
HAL Id: hal-02869960
https://hal.archives-ouvertes.fr/hal-02869960

Submitted on 16 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DiagnoseNET: Automatic Framework to Scale Neural
Networks on Heterogeneous Systems Applied to Medical

Diagnosis
John García, Frédéric Precioso, Pascal Staccini, Michel Riveill

To cite this version:
John García, Frédéric Precioso, Pascal Staccini, Michel Riveill. DiagnoseNET: Automatic Framework
to Scale Neural Networks on Heterogeneous Systems Applied to Medical Diagnosis. ICITCS 2020 - 8th
International Conference on IT Convergence and Security, Aug 2020, Nha Trang / Virtual, Vietnam.
�hal-02869960�

https://hal.archives-ouvertes.fr/hal-02869960
https://hal.archives-ouvertes.fr


DiagnoseNET: Automatic Framework to Scale
Neural Networks on Heterogeneous Systems

Applied to Medical Diagnosis

John A. Garćıa H.1, Frédéric Precioso1, Pascal Staccini2, and Michel Riveill1

1 Université Côte d’Azur, Laboratoire I3S, 06900 SA, France
henao@i3s.unice.fr, frederic.precioso@unice.fr, michel.riveill@unice.fr

2 Université Côte d’Azur, CHU Nice, 06000 NCE, France
pascal.staccini@unice.fr

Abstract. Determine an optimal generalization model with deep neu-
ral networks for a medical task is an expensive process that generally
requires large amounts of data and computing power. Furthermore, scale
deep learning workflows over a wide range of emerging heterogeneous sys-
tem architecture increases the programming expressiveness complexity
for model training and the computing orchestration. We introduce Diag-
noseNET, a programming framework designed for scaling deep learning
models over heterogeneous systems applied to medical diagnosis. It is
designed as a modular framework to enable the deep learning workflow
management and allows the expressiveness of neural networks written in
TensorFlow, while its runtime abstracts the data locality, micro batch-
ing and the distributed orchestration to scale the neural network model
from a GPU workstation to multi-nodes. The main approach is composed
through a set of gradient computation modes to adapt the neural network
according to the memory capacity, the workers’ number, the coordination
method and the communication protocol (GRPC or MPI) for achieving
a balance between accuracy and energy consumption. The experiments
carried out allow to evaluate the computational performance in terms of
accuracy, convergence time and worker scalability to determine an opti-
mal neural architecture over a mini-cluster of Jetson TX2 nodes. These
experiments were performed using two medical cases of study, the former
dataset is composed by clinical descriptors collected during the first week
of hospitalization of patients in the Provence-Alpes-Côte d’Azur region;
the second dataset uses a short ECG records between 30 and 60 seconds,
obtained as part of the PhysioNet 2017 Challenge.

1 Introduction

Determine an optimal generalization model with Deep Neural Networks (DNN)
in healthcare research is an expensive training process, due to the cost of hard-
ware and electricity or the cloud compute time and its carbon footprint required
to fuel HPC systems [12]. Therefore, physicians and scientists require alterna-
tive High-Performance Computing (HPC) systems to exploit the Artificial Intel-
ligence (AI) methods applied in medical diagnosis within hospitals to accelerate



2 John A. Garćıa H. et al.

healthcare research as well as to preserve the patient data privacy with an af-
fordable cost of hardware and electricity. In this context, the motivation of this
research is to develop a programming framework to improve the usability, porta-
bility and scalability of deep learning workflows over heterogeneous systems and,
evaluate low-consumption computing architecture with minimal infrastructure
requirements [1], to accelerate clinical-risk-predictive models [10,14] with an ef-
ficient balance between accuracy and energy consumption.

Based on these challenges, this paper analyses the deep learning algorithmic
complexity in terms of accuracy, convergence time and worker scalability for
training two different neural networks (MLP and CNN) on a mini-cluster with
14 Jetson-TX2 nodes, applied to predict the medical care purpose of hospitalized
patients and to atrial fibrillation classification for cardiac arrhythmia diagnosis.
Which main contribution is an open-source framework called DiagnoseNET, de-
signed into independent and interchangeable modules for scaling deep learning
models over heterogeneous system architecture applied to develop medical risk
prediction models. Which increases the developer’s productivity, facilitating the
programming process to build and finetune a DNN, while its run-time abstracts
the data locality, the micro batching and the distributed orchestration to scale
the DNN model from a GPU workstation to multi-nodes.

2 Background and State of the Art

The main challenge is to minimize the execution time, increase the worker
scalability and exploit the computing power of each hybrid processor on-chip
(CPU&GPU) with 8GB of host memory capacity by each Jetson TX2. Where the
data locality, the communication protocol and the coordination training modes
are the key factors for efficient task mapping over the resources but it increases
the programming complexity for model training and computing orchestration.

The common data-distributed methods are Bosen [13] and Federated Learn-
ing [3,9], the approaches that use iterative-convergent Machine Learning (ML) al-
gorithms for training. They can be applied generically to any ML method if data
samples are independent and identically distributed (i.i.d.). The Bosen platform
provides a distributed version for a number of well-known ML algorithms (for
example, Deep Learning, Sparse Coding, K-means clustering, Random forests or
Multi-class Logistic Regression), while Federated Learning is designed to be effi-
cient in setups with a large number of users and unreliable or slow connections.
Final classification or prediction models represent a weight matrix that is stored
across a large number of clients. Local weight matrix is calculated in the initial
step and refined over the rounds, where updates are based on the exchange of
parameters with local neighbors or a single master node.

Model-distributed approaches such as Strads platform [13] require ML spe-
cialized systems that perform a partition of ML algorithms into a set of parallel
tasks, in general scheduled by master node(s) and executed by a set of workers.
Schedulers’ task is to separate the problem into a non-overlapping set of sub-
problems, divide a workload and synchronize the updates amongst the workers.



DiagnoseNET: Scalable Neural Networks on Heterogeneous Systems 3

This setup admits non-conflicting model updates that lead to convergence. Nu-
merous algorithms can be deployed in this framework, such as Latent Dirichlet
Allocation, Matrix Factorization, Support Vector Machine or Deep Learning al-
gorithm based on Caffe, called Poseidon, to name a few.

Model and data-distributed algorithms for classification and prediction prob-
lems. In the literature, there exist only a few works. A hybrid distributed plat-
form known as Angel [6] appropriately combines data partitioning, scheduling
and parameter synchronization tasks and demonstrates accuracy improvement
in comparison with a Petuum-based data or model distribution. There exist a
number of calculus-parallelization methods, such as FlexFlow [5]. It is a hy-
brid data and model parallel (non-distributed) approach worth of exploring in a
distributed setup, because it performs automated search of parallelization strate-
gies that incorporates data, attribute, parameter and operator parallelization for
DNN algorithms.

3 Material and Methods

3.1 DiagnoseNET

Fig. 1: DiagnoseNET framework scheme.

DiagnoseNET was designed to harmonize the deep learning workflow and
to automatize the distributed orchestration to scale the neural network model
from a GPU workstation to multi-nodes. Figure 1 shows the schematic integra-
tion of the DiagnoseNET modules with their functionalities. The first module is
the deep learning model graph generator, which has two expression languages: a



4 John A. Garćıa H. et al.

Sequential Graph API designed to automatize the hyperparameter search and
a Custom Graph which support the TensorFlow expression codes for sophis-
ticated neural networks. The second module is the data manager, compose by
three classes designed for splitting, batching and multi-task any dataset over
GPU workstations and multi-nodes computational platforms. The third module
extends the enerGyPU monitor for workload characterization, constitute by a
data capture in runtime to collect the convergence tracking logs and the com-
puting factor metrics; and a dashboard for the experimental analysis results [7].
The fourth module is the runtime that enables the platform selection from GPU
workstations to multi-nodes whit different execution modes, such as synchronous
and asynchronous coordination gradient computations with gRPC or MPI com-
munication protocols.

DiagnoseNET Model Graph Generator, In Sequential Graph the first
step, defines the stacked layers and sets the type of each layer, their neurons
numbers, the number of layers and followed by a linear output on top, since
the cross entropy will be used as loss function and include the softmax function.
Then the neural network hyperparameters are defined as shown in the expression
1. to generate the model graph object. Custom Graph uses tf.layers to defines
the staked layers and the similar expression as the former is used to define the
optimizer and loss function for generating the model graph object.

Code Example 1.1: Model definition to generate several graphic-model objects.

import diagnosenet as dt

stacked_layer_1 = [dt.Relu (14637 , 2048) ,

dt.Relu (2048, 1024),

dt.Relu (1024, 1024),

dt.Linear (1024, 14)]

model_1 = dt.sequentialGraph(

input_size =14637 , output_size =14,

layers=stacked_layer_1 ,

loss=dt.CrossEntropy ,

optimizer=dt.Adam(lr =0.001))

DiagnoseNET Data Manager, This manages the dataset according to the
computational architecture, creating an isolated sandbox for each dataset and its
transformations in the training process to guarantee the data location. In which,
the dataset is splitting into well balance batches over the number of workers,
and its worker-batch is micro batching according to the memory or parameter,
as shown in the following code expressions:

Code Example 1.2: Dataset splitting and micro-batching over the workers.

data_config_1 = dt.Batching(

dataset_name="medical_D1", valid_size =0.05,

devices_number =4, batch_size =128)



DiagnoseNET: Scalable Neural Networks on Heterogeneous Systems 5

DiagnoseNET for Distributed Training with gRPC, It harmonizes the
computational resources with the dataset manager to train previously defined
models over a multi-node platform, automating the gRPC communication pro-
tocol to coordinate the workers with asynchronous gradient computations. In
which, the resource manager divide the dataset equally onto the workers nodes
of the system where each worker has a copy of the neural network (graph) along
with its local weights. Each worker operates on a unique subset of the dataset and
updates its local set of weights. These local weights are shared across the cluster
to compute a new global set of weights through an accumulation algorithm.

Code Example 1.3: Distribted orchestration with GRPC asynchronous.

import diagnosenet as dt

dt.between_graph_replication(

d_replica_path =/ myworkspace ,

d_replica_name="GRPC_replica.py",

ip_ps="host1",

ip_workers="host2 ,host3 ,host4 ,host5",

num_ps=1, num_workers =4)

On the side of the replica script, is gives the model graph object, create
the dataset batching, and pass both of these to a Distributed GRPC object.
This object is responsible for launching the experiment, through its function
asynchronous training.

Code Example 1.4: GRPC asynchronous replica.

platform = dt.Distibuted_GRPC(

model=model_1 ,

datamanager=data_config_1 ,

monitor=enerGyPU(machine_type="arm"),

max_epochs =20,

ip_ps=argv[0], ip_workers=argv [1])

platform.asynchronous_training(

dataset_path =/ myworkspace/datasetpath ,

inputs_name="X.npy", targets_name="Y.npy",

job_name=argv[0], task_index=argv [1])

DiagnoseNET for Distributed Training with MPI, DiagnoseNET imple-
ments synchronous and asynchronous MPI methods to improve performance in
the communication between workers. For example, asynchronous gradient up-
dates were optimized with a parameter called weighting, which is responsible
to determine the number of workers required in each step to compute the new
weights and broadcast it.

Code Example 1.5: MPI Platform Execution Modes.

platform = dt.Distibuted_MPI(

model=model_1 , datamanager=data_config_1 ,



6 John A. Garćıa H. et al.

monitor=enerGyPU(machine_type="arm"),

max_epochs =20, early_stopping =3])

platform.asynchronous_training(

dataset_name="medical_D1",

dataset_path=d/myworkspace/datasetpath ,

inputs_name="X.npy", targets_name="Y.npy",

weighting =1)

The specifications of the MPI algorithms are described in the Appendices A, B.

4 Case studies and Neural Architectures

Medical Care Purpose Classification for Inpatients: The clinical dataset
was derived from a program for medicalisation of information systems (PMSI)
collection of synthetic medical information in a standardized and anonymized
format from hospitalizations that carried out in activities in medical care or re-
habilitation settings. In which the patient-feature composition module was used
to generate the representations of the patients status in the first week of hos-
pitalization using from one-year of the PMSI data collection. The main clinical
descriptors used was demographics, admission details, hospitalization details,
physical dependence, cognitive dependence, rehabilitation time, comorbidities,
morbidity and etiology. The clinical dataset obtained has 116.831 different in-
patients and 14.637 clinical-features embedded in a document-term sparse ma-
trix [4]. In this paper we worked with the high-level group called Clinical Major
Category (CMC) obtaining 14 labels-categories to classify the medical care of
patients hospitalized as shown in Table 1.

Table 1: Medical Target 1: Care Purpose Description Labels.
Class Labels Description Train Valid Test

0 Other Situations 4489 267 515

1 Proceedings of Medical Cardiovascular / Respiratory Care 18299 1122 2263

2 Circulatory system disorders 13074 764 1504

3 Procedings of Neuro-Muscular Medical Care 5375 295 640

4 Procedings of Medical Care Mental Health 2929 175 344

5 Procedings Sensory and Skin Medical Care 8273 456 950

6 Procedings of Rheumatics / Orthopedic Medical Care 18080 1061 2106

7 Procedings of Post-Traumatic Medical Care 14174 801 1619

8 Proceedings of Medical Amputations 741 45 89

9 Palliative Care 2056 114 256

10 Placement Expectation 299 20 40

11 Rehabilitation 2261 114 268

12 Procedings of Nutritional Medical Care 9240 415 1144

13 No grouping 16 1 3



DiagnoseNET: Scalable Neural Networks on Heterogeneous Systems 7

Atrial Fibrillation Classification for Cardiac Diagnosis: The ECG dataset
was obtained from the 2017 PhysioNet Challenge The dataset was already la-
beled and the four labels are: Normal, Atrial Fibrillation, Others and Noisy. The
Others label means recordings of those similar heart diseases. The total number
of source dataset is 8, 528. Each sample is a single short ECG lead recording.
Since the length of the sample is inequivalent, samples are transformed into
structured input. The position of the peaks R of recordings are extracted to get
the centred windows of 260 time steps, which are complete ECG rhythms for
a cycle. To better represent the behaviour of the recording, each five consecu-
tive centred windows are concatenated into a training sample as shows in the
following table 2.

Table 2: Medical Target 2: Cardiac Arrhythmia Labels
Class Label Description Source dataset Training Dataset Small Samples

0 Normal 5,050 34,303 4241

1 AF 738 6,542 815

2 Others 2,456 18,986 2424

3 Noisy 284 1,382 171

Multilayer Perceptron Network: In DiagnoseNET the network architecture
was composed dynamically through fully-connected layers, each neuron is con-
nected to all neurons of the previous layer building a stacked neural network and
followed by a softmax layer on top hi = f(

∑n
j=1 wijxj + bij), where xj is the

output of the previous layer and wij is the weight value associated with xj with
a bias associated bi,j and n is the number of neurons in the previous layer, while
f is the as activation function. Having as a baseline the neural network used in
the work called improving palliative care with deep learning [2] and after finetune
it to classify the medical care purpose with PACA inpatients as shown in the
Appendix D. The model used to evaluate the scalability was comprised by an
input (of 10,833 dimensions), 4 hidden layers (each 512 dimensions) and a soft-
max output layer. As activation function was used rectified linear unit (ReLU),
as loss function was used categorical cross-entropy and Adam as optimizer [8].

Convolutional Neural Network: The neural network baseline for the second
medial task is based on a Convolutional Neural Network (CNN) designed to
take as input the time-series of ECG signal and generates the sequence of label
predictions as outputs [11]. The general neural architecture is composed using
DiagnoseNET with 75 layers of convolution followed by a fully-connected layer
and a softmax layer on top, as shows in the Appendix D. The major elements
in the CNN model are the residual network, the convolutional layers and the
regularization methods, such as batch normalization, dropout and activation



8 John A. Garćıa H. et al.

which are used to improve the performance and regularization of the CNN model.
The convolutional layers are used in order to extract features relative to the form
of the traces wave.

5 Experiments and Results

The experiments were conducted using the DiagnoseNET self expression codes
for training the medical care purpose classification, and for training the atrial
fibrillation classification. This implementations was processing over a set of gradi-
ent computation modes as synchronous or asynchronous for each communication
protocol GRPC or MPI.

HPC System and Enviroment: For processing the distributed experiments
were built a mini-cluster of 14-nodes Jetson TX2 interconnected by 1 GigE
switch Ethernet. The nodes are identical, independent machines and each one
runs a separate OS. Every node is composed of one developer kit Jetson TX2,
which contains a hybrid processor Nvidia Denver with one ARM Cortex-A57
quad-core with one a Pascal GPU 256-CUDA@cores with a maximun, it has
8GB of LPDDR4 memory, 59.7GB/s of memory bandwidth and 32GB of inter-
nal storage.

Worker Scalability for Training the Medical Task 1: The baseline got
11.04 hours as convergence time for training the MLP model described in the
previous session, which was performed using gRPC asynchronous to coordinate
and compute the gradient updates between 2 workers and 1 master. As shown in
the Figure fig:worker-scalability, the best setting reduces the convergence time
to 1.3 hours, using MPI asynchronous to coordinate and compute the gradient
updates between 12 workers and 1 master.

(a) Convergence Time (HRS) (b) Speedup Scalability (Strong)

Fig. 2: Worker scalability comparison for distributed training on a mini-cluster
of Jetson TX2 to classify the medical care purpose.



DiagnoseNET: Scalable Neural Networks on Heterogeneous Systems 9

Worker Scalability for Training the Medical Task 2: For the atrial fib-
rillation classification was used a small dataset (77MB) with 8.528 patients and
a medium model with 72 layers fully-connected of convolutional neural net-
work with residual network connections. Where the baseline uses a gRPC asyn-
chronous training modes with 4 workers take 13 minutes as a time to solution
achieving one accuracy of 0,63 F1-score, while the MPI asynchronous training
modes with 12 workers take 5 minutes as a time to solution achieving the same
accuracy of 0,63 F1 score.

(a) Convergence Time (MINS) (b) Speedup Scalability (Strong)

Fig. 3: Worker scalability comparison for distributed training on a mini-cluster
of Jetson TX2 to the classify atrial fibrillation.

6 Conclusions

DiagnoseNET increases developer’s productivity facilitating the programming
process to build and finetune Deep Learning workflows, while its runtime ab-
stracts the data locality and the distributed orchestration to scale each model
from a GPU workstation to multi-nodes. Furthermore, implement a mini-cluster
of Jetson TX2 nodes presents a good scalability for distributed training of each
neural network by their medical task. Therefore, clusters with embedded compu-
tation platforms can be used as a deep learning platform system with minimal
infrastructure requirements and low power consumption, offer the computing
capacity for processing considerable datasets and models in the HPDA ecosys-
tem. In the way to characterize the deep learning tasks and improve the balance
between accuracy, convergence time and worker scalability, MPI asynchronous
gradient computations with data parallelism offer an efficient distributed neural
network training for early convergence. Likewise adapting the number of records
by batch and the model dimensionality helps to minimize the bottleneck of data
transfer from host memory to device memory reducing the GPU idle status.



10 John A. Garćıa H. et al.

References

1. Asch M., Moore T. et al.: Big data and extreme-scale computing: Pathways to
Convergence-Toward a shaping strategy for a future software and data ecosystem
for scientific inquiry. The International Journal of High Performance Computing
Applications 32, 435–479 (2018)

2. Avati, A., Jung, K., Harman, S., Downing, L., Ng, A.Y., Shah, N.H.: Improv-
ing Palliative Care with Deep Learning. CoRR abs/1711.06402 (2017), http:

//arxiv.org/abs/1711.06402
3. Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., Ingerman, A., Ivanov, V.,

Kiddon, C., Konecný, J., Mazzocchi, S., McMahan, H.B., Overveldt, T.V., Petrou,
D., Ramage, D., Roselander, J.: Towards Federated Learning at Scale: System
Design. CoRR abs/1902.01046 (2019)

4. Garcia Henao, J.A., Precioso, F., Staccini, P., Riveill, M.: Parallel and Dis-
tributed Processing for Unsupervised Patient Phenotype Representation. In: Latin
America High Performance Computing Conference (Sep 2018), https://hal.

archives-ouvertes.fr/hal-01885364
5. Jia, Z., Zaharia, M., Aiken, A.: Beyond Data and Model Parallelism for Deep

Neural Networks. CoRR abs/1807.05358 (2018), http://arxiv.org/abs/1807.
05358

6. Jiang, J., Yu, L., Jiang, J., Liu, Y., Cui, B.: Angel: a new large-scale
machine learning system. National Science Review 5(2), 216–236 (02 2017).
https://doi.org/10.1093/nsr/nwx018, https://doi.org/10.1093/nsr/nwx018

7. John A. Garcia H., E.H.B.C.E.M.P.O.N.C.J.B.H.: enerGyPU and enerGyPhi Mon-
itor for Power Consumption and Performance Evaluation on Nvidia Tesla GPU and
Intel Xeon Phi (2016)

8. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv e-prints
arXiv:1412.6980 (Dec 2014)

9. Konecný, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.:
Federated Learning: Strategies for Improving Communication Efficiency. CoRR
abs/1610.05492 (2016)

10. Maharlou, H., Niakan Kalhori, S.R., Shahbazi, S., Ravangard, R.: Predicting
Length of Stay in Intensive Care Units after Cardiac Surgery: Comparison of Arti-
ficial Neural Networks and Adaptive Neuro-fuzzy System. Healthcare informatics
research 24(2), 109—117 (April 2018). https://doi.org/10.4258/hir.2018.24.2.109,
http://europepmc.org/articles/PMC5944185

11. Rajpurkar, P., Hannun, A., Haghpanahi, M., Bourn, C., Y. Ng, A.: Cardiologist-
Level Arrhythmia Detection with Convolutional Neural Networks (07 2017)

12. Strubell, E., Ganesh, A., McCallum, A.: Energy and Policy Considerations for
Deep Learning in NLP. arXiv e-prints arXiv:1906.02243 (Jun 2019)

13. Xing, E.P., Ho, Q., Dai, W., Kim, J.K., Wei, J., Lee, S., Zheng, X., Xie, P., Kumar,
A., Yu, Y.: Petuum: A New Platform for Distributed Machine Learning on Big
Data. IEEE Transactions on Big Data 1(2), 49–67 (2015)

14. Ye Chengyin, Wang Oliver, Liu Modi, Zheng Le, Xia Minjie, Hao Shiy-
ing, Jin Bo, Jin Hua, Zhu Chunqing, Huang Chao Jung, Gao Peng, Ell-
rodt Gray, Brennan Denny, Stearns Frank, Sylvester Karl G, Widen Eric,
McElhinney Doff B, Ling Xuefeng: A Real-Time Early Warning System
for Monitoring Inpatient Mortality Risk: Prospective Study Using Electronic
Medical Record Data. Journal of medical Internet research 21(7), e13719–
e13719 (jul 2019), https://www.ncbi.nlm.nih.gov/pubmed/31278734https://

www.ncbi.nlm.nih.gov/pmc/articles/PMC6640073/

http://arxiv.org/abs/1711.06402
http://arxiv.org/abs/1711.06402
https://hal.archives-ouvertes.fr/hal-01885364
https://hal.archives-ouvertes.fr/hal-01885364
http://arxiv.org/abs/1807.05358
http://arxiv.org/abs/1807.05358
https://doi.org/10.1093/nsr/nwx018
https://doi.org/10.1093/nsr/nwx018
https://doi.org/10.4258/hir.2018.24.2.109
http://europepmc.org/articles/PMC5944185
https://www.ncbi.nlm.nih.gov/pubmed/31278734 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6640073/
https://www.ncbi.nlm.nih.gov/pubmed/31278734 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6640073/


Appendix A

DiagnoseNET MPI Synchronous Algorithm

The algorithm 1 describes the MPI synchronous coordination training with pa-
rameter server. It uses the nodes ranks to assign them the role of parameter server
or worker, defined the rank 0 as parameter server (PS) and the other ranks as
workers. When launching the program, the PS does necessary pre-processing
tasks, such as loading the dataset and compiling the model. After these tasks,
the PS sends the model to the workers, which are ready to receive it. At each
training step, the PS sends a different subset of the data to every worker to be
used for loss optimization. At the end of an epoch, the PS will gather the new
weights from every worker. Workers receive the collection of weights and com-
pute the average weight for the global update. For the other computing parts,
it works as the desktop version.

Algorithm 1 Synchronous MPI Kernel

while ConvergenceCondition do
if master True then

for all worker ∈ workers do
masterGrads← received(workerGrads)

averageGrads← average(masterGrads)
send(averageGrads)

else
workerGrads← compute(model, batches)
send(workerGrads)

if master True then
for all worker ∈ workers do

masterLoss← received(workerLoss)

averageLoss← average(masterLoss)
if overfitting(averageLoss) True then

send(averageLoss, earlyStopping)
else

send(averageLoss, False)

else
workerWeights← received(masterWeights)
projection← model.Apply(workerWeights)
workerLoss← computeLoss(projection, labels)
send(workerLoss)



Appendix B

DiagnoseNET MPI Asynchronous Algorithm

The algorithm 2 allows training multiple model replicas in parallel on different
nodes with different subsets of the data. Each model replica processes a mini-
batch to compute gradients and sends them to the parameter server which apply
a function (mean, weighted average) between previous and received weights, then
updates the global weights accordingly and send them back to the workers. In
fact, every worker will compute its gradients individually until its convergence;
the convergence occurs when we start having overfitting, which means that the
training loss is decreasing while the validation loss increased. The master who is
responsible for computing the weighted average of received weights and its own
weights, will stop when all workers converge. To check the status of convergence
of workers, the master has a queue that stores converged workers and when
its length is equal to the number of workers, the master knows that all workers
converged and stops training. Since each node computes gradients independently
and does not require interaction among each other, they can work at their own
pace and have greater robustness to machine failure.

Algorithm 2 Asynchronous MPI Kernel

while ConvergenceCondition do
if master True then

convergeF lag ← received(workerCond)
masterGrads← received(workerGrads)
collectGrads← collection(masterGrads)
averageGrads← average(collectGrads)
send(averageGrads)

else
if overfitting(averageLoss) True then

send(averageLoss, earlyStopping)
else

send(averageLoss, False)

if decrease(averageLoss) True then
send(Updated(masterWeights))

workerGrads← compute(model, workerInput)
send(workerGrads)

if master False then
workerWeights← received(masterWeights)
projection← model.Apply(workerWeights)
workerLoss← computeLoss(projection, labels)



Appendix C

Hyperparameter Search to Classify the Medical
Task 1

A model space contains (d) hyperparameters and (n) hyperparameters config-
urations defined in Table 3 and the Table 4 shows the models by number of
parameters. We have established some fixed hyperparameters and decided to
tune the number of units per layer, the number of layers and batch size, which
are the hyperparameters that directly affect the computational cost. Each model
was trained using Adam as an optimizer with a maximum of 40 epochs and as
a loss function is used the Cross Entropy.

Table 3: Search Space Model Descriptors.
Hyperparameters (d) Hyper. Configurations (n) State

Learning rate 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1 Fixed: 0.001

Activation function relu, tanh, linear Fixed: relu

Num. Units per layer 16, 32, 64, 128, 256, 512, 1024, 2048, 4096 Search

Num. hidden layers 2, 4, 8, 16 Search

Regularization Dropout: 0.6, 0.7, 0.8 Fixed: 0.8

Batch size 24.576, 12.288, 6.144, 3.072, 1.536, 768 Search

Num. of workers 4, 6, 8, 10, 12 Search

Table 4: Model Dimension Space in Number of Parameters (millions).
Numbers of layers
2 4 8 16

Neurons by Layer

16 0.24
32 0.47 0.48
64 0.95 0.97 1.0
128 1.89 1.93 1.99 2.12
256 3.82 3.95 4.21 4.74
512 7.76 8.29 9.34 11.44
1024 16.05 18.15 22.35
2048 34.2 42.6
4096 76.8



14 John A. Garćıa H. et al.

According with the model dimension showed in the Table 4, we are found
that is possible divided the models by Fine, middle and course grain. In which,
the Figure 4 shows that middle-grain models from 1.99 to 8.29 millions of pa-
rameters have a fast convergence in validation loss, and high accuracy levels for
the majority of the 14 care purpose labels, in comparison with the other models
who present a great variation in accuracy and spent more epochs to convergence.

(a) Fine-grain convergence validation. (b) Fine-grain test prediction by class.

(c) Middle-grain convergence validation. (d) Middle-grain test prediction by class.

(e) Course-grain convergence validation. (f) Course-grain test prediction by class.

Fig. 4: Experiment results for training a feed-forward neural network, using the
hyperparameter model-dimension space.



Appendix D

ECG Neural Architecture to Classify the
Medical Task 2

The pure CNN model leads to the problem that the last layer of the model may
not exploit the original features or the ones extracted in the first layers. The
Figure 5 shows the ECG neural architecture implemented using DiagnoseNET
framework, which key architecture factor are the residual network connections
to solve the information loss problem into the deep layers. To implement this, a
second information stream is added in the model. In this way, deeper layers have
access to the original features, in addition to the information processed by the
previous layers. What else, two different types of residual block are included to
access the different states of the information. The normal residual block preserves
the size of the input while the sub-sampling residual block lowers the size of the
input down to a half. By using max pooling, the network extracts only the high
values from an input so that the size of its output is halved.

Fig. 5: ECG Convolutional Neural Architecture.


	DiagnoseNET: Automatic Framework to Scale Neural Networks on Heterogeneous Systems Applied to Medical Diagnosis 
	DiagnoseNET MPI Synchronous Algorithm
	DiagnoseNET MPI Asynchronous Algorithm
	Hyperparameter Search to Classify the Medical Task 1
	ECG Neural Architecture to Classify the Medical Task 2

