshold.
The final time Tmax is chosen to ensure that the simulation-produced colonies reach similar
area as the experimental data.

The values of the parameters for the different experiments are summarised in Table 1. The
values in bold are subject to change along the paper.

Parameter values
Parameter Dataset 1 Dataset 2 Dataset 3
lini 4.45 µm 2.41 µm 3.378 µm
d0 1.40 µm 0.89 µm 1 µm
εi to fit the experimental distribution
Θ 10−5 10−5 10−5

gi to fit the experimental distribution
Y 4MPa 4MPa 4MPa
ζi 200Pah 200Pah 200Pah
Ai 1 1 1
αi 0.5 0.5 0.5
dt such that the movement stays small
Tmax 280 min 500 min 400 min

Table 1: Parameter values taken in the absence of specification
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In Figs. 4, 5 and 6, we show the distributions of the increment length (left figures), length of
the bacteria (middle figures), and growth rate (right figures), computed from the simulations (blue
curves) and from the experimental data of Experiments 1, 2 and 3 respectively (red curves).

Figure 4: Dataset 1: from left to right: distributions of the increment length, lenght, and growth
rate for 10 initial configurations. The experimental distribution are plotted in red and the numerical
simulation distributions are plotted in blue.

Figure 5: Dataset 2: from left to right: distributions of the increment length, lenght and growth
rate for 10 initial configurations. The experimental distribution are plotted in red and the numerical
simulation distributions are plotted in blue.

Figure 6: Dataset 3: from left to right: distributions of the increment length, length and growth rate
for 10 initial configurations. The experimental distributions are plotted in red and the numerical
simulation distributions are plotted in blue.

On Figs. 4, Figs. 5 and 6 we observe a very good agreement between the simulation values and
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the experimental data for the growth rate. Indeed, the red distribution (experimental data) and the
blue distribution (numerical simulations) are almost similar. This is expected as the experimental
distribution is given as an input of the code. However, it is noteworthy that we observe a small
shift between the two distributions for the increment at division. This is due to the sampling
noise: the more events are sampled, the closest the numerical distribution is going to be to the
experimental one. Therefore the difference is due to the fact that the number of event sample is
not high enough for a perfect fit.

Considering the distribution of the lengths for both experiments we observe a shift between
the experimental and the numerical distribution. This shift is also observed when looking at the
experimental and simulated distributions of the lengths at birth and of the lengths at division (data
not shown). These differences are due to the incremental model we use to model the growth and
the division of the bacteria. While the literature indicates that the incremental (also called adder)
model [37, 30, 1] gives better results to predict the cell distributions than the models based solely
on the length [25] or on the age, the incremental model remains based on a simplifying assumption,
and we believe that it could still be improved, as shown by our not-so-perfect fits. However, because
solving this issue is not the main objective of this paper, we consider the incremental model to
be good enough for our purpose. Nevertheless, we need to be careful about how this affects the
results of our numerical simulations. In particular, we noticed that the evolution of the number
of bacteria in time in the colony was slower than the ones of the experimental data. This results
in smaller colonies. Therefore in the next sections, instead of comparing the experimental and
simulated colonies as functions of time, it will be as functions of the colonies area. Because the
area of a colony might change from a simulation to another the area are averaged on intervals of
size 100µm2 for Dataset 1 and 50µm2 for Dataset 2 and 3.

3.2 The quantifiers

In this section, we define the quantifiers used to perform the comparison between the numerical
and experimental data and discuss their meaning. Some quantifiers refer to the characteristics
(C1) and (C2) of the colonies presented in the introduction; we recall that (C1) is the four-cell
array observed in early stages of development, and (C2) is the elongated shape of the colony. In
Fig. 7 we plot the colonies resulting from the segmentation of Datasets 1, 2 and 3. Each segmented
bacterium is represented by a spherocylinder, its colour indicating its directional angle from 0
(red) to π. Figs. 7 (1) present the colonies in the four-cell array organisation corresponding to the
characteristic (C1) while Figs. 7 (3) show the colonies at a later stage of development. Dataset 1
gives access to data for a smaller duration and therefore is plotted at an earlier time.

Remark. We noticed that using the values of the bacteria diameters extracted from the seg-
mented data of [11] led to very dense colonies composed of overlapping bacteria. This phenomenon
is however not observed in the microscopy images of the colonies before segmentation - we refer,
e.g., to the figure 1 of [5], to the figure 1, (b) and (c) of [42], or yet to the supplementary movies 6
and 7 of [11]. It can be due (i) to the flexibility of the real bacteria that is not taken into account
in a spherocylinder representation and (ii) to the choice of the parameters for representing the seg-
mented bacteria by spherocylinders (namely their width, length). From real images, we estimated
that the actual overlapping amount in the cell colonies from the microscopy images was better
fitted by reducing the width of the bacteria of 20% compared to the value provided in the refer-
enced papers. In the remaining of this paper, we therefore use this reduced value for generating
the images (for instance Fig. 7) as well as computing the statistical quantifiers.

While Panels (a) and (c) clearly show that E. coli colonies tend to organise into elongated
structures (characteristic (C2)), this observation is not so clear for the pseudonomas colonies
(Panels (b)). Moreover, we observe the emergence of locally aligned clusters inside the colonies,
with high anisotropy in orientation for Dataset 1 (Panels (a) of Fig. 7). In this case, we observe
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(1) Four cell array organisation

(2) Early stages N ≈ 40

(3) Late stage

Figure 7: Plot of a colony from Dataset 1 (a), Dataset 2 (b) and Dataset 3 (c) at time corresponding
to: four cell colonies (1), colony composed of N = 40 cells (2), colony at time t = 250 min. All
the colonies are in the four-cell array organisation. The colours of the bacteria are determined by
their orientations.

a correlation between the orientation of the bacteria and that of the whole colony, while this
correlation becomes less clear for larger colonies (Fig. 7 (3), Panels (b) and (c)). Therefore, in the
following, we will quantify the shape of the overall colony as well as its local anisotropy. Finally, we
observe that bacteria seem to be tightly packed. We will therefore take an interest in the density
of the micro-colonies.

Among the quantities we consider we find:

• the aspect ratio αR which quantifies the shape of a micro-colony. This measure requires
to determine two characteristic lengths for the shape, that we denote l and L. There exist
various ways to determine two characteristic lengths of a colony. In our study, following the
observation made in [10], we define the lengths l and L as the semi-minor and semi-major axis
of the ellipse fitted with the same normalised second central moments as the convex envelop
of the colony. For a domain A of centroid (x̄, ȳ), the normalised second central moments
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is defined by the covariance matrix 1
µ00

(
µ20 µ11

µ11 µ02

)
with µpq =

∫
A

(x − x̄)p(y − ȳ)qdxdy.

Therefore αR = l
L with l and L the respective minor an major axis of the ellipse such that

the previous covariance matrix is equal for the ellipse and the convex envelop of the colony.

• the local order parameter λ which quantifies the local anisotropy of the bacteria orientations.
For each bacterium i, we compute the mean of the projection matrices on the orientation
vectors of the neighbouring bacteria:

Oi =
1

Card{j ∈ [1, N ], |Xi −Xj | ≤ 3/2Ri}
∑

j∈[1,N ]
|Xi−Xj |≤3/2Ri

(
cos θj

2 cos θj sin θj
cos θj sin θj sin θj

2

)
.

Note that the local anisotropy is computed for bacteria whose centres are located in a ball
centred at the bacterium i position and of radius 3Ri

2 . Then, we define λi as the largest eigen-
value of the matrix Oi, which gives a measure of the local anisotropy in orientations around
the bacterium i. Notice that when all the bacteria are locally aligned around bacterium i,
λi = 1, while λi tends to 1

2 when the neighbours of the bacterium i are randomly oriented.
The local order parameter is defined as the average of all these eigenvalues:

λ =
1

N

N∑
i=1

λi.

• the density parameter δ: this parameter is computed via image analysis tools, by computing
the surface area of the envelope of the colony and dividing it by the surface area of the filled
colony.

• the distance d2 which characterizes the structure of the two-cell colony. This quantifier aims
to characterize the four-cell array organisation of a colony (C2). However because it is not
trivial to quantify the arrangement of four bacteria, we focus of the structure of two-cell
colonies, right before the division. Indeed, to be into a four-cell structure indicates that,
before division, the two bacteria of the colony were side by side longitudinally. Then, in the
case of a colony composed of two bacteria, d2 is defined by

d2 = | (X2 −X1) · (X2 −Xpo
2 )

|X2 −X1||X2 −Xpo
2 |
|.

The value of d2 is between 0 and 1, where d2 = 0 when the four cells are side-by-side in a
four-cell array configuration and d2 = 1 when the two bacteria are aligned.

• the distribution of the angle Θ between the two daughter cells at division. This parame-
ter is observed using the same time intervals as in the experiments (further explained in
Section 3.3.3).

3.3 Influence of some of the model parameters

In this section, we discuss the influence of the asymmetric friction and of the distribution of mass
which are the two new key components of our model. We also study the influence of the noise
of the angle at division Θ. In this section, the parameters used are the ones corresponding to
Dataset 1 in Table 1. The results are averaged over 10 simulations.
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3.3.1 The asymmetric friction

We first discuss the influence of the asymmetric friction on the colony growth by varying the value
of the friction anisotropy Ai. For the sake of simplicity, we will consider that this ratio is the same
for all bacteria and we denote it by A. Therefore, the parallel friction ζ || and the perpendicular
friction ζ⊥ are defined by

ζ || = Aζ and ζ⊥ =
ζ

A
.

Note that A = 1 corresponds to an isotropic friction while A 6= 1 supposes a directional dependence
of friction. In this paper, we will focus on the case A ≤ 1 which expresses the fact that it is more
difficult for a bacterium to slide in its perpendicular direction than in its direction.

In Fig. 8 we show the two colonies at time t = 250 min for A = 1 (Panel (a)) and A = 0.4
(Panel (b)). From Fig. 8, we observe that the friction anisotropy parameter A has a strong influence
on the shape of the colony: Anisotropic friction (A < 1, Panel (b)) leads to the emergence of
elongated bacterial structures coupled with a large anisotropic orientation of the bacteria, while
isotropic friction (case A = 1, Panel (a)) promotes the formation of round colonies with more
variability in the bacteria orientations.

Figure 8: Plot of the colony for A = 1 (a) and A = 0.4 (b) at t = 250 min. The color of the
bacteria are given by their angle from the horizontal axis.

To quantify these observations, we show in Fig. 9 the evolution of the aspect ratio αR (Panel
(a)), the local order quantifier λ (Panel (b)) and the colony density (Panel (c)), as functions of
the area of the colony. Panel (d) shows the distribution of the angles at division all along the
simulation and for all bacteria. For each figure, we used different values of A: A = 1 (blue curves),
A = 0.8 (red curves), A = 0.6 (yellow curves), A = 0.4 (purple curves) and A = 0.2 (green curves).

Fig. 9 (a) shows that the aspect ratio αR of the colony increases as the colony grows, with
rates depending on the anisotropic friction A: we observe a fast convergence towards a spherical
shape for A = 1 (isotropic friction, blue curve), while for smaller values of A the colony remains
elongated and converges slower towards a spherical shape. For the extreme case A = 0.2, the
colony remains elongated all along the simulation (green curve). Together with these observations,
Panel (c) shows that as the anisotropic friction A decreases, the local organisation of the bacteria
λ increases (compare blue and green curves of Panel (c)). We also note however that in all cases
the local alignment of the bacteria decreases as the colony grows. These results show that by
making it less costly for a bacteria to slide in its longitudinal direction than perpendicular to it, an
anisotropic friction favours the alignment of the bacteria and consequently creates anisotropy in
their orientation. This results in more elongated overall structures. From Panel (b), we note that
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Figure 9: Evolution of the aspect ratio αR (a), the density (b) and the local order quantifier λ
(c) as functions of the area of the colony, and of the distribution of the angle at division (d), for
different values of A: A = 1 , A = 0.8, A = 0.6, A = 0.4, A = 0.2.

anisotropic friction seems to have little influence on the overall density of the colony, although a
slight increase of the density when A decreases is observed at early times of the colony, showing once
again that anisotropic friction favours the emergence of more organized and therefore slightly denser
colonies. Finally, Panel (d) shows that anisotropic friction favours slightly more concentrated
distributions of angles at division, which shows that the bacterial orientation remains closer to the
orientation given at division (since in these simulations we have a very small Θ = 10−5): they tend
to have more difficulty for rotational movement. In Table 2, we show the values of the quantifier d2

which characterizes the type of structure obtained when the system is composed of 4 cells (recall
that d2 = 1 when the cells are aligned, d2 = 0 when they are organized in a 4-cell array structure).
As one can observe in Table 2, anisotropic friction has no influence on the initial organisation of
the micro-colony. These are expected results because at very early stage (when only two bacteria
are present), there is no mechanical interest for a bacterium to turn.

3.3.2 The mass distribution

In this section, we consider the distribution of the mass along the length of the bacteria. The most
classical approach is to consider that mass is distributed uniformly along the length, however in
this paper we explore the possibility of an asymmetric distribution. During the division of the
bacteria, the genetic material has to split into two to locate each side. Therefore it is acceptable
to consider that the distribution of the weight of the bacteria is not uniform. In particular, we
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A average of d2 minimum of d2 maximum of d2

A = 1 0.999999891665219 0.999999459667383 0.999999999972967
A = 0.8 0.999999996374091 0.999999987537210 0.999999999995483
A = 0.6 0.999999999713114 0.999999998770278 0.999999999999658
A = 0.4 0.999999999932987 0.999999999655075 0.999999999999919
A = 0.2 0.999999999962652 0.999999999823866 0.999999999999236

Table 2: Influence of asymmetric friction on the four-cell array quantifier d2

consider that the mass located near the old pole is more important than the one located near the
new pole, i.e. αi >= 0.5 (recall that Lαi is the distance between the center of mass of bacterium
i and its newest pole, and αi = 0.5 when the center of mass corresponds to the geometric center).
Note that this distribution of mass could be compared to the existence of asymmetric adhesion
force to the substrate which has been studied in [11]. However, despite the asymmetric friction
and some attraction, this study seems not able to recover the four-cell array structure of bacteria
micro-colony (see Supplementary Movie 9 of [11]). To make our approach more realistic we consider
that the parameter αi may be time-dependent. We will now consider that the value of αi returns
linearly to 0.5 (uniform mass distribution) in Tαi

minutes. We will consider two cases: either
Tαi

= +∞, i.e. the mass distribution remains constant during all the lifetime of the bacterium
(but is however equally shared at division), or Tαi is equal to half the average lifespan of the
bacteria of the experimental colonies. For simplicity we will denote this value Tα without the
index i.

In Fig. 10 we show two colonies right after the second division for α = 0.5 and α = 0.9 with
Tα = +∞. The parameters used are the ones of Experiment 1 and the results of Table 3 are
averaged over 10 simulations. We observe that for α = 0.5 the four bacteria are almost arranged in
a line, while for α = 0.9 some of the bacteria are side by side. Although cells are still not perfectly
arranged in a four-cell array structure, introducing an asymmetric mass distribution enables to get
closer to the experimental results.

Figure 10: Plot of the colony for α = 0.5 (left) and α = 0.9 (right) at t = 70 min (which correspond
to the moment where the colony is composed of four cells). The color of the bacteria are given by
their angle from the horizontal axis.

In Table 3 we show the value of the distance d2 for different values of (α, Tα): (α, Tα) = (0.5,∞),
(α, Tα) = (0.6,∞), (α, Tα) = (0.75,∞), (α, Tα) = (0.9,∞) and (α, Tα) = (0.9, 12). We recall that
d2 is a quantifier for the organisation of two-cell colonies. When d2 is close to 0, the two bacteria
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are side by side and give rise to the four-cell array organisation. The values in Table 3 show that
d2 decreases as α increases, showing that the increase of the asymmetry of the mass allows bacteria
to slide side by side. In addition, the value of Tα = T div/2 = 12 min reduces the impact of α > 1
compared to the case Tα = +∞, while maintaining the sliding of the bacteria.

α, Tα average of d2 minimum of d2 maximum of d2

α = 0.5, Tα =∞ 0.999999891665219 0.999999459667383 0.999999999972967
α = 0.6, Tα =∞ 0.999985160851674 0.999916495527016 0.999999975414758
α = 0.75, Tα =∞ 0.989321040266743 0.933306183165130 0.999990698078135
α = 0.9, Tα =∞ 0.957609449429128 0.828729443220301 0.991407320492294
α = 0.9, Tα = T div/2 = 12 min 0.986765218722925 0.912749581037532 0.999994661249026

Table 3: Combined influence of asymmetric mass α and relaxation time to symetric mass Tα on
the four-cell array quantifier d2

The distribution of the mass along the length of the bacteria also influences the shape of the
colony and its organisation. Indeed when the mass of a bacterium is located near its old pole,
the centre of mass of the cell is shifted to one side and the bacterium is more likely to turn. This
observation is illustrated in Fig. 11 where we present the evolution of the aspect ratio αR, the local
order quantifier λ, the density δ as functions of the area of the colony and the angle at division
distribution for different values of α. From Panels (a) and (b), it is clear that the increase of α
makes the colony more spherical and less organised. However colonies are better organised with
asymmetric mass distribution when Tα <∞ (compare the green and purple curves of Fig. 11 (c)).
The density is slightly impacted by the decrease of the change of the value of α but the modification
is relatively small, given the amplitude of the confidence intervals. Finally, Panel (d) shows that
the increase of α reduces the angle at division, as we already saw for a decrease of A: the more the
cells are asymmetric, the less they turn during the very early stage of the morphogenesis. On the
long range however, their effects appear to be opposite: asymmetric friction continues to inhibit
rotation, whereas mass asymmetry seems to favour it.

3.3.3 The noise at division

Let us now discuss the influence of the noise parameter Θ on the organisation of the colony. In
Fig. 12 we present the evolution of the four previously-seen quantifiers: the aspect ratio αR, the
local order quantifier λ, the density δ as functions of the area of the colony as well as the observable
angle at division distribution, for different values of Θ. In Table 4 the average distance d2 for the
different values of Θ is presented. Fig. 12 and Table 4 show that the quantifiers have similar
behaviour for Θ = 10−5 and Θ = 10−3. However, we observe that the increase of Θ to 10−1

slightly disorganises the colonies while making them more spherical. It also flattens the angle at
division and decreases the value of d2. Therefore, to a certain extent, an important increase of Θ
has an effect similar to the increase of the mass asymmetry at the very early stage (four cell) of
the micro-colony, but an opposite - though moderate - effect on the long term.

Θ average of d2 minimum of d2 maximum of d2

Θ = 10−5 0.999999891665219 0.999999459667383 0.999999999972967
Θ = 10−3 0.999087269350617 0.995912388894949 0.999999729668722
Θ = 10−1 0.953627181718370 0.864658486163227 0.990629980128104

Table 4: Influence of Θ on the four-cell array quantifier d2
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Figure 11: Evolution of the aspect ratio αR (a), the local order quantifier λ (b) and the density (c)
as functions of the area of the colony, and of the distribution of the angle at division (d) for different
values of α: (α, Tα) = (0.5,∞), (α, Tα) = (0.6,∞), (α, Tα) = (0.75,∞), (α, Tα) = (0.9,∞) and
(α, Tα) = (0.9, 12).

The meaning of the noise at division can be discussed. It was first introduced to break the
symmetry in the division and avoid the growth of one-line colonies. However, as we model bi-
ological systems, it is reasonable to suppose that they are subject to random fluctuations (from
the environment), and that cell division is not perfectly symmetric but has a random component.
Then comes the question of the amplitude of this noise. A small noise can be easily identified
to the division of the bacteria, whereas a large noise is more difficult to justify. It could then be
considered as the result of a hidden phenomenon unknown to this date. Throughout the paper we
do not restrict the noise at division amplitude.

4 Comparison of experimental data and numerical simula-
tions

In this section, we compare the numerical simulations with experimental data, in order to quantify
as much as possible to which extent the model is suitable to study the two-dimensional evolution
of sessile bacteria on a substrate. The comparison is made via the use of the quantifiers presented
in Section 3.2 to describe the characteristics of the micro-colonies. The comparisons are done
for the 3 sets of experimental data we presented in Section 3.1. When the parameters are not
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Figure 12: Evolution of the aspect ratio αR (a), the local order quantifier λ (b) and the density
(c) as functions of the area of the colony, and of the distribution of the angle at division (d) for
different values of Θ: Θ = 10−5, Θ = 10−3, Θ = 10−1.

explicitly mentioned they are defined according to Table 1. The study made in Section 3 shows
that asymmetric friction results in a more elongated micro-colony while an asymmetric distribution
of the mass along the length of the bacteria provides the four-cell array organisation in the early
stage of the colony growth. However, the asymmetric mass distribution tends to disorganise the
colony and to make it more spherical. Thus, to fit at best the experimental data, we aim to find a
ratio between the influence of both parameters. For each experiment, we compare the experimental
data with numerical simulations with four sets of parameters. We restrict the number of simulations
to 4 to simplify the comprehension of the paper, given the high number of parameters in the model.
The four cases of the numerical simulations are the following:

1. Symmetric friction A = 1, uniform mass distribution α = 0.5 and a small noise at division
Θ = 10−5. Blue curves in Figs. 13, 16, 19, Panels (a) in Figs. 14, 15, 17, 18, 20, 21.

2. Asymmetric friction A < 1 and uniform mass distribution α = 0.5. Red curves in Figs. 13,
16, 19, Panels (b) in Figs. 14, 15, 17, 18, 20, 21.

3. Symmetric friction A = 1 and asymmetric mass distribution α > 0.5. Honey yellow curves
in Figs. 13, 16, 19, Panels (c) in Figs. 14, 15, 17, 18, 20, 21.

4. Asymmetric friction A < 1 and asymmetric mass distribution α > 0.5. Purple curves in
Figs. 13, 16, 19, Panels (d) in Figs. 14, 15, 17, 18, 20, 21.
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For the first set of parameters we aim to reproduce the general model found in the literature
[3, 38, 39, 42] for the spatial forces, combined with the most up-to-date model for growth and
division. For the three other sets of parameters, the choice of the parameters A, α and Θ is made
in order to fit qualitatively as best as possible the experimental data.

4.1 Dataset 1

The parameters which have been chosen to fit the experimental data are listed below:

1. symmetric friction A = 1 and uniform mass distribution α = 0.5, angle at division parameter
Θ = 10−5,

2. asymmetric friction A = 0.4 and uniform mass distribution α = 0.5, angle at division param-
eter Θ = 10−1,

3. symmetric friction A = 1, asymmetric mass distribution α = 0.9 with Tα = 12 min, angle at
division parameter Θ = 10−5,

4. asymmetric friction A = 0.5 and asymmetric mass distribution α = 0.9 with Tα = 12 min,
angle at division parameter Θ = 10−1.

In Fig. 13 we show the evolution of the aspect ratio αR, the local organisation parameter λ, and
the density quantifier δ as functions of the colony area as well as the distribution of the observable
angle at division. The grey curves correspond to the evolution of the quantifiers computed on the
experimental data. Note that these are not averages over the number of experimental colonies,
due to the high variability in the values of the quantifiers. Table 5 presents the average values of
d2 for the experimental data and numerical simulations.

Dataset 1 average of d2 minimum of d2 maximum of d2

Experimental data 0.749486923556648 0.491327335418617 0.976272403852093
Case 1 0.999999877816758 0.999999459667383 0.999999999631776
Case 2 0.988597129401271 0.948318305860428 0.999980901984201
Case 3 0.986823375651587 0.912749581037532 0.999994661249026
Case 4 0.950405437714561 0.844623355182293 0.999990867503669

Table 5: Four-cell array quantifier d2: comparison of the four parameter choice cases with the
experimental dataset 1.

As stated previously, the variability of the quantifiers for the experimental data in Fig. 13,
Panel (a) and (b) makes the comparison with numerical simulations difficult. The observation of
Panel (a) shows that the best fit for the aspect ratio are the cases 2 and 4. The case 1 could
also be considered even though the large colonies tend to be too spherical, but we can exclude
the case 3 on the basis of the aspect ratio. This is also observed for the case 1 for colonies
bigger than 600µm2. Concerning the local organisation in the colony (Panel (c) Fig. 13), because
the range of values taken by the experimental data is wide, we can conclude that the four cases
are acceptable choices. For the cases 2 and 4 in particular, the quantifier λ follows rather well
one of the experimental colony. Panel (c) shows that the densities of the numerical colonies is
systematically smaller than the one of the simulated colonies. An exception can be made for the
case 3 which is denser than the other cases for areas smaller than 500µm2. The angle at division
of the experimental colonies (Panel (d)) is composed of a peak centred in zero and has then an
almost uniform distribution spread from −0.5 to 0.5. The distributions observed numerically take
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Figure 13: Dataset 1: plots of the aspect ratio αR (a), the local order quantifier λ (b) and the
density (c) as functions of the area of the colony, and of the distribution of the angle at division
(d) for the experimental data (grey dashed curve), and numerical simulations for the case 1 (blue
curve), case 2 (red curve), case 3 (yellow curve) and case 4 (purple curve). The plots of the
numerical data are averaged over 10 simulations.

the form of normal distributions, which makes the comparison with the experimental data difficult.
We distinguish two cases: for the cases 1 and 3, the peak of the experimental angle is reached; for
the cases 2 and 4, the distribution, similarly to the experimental one, spreads up to −0.4 and 0.4.
Finally concerning the organisation of the colony at early stages of development, Table 5 shows
that the distance d2 is not as small for the numerical data as for the experimental data. However,
the closest values are taken for the case 4, which is also confirmed by visual comparison in Fig. 14.
Therefore, given these observations, we can conclude that the best choice of parameters is first the
case 4 and second the case 2, whereas the cases 1 and 3 may be excluded.

In Fig. 14 and 15 we present plots of the colonies for cases 1, 2, 3 and 4 at after 53 and 176
minutes respectively. The first time is the first occurrence where the colony is composed of four
cells and the second time has been chosen so that the number of bacteria in the colonies is equal
to 40, which is similar to the number of bacteria present in the plots 7 (2). Fig. 14 shows that the
best four-cell array configuration is obtained in Panel (d) corresponding to the case 4. Besides, by
comparing Figs. 15 and 7 (a) we visually observe that the colonies which are the most similar to
the experimental colony are the cases 2 and 4. This supports our previous statement. Therefore
for this set of data, our model suggests that the overall anisotropy of the colony could be mainly
due to asymmetric friction of the bacteria, and that cell division could be accompanied by an
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asymmetric mass distribution.

Figure 14: Dataset 1: Plot of simulation at time t = 53min for Case 1 (a), Case 2 (b), Case 3
(c) and Case 4 (d). The colors of the bacteria are given by their orientation. These figure can be
compare to Fig. 7 Panels (a).

Figure 15: Dataset 1: Plot of simulation at time t = 200min for Case 1 (a), Case 2 (b), Case 3
(c) and Case 4 (d). The colors of the bacteria are given by their orientation. These figure can be
compare to Fig. 7 Panels (a).

4.2 Dataset 2

The parameters which have been chosen to fit the experimental data are listed below:

1. Symmetric friction A = 1 and uniform mass distribution α = 0.5, angle at division parameter
Θ = 10−5,
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2. Asymmetric friction A = 0.8 and uniform mass distribution α = 0.5, angle at division
parameter Θ = 10−1,

3. Symmetric friction A = 1 and asymmetric mass distribution α = 0.9 with Tα = 19 min,
angle at division parameter Θ = 10−5,

4. Asymmetric friction A = 0.8 and asymmetric mass distribution α = 0.9 with Tα = 19 min,
angle at division parameter Θ = 10−3,

In Fig. 16 we show the evolution of the aspect ratio αR, the local organisation quantifier λ, the
density δ as functions of the colony area and the distribution of the angle at division. In addition,
Table 6 presents the average values of d2 for the experimental data and numerical simulations.
Similarly as for Dataset 1, we observe a large variability in the values of the aspect ratio αR and the
local organisation quantifier λ for the experimental data (see the grey curves of Fig. 16 Panels (a)
and (b)). Moreover, Panel (a) shows that the colony of pseudomonas (Dataset 2) are less elongated
than the one of E. coli (Datasets 1 and 3). Indeed on Fig. 16 the aspect ratio αR takes values
between 0.2 and 0.8 while in Fig. 13 its values are between 0.2 and 0.5. The pseudomonas colonies
are also less organised, with the local order parameter λ taking values down to 0.65 (compared
to 0.75 for Dataset 1). Note that the difference of shape between the pseudomonas colonies and
the E. coli colonies explains why the value of A considered for this dataset is closer to 1 than for
Dataset 1: the colonies being less elongated, we do not need to consider a strong asymmetry in
the friction.

Dataset 2 average of d2 minimum of d2 maximum of d2

Experimental data 0.4288 0 0.8062
Case 1 0.999890738047451 0.998927231703967 0.999999995072841
Case 2 0.908447782653370 0.633902849679844 0.998085101017730
Case 3 0.924943407198252 0.652822846580324 0.998015220844816
Case 4 0.878801675567598 0.547594782220091 0.952911252992901

Table 6: Four-cell array quantifier d2: comparison of the experimental dataset 2 with the four
parameter choice cases.

Fig. 16 (a) shows that, except for colonies of area smaller than 50µm2, the numerical colonies
aspect ratio for the four cases are between the bounds of the experimental data. The difference at
early stage might be due to the averages made. Panel (c) also shows that the local organisation
of the four cases is acceptable. The density of the experimental colony observed in Panel (b)
of Fig. 16 takes values higher than for Dataset 1 (see Fig. 13 (c)). This might be due to the
different bacteria considered in the two datasets. Also, Fig. 16 (c) shows that the numerical
colonies are not as dense as the experimental ones; as discussed earlier, this might also be an
artefact of segmentation. Looking at the angle at division Θ in Panel (d), we observe that none
of the numerical distributions reaches the peak of the experimental one. However their spread
is qualitatively alike the experimental one. Finally Table 6 shows that the values of d2 taken by
the experimental colonies is much smaller than for Dataset 1 (see Table 5). Likewise, the values
taken by the numerical colonies is smaller for Dataset 2, going down to 0.87 (compared to 0.95 for
Dataset 1). Therefore these differences might be due to the shape of the bacteria. Nevertheless
the diminution of d2 observed in the numerical data is not enough to reach the experimental value
0.42. The smallest values of d2 are taken for the case 4, followed by the case 3. We conclude
that the best fit for Dataset 2 is obtained for the case 4 where an asymmetric distribution of mass
is considered along with a small asymmetry in the friction. Nonetheless, the case 2 with only
asymmetry for the friction can be considered as a good fit.
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Figure 16: Dataset 2: plots of the aspect ratio αR (a), the local order quantifier λ (b) and the
density (c) as functions of the area of the colony, and of the distribution of the angle at division
(d) for the experimental data (grey dashed curve), and numerical simulations for the case 1 (blue
curve), case 2 (red curve), case 3 (yellow curve) and case 4 (purple curve). The plots of the
numerical data are average over 10 simulations.

In Figs. 17 and 18 we present plots of the colonies for the cases 1, 2, 3 and 4 at after 111 and 429
minutes respectively. Figs. 17 shows the four-cell arrangement of the colony and can be compare
to Fig. 7 (b). We observe that in the numerical colony the best case is for Panel (d) (case 4) and
is not as good as for the experimental colony. This supports the results presented in Table 6. In
fig. 18 the time has been chosen so that the number of bacteria in the colonies is close to 130,
which is similar to the number of bacteria present in the plots 7 (b). The experimental colony in
7 (b) presents some triangular features. The only colony in Fig. 18 which could have a similar
shapes is in Panel (b). It corresponds to the case 2, which contradicts the observations made with
the quantifiers previously. Therefore, these plots show that there might be missing features in the
model combining the asymmetric friction and mass distribution without counteracting each other
effect.

4.3 Dataset 3

The parameters which have been chosen to fit the experimental data are listed below:

1. Symmetric friction A = 1 and uniform mass distribution α = 0.5, angle at division parameter
Θ = 10−5,
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Figure 17: Dataset 2: Plot of simulation at time t = 111min for Case 1 (a), Case 2 (b), Case 3
(c) and Case 4 (d). The colors of the bacteria are given by their orientation. These figures can be
compare to Fig. 7(1) Panel (b).

Figure 18: Dataset 2: Plot of simulation at time t = 200min for Case 1 (a), Case 2 (b), Case 3
(c) and Case 4 (d). The colors of the bacteria are given by their orientation. These figure can be
compared to Fig. 7(3) Panel (b).

2. Asymmetric friction A = 0.4 and uniform mass distribution α = 0.5, angle at division
parameter Θ = 10−1,

3. Symmetric friction A = 1 and asymmetric mass distribution α > 0.9 with Tα = 13 min,
angle at division parameter Θ = 10−5,

4. Asymmetric friction A = 0.6 and asymmetric mass distribution α > 0.9 with Tα = 13 min,
angle at division parameter Θ = 10−3,

As for Dataset 1, Dataset 3 corresponds to E. coli colonies but in different experimental conditions.
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We recall that in this dataset, the segmentation of the bacterial colonies presented some issue
and therefore some data have been ignored. In addition, the data do not give access to the
mother/daughter link and therefore it is not possible to consider the angle at division. Therefore,
in Fig. 19 we only show the evolution of the aspect ratio αR, the local organisation quantifier λ,and
the density δ as functions of the colony area. The grey curves correspond again to the values of
the quantifiers computed on the experimental data. Besides, Table 7 presents the average values
of d2 for the experimental data and numerical simulations.

Figure 19: Dataset 3: plots of the aspect ratio αR (a), the local order quantifier λ (b) and the
density (c) as functions of the area of the colony for the experimental data (grey dashed curve),
and numerical simulations for the case 1 (blue curve), case 2 (red curve), case 3 (yellow curve) and
case 4 (purple curve). The plots of the numerical data are averaged over 5 simulations.

Dataset 3 average of d2 minimum of d2 maximum of d2

Experimental data 0.543964112373229 0.039986971063898 0.999803179785625
Case 1 0.999999837839351 0.999999441519551 0.999999998925162
Case 2 0.993090800524502 0.984636756967105 0.999848938964758
Case 3 0.834388133145832 0.700129206144369 0.913543326468035
Case 4 0.937676566731141 0.848372616838960 0.984599839318571

Table 7: Four-cell array quantifier d2: comparison of the experimental dataset 3 with the four
parameter choice cases.
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Fig. 19 (a) shows that the values of the aspect ratio αR in cases 1 and 3 is largely above the
experimental ones, showing that for these cases the colonies are way more spherical than in the
experiments. On the contrary, the case 2 seems to be a reasonably good fit of the experiments
in terms of aspect ratio of the colonies, while case 4 is slightly above the real data. However, we
consider the case 4 to be also an acceptable set of parameters as the aspect ratio follows one of the
experimental curves. The local organisation quantifier presented in Panel (b) indicates that the
four cases can be good fits. Additionally, Panel (c) shows that the the density of the numerical
simulations is smaller than the one of the experimental data, in line with the two previous datasets.
Indeed, colonies larger than 100µm2 have density below 0.9 for the numerical data compared to
0.95 for the experimental one. Finally, Table 7 shows that values taken by d2 are closest to the
experimental values 0.4 for the case 3 with 0.83, followed by the case 4 with 0.93. However the
gap between the experimental and the numerical values is important. It indicates that the model
is not yet good enough to produce a consistent four-cell array organisation. Considering the four
quantifiers we can conclude that the case 4 is the best fit for Dataset 3. Yet, the fit can be improved,
in particular for the shape of the micro-colony and the four-cell organisation.

Figure 20: Dataset 3: Plot of simulation at time t = 111min for Case 1 (a), Case 2 (b), Case 3
(c) and Case 4 (d). The colors of the bacteria are given by their orientation. These figure can be
compare to Fig. 7 Panel (c).

We note that we reach the same conclusion for the colonies of Dataset 3 and for the colonies
of Dataset 1: even though they are not in the same experimental conditions, the main mechanism
at play for E. coli colonies seems to be the asymmetric friction of the bacteria. Indeed, for both
systems we have seen that asymmetric friction was necessary to obtain the elongated shape of the
growing colony, and that this mechanism alone enables to recover reasonably good colony shape
characteristics. Our results also suggest that an asymmetric mass distribution during cell division
could also be at play in these systems, particularly in the early stages of development of the colony.

5 Conclusion

This paper presented a model for the development of rod-shaped bacteria colony based on some
key components which are the asymmetric friction, the distribution of mass along the length of the
bacteria and the noise of the angle at division. We aimed to compare our numerical simulations with
experimental data and therefore developed a systematic approach to characterise a colony. Different
quantifiers have already been developed in the literature, such as the aspect ratio αR, however we
did not find in the literature a clear way to compare rod-shaped bacteria colony with different
modelling assumption. The quantifiers we considered characterise the shape, the organisation and
the density of the colony. We first studied the influence of these different modelling assumptions.
It showed that an asymmetric friction results in elongated colonies while an asymmetric mass
distribution or a large angle at division is necessary to recover the four-cell array organisation of
a four-cell colony. Then, we compared the numerical simulations with experimental data. We had
access to experimental data for the E. coli (7 and 32 colonies) and the pseudomonas bacteria (10
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Figure 21: Dataset 3: Plot of simulation at time t = 200min for Case 1 (a), Case 2 (b), Case 3
(c) and Case 4 (d). The colors of the bacteria are given by their orientation. These figures can be
compared to Panel (c) of Fig. 7.

colonies). In the case of E. coli colonies, the quantifiers show that the fitting of the experimental
data is improved in two cases:

• an asymmetric friction and a high noise at division,

• an asymmetric friction and an asymmetric distribution of the mass along the length of the
bacteria.

These results confirm the importance of taking into account the shape of the bacteria and its
effect on friction. However, it does not establish the need of a non-uniform distribution of the
mass if there exists a force creating an important angle at division between two daughter cells.
Therefore this hypothesis, to be confirmed, would need to be justified by biological evidence of
such a phenomenon. In the case of pseudomonas bacteria, the colony are not as elongated as
for E. coli bacteria, therefore the need of an asymmetric friction is not confirmed. Nevertheless,
our study highlights that colonies with an asymmetric distribution of mass are a good fit for the
experimental data. This result can be improved with a slight asymmetric friction. Overall our
results have showed that asymmetric friction and asymmetric mass distribution are good model
assumptions to describe the growth of a rod-shaped micro-colony.

As stated previously, the shape and local organisation quantifiers take a wide range of value,
even for colonies coming from the same datasets. This suggests that better quantifiers could be
found to improve our study. In the case of the shape, observation of the colonies shows that while
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being elongated, they are also starred shaped (with two or more tips). A better quantifier could
therefore take into consideration the tips of the shape. Considering the local organisation, other
quantifiers can be found in the literature, especially looking at liquid crystal studies. Improving
the choice of the quantifiers is left for further works. For a still more comprehensive study, we
shall also introduce other quantifiers, e.g. the orientation of the cells at the boundary of the micro-
colony (see Fig.3 of [5]), or the position of the oldest bacteria (see Supplementary Fig.2 of [11]).
An important research direction is then to evaluate accurately the relevance of each quantifier and
to use them to build adequate distances between calibrated models and data.

Improvement in the model can still be made. Our model did not succeed in reproducing the
evolution of the density and d2 in the colony. One of the features which is commonly added to
models to improve the colony density and allows to recover a four-cell array organisation is the
attraction between the bacteria. Because it is unclear from biological experiments that attraction
between particles does exist, our approach consisted in showing that attraction was not essential to
recover features of colony growth such as colony elongation and (at least partially) four-cell array
structure. Besides, attraction between non-spherical particles can be implemented in various ways
and would, therefore, need to be carefully considered. Note that attraction would also have an
impact on the shape of the colony. Along with attraction, the interactions between particles which
are usually considered are repulsion and alignment. One can question whether these interactions
should be considered. Other models have taken different approaches, such as considering adherence
with the substrate [11], the extracellular matrix [15], nutrient consumption [12], bacteria attraction
[11]. A perspective of this work would be to compare a wider range of models from the literature.
Additionally, a larger choice of experimental data would ideally be considered.

Acknowledgments. We thank Nicolas Desprat and his co-authors [11] for sharing their data.
We are very grateful to Nicolas Desprat and Lydia Robert for inspiring discussions.

A The algorithm

We describe the algorithm used to simulate the model described in Section 2.

1. Initialisation: N=1

(a) t0 = 0, k = 0, dt = 10−2,

(b) X0
1 = (0, 0), θ0

1 = 0, l01 = lini and lb1 = l01 (the size at birth of the bacterium),

(c) Draw the increment at division ε1 and the growth rate g1 according to the law of the
at-division increment and growth rate respectively (see Appendix B),

(d) Compute Ai, K
0
i and αi for all i ∈ [1, N ].

2. Time loop : while tk ≤ Tmax

(a) Compute the force F oi,j
k by checking the interaction between the bacteria i and j for

(i, j) ∈ [1, N ]2,

(b) Update dt: dt = dt/2h with h ≥ 0 such that ‖dXdt ‖ ≤ 0.1d0 and ‖dθdt ‖ ≤ 0.1π,
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(c) Update Xi, θi and li for all i ∈ [1, N ] according to

Xk+1
i = Xk

i + dt Kk
i

−1 1

lki

N∑
j=1

F oi,j
k,

θk+1
i = θki +

dt

ζ⊥Ii

N∑
j=1

(
(Xo,j

i

k
−Xk

i ) ∧ F oi,j
k
)
· z.

lk+1
i = lk+1

i + dt gi l
k
i .

(d) Division: for all i ∈ [1, N ], if li − lbi ≥ εi the bacterium divides into two daughter cells
i1 and i2 which are initialised as follows: for j ∈ {i1, i2}

i. Define Aj , K
k+1
j , αk+1

j and θj

ii. lk+1
i = (lk+1

i − d0)/2,
θk+1
j = θk+1

i + dθj with dθj drawn according to a uniform law U(−Θ,Θ),

Xk+1
j = Xk+1

i +
(

3
4 (1 + 2αk+1

i ) (lk+1
i − d0) ± (lk+1

i + d0)/4
)
pk+1
j with pk+1

j =

(cos θk+1
j , sin θk+1

j )

iii. Draw the increment at division εj and the growth rate gj according to the law of
the at-division increment and growth rate respectively (see Appendix B),

(e) Update Kk+1
i , αk+1

i , tk+1 = tk + dt, k = k + 1 for all i ∈ [1, N ].

B Estimating the distribution of at-division increments

As explained in the main text, we use the incremental model for the cell division cycle, i.e., the
increment of size triggers the division, as proposed in [1, 37] and now widely accepted in the
biological community. Denoting β(a)da the instantaneous probability of a cell of increment of size
a to divide in the increment interval [a, a+ da], this means that to simulate the instant of division
of a cell being born at time t, growth rate g and length l, we first pick up a random variable εd
according to the probability distribution fβ(a) defined by

εd ∼ fβ(a) := β(a)e
−

a∫
0

β(s)ds
,

which is independent of both g and l. This provides the increment at division of the cell. From
this value, we easily deduce its time td and length ld of division, defined by

ld = leg(t−td) = l + εd =⇒ td = t+
1

g
log(l + εd).

When simulating a given cell, its instant and length of division is thus fully determined by the law
fβ , its growth rate g,and its size at birth l. The question is now to estimate the law fβ from the
experimental data, which, due to the fact that they are given by the dynamics of a full population
of cells till a certain time and not till a certain generation, present a bias, lineages of fast-dividing
cells being over-represented compared to lineages of slowly-dividing cells, seee.g. [19]. We propose
here two methods to estimate this law: one in the simpler case where we assume that all cells grow
exponentially with the same rate g, one in the general case. As a preliminary step, let us recall
the equation satisfied in large time by the cell distribution.
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Asymptotic cell distribution. Considering that the growth-and-division processes are space-
independent, let us denote nk(t, a, l, g) the expectation of the empirical measure of cells at time t of
increment a, length l and growth rate g. We take k = 1 for the case where only one daughter cell is
kept at each division, as in microfluidic devices [33], and k = 2 for the case where the two daughter
cells remain in the micro-colony, as is our case. We have the following equation, see e.g. [8]

∂
∂tnk(t, a, l, g) + ∂

∂a (glnk(t, a, l, g)) + ∂
∂x (glnk(t, a, l, g)) + β(a)glnk(t, a, l, g) = 0,

nk(t, 0, l, g) = 4kρ(g)
∞∫
0

∫
E
g′lβ(a)nk(t, 0, 2l, g′)dadg′,

nk(0, a, l, g) = nink (a, l, g),
∫∫∫

nink (a, l, g)dadldg = 1.

We have assumed here that at birth, a newborn cell has a probability ρ(g) to get the growth rate
g, independently of its mother growth rate.

We know by previous studies on similar equations [14, 28, 26] that, under fairly general as-
sumptions, there exists a unique eigencouple (λk, Nk), with λ1 = 0 and λ2 > 0, such that nke

−λkt

converges exponentially fast towards cNk, with some normalisation constant c > 0, and Nk ≥ 0
solution of the following equation:

λkNk(a, l, g) + ∂
∂a (glNk(a, l, g)) + ∂

∂x (glNk(a, l, g)) + β(a)glNk(a, l, g) = 0,

Nk(0, l, g) = 4kρ(g)
∞∫
0

∫
E
g′lβ(a)Nk(0, 2l, g′)dadg′,

∫∫∫
Nk(a, l, g) = 1.

Let us denote fk(a) :=
∫∫

β(a)glNk(a,l,g)dldg∫∫∫
β(a)glNk(a,l,g)dadldg

: it represents the distribution of dividing cells,

observed either along a genealogical line for k = 1 or for the whole population till a given time for
k = 2. This is made obvious in the case k = 1 : integrating the equation in l and g, and denoting
Nk(a) :=

∫∫
Nk(a, l, g)gldldg the marginal probability of the increment, we obtain

∂

∂a
N1(a) + β(a)N1(a) = 0,N1(0) =

∞∫
0

β(a)N1(a)da,

so that we have N1(a) = N1(0)e
−

a∫
0

β(s)ds
, thus fk(a) = Cβ(a)N1(a) with C > 0 a normalisation

constant: all this leads us to re-obtain the already-known equality f1(a) = β(a)e
−

a∫
0

β(s)ds
.

The difficulty comes from the fact that to simulate the stochastic branching tree described
above, we want to estimate f1(a), whereas we have experimental (noisy) measurements for f2(a),
N2(a), and more generally to the all-cell distribution N2(a, l, g) or yet to the at-division distribution

β(a)glN2(a,l,g)∫∫∫
β(a)glN2(a,l,g)dadldg

.

Simpler case: all cells grow with the same exponential rate In the case where all cells
grow exponentially with the same growth rate g, i.e. we have ρ(ḡ) = δḡ=g, the above equations
simplify, we have λ2 = g and a quick computation shows that N1(a, l, g) = ClN2(a, l, g) with C > 0
a normalisation constant. In this case, as seen above, we may define f1 by

f1(a) :=

∫∫
β(a)gl2N2(a, l, g)dldg∫∫∫
β(a)gl2N2(a, l, g)dadldg

=

∫∫
l fd2(a, l, g)dldg∫∫∫
lfd2(a, l, g)dadldg

,
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where fdk(a, l, g) denotes the at-division distribution of cells. Assuming that we have a sample
(ai, li)1≤i≤n of increments and lengths at division of cells taken at random in a whole population
issued from one single cell and living during a time interval [0, T ], we make the assumption (justified
asymptotically in [19]) that this sample is the realization of n random variables (Ai, Li)1≤i≤n, in-
dependent, identically distributed, of law the marginal

∫
fd2(a, l, g)dg, so that we have the empirical

distribution fn1 defined by

fn1 (a) =
1
n∑
i=1

li

n∑
i=1

liδa=ai .

We thus propose an estimate f̂n1 of f1 by a kernel density estimation approach: let K ∈ C∞0 (R)
be a smooth fast decaying function with

∫
K(a)da = 1 and

∫
amK(a)da = 0 for 1 ≤ m ≤ m0,

m0 ∈ N, we denote Kh(a) = 1
hK( ah ) so that (Kh)h∈(0,1] is a mollifier sequence, we define f̂n1 by

f̂n1 (a) := Kh ∗ fn1 (a) =
1
n∑
i=1

li

n∑
i=1

liKh(a− ai),

and we choose h by a data-driven bandwidth selection method, such as Goldenschluger and Lepski’s
or the recent Penalized Comparison to Overfitting (PCO) method [9, 23].

General case: distributed growth rates In the general case, we have no simple relation
between N1 and N2, so that we need to first estimate β(a) and then compute the distribution

f1(a) = β(a)e
−

a∫
0

β(s)ds
. A possibility among others is to write

β(a) =
β(a)

∫∫
glN2(a, l, g)dldg∫∫

glN2(a, l, g)dldg
=
f2(a)

∫∫∫
β(a)glN2(a, l, g)dadldg∫∫
glN2(a, l, g)dldg

,

that is, we have identified the numerator with the at-division distribution of increments f2(a) up
to the constant

∫∫
glN2(a, l, g)dldg = λ, that we can measure with the time evolution of the total

length for instance, and the denominator with increment-dependent average of gl taken over the
distribution N2 of all cells at all times. Finally, assuming two samples: a first sample at division,
denoted (adi , l

d
i , g

d
i )1≤i≤nd

, and a second sample taken in the distribution at any time, denoted
(ai, li, gi), we propose the following estimator for β :

β̂n,nd
(a) := λ̂

1
nd

nd∑
i=1

Khd
(a− adi )

max
(

1√
n
, 1
n

n∑
j=1

gj ljKh(a− ai)
) .

To estimate λ, we can either follow the total size of the population and fit it as being its exponential
growth rate - other said, its Malthus parameter - or use again the properties of the equation,
multiply it by l to obtain

λ =

∫∫∫
glN2(a, l, g)dadldg∫∫∫
lN2(a, l, g)dadldg

,

so that we propose the following estimator

λ̂ =

n∑
i=1

gili

n∑
i=1

li

.
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Basel, 2007.

[29] Lydia Robert, Marc Hoffmann, Nathalie Krell, Stéphane Aymerich, Jérôme Robert, and Marie
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