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ON WEAKLY TURBULENT SOLUTIONS TO THE PERTURBED

LINEAR HARMONIC OSCILLATOR

ERWAN FAOU AND PIERRE RAPHAËL

Abstract. We introduce specific solutions to the linear harmonic oscillator, named bub-
bles. They form resonant families of invariant tori of the linear dynamics, with arbitrarily
large Sobolev norms. We use these modulated bubbles of energy to construct a class of
potentials which are real, smooth, time dependent and uniformly decaying to zero with re-
spect to time, such that the corresponding perturbed quantum harmonic oscillator admits
solutions which exhibit a logarithmic growth of Sobolev norms. The resonance mechanism
is explicit in space variables and produces highly oscillatory solutions. We then give sev-
eral recipes to construct similar examples using more specific tools based on the continuous
resonant (CR) equation in dimension two.

1. Introduction

1.1. Setting of the problem. We consider the linear operator associated with the two
dimensional quantum harmonic oscillator

(1.1) H = −∆+ |x|2,
where for x = (x1, x2) ∈ R2, |x|2 = x21 + x22 and ∆ the Laplace operator. Let the Sobolev
norms associated with the function space defining the domain of H

Hr = {u ∈ L2 |Hr/2f ∈ L2}, r ≥ 0,

then the solution to the linear Schrödinger equation

(1.2)

∣∣∣∣
i∂tu = Hu, u(t, x) ∈ C

u|t=0 = u0(x)
⇔ u(t, x) = e−itHu0

preserves all the Hr norms

∀t ∈ R, ‖e−itHu0‖Hr = ‖u0‖Hr

and no weakly turbulent effect can be observed, i.e. energy transfer between low and high
frequencies generating growth of Sobolev norms.

A long standing open problem is the possibility of finding perturbations of (1.2) of the
Hamiltonian form

(1.3) i∂tu = Hu+ V (t, x, u)u

producing such weakly turbulent effects, while preserving energies (L2 norm and/or Hamil-
tonian energy in the time independent case), and to classify possible mechanisms of energy
transfers, as well as their genericity. We propose in this paper a step forward in this direction
by considering the linear case where the real potential V (t, x) is independent of u and chosen
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as smooth and small as possible. We in purpose focus onto the simplest possible linear case,
but insist that the method of proof and the nature of the resonance mechanism will also
apply to non linear problems V (t, x, u) = W (t, x) + f(|u|2).

1.2. Previous results. The study of the linear Schrödinger equation (1.2) perturbed by
a general time dependent linear operator P (t)u (not necessarily the multiplication with a
function) has a long history with important recent developments.

The first class of results exhibit situations where solutions do not have any turbulent
behavior and remain bounded for all times. The perturbed flow is essentially similar to
the unperturbed one and the dynamics can be conjugated to a dynamics with a constant
linear operator close to H . These are reducibility results generalizing Floquet theory and
the perturbation operator is typically periodic or quasi-periodic in time. In [Com87] such
results were given for regularizing perturbation. Using KAM technics for PDEs more recent
results have been shown, see for instance [BG01, GT11, Bam17a, Bam17b, BGMR18, GP19].

A second class of results concerns a priori bounds on the possible growth of Sobolev
norms. In [MR17], general bounds in times where given for the case where the perturbation
is a multiplication by a real potential V (t, x). When the potential is regular, the growth can
be at most of order tε where ε depends on the regularity of the potential, a bound that can
be refined to (log t)α for analytic potential. More general results are also given in [BGMR17].

Concerning the possibility of growth and the existence of weakly turbulent mechanisms,
very few results are available. In [GY00], explicit examples are given with solutions exhibit-
ing Sobolev norm growth, and an explicit multiplication operator V (t, x) = a sin(t)x. Note
however that this operator is of order 1, and in particular not decaying at infinity in x and
thus not defining an element of Hr. In [Del14], J.-M. Delort constructed order zero pseudo
differential operators P (t) periodic in time, and such that the solution of the Harmonic os-
cillator perturbed by this operator growth like tr/2 in Hr norm. Similar examples were given
by A. Maspero [Mas18]. During the preparation of this work, L. Thomann [Tho20] also
proposed an example of such operators based on a linearized version of the lowest Landau
level equation, and constructed as explicit travelling waves. All these examples provide con-
tinuous operators P (t) of order 0 with periodic or growing behavior with respect to t, when
P (t) and its time derivatives are estimated in L(Hr,Hr), but so far no result has been given
with the multiplication by a smooth potential belonging to Hr.

Spectacular results have also been obtained in the case of the torus regarding a priori
bounds, reducibility, and the construction of unbounded trajectories [Bou99a, Bou99b], see
also [Wan08, Del10, MR17, EK09]. Specifically in the non linear setting of the (NLS) equa-
tion on the torus, the seminal work [CKSTT10] provides the first explicit construction of
growth mechanism for the limiting completely resonant equation. This analysis was refined
in [GK13] with optimized constants, and used in [HPTV15] to show the relevance of the
mechanism for the small data scattering problem.

More growth mechanisms have also been explored for other non linear dispersive problems
in particular in [GG10, Po11, GLPR18] which are deeply connected to our approach.
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1.3. Statement of the result. We propose a new and elementary space based approach
to construct classes of smooth asympotically in time vanishing potentials V (t, x) for which
a weakly turbulent mechanism for solutions to (1.3) occurs. Our construction comes with
a complete description of the associated drift to high frequencies. Our main result is the
following.

Theorem 1.1 (Existence of smooth vanishing potentials exhibiting weakly turbulent growth).
There exist potential functions V (t, x) ∈ C∞(R×R2;R) and functions u(t, x) ∈ C∞(R×R2;C)
such that

(1.4) ∀ (t, x) ∈ R× R
2 i∂tu(t, x) = Hu(t, x) + V (t, x)u(t, x)

and such that for all r ≥ 0 and all k ∈ N

(1.5) lim
t→+∞

‖∂kt V (t, x)‖Hr = 0

and

(1.6) ‖u(t, x)‖H1 ∼ c(log t)α, t→ +∞, c, α > 0.

Comments on the result.

1. The bubble approach. The main ingredient used to prove this result is the study of specific
solutions to the unperturbed equation (1.2) that we call bubbles. They are explicit solutions
whose trajectories form families of invariant tori of dimension one, parametrized by actions

piloting the H1 norm of the solution, and with angles all oscillating at the same frequency

corresponding to the frequency gap of the operator H . They thus form a resonant family
of invariant tori of the linear dynamics, with arbitrarily high Sobolev norms. We then con-
struct the perturbation as superposition of time oscillations which resonate with the bubbles
decaying for large time to produce a growth of the H1 norm corresponding to a growth of
the actions in the family of bubbles. A fundamental feature is that the bubbles are com-
pletely explicit and generated by the pseudo conformal symmetry group associated to the
unperturbed flow (1.2), and the leading order growth mechanism corresponds to a suitable
resonant mechanism created by a fine tunning of the potential V (t, x). In other words, af-

ter renormalization, the growth of Sobolev norms is generated by a small deformation of
a solitary wave (here just a harmonic function). This is the heart of the analysis of blow
up bubbles for (NLS) models in [MeRa05, MaRa18] and the study of growth mechanisms
in [GLPR18]. Let us stress that the mechanism is completely explicit and (6.13) gives an
example of such an admissible potential in closed form.

2. Modulation equations and Arnold diffusion. Resonance will be described through the
study of modulation equations which are a perturbation of the trajectory associated to the
pseudo-conformal symmetry of (1.1), section 5. The obtained growth mechanism is deeply
connected to the original example of Arnold diffusion given in [Arn64] (see [DGLS08] for
a review on the subject). Indeed the modulation equations describing the evolution of the
bubble in interaction with the complete system is a perturbation of a completely integrable
system (see (5.1) below) containing resonant oscillations as in [Arn64], but of size ε decaying
in time in a non integrable way. Compared with the classical result in Arnold diffusion, this
class of perturbations allows a complete growth in infinite time of the actions at a logarith-
mic scale. Moreover, as these bubbles are embedded into an infinite dynamical system, we

3



construct the solution by superposing this new Arnold diffusion example with the backward
integration methods for PDEs introduced in [Me90].

3 Oscillations. An essential difference with the blow up analysis in [MeRa05, MaRa18,
GLPR18] is the oscillatory nature of the corresponding solutions which are a consequence of
the discrete spectrum of the operator. For example, for the solution contructed in Theorem

1.1, there exist t
(1)
n , t

(2)
n → +∞ such that :

∣∣∣∣∣
limn→+∞ ‖u(t(1)n , ·)‖L∞ = 0

limn→+∞ ‖u(t(2)n , ·)‖L∞ = +∞.

Monotonic growth of the energy is however achieved at the level of the action-angles vari-
ables which is the core of the resonant mechanism. We refer to [MRRS19] for more highly
oscillatory blow up mechanisms for (NLS) like models.

4. The growth rate. Interestingly enough, the logarithmic growth rate (1.6) saturates the
general bound for smooth potentials proved in [MR17]. Note that typically in all the exam-
ples we construct, we will be able to estimate the growth of higher Sobolev norm of u, that
will be of order (log t)rα for the norm Hr. Moreover, by tuning differently the potential, we
can also produce bounds of order tε but the estimate (1.5) will be valid only up to some k
depending on ε−1. These type of refinements and discussions about optimality of the result,
as well as a complete classification of the examples yielding to Theorem 1.1 will be out of
the scope of this paper.

5. More growth mechanisms. In section 7 we also give general recipes to construct exam-
ples realizing Theorem 1.1 for the pseudo-differential linearized CR equation introduced in
[FGH16] which is the first normal form operator of the cubic nonlinear Harmonic oscillator
as shown in [GHT16]. The strategy here is in some sense closer to [Tho20] who considers
the specific case of the Bargmann-Fock space, but turns out to be in fact very general.
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semester Geometry, compatibility and structure preservation in computational differential

equations held at the Isaac Newton Institute, Cambridge, in Fall 2019. This visit was partially
supported by a grant from the Simons Foundation. P.R. is supported by the ERC-2014-CoG
646650 SingWave. P.R. would like to thank P. Gerard, Z. Hani and Y. Martel for stimulating
discussions at very early stages of this work at the 2015 MSRI program "New challenges
in PDE". The authors would also like to thank L. Thomann for his careful reading of a
preliminary version of the manuscript and his fruitful comments.

2. Bestiary

We recall in this section basic facts about the harmonic oscillator and Hermite functions
which will be used in the proof of the main Theorem. We work in all the paper in dimension
2.
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2.1. Notations. We set

(f, g)L2 =

∫

R2

f(x)g(x)dx.

We define the Fourier transform

f̂(ξ) = (Ff)(ξ) := 1

2π

∫

R2

f(x)e−ix·ξ dx,

with x · y = x1y1+x2y2 for x = (x1, x2) ∈ R2 and y = (y1, y2) ∈ R2. With this normalization
we have

(F−1f)(x) =
1

2π

∫

R2

f(ξ)eix·ξ dξ.

We define L2(R2) the space the Hilbert space based on the scalar product ( · , · )L2, and
the Sobolev space Hr equipped with the norm. For all r ≥ 0, defining 〈∇〉rf as the inverse

Fourier transform of the function 〈ξ〉rf̂(ξ), where for any complex number z, 〈z〉 =
√
1 + |z|2.

We set

(2.1) ‖f‖
Hr

:= ‖〈∇〉rf‖
L2 = ‖〈ξ〉rf̂‖

L2 .

Finally, we will use the following notation

(2.2) Λ = x · ∇x = x1∂x1 + x2∂x2 .

2.2. Harmonic oscillator and eigenfunctions. Following [GHT16, Section 6.6] inspired
by [Tha93, Chapter 1 and Corollary 3.4.1] we consider the radial functions

(2.3) hk =
1√
π
L
(0)
k (|x|2)e−

|x|2

2 , L
(0)
k (x) =

ex

k!

dk

dxk
(e−xxk).

The L
(0)
k are the standard Laguerre polynomials on [0,+∞]. Then we have

(2.4) Hhk = λkhk = (4k + 2)hk and

∫

R2

hk(x)hn(x)dx = δnk,

for all n, k ∈ N, where δnk = 0 for n 6= k and δnn = 1. The familly {hk}k≥0 forms an

L2 orthonormal basis of radial functions in L2(R2). Note that we have L
(0)
0 (x) = 1 and

L
(0)
1 (x) = 1−x. The general expression of the hk can be computed using generating functions.

For any complex number |t| < 1 the generating function of the Laguerre polynomials is given
by

∞∑

n=0

tnLn(z) =
1

1− t
e−

tz
1−t ,

which is valid for z ∈ R. Hence

(2.5)
∞∑

n=0

tnhn(x) =
1√
π

1

1− t
e−

t|x|2

1−t e−
|x|2

2 =
1√
π

1

1− t
e−

(1+t)
2(1−t)

|x|2.

We recall the formula for generalized Laguerre polynomials, for α ∈ R,

(2.6) (k + 1)L
(α)
k+1(x) = (2k + 1 + α− x)L

(α)
k (x)− (k + α)Lα

k−1(x), k ≥ 1,
5



a formula which is also true for k = 0 (with for instance the definition L
(α)
−1 = 0. We also

need the formulas
dk

dxk
L(α)
n (x) =

{
(−1)kL

(α+k)
n−k (x) if k ≤ n,

0 otherwise

and

xL(α+1)
n (x) = (n+ α)L

(α)
n−1(x)− (n− x)Lα

n(x).

From these relations, we obtain

(2.7) x
d

dx
L(α)
n (x) = −xL(α+1)

n−1 = nL(α)
n − (n + α)L

(α)
n−1.

From Equation (2.6) with α = 0, we infer for k ≥ 0

(2.8) |x|2hk(x) = −(k + 1)hk+1(x) + (2k + 1)hk(x)− khk−1(x).

This implies that

(2.9) ∆hk(x) = −(k + 1)hk+1(x)− (2k + 1)hk(x)− khk−1(x).

Moreover, with Λ given by (2.2) and using (2.7) we have

Λhk =
2√
π
|x|2 d

dr
L
(0)
k (|x|2)e−

|x|2

2 − 1√
π
|x|2L(0)

k (|y|2)e−
|x|2

2

= 2khk − 2khk−1 + (k + 1)hk+1 − (2k + 1)hk + khk−1

= (k + 1)hk+1 − hk − khk−1.(2.10)

We will also need the following formulae, whose proof is postponed in the Section A:

Proposition 2.1 (Inner products of Hermite functions). We have

(2.11) (h1, h0h0)L2 =

∫

R2

h1(y)h0(y)h0(y)dy =
2

9
√
π
,

and

(2.12) ‖h1h0‖2L2 =

∫

R2

h1(y)h1(y)h0(y)h0(y)dy =
1

4π
.

2.3. Functions spaces. We define the space associated with the Harmonic oscillator

Hr = {u ∈ L2 |Hr/2f ∈ L2}, r ≥ 0.

equipped with the norm

‖f‖Hr := ‖Hr/2f‖
L2 .

We know (see for instance [Hel84, Proposition 1.6.6] or [YZ04, Lemma 2.4]) that on this
space the following norms are equivalent: for all r there exist positive constants cr and Cr

such that

(2.13) cr‖f‖Hr
≤ ‖f‖

Hr
+ ‖〈x〉rf‖

L2 ≤ Cr‖f‖Hr
.

Moreover, for r > 1 in 2D, Hr is an algebra: there exists Cr such that

(2.14) ∀ f, g ∈ Hr ‖fg‖Hr
≤ Cr‖f‖Hr

‖f‖Hr
.
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The space Hr can be described in terms of the coefficients of f in the basis of special Hermite
functions {ϕn,m, n ≥ 0,−n ≤ m ≤ n, n +m even } which is an normalized Hilbertian basis
of L2(R2) satisfying (see [GHT16, Proposition 4.1])

Hϕn,m = 2(n + 1)ϕn,m, Lϕn,m = mϕn,m,

where L = ix×∇ the angular momentum operator. Then every function of Hr expands into

f =
+∞∑

n=0

n∑

m=−n

cn,mϕn,m with ‖f‖2Hr
=

+∞∑

n=0

n∑

m=−n

(2n+ 2)r|cn,m|2.

Now radial functions are f such that cn,m = (f, ϕn,m)L2 = 0 when m 6= 0. Then we have
ϕ2k,0 = (−1)khk defined in (2.3). We thus define

Hr
rad = {∃ cn ∈ C

N | f =

∞∑

n=0

cnhn ∈ Hr},

and for f =
∑∞

n=0 cnhn ∈ Hr
rad, we have

‖f‖2Hr
=

+∞∑

n=0

(4n+ 2)r|cn|2.

Moreover, for some constant cr and Cr we have

cr‖f‖2Hr ≤
∞∑

n=0

〈n〉r|cn|2 ≤ Cr‖f‖2Hr .

For all t ∈ R, we can define action of the semi-group eitH by the formula

eitHf =
∞∑

n=0

eitλncnhn,

where the λn = 4n+2 are the eigenvalues of H on radial functions (see (2.4)). Note that we
have

(2.15) ∀ t ∈ R, ‖eitHf‖Hr
= ‖f‖Hr

.

The operator f 7→ |x|2f acts on functions in Hr, and estimate (2.8) implies the following
estimate:

Lemma 2.2. For r ≥ 0, there exists Cr such that for all f ∈ Hr+1
rad , we have

(2.16) ‖|x|2f‖Hr
≤ Cr‖f‖Hr+1 .

Proof. Let f =
∑

n≥0 chhn ∈ Hr+1
rad . We have by using (2.8)

|x|2f =
∑

n≥0

cn(−(n+ 1)hn+1 + (2n + 1)hn − nhn−1) =
∑

n≥0

dnhn

with (defining cn = 0 for n < 0),

dn = −ncn−1 + (2n+ 1)cn − (n+ 1)cn+1

Hence we have

‖|x|2f‖2Hr =
∑

n≥0

〈n〉r|dn|2 ≤ C
∑

n≥0

〈n〉r(n+ 1)(|cn−1|2 + |cn|2 + |cn+1|2)

7



for some numerical constant C, and we easily deduce the result. �

For two operators A and B acting on functions f ∈ Hr, we set [A,B]f = (AB −BA)f .

Lemma 2.3. For r ≥ 0 there exists a constant Cr such that for all f =
∑

n≥0 cnhn ∈ Hr
rad,

(2.17) ‖[Hr/2, |x|2]f‖
L2 ≤ Cr‖f‖Hr .

Proof. From (2.8) and (2.4) we have

|x|2Hr/2hk(x) = (4k + 2)r/2|y|2hk
= (4k + 2)r/2(−(k + 1)hk+1(x) + (2k + 1)hk(x)− khk−1(x)),

and

Hr/2|x|2hk(x) = −(k+1)(4k+6)r/2hk+1(x)+ (2k+1)(4k+2)r/2hk(x)− (4k−2)r/2khk−1(x).

Hence as for all k, ℓ ≥ 0, r ≥ 0 and some constant Cr independent of k and ℓ, we have

(2.18) |kr/2 − ℓr/2| ≤ Cr|k − ℓ|(kr/2−1 + ℓr/2−1)

we deduce that
(Hr/2|x|2 − |x|2Hr/2)hk = αkhk+1 + µkhk + βkhk−1

with |µk| + |αk| + |βk| ≤ Cr〈k〉r/2 for some constant Cr independent on k. Hence if v =∑
n≥1 cnhn ∈ Hr

rad, we have [Hr/2, |x|2]v =
∑

n dnhn with

dn = cn−1αn−1 + cnµn + cn+1βn+1

and hence
|dn|2 ≤ Cr〈n〉r

(
|cn−1|2 + |cn|2 + |cn+1|2

)

for some constant Cr independent of n, from which we easily deduce (2.17). �

2.4. CR operator. The CR trilinear operator is given by

(f1, f2, f3) 7→ T (f1, f2, f3)(z) =

∫

R2

∫

R

f1(x+ z)f2(x+ λx⊥ + z)f3(λx
⊥ + z) dλdx.

where for x = (x1, x2) ∈ R2, we set x⊥ = (−x2, x1). With this trilinear operator is associated
the energy

(2.19) E(f1, f2, f3, f4) =
∫

R2

∫

R2

∫

R

f1(x+ z)f2(λx
⊥ + z)f3(x+ λx⊥ + z) f4(z) dλdxdz

and the (CR) equation introduced in [FGH16]

(CR) i∂tf = T (f, f, f).

We recall some properties of the CR operator that can be found in [FGH16] and [GHT16].
First it is invariant by Fourier transform:

F(T (f1, f2, f3)) = T (f̂1, f̂2, f̂3) and E(f1, f2, f3, f4) = E(f̂1, f̂2, f̂3, f̂4)
Moreover, this operator has many symmetries that are summarized in Table 2.4. In this
table, Q denotes a self adjoint operator commuting with T in the sense of Lemma 2.4 in
[GHT16], i.e.

Q(T (f1, f2, f3)) = T (Qf1, f2, f3)− T (f1, Qf2, f3) + T (f1, f2, Qf3),
8



Operator Q Conserved quantity Corresponding symmetry

commuting with T
∫
(Qu)ū u 7→ eiλQu

1
∫
|u|2 u 7→ eiλu

x1
∫
x1|u|2 u 7→ eiλx1u

x2
∫
x2|u|2 u 7→ eiλx2u

|x|2
∫
|x|2|u|2 u 7→ eiλ|x|

2
u

i∂x1

∫
(i∂x1u)ū u 7→ u( · + λe1)

i∂x2

∫
(i∂x2u)ū u 7→ u( · + λe2)

∆
∫
|∇u|2 u 7→ eiλ∆u

H
∫
(Hu)ū u 7→ eiλHu

L = i(x×∇)
∫
(Lu)ū u 7→ u ◦Rλ

i(x · ∇+ 1)
∫
i(x · ∇+ 1)uū u 7→ λu(λ · )

Table 1. Symmetries of the CR equation

as soon as f1, f2 and f3 are in the domain of Q. Then for all λ ∈ R, we have

eiλQT (f1, f2, f3) = T (eiλQf1, e
iλQf2, e

iλQf3).

With such an operator is associated an invariant
∫
R2(Qu)(x)u(x)dx of the (CR) equation.

We also use the notation Rθ(x1, x2) = (x1 cos θ − x2 sin θ, x2 sin θ + x1 cos θ) the rotation of
angle θ.

Finally, the operator T is trilinear in Hr as can be immediatly seen from formula (2.4) in
[GHT16] as well as [FGH16, Proposition 7.1]: we have for r ≥ 0

(2.20) ‖T (f1, f2, f3)‖Hr
≤ Cr‖f1‖Hr

‖f2‖Hr
‖f3‖Hr

.

for some consant Cr independent of f1, f2 and f3.
Finally, for some function f ∈ Hr and r ≥ 0, we define the operator

(2.21) T [f ]u := T (f, f, u).

2.5. CR operator on radial functions. Following again [GHT16, Section 6.6], if hn denote
the Laguerre-Hermite functions (2.3) then we have for all n1, n2 and n3 ∈ N,

(2.22) T (hn1, hn2 , hn3) = χn1n2n3n4hn4 , n4 = n1 − n2 + n3.

where

(2.23) χn1n2n3n4 = π2

∫

R2

hn1(x)hn2(x)hn3(x)hn4(x)dx.

Using (2.12) we obtain χ1100 = π2‖h1h0‖2L2 =
π
4
.

3. Modulation and the pseudo conformal symmetry

We set up in this section the basic algebraic fact and energy estimates associated to
modulation of the unperturbed linear flow (1.1). The essential algebraic fact is the existence
of an explicit pseudo-conformal symmetry which will generate the modulated bubbles, and
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more importantly the leading order finite dimensional dynamical system to be perturbed in
a resonant way.

3.1. Commutators formulae. First, for u ∈ Hr and N > 0, we define the operator

(3.1) (SNu)(x) =
1

N
u(
x

N
).

Note that in dimension 2, we have

(3.2) ‖SNu‖L2 = ‖u‖
L2 and ŜNu = S 1

N
u.

We will also modulate by using the operators eim|x|2 and eic∆ for real numbers c and m.
Note that all these transformation preserve the radial symmetry. We now collect here the
following commutator relations:

Lemma 3.1 (Commutators). For c and m real numbers, we have the relations

e−im|x|2∆eim|x|2 = ∆− 4m2|x|2 + 4im(1 + Λ),(3.3)

e−ic∆|x|2eic∆ = |x|2 − 4c2∆− 4ic(1 + Λ),(3.4)

e−im|x|2(1 + Λ)eim|x|2 = (1 + Λ) + 2im|x|2,(3.5)

e−ic∆(1 + Λ)eic∆ = (1 + Λ)− 2ic∆.(3.6)

Proof. We have

(3.7) ∇x(e
im|x|2u) = eim|x|2(∇u+ 2imxu),

and hence

∇x · ∇x(e
im|x|2u) = eim|x|2(2imx) · (∇u+ 2imxu)

+eim|x|2(∆u+ 2im∇ · (xu))
= eim|x|2(2imx · ∇ − 4m2|x|2 +∆+ 4im+ 2imx · ∇

)
u,

Which yields the first equation. In terms of Fourier transform, we have

( ̂(1 + Λ)u)(ξ) = û(ξ)−∇ξ · (ξû(ξ)) = −((1 + Λ)û)(ξ).

which we can write F−1(1 + Λ)F = −(1 + Λ). Now using that F−1|ξ|2F = −∆, and

F−1eim∆F = e−im|ξ|2, the first relation implies

−eim∆|ξ|2e−im∆ = −|ξ|2 + 4m2∆− 4im(1 + Λ),

which yields the second relation, after taking m = −c. Now from (3.7), we obtain

Λ(eim|ξ|2u) = eim|ξ|2(Λu+ 2im|ξ|2u),

and hence the third line. The fourth is obtain by Fourier transform.
10



3.2. Energy estimates through modulation. We take c, m and N as in the previous
section and we are interested in estimating the Sobolev norms of u = SNe

im|x|2eic∆v with
respect to the norms of v. We will need the following lemma, whose proof can be found for
instance in [DR].

Lemma 3.2 (Fourier transform of Gaussians). Let u = u1 + iu2 ∈ C with Re u ≥ 0. Then

we have

(3.8) F
(
e−u| · |2

)
(ξ) =

1

2u
e−

ξ2

4u .

Proposition 3.3 (Energy estimates through modulations). Let r ∈ N. Then there exists Cr

such that for all v ∈ Hr and all real numbers m, c, N , we have

(3.9) ‖SNe
im|x|2eic∆v‖Hr

≤ Cr(〈m〉r + 〈c〉r)max
(
N,

1

N

)r‖v‖Hr
.

If moreover v(y) = h0(y), then with

η = 1 + 2ic and z = 1 + 4cm− 2im.

we have

‖|x|2rSNe
im|y|2eic∆h0‖2L2 = N2r|η|2r

∫

R2

|x|2r|h0(x)|2dx

‖|∇|2rSNe
im|y|2eic∆h0‖2L2 =

1

N2r
|z|2r

∫

R2

|x|2r|h0(x)|2dx

and in particular

(3.10) ‖SNe
im|y|2eic∆h0‖2H1 = N2

(
1 + 4c2) +

1

N2
((1 + 4cm)2 + 4m2

)
.

Proof. By homogeneity,

‖SNv‖2Hr
≤ Cr max(1,

1

N2
)r‖v‖2

Hr
and ‖〈x〉rSNv‖2L2 ≤ Cr max(1, N2)r‖〈y〉rv‖2

L2

and hence using (2.13),

‖SNv‖2Hr
≤ Cr max(N2,

1

N2
)r‖v‖2Hr

.

Moreover, we have ‖〈y〉reim|x|2v‖
L2 = ‖〈y〉rv‖

L2 and as for i = 1, 2,

∂xi
eim|x|2v = eim|x|2(2imxiv + ∂xi

v),

we have the estimate

‖〈∇〉eim|x|2v‖
L2 ≤ C〈m〉‖〈x〉v‖

L2 + ‖〈∇〉v‖
L2 ,

By iterating this estimate, we obtain

‖eim|x|2v‖Hr
≤ C〈m〉r‖v‖Hr

.

and hence after Fourier transform ‖eic∆v‖Hr
≤ C〈c〉r‖v‖Hr

, which yields (3.9).

To calculate the norm of the modulated Gaussian, using (3.8) we calculate that

eim|x|2eic∆h0 =
1√
π
eim|x|2F(e−( 1

2
+ic)| · |2) =

1

η
√
π
eim|x|2e−

1
2η

|x|2 =
1

η
√
π
e−

z
2η

|x|2

11



We thus have

SNe
im|x|2eic∆h0 =

1

Nη
√
π
e
− z

2ηN2 |x|2 and FSNe
im|x|2eic∆h0 =

N

z
√
π
e−

N2η
2z

|ξ|2.

Note that we have Re(zη) = 1. Hence
∫

R2

|x|2r|SNe
im|x|2eic∆h0|2dx =

1

π

∫

R2

|x|2r
N2|η|2e

− 1
|η|2N2 |x|2dx

= N2r|η|2r 1
π

∫

R2

|x|2re−|x|2dx,

which yields the first estimate. The second one is obtained by Fourier transform. �

3.3. Modulation equation. We consider the equation

(3.11) i∂tu = −∆u+ |x|2u.
Proposition 3.4 (Modulated pseudo conformal symmetry). Let L(t) > 0, γ(t) and b(t) be

real functions defined on R+. We set

(3.12) u = eiγSLw, w(t, y) = e−i
b|y|2

4 v(t, y) and
ds

dt
=

1

L2
.

Assume that the function t 7→ s(t) is invertible from R to itself. Then u(t, x) solves (3.11)
if and only v(s, y) solves the equation

(3.13) i∂sv +∆v − γsv +
(
− L4 +

bs
4
− b2

4
− Ls

L

b

2

)
|y|2v − i

(Ls

L
+ b
)(

1 + Λ
)
v = 0,

where Ls =
d
ds
(L(t(s))) and similar definitions for bs and γs.

Proof. We compute

i∂tu = i∂te
iγSLw = i∂t

( 1
L
eiγw(t,

x

L
)
)
= eiγSL

(
− i

Lt

L
(1 + Λ)w + i∂tw − γtw

)

=
eiγ

L2
SL

(
− i

Ls

L
(1 + Λ)w + i∂sw − γsw

)
,

with the notation Lt = ∂tL = 1
L2Ls and similar notations for the derivatives of γ and b.

Hence u = eiγSLw is solution of (3.11) if and only if

1

L2

(
− i

Ls

L
(1 + Λ)w + i∂sw − γsw

)
= −S−1

L ∆SLw + S−1
L |x|2SLw

and we obtain the equation

−iLs

L

(
1 + Λ

)
w + i∂sw − γsw +∆yw(s, y)− L4|y|2w = 0.

Now as w(s, y) = e−i b|y|
2

4 v(s, y), we have

i∂sw = e−i
b|y|2

4 (
bs
4
|y|2v + i∂sv).

Hence we obtain the equation

i∂sv +
bs
4
|y|2v − γsv − i

Ls

L
ei

b|y|2

4 (1 + Λ)e−i b|y|
2

4 + ei
b|y|2

4 ∆e−i b|y|
2

4 v − L4|y|2v = 0,

and we obtain the result with (3.3) and (3.5) with m = − b
4
. �
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Remark 3.5. In the following, we will always be in situations where s 7→ t(s) is invertible.

We will thus write by a slight abuse of notation (b(s), L(s), γ(s)) for the functions b((t(s)),
L(t(s)), and γ(t(s)).

4. Hamiltonian structures of the modulation equations

From (3.13), the explicit choice

(4.1)

∣∣∣∣∣∣∣∣

−L4 +
bs
4
− b2

4
− Ls

L

b

2
= −1

Ls

L
+ b = 0

maps (3.11) onto

i∂sv = Hv + γsv.

for which v = hk and γs = −λk provide stationnary solutions. The dynamical system
(4.1) can be integrated explicitiely and the obtained transformation (3.12) is nothing but
the classical pseudo conformal symmetry (or Lens transform) of (1.1). Our aim in this
section is to recall the classical Hamiltonian setting to integrate (4.1) which prepares for the
perturbative analysis performed in section 5.

4.1. Darboux-Lie transform. The dynamical system (4.1) can be written

d

ds

(
L

b

)
=

(
−bL

−b2 − 4 + 4L4

)
= 2L3

(
0 −1

1 0

)(
∂LE

∂bE

)

where

E =
1

L2
(
b2

4
+ 1) + L2.

We want to write the previous system in a canonical Hamiltonian form (such a change of
coordinates is called Darboux-Lie transformation).

Lemma 4.1. Let (L, b) ∈ (0,+∞)× R, H(L, b) be given function, and let a non canonical

Hamiltonian system

Ls = −2L3∂bH(L, b) and bs = 2L3∂LH(L, b)

be given. Then the change of variable (L, b) 7→ (ℓ, b) where

ℓ =
1

4L2

transform the system into a canonical Hamiltonian system of the form

d

ds

(
b

ℓ

)
=

(
0 −1

1 0

)(
∂bK

∂ℓK

)
where K(b, ℓ) = H(L, b).

Proof. With K(ℓ, b) = H( 1
2
√
ℓ
, b) we calculate that

ℓs = − Ls

2L3
= ∂bH(L, b) = ∂bK(ℓ, b)
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and moreover

∂ℓK(ℓ, b) = − 1

4ℓ3/2
∂LH(

1

2
√
ℓ
, b) = −2L3∂LH(L, b) = −bs,

which shows the result. �

4.2. Action-angles variables. In the canonical variables (b, ℓ) ∈ R× (0,+∞), the Hamil-
tonian associated with the system (4.1) is given by

E(b, ℓ) = ℓb2 + 4ℓ+
1

4ℓ
> 2,

where with a slight abuse of notation, we note E the Hamiltonian in variables (ℓ, b) as in
variables (L, b). The system (4.1) is thus equivalent to the system

(4.2)

∣∣∣∣∣∣

bs = −∂ℓE = −b2 − 4 + 1
4ℓ2

ℓs = ∂bE = 2ℓb

Proposition 4.2. There exists a symplectic change of variable (b, ℓ) 7→ (a, θ) from the set

R× (0,+∞) to (1
2
,+∞)× T such that

E(b, ℓ) = 4a, so that θs = 4, as = 0,

and the flow in variable (θ, a) is given by a(s) = a(0) and θ(s) = θ(0) + 4s. Moreover, we

have the explicit formulae

(4.3)

ℓ =
1

4

(
2a−

√
4a2 − 1 cos(θ)

)
=

1

4L2
and

bℓ =
√
4a2 − 1 sin(θ) =

b

4L2
.

Moreover, we can expand L2(a, θ) as follows:

(4.4) L2(θ, a) = 1 + 2
∑

n>0

(
2a− 1

2a+ 1

)n
2

cos(nθ)

Proof. We use the method of generating functions with b as impulse variable. We write on
the set {b > 0} describing half a period,

(4.5) b =

√
−4 +

E

ℓ
− 1

4ℓ2
= ∂ℓS(E, ℓ)

where for E > 2 and ℓ > 0,

S(E, ℓ) =

∫ ℓ

ℓ0

√
−4 +

E

z
− 1

4z2
dz =

∫ ℓ

ℓ0

1

2z

√
−16z2 + 4Ez − 1dz.

Note that here,

ℓ ∈
[1
8
(E −

√
E2 − 4),

1

8
(E +

√
E2 − 4)

]
.

Now by construction, the change of variable (b, L) 7→ (E, ψ) is symplectic, with

ψ = ∂ES(E, ℓ) =

∫ ℓ

ℓ0

1√
−16z2 + 4Ez − 1

dz =

∫ ℓ

ℓ0

1√
E2

4
− 1− (4z − E

2
)2
dz.
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Moreover, we have in view of (4.2) and (4.5)

d

ds
ψ(s) =

ℓs√
−16ℓ2 + 4Eℓ− 1

=
bℓ√

−4ℓ2 + Eℓ− 1
4

= 1.

Now we have

ψ =
1√

E2

4
− 1

∫ ℓ

ℓ0

1√
1− (

4z−E
2

√

E2

4
−1

)2
dz =

1√
E2

4
− 1

∫ ℓ−E
8

ℓ0−E
8

1√
1− ( 4z

√

E2

4
−1

)2
dz,

or

ψ =
1

4

∫ 4(ℓ−E
8 )√

E2
4 −1

4(ℓ0−
E
8 )√

E2
4 −1

1√
1− z2

dz =
1

4
arcsin

4(ℓ− E
8
)√

E2

4
− 1

+
π

8
∈ [0,

π

4
].

by taking ℓ0 = 1
8
(E −

√
E2 − 4) so that

4(ℓ0−E
8
)

√

E2

4
−1

= −1. This change of variable describes

half-a period. In order to obtain action-angle we set (a, θ) = (E/4, 4ψ) ∈ (1
2
,+∞) × T to

obtain action angle with θ ∈ [0, 2π] on a full period, and a Hamiltonian E(a, θ) = 4a. We
thus have θs = ∂aE(a, θ) = 4, as = −∂θE(a, θ) = 0 and

θ =
π

2
+ arcsin

4(ℓ− a
2
)√

4a2 − 1

and hence
4(ℓ− a

2
)√

4a2 − 1
= sin(θ − π

2
) = − cos(θ).

and thus

ℓ =
1

4

(
2a−

√
4a2 − 1 cos(θ)

)

and

b =
1

2ℓ

√
−16ℓ2 + 4Eℓ− 1 =

1

2ℓ

√
E2

4
− 1− (4ℓ− E

2
)2 =

1

ℓ

(√
4a2 − 1

)
sin(θ),

which is positive for θ ∈ [0, π]. In particular, we have

bℓ =
√
4a2 − 1 sin(θ),

which shows (4.3).
To prove (4.4) we can expand in Fourier series. We have

L2 =
1

2a−
√
4a2 − 1 cos(θ)

=
1

2a


 1

1−
√

1− 1
4a2

cos(θ)




We recall the formula for the Poisson kernel, for r ∈ (0, 1),

∑

n∈Z
r|n|einθ =

1− r2

1 + r2 − 2r cos(θ)

=
1− r2

1 + r2

(
1

1− 2 r
1+r2

cos(θ)

)
.
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To apply the formula, we need to take

2
r

1 + r2
=

√
1− 1

4a2
.

Setting α = 2 r
1+r2

or r2 + 1− 2 r
α
= 0, this yields to

r =
1

α
−
√

1

α2
− 1 =

1

α
(1−

√
1− α2)

=
1√

1− 1
4a2

(1−
√

1− 1 +
1

4a2
) =

2a√
4a2 − 1

(
1− 1

2a

)
.

and hence

r =
2a− 1√
4a2 − 1

=

√
2a− 1

2a+ 1

which is indeed in (0, 1). Note that we have

1 + r2

1− r2
=

2a+ 1 + 2a− 1

2a+ 1− 2a+ 1
= 2a

This shows (4.4). �

4.3. Resonant bubbles. With the action-angle variables in hand, we are able to completely
solve the system (4.1) and provide solutions to the system (3.12).

Taking θ = 4s, we can indeed solve t in terms of s as follows: We have

dt

ds
= L2 =

1

4ℓ
=

1

2a−
√
4a2 − 1 cos(4s)

Using (4.4), we can solve to solve the system in time:

t(s) = s+
∑

n>0

1

2n

(
E − 2

E + 2

)n
2

sin(4ns).

We summarize by the formulas in terms of E for the free flow
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

L2(s) = 1
4ℓ(s)

=
2

E − cos(4s)
√
E2 − 4

b(s) =
sin(4s)

2ℓ(s)

√
E2 − 4 =

4 sin(4s)
√
E2 − 4

E − cos(4s)
√
E2 − 4

t(s) = s+
∑

n>0

1

2n

(
E − 2

E + 2

)n
2

sin(4ns)

Note that this formula together with the fact that dt
ds

> 0 shows that shows that t(s) is
invertible and these formula with the change of variable (3.12) provide solutions to the free
flow which are all oscillating for at the same frequency for all values of E.
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5. The resonant trajectory

We are now in position to study small perturbations of (4.1) and prove the existence of
resonant trajectories for a suitable choice of perturbations. Let us stress that we need in
global in time bounds in the presence of highly oscillatory solutions, and these will be pro-
vided by the systematic use of action-angle variables and the backwards in time integration
method.

5.1. Perturbed Hamiltonian. Let us consider the action-angle variables defined in Propo-
sition (4.2). The unperturbed system (4.1) is associated with the Hamiltonian E(a, θ) = 4a.
Let us consider a time dependent Hamiltonian perturbation of this Hamiltonian of the form

(5.1) H(s, a, θ) = 4a+ P (s, a, θ).

Then the system is given by

as = −∂θP (s, a, θ), and θs = 4 + ∂aP (s, a, θ).

Now as the change of variable (b, ℓ) 7→ (a, θ) is symplectic, and with the definition of ℓ, this
dynamical system is equivalent to the following system in coordinates (L, b):

∣∣∣∣∣
−L4 + bs

4
− b2

4
− Ls

L
b
2
= −1 + 2L3∂LP (s, b, L)

Ls

L
+ b = −2L2∂bP (s, b, L),

where P (s, b, L) = P (s, a, θ) (see Lemma 4.1). Let β(s) be a given function. The solution of
the equation

(5.2)

∣∣∣∣∣
−L4 + bs

4
− b2

4
− Ls

L
b
2
= −1− β(s)

Ls

L
+ b = 0,

is thus the solution of a Hamiltonian of the form E(b, L) + β(s)
L2 . In variable (a, θ) this

Hamiltonian is given by

(5.3) H(s, a, θ) = 4a+ β(s)
(
2a−

√
4a2 − 1 cos(θ)

)
.

The dynamical system associated with this Hamiltonian is given by

(5.4)

∣∣∣∣∣∣∣

θs = 4 + 2β(s)− β(s)
4a cos(θ)√
4a2 − 1

= ∂aH(s, a, θ)

as = −β(s)
√
4a2 − 1 sin(θ) = −∂θH(s, a, θ).

5.2. Construction of the resonant trajectory. We now produce an example of pertur-
bation β(s) for which we can construct a resonant solution to (5.4).

Proposition 5.1 (resonant trajectory). Let β(s) be defined as the function

(5.5) β(s) = − sin(4s)

s log(s)
for s > 0.
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There exists s0 > 0 and (a0, θ0) and for all k ∈ N, constant Bk such that the solution of (5.4)
with initial data (a(s0), θ(s0)) = (a0, θ0) exists for all s ∈ [s0,+∞) and satisfies a(s) ≥ 2 and

(5.6)∣∣∣∣∣∣

a(s) = 1
4
log s+ c(s)

θ(s) = 4s+ ψ(s)
with ∀ k ∈ N,

∣∣∣d
kc

dsk
(s)
∣∣∣ ≤ Bk

log s

s
and

∣∣∣d
kψ

dsk
(s)
∣∣∣ ≤ Bk

s
.

Proof of Proposition 5.1. We use the classical method of backwards in time integration of
the flow to construct the solution with the suitable behaviour at +∞.

step 1 Change of variables. Let us set 2a(s) = cosh(r(s)) ≥ 1. As long as r(s) > 0, we have√
4a2 − 1 = sinh(r) and the system (5.4) can be written

∣∣∣∣∣∣∣

θs = 4 + 2β(s)− 2β(s)
cosh(r)

sinh(r)
cos(θ)

rs = −2β(s) sin(θ).

Let ψ = θ − 4s, we have

(5.7)

∣∣∣∣∣∣

ψs = 2β(s)− 2β(s)1+e−2r

1−e−2r (cos(ψ) cos(4s)− sin(ψ) sin(4s))

rs = −2β(s)(sin(ψ) cos(4s) + cos(ψ) sin(4s)).

Setting ρ(s) = r(s)− log log s, we have

(5.8)

∣∣∣∣∣∣∣

ψs = 2β(s)− 2β(s)(1 + f(s, ρ))(cos(ψ) cos(4s)− sin(ψ) sin(4s))

ρs = − 1

s log s
− 2β(s)(sin(ψ) cos(4s) + cos(ψ) sin(4s)).

with

f(s, ρ) =
1 + e−2r

1− e−2r
− 1 =

2e−2r

1− e−2r
=

2e−2ρ

(log s)2 − e−2ρ
.

step 2 Backward bounds. We now derive uniform backward bounds which are the heart of
the argument.

Lemma 5.2 (Uniform backward bounds). For all M > s0, let us define (ρM (s), ψM(s))
be the solution of the system (5.8) such that (ρM (M), ψM(M)) = (0, 0). There exists a

constant B and s0 sufficiently large such that for all M > s0, (ρM , ψM) exists on [s0,M ],
and moreover,

(5.9) ∀M > s0, ∀ s ∈ [s0,M ] |ρM(s)| ≤ B

s
and |ψM(s)| ≤ B

s
.

Moreover, for all k and n in N there exists a constant Bk,n such that for all M and all

s ∈ [s0,M ]

(5.10)

∣∣∣∣
∂k+nf

∂sk∂ρn
(s, ρM(s))

∣∣∣∣ ≤
Bk,n

sk
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Proof of Lemma 5.2. Note first that if |ρ(s)| ≤ B
s

for s ≥ s0, we have (log s)2 − e−2ρ(s) >

(log s0)
2 − e

2B
s0 ≥ 1 if for instance

(5.11) s0 ≥ 2B ≥ exp(
√
e+ 1).

Hence under these conditions, f(s, ρ) ∈ [0, 2e] and all its derivative with respect to ρ and
s satisfy bounds of the form (5.10). We deduce that under the condition (5.11), when
|ρ(s)| ≤ B

s
and |ψ(s)| ≤ B

s
, then we have

(5.12) |ρs(s)|+ |ψs(s)| ≤
30

s log s
.

For all M > s0, define

TM(s0, B) = inf{s ∈ [s0,M ] s. t. ∀σ ∈ [s,M ] |ρM(σ)| ≤ B

σ
and |ψM(σ)| ≤ B

σ
}.

As ρM (M) = ψM(M) = 0, the previous estimate show that under the condition (5.11) the
flow exists locally for such initial condition, and we have TM(s0, B) > 0. We will show that
there is a choice of B and s0 such that for all M , TM(s0, B) = s0.
Let M > 0, assume that s is such that for all σ, ρM(σ) and ψM(σ) satisfy the bound (5.9)
for σ ∈ [s,M ]. We thus have as ψM(M) = 0

ψM(s) =

∫ s

M

2β(σ)dσ

−
∫ s

M

2β(σ)(1+f(σ, ρM)) cos(ψM) cos(4σ)dσ+

∫ s

M

2β(σ)(1+f(σ, ρM)) sin(ψM) sin(4σ))dσ.

Let us calculate the three contributions to the right-hand side:
∫ s

M

2β(σ)dσ = −
∫ s

M

2 sin(4σ)

σ log σ
dσ =

[
cos(4σ)

2σ log σ

]s

M

+

∫ s

M

cos(4σ)(log σ + 1)

2σ2(log σ)2
dσ.

Thus, there exists B0 independent of M such that for all s < M this term is bounded in
absolute value by B0

s
. The second term can be written

∫ s

M

(1 + f(σ, ρM ))

σ log σ
cos(ψM) sin(8σ)dσ = −

[
(1 + f(σ, ρM))

8σ log σ
cos(ψM) cos(8σ)

]s

M

+

∫ s

M

cos(8σ)
d

ds

(
(1 + f(σ, ρM))

8σ log σ
cos(ψM)

)
dσ.

Using (5.12) and (5.10), we see that this term can be bounded by B0

s
up to a increasing of

the constant B0. The last term can be bounded by

2

∣∣∣∣
∫ s

M

sin2(4σ)

σ log σ
(1 + f(σ, ρM )) sin(ψM)dσ

∣∣∣∣ ≤ 6

∫ M

s

|ψM(σ)|
σ log σ

dσ ≤ 6B

log s0

∫ M

s

1

σ2
dσ.

So far we have proved that for all s < M ,

(5.13) |ψM(s)| ≤ 2B0

s
+

6B

s log s0
≤ B

2s
,

19



provided we take B > 8B0 and log s0 > 24. Now we have

ρM(s)− ρM(M) =

∫ s

M

(
− 1

σ log σ
+

2 sin(4σ)

σ log σ
(sin(ψM) cos(4σ) + cos(ψM) sin(4σ))

)
dσ.

Using 2 sin2(4σ) = 1−cos(8σ) and 2 sin(4σ) cos(4σ) = sin(8σ) and the fact that ρM(M) = 0,
we obtain

ρM(s) = −
∫ N

s

sin(ψM) sin(8σ)

σ log(σ)
dσ −

∫ N

s

cos(ψM)− 1

σ log(σ)
dσ +

∫ N

s

cos(ψM) cos(8σ)

σ log(σ)
dσ.

The first two terms can be treated by integration by part as before, and we can show that
they can be bounded by B0

s
after a possible increase of B0 which is a constant independent

of M , s and B. Then using | cos(ψ)− 1| ≤ |ψ|2 ≤ B2

σ2 we thus see that we have

(5.14) |ρM(s)| ≤ 2B0

s
+

B2

s(s0 log s0)
≤ B

2s
.

provided that B > 8B0 and s0 log s0 > 4B. Hence if B and s0 are large enough to satisfy
condition (5.11) and the other conditions above, then (5.13) and (5.14) are satisfy for all
s ≥ TM(s0,M) which shows that TM(s0, B) = s0.
The last estimate is then easily proved. �

step 3 Conclusion. Let us take N and M such that s0 < N ≤ M . Using (5.10), we have
that

|ρMs − ρNs |+ |ψM
s − ψN

s | ≤ C

s log s
(|ρM(s)− ρN (s)|+ |ψM(s)− ψN(s)|),

for some constant C independent of M and N . Hence for all s ∈ [s0, N ], by integrating
between s and N , using the condition ρN (N) = ψN(N) = 0 and the bound (5.9), we have

|ρM(s)− ρN(s)|+ |ψM(s)− ψN(s)| ≤
2B

N
+

∫ N

s

C

σ log σ
(|ρM(σ)− ρN (σ)|+ |ψM(σ)− ψN(σ)|)dσ

By using Grönwall’s lemma (see Lemma B.1 in Appendix) we obtain

|ρM(s)− ρN (s)|+ |ψM(s)− ψN(s)| ≤ 2B

N
+

2B

N

∫ N

s

C

σ log σ
exp

(∫ σ

s

C

τ log τ
dτ

)
dσ

≤ 2B

N
+

2B

N

∫ N

s

C(log σ)C−1

σ
dσ

≤ 2B

N
+

2BC

N
(logN)C .

We deduce that the sequence of function (ρM , ψM)M∈N is Cauchy and thus converges on
every interval [s0, T ] for any fixed T > s0. This solution solves the system (5.8) on this
interval and does not depend on T as it coincides with the unique solution on (5.8) with
initial value (ρ(s0), ψ(s0)) = limM→∞(ρM(s0), ψ

M(s0)). Hence this solution exists globally
and satisfies the bound (5.9).

Moreover, by using (5.8), we easily see that for all k ≥ 1, there exists Bk such that

∀ s ∈ [s0,+∞),
∣∣∣d

kρ

dsk
(s)
∣∣∣+
∣∣∣d

kψ

dsk
(s)
∣∣∣ ≤ Bk

s log s
.

20



We deduce that θ(s) = ψ(s) + 4s satisfy the hypothesis of the theorem. Moreover, we have
2a(s) = cosh(r(s)) = cosh(log log s+ ρ(s)). Hence

4a(s) = 2 cosh(r(s)) = elog log s+ρ(s) + e− log log t−ρ(s) = (log s)eρ(s) +
e−ρ(s)

log s

from which we easily deduce the result with 4c(s) = log(s)(eρ(s) − 1) + e−ρ(s)

log s
. Finally, we

check that as |ρ(s)| ≤ B
s

we have

a(s) ≥ 1

4
log(s0)e

B
s0 ≥ 2,

provided s0 is large enough.
�

5.3. Energy drift. The solution constructed in Proposition 5.1 exhibits a monotonic growth
of the energy.

Corollary 5.3 (Logarithmic growth of the energy). With β given by (5.5), there exists s0,
L(s0) > 0 and b(s0) and positive constants (Bk)k∈N and (αk)k∈N such that the system (5.2)
admits global solutions L(s) and b(s) on [s0,+∞) such that

(5.15) ∀ s ∈ [s0,+∞),
1

B0 log s
≤ L2 ≤ B0 log s and |b(s)| ≤ B0(log s)

3,

and

E(b, L) =
1

L2
(
b2

4
+ 1) + L2 = 4a = log s+O(

log s

s
), when t→ +∞,

and such that we have the bounds for k ≥ 1,

(5.16)

∣∣∣∣
dkL

dsk
(s)

∣∣∣∣+
∣∣∣d

kb

dsk
(s)
∣∣∣+
∣∣∣ d

k

dsk

( 1
L

)
(s)
∣∣∣ ≤ Bk(log s)

αk .

Moreover the time t(s) satisfying dt
ds

= L2 > 0 and t(s0) = s0 satisfies

(5.17) |t(s)− s| ≤ B0(log s)
2, for s > s0.

Hence as t(s) is increasing, it is globally invertible. Moreover, by denoting L(t) and b(t) the

quantities L and b viewed as depending on the time t, we have the bounds.

(5.18)

∣∣∣∣
dkL

dtk
(t)

∣∣∣∣+
∣∣∣d

kb

dtk
(t)
∣∣∣+
∣∣∣ d

k

dtk

( 1
L

)
(t)
∣∣∣ ≤ Bk(log t)

αk ,

for t ≥ t0 := s0.

Proof of Corollary 5.3. From (4.3) we have the explicit formulae

1

L2
= 2a−

√
4a2 − 1 cos(θ) and b = 4L2

√
4a2 − 1 sin(θ)

from which we easily deduce the existence of L(s) > 0 and b(s) as a(s) > 2. We have

1

4a
≤ 2a−

√
4a2 − 1 ≤ 1

L2
≤ 2a+

√
4a2 − 1 ≤ 4a and |b| ≤ 8aL2 ≤ 32a3

and (5.15) can be obtained using (5.6). Moreover, we can assume that s0 is large enough
to ensure that a(s) ≥ 1 + 1

8
log(s) and hence

√
4a2 − 1 ≥ 1

4
log s for s ≥ s0. Using (5.6), we
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have that dk

dsk
a(s) = O( log s

s
) and dk

dsk
θ(s)(s) = O(1) for k ≥ 1. Using Faà di Bruno formula,

we deduce that for some constants Bk, we have for all k ≥ 0 and all s ≥ s0,∣∣∣∣
dk

dsk

√
4a2 − 1

∣∣∣∣ ≤ Bk log s and

∣∣∣∣
dk

dsk
cos(θ)

∣∣∣∣ +
∣∣∣∣
dk

dsk
sin(θ)

∣∣∣∣ ≤ Bk

and then (5.16) by using again Faà di Bruno formula and the bound L±2 ≤ C(log s) for some
constant C depending only on s0. We can check that αk = O(k).

From Equation (4.4), we have

dt

ds
= L2(θ, a) =

(
1 + 2

∑

n>0

(
2a− 1

2a+ 1

)n
2

cos(nθ)

)
.

Assuming t(s0) = s0, and using (2a− 1) < (2a+ 1) which justifies the infinite sums in n,

t(s)− s = 2
∑

n>0

∫ s

s0

(
2a− 1

2a+ 1

)n
2

cos(4σn+ nψ)dσ

= 2
∑

n>0

∫ s

s0

(
2a− 1

2a+ 1

)n
2

cos(4σn) cos(nψ)dσ

−2
∑

n>0

∫ s

s0

(
2a− 1

2a+ 1

)n
2

sin(4σn) sin(nψ)dσ.

We now integrate by part the terms in the right-and side. For the first term we use

∫ s

s0

(
2a− 1

2a+ 1

)n
2

cos(4σn) cos(nψ)dσ =

1

4n

[(
2a− 1

2a+ 1

)n
2

sin(4σn) cos(nψ)

]s

s0

+
1

4n

∫ s

s0

ψs

(
2a− 1

2a+ 1

)n
2

sin(4σn) sin(nψ)dσ

−
∫ s

s0

2as
(2a+ 1)2

(
2a− 1

2a+ 1

)n
2
−1

sin(4σn) cos(nψ)dσ

As ψs = O(1
s
) (see (5.6)), the global contribution of the first term is bounded by

C

∫ s

s0

∑

n≥1

1

σ

(
2a− 1

2a+ 1

)n
2

dσ ≤ C

∫ s

s0

1

σ

1

2a−
√
4a2 − 1

dσ

≤ C

∫ s

s0

a(σ)

σ
dσ ≤ C

∫ s

s0

log(σ)

σ
dσ ≤ C(log s)2.

by using the formula for the Poisson Kernel, and up to modifications of the constant C in

each inequalities, depending only on s0 and numerical constants. As as = O( log(s)
s

) and
log σ/(2a(σ)+1) is bounded, we calculate that the third term yields similarly a contribution
of order O((log s)2). We then deduce that

|t(s)− s| ≤ B0(log s)
2,

for some constant B0. The bounds (5.18) then easily derive from the bounds (5.16), (5.15)
and the d

ds
= L2 d

dt
. �
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6. Main result for the harmonic oscillator

We are now in position to construct the unbounded trajectory of Theorem 1.1. The con-
struction relies on the existence of the resonant finite dimensional trajectory of Proposition
5.1, and the backwards integration method for the full PDE as introduced in [Me90].

6.1. Construction of the resonant trajectory. We consider the equation (1.4). From
classical grounds, the a priori bound for all t and all k ∈ N,

‖∂kt V (t, x)‖Hs
< +∞.

ensures the existence and uniqueness of global solutions to (1.4) in Hr for r > 1 satisfying
u(t0, x) = u0(x) ∈ Hr, with a given t0 ∈ R.They are solutions of the equation

∀ t ∈ R u(t, x) = e−i(t−t0)Hu0(x)− i

∫ t

t0

e−i(t−t0−s)HV (s, x)u(s, x)ds.

We make the change of unknown (3.12) with the modulation system (5.2) associated with
the function β(s) defined in (5.5). By using (3.13) we obtain the system

(6.1) i∂sv = Hv + γs(s)v + β(s)|y|2v +W (s, y)v, y ∈ R
d.

where
W (s, y) = L2V (t, x)

with s and y satisfying (3.12). The heart of the proof of Theorem 1.1 is the following
statement.

Proposition 6.1 (resonant trajectory in renormalized variables). Let β(s) be given by the

formula (5.5) and

(6.2) W (s, y) = −αβ(s)h0(y) with α =
(h1, |y|2h0)L2

(h1, h0h0)L2

= −9
√
π

2
.

Let s0 be as in Proposition 5.1 and r > 1. There exists a constant B and a solution γ(s) =
−λ0s = −2s and v(s) ∈ Hr

rad to the equation (6.1) such that

v(s, y) = h0(y) + w(s, y), with ∀ s ∈ (s0,+∞), ‖w(s)‖Hr
≤ B√

s
.

Proof of Proposition 6.1. Let us take γs = −λ0 = −2. Let w = v − h0. As Hh0 = λ0h0, we
have that

(6.3) i∂sw = (H − λ0)w + β(s)|y|2w +W (s, y)w +R(s)

with
R(s) = β(s)|y|2h0 +W (s, y)h0 = β(s)(|y|2h0 − αh20).

By definition of W , we have (R(s), h1)L2 = 0. Let g = eis(H−λ0)w. We have

(6.4) i∂sg = K(s)g + eis(H−λ0)R(s).

where

K(s) = β(s)eisH |y|2e−isH + eisHW (s, y)e−isH

= β(s)eisH(|y|2 − αh0)e
−isH(6.5)
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Note that by using (2.15), (2.14) and (2.16) we have that for all r > 1 and all f ∈ Hr+1
rad ,

(6.6) ‖K(s)f‖Hr
≤ Cr

s log s
‖f‖Hr+1

for some constant Cr independenf of f . Moreover, for all r > 1, we have

[Hs/2, K(s)] = β(s)eisH([Hr/2, |y|2]− α[Hr/2, h0])e
−isH

by hence using (2.17), (2.14) and the fact that [Hr/2, h0]f = Hr/2(h0f)−h0(Hr/2f), we have

(6.7) ‖[Hr/2, K(s)]f‖
L2 ≤

Cr

s log s
‖f‖Hr

,

for r > 1 and a constant Cr depending only on r. Note that for all s, K is Hermitian, i.e.

for all ∀ f, g ∈ Hr+2,

(f,K(s)g)L2 = (K(s)f, g)L2.

For M ∈ (s0,+∞), let wM be the solution of (6.3) in Hs
rad such that wM(M) = 0,

gM = eis(H−λ0)wM , and

fM = gM − i

∫ M

s

eiσ(H−λ0)R(σ, y)dσ =: gM − rM .

We have that fM(M) = 0, and

(6.8) i∂sf
M = K(s)gM = K(s)fM +RM (s)

with

(6.9) RM(s) = K(s)rM .

Now we have

rM = i

∫ M

s

eiσ(H−λ0)R(σ, y)dσ = i

∫ M

s

β(σ)eiσ(H−λ0)(|y|2h0 − αh20)dσ

Let us calculate the terms in the right-hand side. We have

eiσ(H−λ0)(|y|2h0 − αh20) =
∑

n 6=1

ei4nσ((hn, |y|2h20)L2 − α(hn, h
2
0)L2)hn

as the term for n = 1 vanishes by definition of α. This shows that

rM(s) = −
∑

n 6=1

(∫ M

s

sin(4σ)e4inσ

σ log σ
dσ

)
((hn, |y|2h20)L2 − α(hn, h

2
0)L2)hn.

But as n 6= 1, we have after integration by part, that for some constant B independent on
M , n and s, we have for s ≤ M ,

∣∣∣∣
∫ M

s

sin(4σ)e4inσ

σ log σ
dσ

∣∣∣∣ ≤
B

s
.
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This shows that

(6.10) ‖rM(s)‖2Hr
≤ 2B2

s2

(∑

n∈N
〈n〉r(hn, |y|2h20)2L2 + α2

∑

n∈N
〈n〉r(hn, h20)2L2

)

≤ 2B2

s2
(‖|y|2h0‖2Hr

+ α2‖h20‖Hr
) ≤ C2

r

s2

for some constant Cr independent on M and s but depending on r > 1. In view of the
expression (6.9) and the estimate (6.6), we have

‖RM(s)‖Hr
≤ Cr

s log s
‖rM(s)‖Hr+1 ≤

Cr

s2 log s
,

up to a modification of the constant Cr in the last inequality. Now using the equation (6.8)
on fM , we have

∂s‖fM‖2Hr
= Im

(
Hr/2fM , Hr/2K(s)fM)L2 + (Hr/2fM , Hr/2RM)L2

)

= Im
(
(Hr/2fM , [Hr/2, K(s)]fM)L2 + (Hr/2fM , Hr/2RM)L2

)

as the multiplication by K defines a symmetric operator. Hence we have by using (6.7),

∂s‖fM‖2Hr
≤ C

s log s
‖fM‖2Hr

+
C

s2 log s
‖fM‖Hr

,

for some constant C depending only on r. For ε > 0, let yMε (s) =
√

‖fM‖2Hr
+ ε2. The

previous inequality implies that for all ε, we have

∂s(y
M
ε )2 = 2yMε ∂sy

M
ε ≤ C

s log s
(yMε )2 +

C

s2 log s
yMε ,

and hence as yMε > 0 for all s,

∂sy
M
ε ≤ C

2s log s
yMε +

C

2s2 log s
.

By using Grönwall’s lemma (see Lemma B.1 below), we obtain as yMε (M) = ε,

yMε (s) ≤ ε+
C

s
+

∫ M

s

(
ε+

C

σ

) C

2σ log σ
exp

(∫ σ

s

C

2τ log τ
dτ

)
dσ

≤ ε+
C

s
+

∫ M

s

(
ε+

C

σ

)C(log σ)C−1

2σ
dσ.(6.11)

By letting ε → 0, we deduce that for all α > 0, there exists a constant κα such that for all
M and all s ∈ (s0,M),

(6.12) ‖fM(s)‖Hr
≤ κα
s1−α

.

Now if we take fM and fN for M > N , we have

i∂s(f
M − fN) = K(s)(fM − fN) +K(s)(rM − rN).

But we have

rM − rN = i

∫ M

N

eiσ(H−λ0)R(σ, y)dσ = rM(N).
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In particular, we have using (6.6)
∫ N

s

‖K(σ)(rM − rN)‖Hr
dσ ≤ Cr

∫ N

s

1

σ log σ
‖rM(N)‖Hr+1 dσ.

Hence we have

‖fM(s)− fN(s)‖Hr ≤ ‖fM(N)‖Hr + Cr log logN

∫ N

s

‖rM(N)‖Hr+1

+
C

σ log σ
‖fM(σ)− fN(σ)‖Hr

dσ

and by Grönwall estimate, (6.10) and (6.12) with α = 1
4
,

‖fM(s)− fN(s)‖Hr
≤ κ1/4
N3/4

(
1 +

∫ N

s

(log σ)C−1

σ
dσ

)
≤ C√

N
,

for some constant C independent of N large enough. Hence the sequence of function
(fM(s))M∈N is Cauchy and converge uniformly in C((0, T ),Hr)) for all T .

Moreover, the functions rM also converge to a function r(s) on (s0,+∞) in Hs and satisfies
‖r(s)‖Hr ≤ Cr/s (see (6.10)). We deduce that gM = fM − rM converges towards the unique

solution of (6.4). Moreover, by using (6.12) with α = 1
2
, we have ‖g(s)‖Hr

≤ B√
s

for all

s ∈ (s0,+∞) and some constant B depending on r. We obtain the result by noticing that
v = h0 + e−is(H−λ0)g. �

6.2. Proof of Theorem 1.1. It follows directly from the following quantitative version.

Proposition 6.2 (Existence of the resonant trajectory). Let s0, (b(t), L(t)) and s(t) satis-

fying Corollary 5.3 and let V (t, x) be the function defined as the time dependent Gaussian

(6.13) V (t, x) = − 9
√
π

2L(t)2
sin(4s(t))

s(t) log s(t)
h0(

x

L(t)
).

Then we have for all k and all r,

lim
t→∞

‖∂kt V (t, x)‖Hr
= 0.

Moreover, if v(s, y) denote the function constructed in Proposition 6.1, then

u(t, x) =
1

L(t)
e−2is(t)−i b

4
L−2(t)|x|2v(s(t),

x

L(t)
)

is a solution in Hr
rad, r > 1 of the equation

i∂tu = −∆u + |x|2u+ V (t, x)u

on (s0,+∞). Moreover, we have

(6.14) u(t, x) = u0(t, x) + u1(t, x)

with

‖u0(t, x)‖2H1 ∼ log t when t→ ∞
and such that for all r > 1, there exists Cr and αr such that

‖u1(t, x)‖Hr
≤ Cr

(log t)αr

√
t

.
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In particular, we have

(6.15) ‖u(t, x)‖2H1 ∼ log t when t→ ∞.

Proof of Proposition 6.2. The bound on the potential are consequences of the estimates in
Corollary 5.3. To prove (6.15), we observe that v(s, y) = h0(y)+w(s, y) with ‖w(s)‖H1 ≤ B√

s
.

Hence by using Lemma 3.3, we see that the contribution of w(s, y) converges to 0 in H1

norm, when s goes to ∞. The bound on u1 are then easily proved by using the relation
(5.17) between t(s) and s, and using the bound on v and on L and b. By using (3.10), we
finally have

‖u(t)‖2H1 = E(b(t), L(t)) + o(1) = 4a(t) + o(1) = log(s(t)) + o(1) ∼ log(t).

and Proposition 6.2 and Theorem 1.1 are proved. �

7. The linear CR equation

We consider in this section the linearized CR equation and propose a different approach to
produce growth and realize Theorem 1.1 using some specific properties of the CR equation.

7.1. Existence of resonant trajectories. For CR, the existence of resonant trajectories
for the perturbed problem can be reduced to the existence of suitable trajectories to the
unperturbed flow.

Proposition 7.1 (resonant trajectory near suitable trajectories). Assume that there exists

s0, F (s, x) and f(s, x) such that

i∂sf = T [F ]f, s ∈ [s0,+∞],

and such that for all r and k, there exists κ = κ(r, k) and C = C(r, k) such that

(7.1) ‖∂ksF (s, x)‖Hr + ‖∂ks f(s, x)‖Hr ≤ Ceκs,

and there exists c and α such that

(7.2) ‖f(s, x)‖H1 ∼ ceαs, s→ +∞, c, α > 0.

Then there exists V (t, x) and u(t, x) = e−itHf(log log t, x) +O(1) realizing Theorem 1.1.

Proof of Proposition 7.1. We set

V (t, x) =
1

t log t
|e−itHF (log log t, x)|2.

By using the exponential bounds for F , we easily verify that V satisfies the decay hypothesis
in time (1.5) in Hr for r > 1 (to ensure the algebra property of Hr). Let us set

u = e−itHv(t, x).

Then u solves (1.4) if v is solution of

i∂tv =
1

t log t
eitH |e−itHF (s, x)|2e−itHv, s = log log t.
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Let us decompose F (s, x) =
∑

k∈Z fk(s)hk(x) and v(t, x) =
∑

k∈Z vk(s)hk(x). The previous
equation is equivalent to the collection of equations

∀ k ∈ N, i∂tvk(t) =
1

t log t

∑

m,n,p∈N
χkmnpe

4it(k−m+n−p)Fm(s)F n(s)vp(t)

=
1

t log t
(T [F ]v)k +

1

t log t
(R(s, t)v)k,

where the coefficients χkmnp are given by the formula (2.23) and

(R(s, θ)v)k =
1

t log t

∑

k 6=m−n+p

χkmnpe
4iθ(k−m+n−p)Fm(s)F n(s)vp,

define an operator R(s, θ) acting on Hr for r > 1 (see for instance [GIP09, Proposition 2.13])
which is oscillatory in θ. We now set

w(t, x) = v(t, x)− f(log log t, x).

Then by assumption on f , w satisfies

i∂tw =
1

t log t
T [F ]w +

1

t log t
R(s, t)w +

1

t log t
R(s, t)f(s).

For M large enough, we define wM(t) the solution of this equation such that wM(M) = 0,
and we set

gM(t, x) = wM + i

∫ M

t

1

σ log σ
R(log log σ, σ)f(log log σ)dσ =: wM − rM .

We have

i∂tg
M =

1

t log t
T [F ]gM +

1

t log t
R(s, t)gM +

1

t log t
T [F ]rM +

1

t log t
R(s, t)rM

= K(t)gM +K(t)rM , with K(t) = eitHV (t, x)e−itH ,

a formula that can be compared with (6.8)-(6.9). As V is smooth, the operator K(t) possess
the same properties as the operator defined in the proof of Proposition 2.1, in particular the
commutator estimate (6.7). To conclude by using the same argumentation as in this proof,
we thus just need to control ‖rM‖Hr

for r large enough (see estimate (6.10)). Now we have

rMk (t) = i
∑

k 6=m−n+p

χkmnp

∫ M

t

1

σ log σ
e4iσ(k−m+n−p)Fm(s(σ))F n(s(σ))fp(s(σ))dσ.

We integrate the oscillatory term by part and use the fact that |k−m+n−p| ≥ 1. Moreover,
proposition 3.3 of [GIP09] gives some bounds on the coefficients χkmnp. By applying estimates
for polynomials acting on Hr, see [GIP09, Proposition 3.3], we obtain a bound of the form
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(for r > 1)

‖rM(t)‖Hr
≤ C

t log t
‖F (log log t)‖2Hr

‖f(log log t)‖Hr

+
C

M logM
‖F (log logM)‖2Hr ‖f(log logM)‖Hr

+C

∫ M

t

1

σ2(log σ)2
‖(∂sF )(log log σ)‖Hr

‖F (log log σ)‖Hr
‖f(log log σ)‖Hr

dσ

+C

∫ M

t

1

σ2(log σ)2
‖F (log log σ)‖2Hr ‖(∂sf)(log log σ)‖Hr dσ

+C

∫ M

t

1

σ2(log σ)2
‖F (log log σ)‖2Hr

‖f(log log σ)‖Hr
dσ.

Using the bound on f and F , we conclude that for some constants Cr and βr, we have for
t < M and uniformly in M ,

‖rM(t)‖Hr
≤ Cr

(log t)βr

t
.

If we compare with (6.10), we see that we loose a factor (log t)βr compared with the estimates
in the proof of Proposition 2.1, but it does not affect the result, and the conclusion is the
same, see in particular (6.11) with same the kind of estimate. We conclude that wM converges
towards a solution of (1.4) such that in Hr for r large enough,

u = e−itH(f(log log t) +O(1))

from which we obtain the result by using (7.2). �

7.2. Existence of suitable trajectories and conclusion. Hence we are reduced to the
problem of finding functions F and f satisfying (7.1) and (7.2). Due to the numerous
invariance of the CR equation, there are many ways to construct such example. Up to a
change of time one such example is given in [Tho20] by using the analysis in [ST20] for the
lowest Landau level equation which coincide with the CR equation on the Bargmann-Fock
space, see [GHT16]. Here we give a general recipe to build simple examples based on the
following fact:

Lemma 7.2. Let κ, ν, µ real numbers. There exists β ∈ C and λ ∈ R such that

(7.3) (ν∆+ iµ(1 + Λ) + κ|x|2)h0 + T [h0 + βh1]h0 = λh0.

Proof. Using (2.8), (2.9) and (2.10), we have

κ|x|2h0 = κ(h0 − h1), ν∆h0 = ν(−h0 − h1) and iµ(1 + Λ)h0 = iµh1.

On the other hand, we have using (2.22)

T (h0 + βh1)h0 = χ0000h0 + |β|2χ1100h0 + βχ0110h1.

Hence the equation (7.3) is satisfied if we have
∣∣∣∣∣
χ0000 + |β|2χ1100 = ν − κ + λ,

βχ0110h1 = ν + κ− iµ,

which is a solvable equation in β and λ as χ1100 is non zero. �

29



To make the equation (7.3) appear, we proceed as follows: we consider the equation

i∂sf = T [F ]f

For N , m, γ and c depending on the time, we make the change of variable

f = eiγSNe
im|ξ|2eic∆g,

where SN is given by (3.1). �

Proposition 7.3. Let κ, ν, N , c, m, λ and γ be a given functions of s. Let f and g, F and

G be linked by the relation

f = eiγSNe
im|y|2eic∆g, and F = eiγSNe

im|y|2eic∆G,

Then

i∂sf = T [F ]f ⇐⇒ i∂sg = ν∆g + iµ(1 + Λ)g + κ|ξ|2g + T [G]g − λg

if and only if

(7.4)

∣∣∣∣∣∣∣∣∣

Ns

N
= 4cκ+ µ,

ms = (1 + 4cm)κ,

cs = ν − 4κc2,

γs = −λ.

Proof. To obtain the equation for g, we proceed step by step. Let us first assume

f = SNv, and F = SNV.

Then we have

i∂sf = i∂sSNv = SN i∂sv − i
Ns

N
SN (1 + Λ)v.

and

T [F ]f = SNT [V ]v.

We thus find the equation

i∂sv = i
Ns

N
(1 + Λ)v + T [V ]v.

Now assume

v = eim|ξ|2w and V = eim|ξ|2W

We have

i∂sw −ms|ξ|2w = i
Ns

N
e−im|ξ|2(1 + Λ)eim|ξ|2w + T [W ]w.

Hence using (3.5),

i∂sw −ms|ξ|2w = i
Ns

N
(1 + Λ)w +

(
ms − 2m

Ns

N

)
|ξ|2w + T [W ]w.

Let us set

κ = ms − 2m
Ns

N
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and w = eic∆+iγg, W = eic∆G. We find using (3.4) and (3.6)

i∂sg − γs = cs∆g + i
Ns

N
e−ic∆(1 + Λ)eic∆g + κe−ic∆|ξ|2eic∆g + T [G]g

= cs∆g + i
Ns

N
(1 + Λ)g + 2c

Ns

N
∆g + κ|ξ|2g − 4κc2∆g − 4iκc(1 + Λ)g + T [G]G

= (cs + 2c
Ns

N
− 4κc2)∆g + i(

Ns

N
− 4κc)(1 + Λ)g + κ|ξ|2g + T [G]g.

and we obtain the result �

Now by using Proposition 3.3 we thus have built solutions to the linear CR equation with
H1 norm growing like

‖SNe
im|x|2eic∆h0‖H1 = N2

(
1 + 4c2) +

1

N2
((1 + 4cm)2 + 4m2

)
,

where N , m and c solve (7.4). With the simplest example c = m = 0, N = eµs, we obtain
the following result:

Proposition 7.4. Let µ > 0 and N = eµs. Then there exists β ∈ iR and λ ∈ R such that

f(s, x) = e−isλSNh0 and F (s, x) = e−isλSN(h0 + βh1) satisfy (7.2) and (7.1) and provide a

solution to the linear CR equation.

Many solutions under the previous form can be constructed, as well as solutions obtained
by modulating parameters with the other invariant laws of CR (see table 1). In each case,
it provides examples of weakly turbulent solution for linear time dependent equation with
pseudo-differential of order 0 perturbation and by using Theorem 7.1, examples of smooth
potential producing growth of Sobolev norms. The complete classification of all these solu-
tions as well as their genericity is clearly out of the scope of this paper.

Appendix A. Integral and norms of radial Hermite functions

Proposition A.1. For n, k ≥ 0, we have

(A.1) (hn, h0hk)L2 =
2√
π

(
1

3

)n+1 ∑

p+q=k

(
1

3

)q
1

p!q!

(n+ q)!

(n− p)!
> 0,

and

(A.2) (hn, h0h0hk)L2 =
1

π

(
n+ k

k

)(
1

2

)n+1+k

> 0.

Proof. Using (2.5), and as h0(x) =
1√
π
e−

|x|2

2 ,

∞∑

n=0

tkh0(x)hk(x) =
1

π

1

1− t
e−

t|x|2

1−t e−|x|2 =
1

π

1

1− t
e−

|x|2

1−t .
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We thus have for real numbers r and s such that |r| < 1 and |t| < 1,

∞∑

n,k=0

rntk(hn, h0hk)L2 =
1

π
3
2

1

(1− t)(1− r)

∫

R2

e−
|x|2

1−t e
− (1+r)

2(1−r)
|x|2

dx

=
1

π
3
2

1

(1− t)(1− r)

∫

R2

e−
(3−r−t−tr)
2(1−r)(1−t)

|x|2dx

=
1

π
3
2

2

3− r − t− tr

∫

R2

e−|x|2dx =
2√
π

(
1

3− t− r − tr

)
.

Hence we have
√
π

2

∞∑

n,k=0

rntk(hn, h0hk)L2 =
1

(3− t)

(
1

1− r 1+t
3−t

)
=

1

3− t

∞∑

n=0

rn
(
1 + t

3− t

)n

.

By letting t be fixed such that |t| < 1 and considering r small enough, we deduce that

Fn(t) :=

∞∑

k=0

tk(hn, h0hk)L2 =
2√
π

(1 + t)n

(3− t)n+1
.

This shows that all the coefficients of the developpement are positive, and we have explicitely
for n ≥ k:

(hn, h0hk)L2 =
2√
πk!

dk

dtk
Fn(t)

∣∣∣∣
t=0

=
2√
π

1

k!

∑

p+q=k

(
k

p

)
n!

(n− p)!
(1 + t)n−p (n+ q)!

n!
(3− t)−n−1−q

∣∣∣∣∣
t=0

=
2√
π

(
1

3

)n+1 ∑

p+q=k

(
1

3

)q
1

p!q!

(n + q)!

(n− p)!
> 0,

and we deduce the case n < k by symmetry (hn, h0hk)L2 = (hk, h0hn)L2 . This proves (A.1).
To prove (A.2) we proceed in a similar way, we have

∞∑

n=0

tkh0(x)
2hk(x) =

1

π
3
2

1

1− t
e−

t|x|2

1−t e−
3
2
|x|2 =

1

π
3
2

1

1− t
e
− (3−t)|x|2

2(1−t) .

We thus have for |r| < 1 and |t| < 1, using (2.5)

∞∑

n,k=0

rntk(hn, h
2
0hk)L2 =

1

π2

1

(1− t)(1− r)

∫

R2

e
− (3−t)|x|2

2(1−t) e
− (1+r)

2(1−r)
|x|2

dx

=
1

π2

1

(1− t)(1− r)

∫

R2

e−
(2−r−t)

(1−r)(1−t)
|x|2dx

=
1

π2

1

2− r − t

∫

R2

e−|x|2dx =
1

π

(
1

2− t− r

)
.(A.3)
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Hence we have

π
∞∑

n,k=0

rntk(hn, h
2
0hk)L2 =

1

(2− t)

(
1

1− r 1
2−t

)
=

1

2− t

∞∑

n=0

rn
(

1

2− t

)n

.

By letting t fix such that |t| < 1 and considering r small enough, we deduce that

Fn(t) :=

∞∑

k=0

tk(hn, h
2
0hk)L2 =

1

π

1

(2− t)n+1
.

This shows that all the coefficients of the developpement are positive, and we have explicitely:

(hn, h
2
0hk)L2 =

1

πk!

dk

dtk
Fn(t)

∣∣∣∣
t=0

=
1

πk!

(n+ k)!

n!

(
1

2

)n+1+k

,

which shows the result. �

Appendix B. A backward Grönwall inequality

Lemma B.1. Let s0 > 0 and M > 0. Assume that β(s) > 0 and α(s) are functions defined

on (s0,M), and that u(s) satisfies

u(s) ≤ α(s) +

∫ M

s

β(σ)u(σ)dσ.

Then we have

u(s) ≤ α(s) +

∫ M

s

α(σ)β(σ) exp

(∫ σ

s

β(τ)dτ

)
dσ

Proof. Let v(s) = u(M − s+ s0), α̃(s) = α(M − s+ s0) and β̃(s) = α(M − s+ s0) which are
defined on (s0,M). We have

v(s) ≤ α̃(s) +

∫ M

M−s+s0

β(σ)u(σ)dσ = α̃(s) +

∫ s

s0

β̃(σ)v(σ)dσ

By the classical Grönwall inequality, we have

v(s) ≤ α̃(s) +

∫ s

s0

α̃(σ)β̃(σ) exp

(∫ s

σ

β̃(τ)dτ

)
dσ

= α̃(s) +

∫ M

M−s+s0

α(σ)β(σ) exp

(∫ s

M−σ+s0

β(M − τ + s0)dτ

)
dσ

= α̃(s) +

∫ M

M−s+s0

α(σ)β(σ) exp

(∫ σ

M−s+s0

β(τ)dτ

)
dσ

from which we deduce the result. �
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