
HAL Id: hal-02881308
https://hal.inria.fr/hal-02881308

Submitted on 25 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A tier-based typed programming language
characterizing Feasible Functionals

Emmanuel Hainry, Bruce Kapron, Jean-Yves Marion, Romain Péchoux

To cite this version:
Emmanuel Hainry, Bruce Kapron, Jean-Yves Marion, Romain Péchoux. A tier-based typed program-
ming language characterizing Feasible Functionals. LICS ’20 - 35th Annual ACM/IEEE Symposium on
Logic in Computer Science, Jul 2020, Saarbrücken, Germany. pp.535-549, �10.1145/3373718.3394768�.
�hal-02881308�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/362232183?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-02881308
https://hal.archives-ouvertes.fr

A tier-based typed programming language
characterizing Feasible Functionals
Emmanuel Hainry

emmanuel.hainry@loria.fr
Université de Lorraine, CNRS, Inria, LORIA, F-54000

Nancy, France

Bruce M. Kapron
bmkapron@uvic.ca
University of Victoria

Canada

Jean-Yves Marion
jean-yves.marion@loria.fr

Université de Lorraine, CNRS, LORIA, F-54000 Nancy,
France

Romain Péchoux
romain.pechoux@loria.fr

Université de Lorraine, CNRS, Inria, LORIA, F-54000
Nancy, France

Abstract
The class of Basic Feasible Functionals BFF2 is the type-2
counterpart of the class FP of type-1 functions computable
in polynomial time. Several characterizations have been sug-
gested in the literature, but none of these present a program-
ming language with a type system guaranteeing this com-
plexity bound.We give a characterization of BFF2 based on an
imperative language with oracle calls using a tier-based type
system whose inference is decidable. Such a characteriza-
tion should make it possible to link higher-order complexity
with programming theory. The low complexity (cubic in the
size of the program) of the type inference algorithm con-
trasts with the intractability of the aforementioned methods
and does not restrain strongly the expressive power of the
language.

Keywords: Feasible functionals, BFF,implicit computational
complexity, tiering, type-2, type system.

1 Introduction
Type-2 computational complexity aims to study classes of
functions that take type-1, i.e. function, arguments. The no-
tion of feasibility for type-2 functionals was first studied in
[Constable 1973] and in [Mehlhorn 1976] using subrecur-
sive formalisms. Later, [Cook and Kapron 1989; Cook and
Urquhart 1993] provided characterizations of polynomial
time complexity at all finite types based on programming
languages with explicit bounds and applied typed lambda-
calculi, respectively. The class characterized in these works
was christened the Basic Feasible Functionals, BFF for short.

It was shown in [Kapron and Cook 1991, 1996] that, simi-
larly to type-1, feasible type-2 functions correspond to the
programs computed in time polynomial in the size of their
input. In this setting, the polynomial bound is a type-2 func-
tion as the size of a type-1 input is itself a type-1 object. This
characterization lended support to the notion that at type
level 2, the Basic Feasible Functionals (BFF2) are the correct
generalization of FP to type-2.

Nevertheless, these characterizations are faced by at least
two problems:

1. Characterizations using a general model of compu-
tation (whether machine- or program-based) require
externally imposed and explicit resource bounding, ei-
ther by a type-2 polynomial [Férée et al. 2015; Kapron
and Cook 1991, 1996] or a bounding function within
the class [Constable 1973; Mehlhorn 1976]. This is anal-
ogous to a shortcoming in Cobham’s characterization
of the class of (type 1) polynomial time computable
functions FP [Cobham 1965]. Such bounding requires
either a prior knowledge of program complexity or a
check on type-2 polynomial time constraints, which
is highly intractable;

2. There is no natural programming language for these
characterizations as they rely on machines or function
algebras and cannot be adapted directly to programs.
Some attempts have been made to provide program-
ming languages for characterizing BFF2. These lan-
guages are problematic either due to a need to provide
some form of explicit external bounding [Cook and
Kapron 1989] or from including unnatural constructs
or type-2 recursion patterns [Cook and Urquhart 1993;
Danner and Royer 2006; Irwin et al. 2001] which se-
verely constrain the way in which type-2 programs
may be written. All these distinct approaches would
make it difficult for a non-expert programmer to use
these formalisms as programming languages.

A solution to Problem (1) was suggested in [Kawamura
and Steinberg 2017] by constraining Cook’s definition of
Oracle Polynomial Time (OPT) [Cook 1992], which allows
type-1 polynomials to be substituted for type-2 polynomials.
To achieve this, oracle Turing machines are required to have
a polynomial step count: on any input, the length of their
computations is bounded by a type-1 polynomial in the size
of their input and themaximal size of any answer returned by
the oracle. However BFF2 is known to be strictly included in
OPT. In [Kawamura and Steinberg 2017], OPT is constrained
by only allowing computations in which oracle return values

Hainry et al.

increase in size a constant number of times, resulting in a
class they called SPT (strong polynomial time). This class is
strictly contained in BFF2. BFF2 is recovered in [Kapron and
Steinberg 2018], which considers a dual restriction, called
finite lookahead revision, on machines: on any input, the
number of oracle calls on input of increasing size is bounded
by a constant. The class of functions computed by machines
having polynomial step count and finite lookahead revision
is called MPT. The type-2 restriction of the simply-typed
lambda closure of functions in MPT (and SPT) characterizes
exactly BFF2.
Problem (2) has been extensively tackled by the Implicit

Computational Complexity community for type-1 complex-
ity. This line of work provides machine independent char-
acterizations that eliminate the external explicit bound and
was initiated by the works [Bellantoni and Cook 1992] and
[Leivant and Marion 1993]. However, none of these works
has been adapted to the case of type-2 complexity in a trac-
table approach. To this day, tractable implicit characteriza-
tions of type-2 complexity classes are still missing.

Our contribution. We provide the first tractable charac-
terization of type-2 polynomial time using a typed imperative
language with oracle calls. Each oracle call comes with an as-
sociated input bound which aims at bounding the size of the
oracle input. However the size of the oracle answer, which
is unpredictable, remains unbounded and, consequently, the
language can be used in practice.
The characterization is inspired by the tier-based type

system of [Marion 2011] characterizing FP. Consequently,
it relies on a non-interference principle and is also inspired
by the type system of [Volpano et al. 1996] guaranteeing
confidentiality and integrity policies by ensuring that values
of high level variables do not depend on values of low level
variables during a program execution. In our context, the
level is called a tier.

Let JSTK be the set of functions computed by typable (also
called safe, see Definition 4.3) and terminating programs and
let _(𝑋)2 be the type-2 restriction of the simply-typed lambda
closure of terms with constants in 𝑋 . The characterization
of BFF2 is as follows:

Theorem 1.1. _(JSTK)2 = BFF2 .

Soundness (_(JSTK)2 ⊆ BFF2, Theorem 7.6) is demon-
strated by showing that each function of JSTK is in Kapron-
Steinberg’s MPT class [Kapron and Steinberg 2018]. The
type system makes use of several tiers and is designed to
enforce a tier-based non-interference result (Theorem 5.3)
and generalizes the operator type discipline of [Marion 2011]
to ensure the polynomial step count property (Corollary 5.6)
and the finite lookahead revision property (Theorem 5.8),
two non-trivial semantic properties. Two important points
to stress are that: i) these properties are enforced statically
on programs as consequences of being typable (whereas they

were introduced in [Kapron and Steinberg 2018] as pure se-
mantic requirements on machines); ii) the enforcement of
finite lookahead revision through the use of tiering is a new
non-trivial result.
Completeness (BFF2 ⊆ _(JSTK)2, Theorem 8.6) is shown

using an alternative characterization: _(FP ∪ {I ′})2 = BFF2,
where I ′ is a bounded iterator that is polynomially equiv-
alent to the recursor R of [Cook and Urquhart 1993], as
demonstrated in [Kapron and Steinberg 2019]. The simula-
tion of FP is performed by showing that our type system
strictly embeds the tier-based type system of [Marion and
Péchoux 2014]. Consequently, our type system also provides
a characterization of FP (Theorem 8.4) with strictly more ex-
pressive power when restricted to type-1 programs. Finally,
a typable and terminating program computing the bounded
iterator functional I ′ is exhibited. As in [Kapron and Stein-
berg 2018], the simply-typed lambda-closure is mandatory
to achieve completeness as oracle composition is not allowed
by the syntax of the language.
The tractability of the type system is proved in Theo-

rem 9.2, where type inference is shown to be to be solvable
in cubic time in the size of the program. As a consequence of
the decidability of type inference for simply typed lambda-
calculus [Mitchell 1991], we obtain the first decidable (up
to a termination assumption) programming language based
characterization of type-2 polynomial. While the termina-
tion assumption is obviously not decidable, it is the most
general condition for the result to hold. However, it can be
replaced without loss of completeness by combining our type
system with automatic termination provers for imperative
programs, for example [Cook et al. 2006; Lee et al. 2001].
The price to pay is a loss of expressive power. Hence this
paper provides a new approach for reasoning about type-2
feasibility automatically, in contrast to related works.

The characterization of Theorem 1.1 is extensionally com-
plete: all functions of BFF2 are computed by a typable and
terminating program. It is not intensionally complete: there
are false negatives as discussed in Example 6.4. This incom-
pleteness is a consequence of the decidability of type in-
ference as providing intensionally complete descriptions of
polynomial time is known to be a Σ0

2-complete problem in
the arithmetical hierarchy [Hájek 1979].

Outline. §4 is devoted to presenting the type system tech-
nical developments and main intuitions. §5 states the type
system main properties. §6 presents several examples that
will help the reader to understand the underlying subtle
mechanisms. Soundness and completeness are proved in §7
and §8, respectively. The decidability of type inference is
shown in §9. Future work is discussed in §10.

A tier-based PL characterizing BFF2

2 Related work
Implicit Computational Complexity (ICC). has lead to

the development of several techniques such as interpreta-
tions [Bonfante et al. 2011], light logics [Girard 1998], mwp-
bounds [Ben-Amram et al. 2008; Jones and Kristiansen 2009],
and tiering [Hainry and Péchoux 2015; Leivant 1995; Leivant
and Marion 2013; Marion 2011]. These tools are restricted to
type-1 complexity. Whereas the light logic approach can deal
with programs at higher types, its applications are restricted
to type-1 complexity classes such as FP [Baillot and Mazza
2010; Baillot and Terui 2004] or polynomial space [Gaboardi
et al. 2008]. Interpretations were extended to higher-order
polynomials in [Baillot and Lago 2016] to study FP and
adapted in [Férée et al. 2015; Hainry and Péchoux 2017]
to BFF2. However, by essence, all these characterizations use
(at least) type-2 polynomials and cannot be considered as
tractable.

Other characterizations of BFF2. The characterizations
of [Cook and Kapron 1989; Irwin et al. 2001] are based on a
simple imperative programming language that enforces an
explicit external bound on the size of oracle outputs within
loops. This restriction is impractical from a programming
perspective as the size of oracle outputs cannot be predicted.
In this paper, the bound is programmer friendly by its implicit
nature and because it only constraints the size of the oracle
input. Function algebra characterizations were developed
in [Cook and Urquhart 1993; Kapron and Steinberg 2019]:
the recursion schemes are not natural and cannot be used in
practice by a programmer. Several characterizations [Kapron
and Cook 1991, 1996] using type-2 polynomials were also
developed but they focus on machines rather than programs.

3 Imperative programming language with
oracles

Syntax and semantics. Consider a set V of variables
and a set O of operators op of fixed arity 𝑎𝑟 (op). For no-
tational convenience, operators are used both in infix and
prefix notations. Let 𝑡 denote a tuple of 𝑛 elements (vari-
ables, expressions, words, ...) 𝑡1, . . . , 𝑡𝑛 , where 𝑛 is given by
the context.
Expressions and commands are defined by the grammar

of Figure 1, where x, y ∈ V, op, ↾ ∈ O, and 𝜙 is a single oracle
symbol. LetV(p𝜙) be the set of variables occurring in the
program p𝜙 . An expression of the shape 𝜙 (e1 ↾ e2) is called
an oracle call. e1 is called the input data, e2 is called the input
bound and e1 ↾ e2 is called the input. We write 𝜙 ∉ p𝜙 in the
special case where no oracle call appears in p𝜙 .
Let W = Σ∗ be the set of words over a finite alphabet

Σ such that {0, 1} ⊆ Σ. The symbol 𝜖 denotes the empty
word. The length of a word w (tuple 𝑡) is denoted |w | (|𝑡 |,
respectively). Given two words w and v inW let v.w denote
the concatenation of v and w. For a given symbol 𝑎 ∈ Σ, let

𝑎𝑛 be defined inductively by 𝑎0 = 𝜖 and 𝑎𝑛+1 = 𝑎.𝑎𝑛 . Let ⊴
be the sub-word relation overW, which is defined by v ⊴ w,
if there are u and u′ such that w = u.v.u′.

A total function JopK :W𝑎𝑟 (op) →W is associated to each
operator. Constants may be viewed as operators of arity zero.
For a given word w ∈ W and an integer 𝑛, let w↾𝑛 be

the word obtained by truncating w to its first min(𝑛, |𝑤 |)
symbols and then padding with a word of the form 10𝑘 to
obtain a word of size exactly 𝑛 + 1. For example, 1001↾0 = 1,
1001↾1 = 11, 1001↾2 = 101, and 1001↾6 = 1001100. De-
fine ∀v,w ∈ W, J↾K(𝑣,𝑤) = 𝑣↾ |𝑤 | . Padding ensures that
|J↾K(𝑣,𝑤) | = |w | + 1. The syntax of programs enforces that
oracle calls are always performed on input data padded by
the input bound. Combined with the above property, this
ensures that oracle calls are always performed on input data
whose size does not exceed the size of the input bound plus
one.

The oracle symbol 𝜙 computes a total function fromW to
W, called an oracle function. In order to lighten notation, we
will make no distinction between the oracle symbol 𝜙 and
the oracle function it represents.

A store ` is a partial map from V toW. Let 𝑑𝑜𝑚(`) be the
domain of `. Let ` [x1 ← w1, . . . , x𝑛 ← w𝑛] be a notation for
the store ` ′ satisfying ∀x ∈ dom(`) − {x1, . . . , x𝑛}, ` ′(x) =
` (x) and ∀x𝑖 ∈ {x1, . . . , x𝑛}, ` ′(x𝑖) = w𝑖 . Let `0 be the store
defined by ∀x ∈ dom(`0), `0 (x) = 𝜖 . The size of a store ` is
defined by |` | = Σx∈dom(`) |` (x) |.

The operational semantics of the language is deterministic
and is given in Figure 2. The judgment ` ⊨ e → w means
that the expression e is evaluated to the word w ∈ W with
respect to the store ` The judgment ` ⊨ c → ` ′ expresses
that, under the input store `, the command c terminates and
outputs the store ` ′. In rule (Seq) of Figure 2, it is implicitly
assumed that c1 is not a sequence.
Given a derivation 𝜋𝜙 : ` ⊨ p𝜙 → w, let |𝜋𝜙 | denote the

size of the derivation, that is the number of nodes in the
derivation tree rooted at ` ⊨ p𝜙 → w. Note that |𝜋𝜙 | corre-
sponds to the number of steps in a sequential execution of p𝜙 ,
initializedwith store `. On the other hand, with no restriction
on operators this measure is too coarse to correspond, even
asymptotically, to running time. With suitable restriction,
there is a correspondence, given in Proposition 7.5 below.

A program p𝜙 such thatV(p𝜙) = {x} computes the partial
function Jp𝜙K ∈ W |x | → W, defined by Jp𝜙K(w) = 𝑤 if
∃𝜋𝜙 , 𝜋𝜙 : `0 [x1 ← w1, . . . , x |x | ← w |x |] ⊨ p𝜙 → w. In the
special case where, for any oracle 𝜙 , Jp𝜙K is a total function,
the program p𝜙 is said to be terminating.
A second order function 𝑓 : (W → W) → (W → W) is

computed by a program p𝜙 if for any oracle function 𝜙 ∈
W→W and word w ∈ W, 𝑓 (𝜙) (w) = Jp𝜙K(w).

Neutral and positive operators. We define two classes
of operators called neutral and positive. This categorization
of operators will be used in §4.2 where the admissible types

Hainry et al.

Expressions e, e1, . . . ::= x | op(e) | 𝜙 (e1 ↾ e2)
Commands c, c1, c2 ::= skip | x := e | c1; c2 | if(e){c1} else {c2} | while(e){c}
Programs p𝜙 ::= c return x

Figure 1. Syntax of imperative programs with oracles

(Var)
` ⊨ x→ ` (x)

∀𝑖 ≤ 𝑎𝑟 (op), ` ⊨ e𝑖 → w𝑖 (Op)
` ⊨ op(e) → JopK(w)

` ⊨ e1 → v ` ⊨ e2 → w 𝜙 (J↾K(v,w)) = u
(Orc)

` ⊨ 𝜙 (e1 ↾ e2) → u

(Skip)
` ⊨ skip→ `

` ⊨ c1 → `1 `1 ⊨ c2 → `2 (Seq)
` ⊨ c1; c2 → `2

` ⊨ e→ w
(Asg)

` ⊨ x := e→ ` [x← w]

` ⊨ e→ w ` ⊨ cw → ` ′ w ∈ {0, 1}
(Cond)

` ⊨ if(e){c1} else {c0} → ` ′
` ⊨ e→ 0

(Wh0)
` ⊨ while(e){c} → `

` ⊨ e→ 1 ` ⊨ c; while(e){c} → ` ′
(Wh1)

` ⊨ while(e){c} → ` ′
` ⊨ c→ ` ′

` ⊨ c return x→ ` ′(x)
(Prg)

Figure 2. Big step operational semantics

for operators will depend on their category in the type sys-
tem.

Definition 3.1 (Neutral and positive operators).

• An operator op is neutral if:
1. either JopK :W𝑎𝑟 (op) → {0, 1} is a predicate;
2. or ∀w ∈ W𝑎𝑟 (op) , ∃𝑖 ≤ 𝑎𝑟 (op), JopK(w) ⊴ w𝑖 ;
• An operator op is positive if there is a constant 𝑐op s.t.:
∀w𝑎𝑟 (op) ∈ W, |JopK(w) | ≤ max𝑖 |w𝑖 | + 𝑐op.

A neutral operator is always a positive operator but the
converse is not true. In the remainder, we name positive
operators those operators that are positive but not neutral.

Example 3.2. The operator == tests whether or not its
arguments are equal and the operator pred computes the
predecessor.

J==K(w, v) =
{
1 if v = w
0 otherwise

JpredK(v) =
{
𝜖 if v = 𝜖

u if v = 𝑎.u, 𝑎 ∈ Σ

Both operators are neutral. Jsuc𝑖K(v) = 𝑖 .v, for 𝑖 ∈ {0, 1}, is
a positive operator since |Jsuc𝑖K(v) | = |𝑖 .v | = |v | + 1.

4 Type system
In this section, we introduce a tier based type system, the
main contribution of the paper, that allows to provide a char-
acterization of type-2 polynomial time complexity ([Kapron
and Cook 1991, 1996; Mehlhorn 1976]).

4.1 Tiers and typing judgments
Atomic types are elements of the totally ordered set (N, ⪯
, 0,∨,∧) where N = {0, 1, 2, . . .} is the set of natural num-
bers, called tiers, in accordance with the data ramification
principle of [Leivant 1995], ⪯ is the usual ordering on inte-
gers and ∨ and ∧ are the max and min operators over inte-
gers. Let ≺ be defined by ≺ := ⪯ ∩ ≠. We use the symbols
k, k′, . . . , k1, k2, . . . to denote tier variables. For a finite set
of tiers, {k1, . . . , k𝑛}, let ∨𝑛𝑖=1k𝑖 (∧𝑛𝑖=1k𝑖 , respectively) denote
k1 ∨ . . . ∨ k𝑛 (k1 ∧ . . . ∧ k𝑛 , respectively).

A variable typing environment Γ is a finite mapping from
V to N, which assigns a single tier to each variable.
An operator typing environment Δ is a mapping that

associates to each operator op and each tier k ∈ N a set
of admissible operator types Δ(op) (k), where the operator
types corresponding to the operator op are of the shape
k1 → . . . k𝑎𝑟 (op) → k′, with k𝑖 , k′ ∈ N.
Let dom(Γ) (resp. dom(Δ)) denote the set of variables

typed by Γ (resp. operators typed by Δ).
Typing judgments are either command typing judgments

of the shape Γ,Δ ⊢ c : (k, k𝑖𝑛, k𝑜𝑢𝑡) or expression typing judg-
ments of the shape Γ,Δ ⊢ e : (k, k𝑖𝑛, k𝑜𝑢𝑡). The meaning of
such a typing judgment is that the expression tier or com-
mand tier is k, the innermost tier is k𝑖𝑛 , and the outermost
tier is k𝑜𝑢𝑡 . The innermost (resp. outermost) tier is the tier
of the innermost (resp. outermost) while loop guard where
the expression or command is located.
A type system preventing flows from k2 to k1, whenever

k2 ≺ k1 holds, is presented in Figure 3.
A typing derivation 𝜌 3 Γ,Δ ⊢ c : (k, k𝑖𝑛, k𝑜𝑢𝑡) is a tree

whose root is the typing judgment Γ,Δ ⊢ c : (k, k𝑖𝑛, k𝑜𝑢𝑡)

A tier-based PL characterizing BFF2

and whose children are obtained by applications of the typ-
ing rules. Due to the rule (OP) of Figure 3, that allows several
admissible types for operators, typing derivations are, in
general, not unique. However the two typing rules for while
loops (W) and (W0) are mutually exclusive because of the
non-overlapping requirements for k𝑜𝑢𝑡 in Figure 3. The nota-
tion 𝜌 will be used whenever mentioning the root of a typing
derivation is not explicitly needed.

4.2 Safe environments and programs
The typing rules of Figure 3 are not restrictive enough in
themselves to guarantee polynomial time computation, even
for type-1. Indeed operators need to be restricted to pre-
vent exponential programs from being typable (see counter-
Example 6.2). The current subsection introduces such a re-
striction, called safe.

Definition 4.1 (Safe operator typing environment). An op-
erator typing environment Δ is safe if for each op ∈ dom(Δ),
op is neutral or positive and JopK is a polynomial time com-
putable function, and for each k𝑖𝑛 ∈ N, and for each k1 →
. . . k𝑎𝑟 (op) → k ∈ Δ(op) (k𝑖𝑛), the two conditions below
hold:

1. k ⪯ ∧𝑎𝑟 (op)
𝑖=1 k𝑖 ⪯ ∨𝑎𝑟 (op)𝑖=1 k𝑖 ⪯ k𝑖𝑛 ,

2. if the operator op is positive then k ≺ k𝑖𝑛 .

Example 4.2. Consider the operators ==, pred and suc𝑖 of
Example 3.2. For a safe typing environment Δ, it holds that
Δ(==) (1) = {1 → 1 → 1} ∪ {k → k′ → 0 | k, k′ ⪯ 1}, as
== is neutral. However 0→ 1→ 1 ∉ Δ(==) (1) as it breaks
Condition (1) of Definition 4.1 since the operator output tier
has to be smaller than each of its operand tier (i.e. 1 ̸⪯ 0∧ 1).
It also holds that Δ(pred) (2) = {2→ k | k ⪯ 2} ∪ {1→

k | k ⪯ 1} ∪ {0→ 0}.
For the positive operator suc𝑖 , we have Δ(suc𝑖) (1) =

{1 → 0, 0 → 0}. 1 → 1 ∉ Δ(suc𝑖) (1) as the operator
output tier has to be strictly smaller than 1, due to Condition
(2) of Definition 4.1. Applying the same restriction, it holds
that Δ(suc𝑖) (2) = {2→ 1, 2→ 0, 1→ 1, 1→ 0, 0→ 0}.
Definition 4.3 (Safe program). Given Γ a variable typing
environment and Δ a safe operator typing environment, the
program p𝜙 = c return x is a safe program if there are
k, k𝑖𝑛, k𝑜𝑢𝑡 such that 𝜌 3 Γ,Δ ⊢ c : (k, k𝑖𝑛, k𝑜𝑢𝑡).
Definition 4.4. Let ST be the set of safe and terminating
programs and JSTK be the set of functionals computed by
programs in ST:

JSTK = {_𝜙._w1. · · · _𝑤𝑛Jp𝜙K(w1, . . . ,w𝑛) | p𝜙 ∈ ST}.

4.3 Some intuitions
Before providing a formal treatment of the type system main
properties in §5, we provide the reader with a brief intuition
of types, that are triplets of tiers (k, k𝑖𝑛, k𝑜𝑢𝑡), in a typing
derivation obtained by applying the typing rules of Figure 3:

• k is the tier of the expression or command under con-
sideration. It is used to prevent data flows from lower
tiers to higher tiers in control flow statements and
assignments. By safety and by rules (OP) and (OR),
expression tiers are structurally decreasing. Conse-
quently, rule (A) ensures that data can only flow from
higher tiers to lower tiers. Command tiers are struc-
turally increasing and, consequently, an assignment
of a higher tier variable can never be controlled by a
lower tier in a conditional or while statement.
• k𝑖𝑛 is the tier of the innermost while loop containing
the expression or command under consideration, pro-
vided it exists. It is used to allow declassification (i.e. a
release of some information at a lower tier to a higher
tier) to occur in the program by allowing an operator
to have types depending on the context. Moreover, the
innermost tier restricts the return types of operators
and oracle calls:
– in rule (OR), the return type k is strictly smaller than
k𝑖𝑛 ,

– in rule (OP), for a positive operator, the return type
k is strictly smaller than k𝑖𝑛 .

This forbids programs from iterating on a data whose
size can increase during the iteration.
• k𝑜𝑢𝑡 is the tier of the outermost while loop containing
the expression or command under consideration, pro-
vided it exists. Its purpose is to bound by a constant
the number of lookahead revisions (that is the number
of times a query to the oracle may increase in size)
allowed in oracle calls. By rule (OR), all oracle input
bounds have a tier equal to the tier of the outermost
while loop where they are called. Hence, the size of
the data stored in the input bound cannot increase in a
fixed while loop and it can increase at most a constant
number of times.

There are two rules (W) and (W0) for while loops. (W) is
the standard rule and updates the innermost tier with the
tier of the while loop guard under consideration. (W0) is an
initialization rule that allows the programmer to instantiate
by default the main command with outermost tier 0 as it has
no outermost while. It could be sacrificed for simplicity but
at the price of a worse expressive power.

5 Properties of safe programs
We now show the main properties of safe programs:

• a standard non-interference property in §5.2 ensuring
that computations on higher tiers do not depend on
lower tiers (Theorem 5.3).
• a polynomial time property in §5.3 ensuring that ter-
minating programs terminate in time polynomial in
the input size and maximal oracle’s output size (Theo-
rem 5.5).

Hainry et al.

Γ(x) = k
(V)

Γ,Δ ⊢ x : (k, k𝑖𝑛, k𝑜𝑢𝑡)
k1 → · · · → k𝑎𝑟 (op) → k ∈ Δ(op) (k𝑖𝑛) ∀𝑖 ≤ 𝑎𝑟 (op), Γ,Δ ⊢ e𝑖 : (k𝑖 , k𝑖𝑛, k𝑜𝑢𝑡)

(OP)
Γ,Δ ⊢ op(e) : (k, k𝑖𝑛, k𝑜𝑢𝑡)

Γ,Δ ⊢ e1 : (k, k𝑖𝑛, k𝑜𝑢𝑡) Γ,Δ ⊢ e2 : (k𝑜𝑢𝑡 , k𝑖𝑛, k𝑜𝑢𝑡) k ≺ k𝑖𝑛 ∧ k ⪯ k𝑜𝑢𝑡 (OR)
Γ,Δ ⊢ 𝜙 (e1 ↾ e2) : (k, k𝑖𝑛, k𝑜𝑢𝑡)

(SK)
Γ,Δ ⊢ skip : (0, k𝑖𝑛, k𝑜𝑢𝑡)

Γ,Δ ⊢ c1 : (k, k𝑖𝑛, k𝑜𝑢𝑡) Γ,Δ ⊢ c2 : (k, k𝑖𝑛, k𝑜𝑢𝑡) (S)
Γ,Δ ⊢ c1; c2 : (k, k𝑖𝑛, k𝑜𝑢𝑡)

Γ,Δ ⊢ x : (k1, k𝑖𝑛, k𝑜𝑢𝑡) Γ,Δ ⊢ e : (k2, k𝑖𝑛, k𝑜𝑢𝑡) k1 ⪯ k2 (A)
Γ,Δ ⊢ x := e : (k1, k𝑖𝑛, k𝑜𝑢𝑡)

Γ,Δ ⊢ c : (k, k𝑖𝑛, k𝑜𝑢𝑡) (SUB)
Γ,Δ ⊢ c : (k+1, k𝑖𝑛, k𝑜𝑢𝑡)

Γ,Δ ⊢ e : (k, k𝑖𝑛, k𝑜𝑢𝑡) Γ,Δ ⊢ c1 : (k, k𝑖𝑛, k𝑜𝑢𝑡) Γ,Δ ⊢ c0 : (k, k𝑖𝑛, k𝑜𝑢𝑡) (C)
Γ,Δ ⊢ if(e){c1} else {c0} : (k, k𝑖𝑛, k𝑜𝑢𝑡)

Γ,Δ ⊢ e : (k, k𝑖𝑛, k𝑜𝑢𝑡) Γ,Δ ⊢ c : (k, k, k𝑜𝑢𝑡) 1 ⪯ k ⪯ k𝑜𝑢𝑡 (W)
Γ,Δ ⊢ while(e){c} : (k, k𝑖𝑛, k𝑜𝑢𝑡)

Γ,Δ ⊢ e : (k, k𝑖𝑛, k) Γ,Δ ⊢ c : (k, k, k) 1 ⪯ k
(W0)

Γ,Δ ⊢ while(e){c} : (k, k𝑖𝑛, 0)

Figure 3. Tier-based type system

• a finite lookahead revision property in §5.4 ensuring
that, for any oracle and any input, the number of or-
acle calls on input of increasing size is bounded by a
constant (Theorem 5.8).

5.1 Notations
Let us first introduce some preliminary notations. Let E(𝑎)
(res. C(𝑎)) be the set of expressions (respectively commands)
occurring in 𝑎, for 𝑎 ∈ {p𝜙 , c}. Let A(c) be the set of vari-
ables that are assigned to in c, e.g.,A(x := y; y := z) = {x, y}.
Let 𝑂𝑝 (e) andV(e) be the set of operators in expression e
and the set of variables in expression e, respectively.

5.2 Non-interference
We now show that the type system provides classical non-
interference properties.

In a safe program, only variables of tier higher than k can
be accessed to evaluate an expression of tier k.

Lemma 5.1 (Simple security). Given a safe program p𝜙 with
respect to the typing environments Γ,Δ, for any expression
e ∈ E(p𝜙), if Γ,Δ ⊢ e : (k, k𝑖𝑛, k𝑜𝑢𝑡), then for all x ∈ V(e),
k ⪯ Γ(x).

Proof. By structural induction on expressions. □

There is no equivalent lemma for commands because of
the subtyping rule (SUB).
The confinement Lemma expresses the fact that com-

mands of tier k cannot write in variables of strictly higher
tier.

Lemma 5.2 (Confinement). Given a safe program p𝜙 with
respect to the typing environments Γ,Δ, for any c ∈ C(p𝜙),
if Γ,Δ ⊢ c : (k, k𝑖𝑛, k𝑜𝑢𝑡), then for all x ∈ A(c), Γ(x) ⪯ k.

Proof. By contradiction. □

For a given variable typing environment Γ and a given tier
k, we define an equivalence relation on stores by: ` ≈Γk ` ′

if dom(`) = dom(` ′) = dom(Γ) and for each x ∈ dom(Γ), if
k ⪯ Γ(x) then ` (x) = ` ′(x).
We introduce a non-interference Theorem ensuring that

the values of tier k variables during the evaluation of a pro-
gram do not depend on values of tier k′ variables for k′ ≺ k.

Theorem 5.3 (Non-interference). Given a safe program
c return x with respect to the typing environments Γ,Δ.
For any stores `1 and `2 if `1 ≈Γk `2, `1 ⊨ c → ` ′1 and
`2 ⊨ c→ ` ′2 then ` ′1 ≈Γk ` ′2.

Proof. By structural induction on program derivations, using
Lemma 5.1 and Lemma 5.2. □

5.3 Polynomial step count
In this section, we show that terminating and safe programs
have a runtime polynomially bounded by the size of the
input store and the maximal size of answers returned by the
oracle in the course of execution.

Definition 5.4. Let 𝑚p𝜙
` be the maximum of |` | and the

maximum size of an oracle answer in the derivation 𝜋𝜙 : ` ⊨
p𝜙 → u. Formally,

𝑚
p𝜙
` = max

(v,w) ∈𝐶 (𝜋𝜙)
(|` |,max{|𝜙 (J↾K(v,w)) |}),

where 𝐶 (𝜋𝜙) is the set of pairs (v,w) such that
` ⊨ e1 → v ` ⊨ e2 → w

` ⊨ 𝜙 (e1 ↾ e2) → 𝜙 (J↾K(v,w)) ∈ 𝜋𝜙 .

A program p𝜙 has a polynomial step count if there is a
polynomial 𝑃 such that for any store ` and any oracle 𝜙 ,
𝜋𝜙 : ` ⊨ p𝜙 → w, |𝜋𝜙 | = 𝑂 (𝑃 (𝑚p𝜙

`)).

We show that a safe program has a polynomial step count
on terminating computations.

A tier-based PL characterizing BFF2

Theorem 5.5. Given a safe program p𝜙 with respect to the
typing environments Γ,Δ, there is a polynomial 𝑃 such that
for any derivation 𝜋𝜙 : ` ⊨ p𝜙 → w, |𝜋𝜙 | = 𝑂 (𝑃 (𝑚p𝜙

`)).
Proof. By induction on the tier of a command using non-
interference Theorem (5.3) and the stratification properties
of the type system. □

The proof of the above Theorem is similar to proofs of
polynomiality in [Marion 2011] and [Marion and Péchoux
2014]. There are only two main distinctions:
• As strictly more than 2 tiers are allowed, the innermost
tier k𝑖𝑛 is used to ensure that operators and oracle calls
are stratified: In a while loop of innermost tier k𝑖𝑛 the
return type of an oracle or positive operator is always
strictly smaller than k𝑖𝑛 . Hence the results of such
computations cannot be assigned to variables whose
tier is equal to k𝑖𝑛 .
• Oracle calls may return a value whose size is not
bounded by the program input. This is the reason why
𝑚

p𝜙
` has to be considered as an input of the time bound.

Corollary 5.6. Given a program p𝜙 , if p𝜙 ∈ ST then p𝜙 has
a polynomial step count.

5.4 Finite lookahead revision
In this section, we show that, whereas terminating and safe
programs may perform a polynomial number (in the size
of the input and the maximal size of the oracle answers) of
oracle calls during their execution, they may only perform a
constant number of oracle calls on input data of increasing
size.

Definition 5.7. Given a program p𝜙 , let (𝑙
𝜋𝜙
𝑛) be the se-

quence of oracle input values J↾K(v,w) in a rule (OR) ob-
tained by a left-to-right depth-first search of the deriva-
tion 𝜋𝜙 : ` ⊨ p𝜙 → w. Let 𝑙𝑟 ((𝑙𝜋𝜙𝑛)) = #{𝑖 | |𝑙𝜋𝜙

𝑖
| >

max𝑗<𝑖 (|𝑙
𝜋𝜙

𝑗
|)}.

p𝜙 has finite lookahead revision if there is a constant 𝑟
such that for any oracle 𝜙 and for any derivation 𝜋𝜙 , we
have 𝑙𝑟 ((𝑙𝜋𝜙𝑛)) ≤ 𝑟 .

Note that the left-to-right depth-first search in a derivation
exactly corresponds to the order of a sequential execution
of a command.

Theorem 5.8 (Finite lookahead revision). Given a program
p𝜙 , if p𝜙 is safe with respect to the typing environments Γ,Δ
then it has finite lookahead revision.

Proof. Using simple security (5.1) and confinement (5.2) Lem-
mata, and the stratification properties of the type system. □

6 Examples
In this section, we provide several examples and counter-

examples, starting with programs with no oracle calls in
order to illustrate how the type system works. Some of its

restrictions in terms of expressive power are also discussed in
Example 6.4. In the typing derivations, we sometimes omit
the environments, writing ⊢ instead of Γ,Δ ⊢ in order to
lighten the notations. Moreover, for notational convenience,
we will use labels for expression tiers. For example, ek means
that e is of tier k. Also, to make the presentation of the
examples lighter, we will work over the unary integers rather
than all ofW. In particular, a value v denotes 1v, and 0 denotes
𝜖 . Also, with this convention, JpredK(v) = max{0, v−1} and
Jsuc1K(v) = v + 1.

Example 6.1 (Addition). Consider the simple program of
Figure 4a, with no oracle, computing the unary addition.
This program is safe with respect to the typing derivation of
Figure 5.

The while loop is guarded by x > 0. If the main command
is typed by (1, 1, 0) then the expression x > 0 is of tier 1 by
the typing rule (W0). Consequently, the variable x is forced
to be of tier 1 using the type 1 → 1 for the operator > 0
in the (OP) rule. 1 → 1 ∈ Δ(> 0) (1) holds as the operator
> 0 is neutral. One application of the subtyping rule (SUB) is
performed for the sequence to be typed as the subcommands
are required to have homogeneous types.
In the subderivation 𝜌1 of Figure 5, the pred operator

is used with the type 1 → 1 in the (OP) rule. This use is
authorized as, pred is neutral and, consequently, 1 → 1 ∈
Δ(pred) (1). As a consequence, the rule (A) in 𝜌1 can be
derived as the tier of the assigned variable x (equal to 1) is
smaller than the tier of the expression pred(x) (also equal
to 1).
Now consider the subderivation 𝜌2 of Figure 5. The only

distinction between 𝜌2 and 𝜌1 is that the operator suc1 is
positive. Consequently, with an innermost tier of 1, the type
1→ 1 is not authorized for such an operator (since 1→ 1 ∉

Δ(suc1) (1)). Indeed, by Example 4.2, Δ(suc1) (1) = {1 →
0, 0→ 0}. The type 1→ 0 is ruled out as it would require a
non-homogeneous type for y. Consequently, the rule (OP)
is applied on type 0→ 0 and the variable y must be of tier
0. Notice that the program could also be typed by assigning
higher tiers k and k′ such that k′ ≺ k, to x and y, respectively.

Example 6.2 (Exponential). The program of Figure 4b, com-
puting the exponential, is not safe.

By contradiction, suppose that it can be typed with respect
to the typing environments Γ and Δ. Let Γ(x), Γ(y) and Γ(z)
be kx, ky and kz, respectively.
The subcommand z := y enforces kz ⪯ ky by the typing

derivation of Figure 6a.
The subcommand y := suc1 (y) enforces the constraint

ky ≺ k𝑖𝑛 , k𝑖𝑛 being the command innermost tier, by the
typing derivation of Figure 6b. Indeed, as suc1 is a positive
operator, by Condition 2 of Definition 4.1, ky ≺ k𝑖𝑛 has to be
satisfied for ky → ky ∈ Δ(suc1) (k𝑖𝑛) to hold.
The innermost while loop enforces the constraint k𝑖𝑛 ⪯

kz in the typing derivation of Figure 6c. First, notice that

Hainry et al.

while(x > 0)1{
x1 := pred(x)1;
y0 := suc1 (y)0

}
return y

(a) Unary addition

while(x > 0){
z := y;
while(z > 0){

z := pred(z);
y := suc1 (y)

};
x := pred(x)

}
return y

(b) Exponential

c1 : while(x > 0)2{
x2 := pred(x)2;
y1 := suc1 (suc1 (y))1

} ;
c2 : while(y > 0)1{

y1 := pred(y)1;
z0 := suc1 (suc1 (z))0

}
return z

(c) Multiple tiers

y0 := x1;
z0 := 0;
while(x >= 0)1{

if(𝜙 (y0 ↾ x1) == 0)0{z0 := 1}
else {skip};
x1 := pred(x)1

}
return z

(d) Oracle

x := 0; z := 0;
while(y >= x){

if(𝜙 (y ↾ x) == 0){z := 1}
else {skip};
x := suc1 (x)

}
return z

(e) No finite lookahead revision

x3 := 𝑛; y2 := x3; z2 := 0;
while(x3 >= 0){

z2 := max(𝜙 (y2 ↾ x3)2, z2);
x3 := pred(x3)

}; v1 := z2; u0 := 0;
while(z2 >= 0){

w1 := 𝜙 (v1 ↾ z2)1;
while(w1 >= 0){

u0 := suc1 (u)0; w1 := pred(w1)
}; z2 := pred(z)2

}
return u

(f) Multiple tiers and oracle

Figure 4. Examples

only the rule (W) can be applied to this subderivation as the
corresponding subcommand is already contained inside a
while loop and, consequently, 1 ⪯ k𝑜𝑢𝑡 is enforced by the
outermost while loop using rule (W) or rule (W0). Second,
the tier of this subcommand is equal to the innermost tier
k𝑖𝑛 of subcommand y := suc1 (y) (in 𝜌2). Indeed, rules (W)
and (W0) are the only typing rules updating the innermost
tier and there is no while loop in between. Finally, in the rule
(OP), as > 0 is neutral, Condition 1 of Definition 4.1 enforces
that k𝑖𝑛 ⪯ kz ⪯ k′𝑖𝑛 holds for the program to be typed.
Putting all the above constraints together, we obtain the

contradiction kz ⪯ ky ≺ k𝑖𝑛 ⪯ kz. Consequently, the pro-
gram cannot be typed.

Example 6.3 (Multiple tiers). Consider the program of Fig-
ure 4c illustrating the use of multiple tiers.
The program is safe with respect to the variable typing

environment Γ such that Γ(x) = 2, Γ(y) = 1 and Γ(z) = 0.
The main command can be typed by (2, 2, 0) in the derivation
of Figure 7a, provided that c1 and c2 are the commands
corresponding to the first while loop and second while loop,
respectively.

The derivation 𝜌1 corresponding to the first while loop is
described in Figure 7b. The subderivation 𝜌11 can be built eas-
ily using rules (A), (OP), and (V) as pred is neutral and can be
given the type 2→ 2 in Δ(pred) (2) (see Example 4.2). The

subderivation 𝜌12 can be built using the same rules as suc1
is positive and can be given the type 1→ 1 in Δ(suc1) (2)
(see Example 4.2 again). 𝜌12 requires the prior application of
subtyping rule (SUB) as the tier of the assignment is equal
to Γ(y) = 1.

The derivation 𝜌2, described in Figure 7c, can be obtained
in a similar way by taking the type 1 → 1 for the neutral
operator pred in Δ(pred) (1) and the type 0 → 0 for the
positive operator suc1 in Δ(suc1) (1). The initial subtyping
rule is required as it is not possible to derive ⊢ y > 0 : (2, 2, 2)
with the requirement that Γ(y) = 1.

It is worth noticing that the above program cannot be
typed with only two tiers {0, 1}. Indeed, the first while loop
enforces that Γ(y) ≺ Γ(x) and the second while loop en-
forces that Γ(z) ≺ Γ(y). More generally, the program can be
typed by (k+2, k+2, 0) or (k+2, k+2, k+2), for any tier k.

Example 6.4 (Oracle). For a given input x and a given oracle
𝜙 , the program of Figure 4d computes whether there exists
a unary integer 𝑛 of size smaller than |x| such that 𝜙 (𝑛) = 0.
This program is safe and can be typed by (1, 1, 0) under

the variable typing environment Γ such that Γ(x) = 1 and
Γ(y) = Γ(z) = 0. The constants 0 and 1 can be considered to
be neutral operators of zero arity and, hence, can be given
any tier smaller than the innermost tier. It is easy to verify
that the commands z := 1, skip, and x := pred(x) can be

A tier-based PL characterizing BFF2

typed by (0, 1, 1), (0, 1, 1), and (1, 1, 1), respectively, using
typing rules (OP), (SK), and (A).
The conditional subcommand can be typed as described

in Figure 8.
The while loop will be typed using rule (𝑊0). Conse-

quently, the inner command can be typed by (1, 1, 1) after
applying subtyping once.

Notice that the equivalent program obtained by swapping
x and y in the oracle input (i.e. 𝜙 (x ↾ y)) is not typable as
the tier of x has to be strictly smaller than the innermost tier
in typing rule (OR). Although this requirement restricts the
expressive power of the type system, it is strongly needed as
it prevents uncontrolled loops on oracle outputs to occur. In
particular, commands of the shape while(x > 0){x := 𝜙 (x ↾
x)} are rejected by the type system.

Note that the program of Figure 4d is typable as the oracle
calls are performed in a decreasing order and, hence, does
not break the finite lookahead revision property presented
in §5.4.

Now consider the equivalent program of Figure 4e where
oracle calls are performed in increasing order. This program
is not a safe program.

Suppose, by contradiction, that it can be typedwith respect
to a safe operator typing environment. The innermost tier k
of the commands under the while will be equal to the tier
of the guard y >= x, independently of whether rule (W) or
rule (W0) is used to type the while command.

Moreover, x has a tier kx such that k ⪯ kx, using rule (OP)
on the guard and, by definition of safe typing environments.

Now suc1 is a positive operator and, consequently, by rule
(OP) and, by definition of safe typing environments again,
suc1 (x) has a tier ksuc1 (x) strictly smaller than the innermost
tier, i.e. ksuc1 (x) ≺ k. By typing rule (A), in order to be typed,
the command x := suc1 (x) enforces kx ⪯ ksuc1 (x) . Hence, we
obtain a contradiction: k ≺ k.

Example 6.5 (Multiple tiers with oracle). The program of
Figure 4f computes the function Σ

max𝑛
𝑥=0 𝜙 (𝑥)

𝑖=0 𝜙 (𝑖).
This program can be typed by (3, 3, 0) under the variable

type assignment Γ such that Γ(x) = 3, Γ(y) = Γ(z) = 2,
Γ(v) = Γ(w) = 1, and Γ(u) = 0.
The first while loop will be typed using rule (W0). Conse-

quently, its inner command is typed by (3, 3, 3). As the max
operator is neutral, it can be given the type 2 → 2 → 2 ∈
Δ(max) (3). The oracle call is typable as the input data y has
a tier strictly small than the innermost tier (3) and the input
bound has tier equal to the outermost tier (3).

The second while loop can be typed using rule (W0) after
applying subtyping rule (SUB). Consequently, its inner com-
mand is typed by (2, 2, 2). The oracle call is performed on
input data of strictly smaller tier (1) and on input bound of
tier equal to the outermost tier (2). The inner while loop can
be typed using rule (W) and thus updates the innermost tier

to 1. Consequently, suc1 is enforced to be of tier 0 → 0 in
the inner command.

7 Soundness
In this section, we show a soundness result: the type-2 simply
typed lambda-closure of programs in ST is included in the
class of basic feasible functionals BFF2 [Kapron and Cook
1991, 1996; Mehlhorn 1976]. For that purpose, we use the
characterization of [Kapron and Steinberg 2018] based on
moderately polynomial time (MPT) functionals. We show
that terminating and safe program can be simulated by oracle
Turing machines with a polynomial step count and a finite
lookahead revision. We discuss briefly the requirement of
the lambda-closure in §7.2.

7.1 Moderately Polynomial Time Functionals
We consider oracle Turing machines𝑀𝜙 with one query tape
and one answer tape for oracle calls. If a query is written on
the query tape and the machine enters a query state, then
the oracle’s answer appears on the answer tape in one step.

Definition 7.1. Given an oracle TM𝑀𝜙 and an input a, let
𝑚

𝑀𝜙

a be the maximum of the size of the input a and of the
biggest oracle answer in the run of machine on input a with
oracle 𝜙 . A machine𝑀𝜙 has:
• a polynomial step count if there is a polynomial 𝑃
such that for any input a and oracle 𝜙 ,𝑀 runs in time
bounded by 𝑃 (𝑚𝑀𝜙

a).
• a finite lookahead revision if there exists a natural
number 𝑟 ∈ N such that for any oracle and any input,
in the run of the machine, it happens at most 𝑟 times
that a query is posed whose size exceeds the size of all
previous queries.

Definition 7.2 (Moderately Polynomial Time). MPT is the
class of second order functionals computable by an oracle TM
with a polynomial step count and finite lookahead revision.

The set of functionals over wordsW is defined to be the
set of functions of type 𝜏1 → . . . → 𝜏𝑛 → W, where the
each type 𝜏𝑖 is defined inductively by 𝜏 ::=W | 𝜏 → 𝜏 .
Suppose given a countably infinite number of variables

𝑥𝜏 , 𝑦𝜏 , . . ., for each type 𝜏 . For a given class of functionals
𝑋 , let _(𝑋) be the set of closed simply typed lambda-terms
generated inductively as follows:
• for each type 𝜏 , variables 𝑥𝜏 , 𝑦𝜏 , . . . are terms,
• each functional 𝐹 ∈ 𝑋 of type 𝜏 is a term,
• for any term 𝑡 of type 𝜏 ′ and variable 𝑥𝜏 , _𝑥 .𝑡 is a term
of type 𝜏 → 𝜏 ′,
• for any terms 𝑡 of type 𝜏 → 𝜏 ′ and 𝑠 of type 𝜏 , 𝑡 𝑠 is a
term of type 𝜏 ′.

Each lambda-term of type 𝜏 represents a functional of type
𝜏 and terms are considered up to 𝛽 and [equivalence. The
level of a type is defined inductively by 𝑙𝑒𝑣 (W) = 0 and

Hainry et al.

Γ(x) = 1
(V)

⊢ x : (1, 1, 1)
(OP)

⊢ x > 0 : (1, 1, 1)

Γ(x) = 1
(V)

⊢ x : (1, 1, 1)

Γ(x) = 1
(V)

⊢ x : (1, 1, 1)
(OP)

⊢ pred(x) : (1, 1, 1)
(A)

𝜌13 ⊢ x := pred(x) : (1, 1, 1)

Γ(y) = 0
(V)

⊢ y : (0, 1, 1)

Γ(y) = 0
(V)

⊢ y : (0, 1, 1)
(OP)

⊢ suc1 (y) : (0, 1, 1) (A)
𝜌23 ⊢ y := suc1 (y) : (0, 1, 1) (SUB)
⊢ y := suc1 (y) (1, 1, 1) (S)

⊢ x := pred(x); y := suc1 (y) : (1, 1, 1) (W0)⊢ while(x > 0){x := pred(x); y := suc1 (y)} : (1, 1, 0)

Figure 5. Typing derivation of Example 6.1 (Figure 4a)

Γ(z) = kz (V)
⊢ z : (kz, k𝑖𝑛, k𝑜𝑢𝑡)

Γ(y) = ky
(V)

⊢ y : (ky, k𝑖𝑛, k𝑜𝑢𝑡)
(A) provided that kz ⪯ ky

𝜌13 ⊢ z := y : (kz, k𝑖𝑛, k𝑜𝑢𝑡)
(a) Derivation 𝜌1

Γ(y) = ky
(V)

⊢ y : (ky, k𝑖𝑛, k𝑜𝑢𝑡)
ky → ky ∈ Δ(suc1) (k𝑖𝑛)

Γ(y) = ky
(V)

⊢ y : (ky, k𝑖𝑛, k𝑜𝑢𝑡)
(OP)

⊢ suc1 (y) : (ky, k𝑖𝑛, k𝑜𝑢𝑡)
(A)

𝜌23 ⊢ y := suc1 (y) : (ky, k𝑖𝑛, k𝑜𝑢𝑡)
(b) Derivation 𝜌2

Γ(z) = kz (V)
⊢ z : (kz, k′𝑖𝑛, k𝑜𝑢𝑡) (OP)
⊢ z > 0 : (k𝑖𝑛, k′𝑖𝑛, k𝑜𝑢𝑡)

...
(S)

⊢ z := pred(z); y := suc1 (y) : (k𝑖𝑛, k𝑖𝑛, k𝑜𝑢𝑡)
(W)

𝜌33 ⊢ while(z > 0){z := pred(z); y := suc1 (y)} : (k𝑖𝑛, k′𝑖𝑛, k𝑜𝑢𝑡)
(c) Derivation 𝜌3

Figure 6. Typing derivation of Example 6.2 (Figure 4b)

𝑙𝑒𝑣 (𝜏 → 𝜏 ′) = max(𝑙𝑒𝑣 (𝜏) + 1, 𝑙𝑒𝑣 (𝜏 ′)). For a given class of
functionals 𝑋 , let 𝑋2 be the set of functionals of level 2.

Lemma 7.3 (Monotonicity). Given two classes 𝑋,𝑌 of func-
tionals,if 𝑋 ⊆ 𝑌 then _(𝑋)2 ⊆ _(𝑌)2.

For a given functional 𝐹 of type 𝜏1 → . . .→ 𝜏𝑛 →W and
variables𝑋𝑖 of type 𝜏𝑖 , we will use the notation 𝐹 (𝑋1, . . . , 𝑋𝑛)
as a shorthand notation for 𝐹 (𝑋1) . . . (𝑋𝑛).
We are now ready to state the characterization of Basic

Feasible Functionals in terms of moderately polynomial time
functions.

Theorem 7.4 ([Kapron and Steinberg 2018]).

_(MPT)2 = BFF2 .

7.2 Proof of soundness
At this point we are able to give a clearer statement of the
relationship between the size of a derivation for a safe pro-
gram p𝜙 and the running time of a corresponding sequential
execution of p𝜙 . To make this precise, the running time of

𝑀𝜙 for a given input 𝑎 ∈ W is just the number of steps that
it takes to terminate on with oracle 𝜙 , starting with 𝑎 on its
input tape (or undefined if the computation does not termi-
nate). Given a store `, this may appropriately be encoded by
a single input 𝑎` . We then have

Proposition 7.5. Suppose that p𝜙 is a safe program. There
are an oracle TM𝑀𝜙 and a polynomial 𝑃 such that for any
derivation 𝜋𝜙 : ` ⊨ p𝜙 → w, 𝑀𝜙 on input 𝑎` simulates the
execution of p𝜙 with initial store ` in time 𝑂 (𝑃 (|𝜋𝜙 |)).

Proof. By induction on the structure of the derivation. □

Theorem 7.6 (Soundness). _(JSTK)2 ⊆ BFF2.

Proof. First, we can show that JSTK ⊆ MPT using Theo-
rem 5.5 and Theorem 5.8, and observing thatMPT is stable
through oracle padding. By Lemma 7.3 and Theorem 7.4,
_(JSTK)2 ⊆ _(MPT)2 = BFF2. □

Notice that the lambda-closure of JSTK is mandatory for
characterizing BFF2 as it is well-known thatMPT is strictly

A tier-based PL characterizing BFF2

𝜌1...
(W0)

𝜌13 ⊢ c1 : (2, 2, 0)

𝜌2...
(W0)

𝜌23 ⊢ c2 : (2, 2, 0) (S)
⊢ c1; c2 : (2, 2, 0)

(a) Main derivation

Γ(x) = 2
(V)

⊢ x : (2, 2, 2)
(OP)

⊢ x > 0 : (2, 2, 2)

𝜌11...
(A)

⊢ x := pred(x) : (2, 2, 2)

𝜌12...
(A)

⊢ y := suc1 (suc1 (y)) : (1, 2, 2) (SUB)
⊢ y := suc1 (suc1 (y)) : (2, 2, 2) (S)

⊢ x := pred(x); y := suc1 (suc1 (y)) : (2, 2, 2) (W0)⊢ c1 : (2, 2, 0)
(b) Derivation 𝜌1

Γ(y) = 1
(V)

⊢ y : (1, 2, 1)
(OP)

⊢ y > 0 : (1, 2, 1)

𝜌21...
(A)

⊢ y := pred(y) : (1, 1, 1)

𝜌22...
(A)

⊢ z := suc1 (suc1 (z)) : (0, 1, 1) (SUB)
⊢ z := suc1 (suc1 (z)) : (1, 1, 1) (S)

⊢ y := pred(y); z := suc1 (suc1 (z)) : (1, 1, 1) (W0)⊢ c2 : (1, 2, 0) (SUB)
⊢ c2 : (2, 2, 0)

(c) Derivation 𝜌2

Figure 7. Typing derivation of Example 6.3 (Figure 4c)

0→ 1→ 0 ∈ Δ(==) (1)

Γ(y) = 0
(V)

⊢ y : (0, 1, 1)
Γ(x) = 1

(V)
⊢ x : (1, 1, 1)

(OR)
⊢ 𝜙 (y ↾ x) : (0, 1, 1)

(OP)
⊢ 0 : (1, 1, 1)

(OP)
⊢ 𝜙 (y ↾ x) == 0 : (0, 1, 1)

.

.

.
(C)

⊢ if(𝜙 (y ↾ x) == 0){z := 1} else {skip} : (0, 1, 1)

Figure 8. Typing derivation of example 6.4 (Figure 4d)

included in BFF2. In particular, the following example taken
from [Kapron and Steinberg 2018] and computing a function
of BFF2 cannot be typed as all our oracle calls have input
bounds.

Example 7.7. The functional 𝐹 defined below is in BFF2 but
not in MPT.

𝐹 (𝜙, 𝜖) = 𝜖

𝐹 (𝜙, suc1 (𝑛)) = 𝜙 ◦ 𝜙 (𝐹 (𝜙, 𝑛) ↾ 𝜙 (𝜖))

Consequently, 𝐹 is not in JSTK, since JSTK ⊆ MPT. Indeed,
the outermost oracle call is performed without any oracle
input bound and clearly cannot be captured by typable pro-
grams.

8 Completenesses at type-1 and type-2
Completeness is demonstrated in two steps. First, we show
that each type 1 polynomial time computable function FP can
be computed by a terminating program in ST, with no oracle
calls. For that purpose, we show that the 2-tier sequential
version of the type system of [Marion and Péchoux 2014],
characterizing FP, is a strict subsystem of the type system of
Figure 3. Second, we show that the bounded iterator func-
tional I ′ of [Kapron and Steinberg 2019] can be simulated
by a terminating and typable program in ST. The complete-
ness follows as the type-2 simply typed lambda-closure of
the bounded iterator I ′ and the functions of FP provides an
alternative characterization of BFF2.

Hainry et al.

8.1 A characterization of FP
For that purpose, we consider the 2-tier based characteriza-
tion of FP in [Marion and Péchoux 2014], restricted to one
single thread. Let 𝛼, 𝛽 be tier variables ranging over {0, 1}.
The type system is provided in Figure 9, where 𝛼 stands for
𝛼1 → . . .→ 𝛼𝑎𝑟 (op) , with 𝛼𝑖 ∈ {0, 1}.

In this particular context, the notion of 2-tier safe program
is defined as follows. A 2-tier operator typing environment
Δ is a mapping that associates to each operator op a set of
operator types Δ(op), of the shape 𝛼 → 𝛼 , with 𝛼 ∈ {0, 1}.

Definition 8.1. A program is 2-tier safe if it can be typed
using 2-tier operator typing environment Δ satisfying, for
any op ∈ dom(Δ), J𝑜𝑝K ∈ FP, op is either positive or neutral,
and for each 𝛼1 → . . .→ 𝛼𝑎𝑟 (op) → 𝛼 ∈ Δ(op):
• 𝛼 ⪯ ∧𝑖=1,𝑛𝛼𝑖 ,
• and if op is positive but not neutral then 𝛼 = 0

Let 2ST be the set of 2-tier safe and terminating programs and
J2STK be the set of functions computed by these programs.

Theorem 8.2 (Theorem 7 of [Marion and Péchoux 2014]).

J2STK = FP.

Now we show the following inclusion.

Lemma 8.3. 2ST ⊊ ST.

Proof. By an easy induction on the type derivation. □

Let JSTK1 be defined as the set of type-1 functions com-
puted by safe and terminating programs with no oracle calls,
JSTK1 = {_𝑤.Jp𝜙K(𝑤) | 𝜙 ∉ p𝜙 and p𝜙 ∈ ST}.

Theorem 8.4. FP = JSTK1 .

Proof. ByTheorem 8.2, for any function 𝑓 in FP is computable
by a 2-tier safe and terminating program p𝜙 with no oracle
calls, i.e. 𝑓 = _𝑤.Jp𝜙K(𝑤). By Lemma 8.3, p𝜙 is in ST and,
consequently, 𝑓 ∈ JSTK1. Conversely, by Corollary 5.6, if
p𝜙 ∈ ST then p𝜙 has a polynomial step count. More precisely,
if 𝜙 ∉ p𝜙 and p𝜙 ∈ ST has a polynomial time step count and
runs in time bounded by 𝑃 (|𝑤 |), for some polynomial 𝑃 , as
there is no oracle call. Consequently, JSTK1 ⊆ FP. □

Note that the completeness part of the above Theorem
(FP ⊆ JSTK1) can also be proved directly by simulating poly-
nomials over unary numbers and Turing Machines with a
program in ST as in the completeness proof of [Marion 2011].

8.2 Type two iteration
[Kapron and Steinberg 2019] introduces a bounded iterator
functional I ′ of type (W → W) → W → W → W → W
defined by I ′(𝐹, 𝑎, 𝑏, 𝑐) = (_𝑥 .𝐹 (𝑙𝑚𝑖𝑛(𝑥, 𝑎))) |𝑐 | (𝑏), where
𝑙𝑚𝑖𝑛 is a functional of type W → W → W defined by

𝑙𝑚𝑖𝑛(𝑎, 𝑏) =
{
𝑎, if |𝑎 | < |𝑏 |,
𝑏, otherwise.

They use Cook’s notion [Cook 1992] of polynomial time
reducibility to show that this functional is polynomial time-
equivalent to the recursor R of [Cook and Urquhart 1993].
As a consequence of Cook-Urquhart Theorem, the following
characterization is obtained.
Theorem 8.5 ([Kapron and Steinberg 2019]).

_(FP ∪ {I ′})2 = BFF2 .

Theorem 8.6 (Type-2 completeness). BFF2 ⊆ _(JSTK)2.
Proof. By Theorem 8.4, FP = JSTK1 ⊆ _(JSTK)1 as any func-
tion 𝑓 ∈ JSTK1 is of the shape _𝑤.Jp𝜙K(𝑤), for p𝜙 ∈ ST, and,
consequently 𝑓 = (_𝜙.𝑓) 𝜙 ∈ _(JSTK)1.

Now we show that I ′ can be computed by a terminating
program in ST. For that purpose, assume that 𝑙𝑚𝑖𝑛 is an op-
erator of our language. 𝑙𝑚𝑖𝑛 is neutral, by definition. The
program 𝑖𝑡𝜙 , written in Figure 11, computes the functional
_𝜙._𝑎._𝑏._𝑐.I ′(𝜙, 𝑎, 𝑏, 𝑐) and can be typed by (1, 1, 0), as de-
scribed in Figure 10, under the typing environment Γ such
that Γ(𝑐) = Γ(𝑎) = 1, Γ(x) = Γ(𝑏) = 0 and operator typing
environment Δ such that 0 → 1 → 0 ∈ Δ(𝑙𝑚𝑖𝑛) (1) and
1→ 1 ∈ Δ(> 0) (1), and 1→ 1 ∈ Δ(pred) (1). Note that the
simulation uses the padded oracle variant 𝜙 of 𝜙 .
As FP ⊆ _(JSTK)1 and I ′ ∈ JSTK. We have that _(FP ∪
{I ′})2 ⊆ _(JSTK)2 and the result follows by Theorem 8.5.

□

To illustrate the need of the type-2 lambda closure for
achieving completeness, consider a variant of Example 7.7:

𝐹 ′(𝜙, 𝜖) = 𝜖

𝐹 ′(𝜙, suc1 (𝑛)) = 𝜙 ◦ 𝜙 (𝑙𝑚𝑖𝑛(𝐹 ′(𝜙, 𝑛), 𝜙 (𝜖)))
This functional is in BFF2 but neither in MPT nor in ST
as, by essence, it has no finite lookahead revision. Indeed,
the outermost oracle call input data is not bounded and it-
erated linearly in the input. However it can be computed
by _𝜙._𝑛.(I ′ (_𝑥.𝜙 (𝜙 𝑥)) 𝜙 (𝜖) 𝜖 𝑛) and is in _(JSTK)2, as
I ′ = J𝑖𝑡𝜙K ∈ JSTK, 𝑖𝑡𝜙 being the program in the proof of
Theorem 8.6, and computes the functional _𝜙._𝑛.𝐹 ′(𝜙, 𝑛).

9 Other properties
The type system of Figure 3 enjoys several other properties
of interest. First, completeness can be achieved using only 2
tiers (at the price of a worst expressive power). Second, type
inference is decidable in polynomial time in the size of the
program.

Let JSTkK be the subset of functional of JSTK computable
by terminating and typable programs using tiers bounded
by k. Formally, p𝜙 ∈ STk if and only if p𝜙 is terminating
and Γ,Δ ⊢ p𝜙 : (k′, k′𝑖𝑛, k′𝑜𝑢𝑡) for a safe operator typing
environment Δ and a variable typing environment Γ such
that ∀x ∈ V(p𝜙), Γ(x) ⪯ k.
We can show that tiers allow strictly more expressive

power in terms of captured programs. However tiers greater
than 1 are equivalent from an extensional point of view.

A tier-based PL characterizing BFF2

Γ(x) = 𝛼
(V2)

Γ,Δ ⊢2 x : 𝛼

∀𝑖 ≤ 𝑛, Γ,Δ ⊢2 e𝑖 : 𝛼𝑖 𝛼 → 𝛼 ∈ Δ(op)
(OP2)

Γ,Δ ⊢2 op(e1, . . . , e𝑎𝑟 (op)) : 𝛼
Γ,Δ ⊢2 x : 𝛼 Γ,Δ ⊢2 e : 𝛽 𝛼 ⪯ 𝛽

(A2)
Γ,Δ ⊢2 x := e : 𝛼

(SK2)
Γ,Δ ⊢2 skip : 𝛼

Γ,Δ ⊢2 c : 𝛼 Γ,Δ ⊢2 c′ : 𝛽
(S2)

Γ,Δ ⊢2 c; c′ : 𝛼 ∨ 𝛽

Γ,Δ ⊢2 e : 𝛼 Γ,Δ ⊢2 c : 𝛼 Γ,Δ ⊢2 c′ : 𝛼 (C2)
Γ,Δ ⊢2 if(e){c} else {c′} : 𝛼

Γ,Δ ⊢2 e : 1 Γ,Δ ⊢2 c : 𝛼
(W2)

Γ,Δ ⊢2 while(e){c} : 1

Figure 9. 2-tier-based type system for 2ST

...

Γ(x) = 0
(V)

⊢ x : (0, 1, 1)

Γ(x) = 0
(V)

⊢ x : (0, 1, 1)
Γ(𝑎) = 1

(V)
⊢ 𝑎 : (1, 1, 1)

(OP)
⊢ 𝑙𝑚𝑖𝑛(x, 𝑎) : (0, 1, 1)

Γ(𝑎) = 1
(V)

⊢ 𝑎 : (1, 1, 1)
(OR)

⊢ 𝜙 (𝑙𝑚𝑖𝑛(x, 𝑎) ↾ 𝑎) : (0, 1, 1)
(A)

⊢ x := 𝜙 (𝑙𝑚𝑖𝑛(x, 𝑎) ↾ 𝑎) : (0, 1, 1)
(SUB)

⊢ x := 𝜙 (𝑙𝑚𝑖𝑛(x, 𝑎) ↾ 𝑎) : (1, 1, 1)
...
(S)

⊢ x := 𝜙 (𝑙𝑚𝑖𝑛(x, 𝑎) ↾ 𝑎); 𝑐 := pred(𝑐) : (1, 1, 1)
(W0)

⊢ while(𝑐 > 0){x := 𝜙 (𝑙𝑚𝑖𝑛(x, 𝑎) ↾ 𝑎); 𝑐 := pred(𝑐)} : (1, 1, 0)

Figure 10. Program simulation I ′

x0 := 𝑏0;
while(𝑐 ≠ 𝜖)1{

x0 := 𝜙 (𝑙𝑚𝑖𝑛(x, 𝑎)0 ↾ 𝑎1)0;
𝑐1 := pred(𝑐)1}

}
return x

Figure 11. Program 𝑖𝑡𝜙

Proposition 9.1. The following properties hold:
1. ∀k ⪰ 0, STk ⊊ STk+1,
2. ∀k ⪰ 1, _(JSTkK)2 = BFF2.

Theorem 9.2. Given a program p𝜙 and a safe operator typ-
ing environment Δ, deciding if there exists a variable typing
environment Γ such that p𝜙 ∈ ST can be done in time cubic
in the size of the program.

Proof. Using a reduction to 2-SAT. □

10 Conclusion and future work
We have presented the first tractable characterization of the
class of type-2 polynomial time computable functionals BFF2
based on a simple imperative programming language. This
characterization does not require any explicit or external
resource bound and its restriction to type-1 provides an
alternative characterization of the class FP.

The presented type system can be generalized to programs
with a constant number of oracles (the typing rule for oracles
remains unchanged). However the lambda closure is manda-
tory for completeness as illustrated by Example 7.7. An open

issue of interest is to get rid of this closure in order to obtain
a characterization of BFF2 in terms of a pure imperative pro-
gramming language. Indeed, in our context, programs can
be viewed as a simply typed lambda-terms with typable and
terminating imperative procedure calls. One suggestion is
to study to which extent oracle composition can be added
directly to the program syntax.
Another issue of interest is to study whether this non-

interference based approach could be extended (or adapted
within the context of light logics) to characterize BFF2 in a
purely functional language. We leave these open issues as
future work.

Acknowledgments
The authors would like to thank the anonymous referees for
their feedback. Kapron was supported in part by a NSERC
Discovery Grant.

References
Bengt Aspvall, Michael F. Plass, and Robert Endre Tarjan. 1979. A linear-time

algorithm for testing the truth of certain quantified boolean formulas.
Inform. Process. Lett. 8, 3 (1979), 121–123. https://doi.org/10.1016/0020-
0190(79)90002-4

Patrick Baillot and Ugo Dal Lago. 2016. Higher-order interpretations and
program complexity. Inf. Comput. 248 (2016), 56–81. https://doi.org/10.
1016/j.ic.2015.12.008

Patrick Baillot and DamianoMazza. 2010. Linear logic by levels and bounded
time complexity. Theor. Comput. Sci. 411, 2 (2010), 470–503. https:
//doi.org/10.1016/j.tcs.2009.09.015

Patrick Baillot and Kazushige Terui. 2004. Light Types for Polynomial Time
Computation in Lambda-Calculus. In Logic in Computer Science, LICS
2004. IEEE, 266–275. https://doi.org/10.1109/LICS.2004.1319621

https://doi.org/10.1016/0020-0190(79)90002-4
https://doi.org/10.1016/0020-0190(79)90002-4
https://doi.org/10.1016/j.ic.2015.12.008
https://doi.org/10.1016/j.ic.2015.12.008
https://doi.org/10.1016/j.tcs.2009.09.015
https://doi.org/10.1016/j.tcs.2009.09.015
https://doi.org/10.1109/LICS.2004.1319621

Hainry et al.

Stephen Bellantoni and Stephen Cook. 1992. A New Recursion-Theoretic
Characterization of the Polytime Functions. Computational Complexity
2 (1992), 97–110. https://doi.org/10.1007/BF01201998

Amir M. Ben-Amram, Neil D. Jones, and Lars Kristiansen. 2008. Linear,
Polynomial or Exponential? Complexity Inference in Polynomial Time.
In Logic and Theory of Algorithms. Springer, 67–76.

Guillaume Bonfante, Jean-Yves Marion, and Jean-Yves Moyen. 2011. Quasi-
interpretations a way to control resources. Theor. Comput. Sci. 412, 25
(2011), 2776–2796. https://doi.org/10.1016/j.tcs.2011.02.007

Alan Cobham. 1965. The intrinsic computational difficulty of functions. In
Proceedings of the International Conference on Logic, Methodology, and
Philosophy of Science, Y. Bar-Hillel (Ed.). North-Holland, Amsterdam,
24–30.

Robert L. Constable. 1973. Type two computational complexity. In Proc.
5th annual ACM Symposium on Theory of Computing. ACM, 108–121.
https://doi.org/10.1145/800125.804041

Byron Cook, Andreas Podelski, and Andrey Rybalchenko. 2006. TERMI-
NATOR: beyond safety. In International Conference on Computer Aided
Verification. Springer, 415–418. https://doi.org/10.1007/11817963_37

Stephen A Cook. 1992. Computability and complexity of higher type
functions. In Logic from Computer Science. Springer, 51–72. https:
//doi.org/10.1007/978-1-4612-2822-6_3

Stephen A. Cook and Bruce M. Kapron. 1989. Characterizations of the
basic feasible functionals of finite type. In 30th Annual Symposium on
Foundations of Computer Science (FOCS 1989). IEEE, 154–159. https:
//doi.org/10.1109/SFCS.1989.63471

Stephen A. Cook and Alasdair Urquhart. 1993. Functional interpretations
of feasibly constructive arithmetic. Ann. Pure Appl. Logic 63, 2 (1993),
103–200. https://doi.org/10.1016/0168-0072(93)90044-E

Norman Danner and James S. Royer. 2006. Adventures in time and space. In
Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2006. ACM, 168–179. https://doi.org/
10.1145/1111037.1111053

Shimon Even, Alon Itai, and Adi Shamir. 1976. On the Complexity of
Timetable and Multicommodity Flow Problems. SIAM J. Comput. 5, 4
(1976), 691–703. https://doi.org/10.1137/0205048

Hugo Férée, Emmanuel Hainry, Mathieu Hoyrup, and Romain Péchoux.
2015. Characterizing polynomial time complexity of stream programs
using interpretations. Theor. Comput. Sci. 585 (2015), 41–54. https:
//doi.org/10.1016/j.tcs.2015.03.008

Marco Gaboardi, Jean-Yves Marion, and Simona Ronchi Della Rocca. 2008.
A logical account of pspace. In Proceedings of the 35th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2008.
ACM, 121–131. https://doi.org/10.1145/1328438.1328456

Jean-Yves Girard. 1998. Light Linear Logic. Inf. Comput. 143, 2 (1998),
175–204. https://doi.org/10.1006/inco.1998.2700

Emmanuel Hainry, Jean-Yves Marion, and Romain Péchoux. 2013. Type-
based complexity analysis for fork processes. In International Conference
on Foundations of Software Science and Computational Structures (FoSSaCS
2013). Springer, 305–320. https://doi.org/10.1007/978-3-642-37075-5_20

Emmanuel Hainry and Romain Péchoux. 2015. Objects in Polynomial Time.
In Programming Languages and Systems - 13th Asian Symposium, APLAS
2015 (Lecture Notes in Computer Science). Springer, 387–404. https:
//doi.org/10.1007/978-3-319-26529-2_21

Emmanuel Hainry and Romain Péchoux. 2017. Higher order interpretation
for higher order complexity. In LPAR-21, 21st International Conference on
Logic for Programming, Artificial Intelligence and Reasoning. EasyChair,
269–285. https://doi.org/10.29007/1tkw

Petr Hájek. 1979. Arithmetical Hierarchy and Complexity of Computation.
Theor. Comput. Sci. 8 (1979), 227–237.

Robert J. Irwin, James S. Royer, and Bruce M. Kapron. 2001. On characteri-
zations of the basic feasible functionals (Part I). J. Funct. Program. 11, 1
(2001), 117–153. https://doi.org/10.1017/S0956796800003841

Neil D. Jones and Lars Kristiansen. 2009. A Flow Calculus of Mwp-bounds
for Complexity Analysis. ACM Trans. Comput. Logic 10, 4 (2009), 28:1–
28:41. https://doi.org/10.1145/1555746.1555752

Bruce M. Kapron and Stephen A. Cook. 1991. A New Characterization of
Mehlhorn’s Polynomial Time Functionals (Extended Abstract). In 32nd
Annual Symposium on Foundations of Computer Science, San Juan, Puerto
Rico, 1-4 October 1991. IEEE, 342–347. https://doi.org/10.1109/SFCS.1991.
185389

Bruce M. Kapron and Stephen A. Cook. 1996. A New Characterization
of Type-2 Feasibility. SIAM J. Comput. 25, 1 (1996), 117–132. https:
//doi.org/10.1137/S0097539794263452

Bruce M. Kapron and Florian Steinberg. 2018. Type-two polynomial-time
and restricted lookahead. In Logic in Computer Science, LICS 2018. ACM,
579–588. https://doi.org/10.1145/3209108.3209124

Bruce M. Kapron and Florian Steinberg. 2019. Type-two iteration with
bounded query revision. In Proceedings Third Joint Workshop on Develop-
ments in Implicit Computational complExity and Foundational & Practical
Aspects of Resource Analysis, DICE-FOPARA@ETAPS 2019 (EPTCS). 61–73.
https://doi.org/10.4204/EPTCS.298.5

Akitoshi Kawamura and Florian Steinberg. 2017. Polynomial Running Times
for Polynomial-Time Oracle Machines. In 2nd International Conference
on Formal Structures for Computation and Deduction, FSCD 2017. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 23:1–23:18. https://doi.org/
10.4230/LIPIcs.FSCD.2017.23

Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. 2001. The size-
change principle for program termination. In Conference Record of POPL
2001: The 28th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages. ACM, 81–92. https://doi.org/10.1145/360204.
360210

Daniel Leivant. 1995. Ramified recurrence and computational complexity
I: Word recurrence and poly-time. In Feasible Mathematics II, Peter
Clote and Jeffrey B. Remmel (Eds.). Birkhäuser, Boston, MA, 320–343.
https://doi.org/10.1007/978-1-4612-2566-9_11

Daniel Leivant and Jean-Yves Marion. 2013. Evolving Graph-Structures and
Their Implicit Computational Complexity. In Automata, Languages, and
Programming - 40th International Colloquium, ICALP 2013, Proceedings,
Part II (Lecture Notes in Computer Science). Springer, 349–360. https:
//doi.org/10.1007/978-3-642-39212-2_32

Daniel Leivant and Jean-Yves Marion. 1993. Lambda Calculus Characteriza-
tions of Poly-Time. Fundam. Inform. 19, 1/2 (1993), 167–184.

Jean-Yves Marion. 2011. A Type System for Complexity Flow Analysis. In
Logic in Computer Science, LICS 2011. IEEE Computer Society, 123–132.
https://doi.org/10.1109/LICS.2011.41

Jean-Yves Marion and Romain Péchoux. 2014. Complexity Information Flow
in a Multi-threaded Imperative Language. In Theory and Applications of
Models of Computation, TAMC 2014 (Lecture Notes in Computer Science).
Springer, 124–140. https://doi.org/10.1007/978-3-319-06089-7_9

Kurt Mehlhorn. 1976. Polynomial and abstract subrecursive classes. J.
Comp. Sys. Sci. 12, 2 (1976), 147–178. https://doi.org/10.1016/S0022-
0000(76)80035-9

John C Mitchell. 1991. Type inference with simple subtypes. J. Funct.
Program. 1, 3 (1991), 245–285.

Dennis Volpano, Cynthia Irvine, and Geoffrey Smith. 1996. A sound type
system for secure flow analysis. Journal of computer security 4, 2-3 (1996),
167–187. https://doi.org/10.3233/JCS-1996-42-304

https://doi.org/10.1007/BF01201998
https://doi.org/10.1016/j.tcs.2011.02.007
https://doi.org/10.1145/800125.804041
https://doi.org/10.1007/11817963_37
https://doi.org/10.1007/978-1-4612-2822-6_3
https://doi.org/10.1007/978-1-4612-2822-6_3
https://doi.org/10.1109/SFCS.1989.63471
https://doi.org/10.1109/SFCS.1989.63471
https://doi.org/10.1016/0168-0072(93)90044-E
https://doi.org/10.1145/1111037.1111053
https://doi.org/10.1145/1111037.1111053
https://doi.org/10.1137/0205048
https://doi.org/10.1016/j.tcs.2015.03.008
https://doi.org/10.1016/j.tcs.2015.03.008
https://doi.org/10.1145/1328438.1328456
https://doi.org/10.1006/inco.1998.2700
https://doi.org/10.1007/978-3-642-37075-5_20
https://doi.org/10.1007/978-3-319-26529-2_21
https://doi.org/10.1007/978-3-319-26529-2_21
https://doi.org/10.29007/1tkw
https://doi.org/10.1017/S0956796800003841
https://doi.org/10.1145/1555746.1555752
https://doi.org/10.1109/SFCS.1991.185389
https://doi.org/10.1109/SFCS.1991.185389
https://doi.org/10.1137/S0097539794263452
https://doi.org/10.1137/S0097539794263452
https://doi.org/10.1145/3209108.3209124
https://doi.org/10.4204/EPTCS.298.5
https://doi.org/10.4230/LIPIcs.FSCD.2017.23
https://doi.org/10.4230/LIPIcs.FSCD.2017.23
https://doi.org/10.1145/360204.360210
https://doi.org/10.1145/360204.360210
https://doi.org/10.1007/978-1-4612-2566-9_11
https://doi.org/10.1007/978-3-642-39212-2_32
https://doi.org/10.1007/978-3-642-39212-2_32
https://doi.org/10.1109/LICS.2011.41
https://doi.org/10.1007/978-3-319-06089-7_9
https://doi.org/10.1016/S0022-0000(76)80035-9
https://doi.org/10.1016/S0022-0000(76)80035-9
https://doi.org/10.3233/JCS-1996-42-304

	Abstract
	1 Introduction
	2 Related work
	3 Imperative programming language with oracles
	4 Type system
	4.1 Tiers and typing judgments
	4.2 Safe environments and programs
	4.3 Some intuitions

	5 Properties of safe programs
	5.1 Notations
	5.2 Non-interference
	5.3 Polynomial step count
	5.4 Finite lookahead revision

	6 Examples
	7 Soundness
	7.1 Moderately Polynomial Time Functionals
	7.2 Proof of soundness

	8 Completenesses at type-1 and type-2
	8.1 A characterization of FP
	8.2 Type two iteration

	9 Other properties
	10 Conclusion and future work
	Acknowledgments
	References

