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Abstract

Conditional Value at Risk (CVAR) is a family of “coherent risk measures” which
generalize the traditional mathematical expectation. Widely used in mathematical
finance, it is garnering increasing interest in machine learning, e.g., as an alter-
nate approach to regularization, and as a means for ensuring fairness. This paper
presents a generalization bound for learning algorithms that minimize the CVAR
of the empirical loss. The bound is of PAC-Bayesian type and is guaranteed to be
small when the empirical CVAR is small. We achieve this by reducing the prob-
lem of estimating CVAR to that of merely estimating an expectation. This then
enables us, as a by-product, to obtain concentration inequalities for CVAR even
when the random variable in question is unbounded.

1 Introduction

The goal in statistical learning is to learn hypotheses that generalize well, which is typically for-
malized by seeking to minimize the expected risk associated with a given loss function. In gen-
eral, a loss function is a map ℓ∶H × X → R≥0, where X is a feature space and H is an hypothe-
ses space. In this case, the expected risk associated with a given hypothesis h ∈ H is given by
R[ℓ(h,X)] ∶= E[ℓ(h,X)]. Since the data-generating distribution is typically unknown, the ex-
pected risk is approximated using observed i.i.d. samples X1, . . . ,Xn of X , and an hypothesis is

then chosen to minimize the empirical risk R̂[ℓ(h,X)] ∶= ∑n
i=1 ℓ(h,Xi)/n. When choosing an hy-

pothesis ĥ based on the empirical risk R̂, one would like to know how close R̂[ℓ(ĥ,X)] is to the

actual risk R[ℓ(ĥ,X)]; only then can one infer something about the generalization property of the

learned hypothesis ĥ.

Generalization bounds—in which the expected risk is bounded in terms of its empirical version
up to some error—are at the heart of many machine learning problems. The main techniques
leading to such bounds comprise uniform converges arguments (often involving the Rademacher
complexity of the set H), algorithmic stability arguments (see e.g. [Bousquet and Elisseeff, 2002]
and more recently the work from [Abou-Moustafa and Szepesvári, 2019, Bousquet et al., 2019,
Celisse and Guedj, 2016]), and the PAC-Bayesian analysis for non-degenerate randomized estima-
tors [McAllester, 2003]. Behind these techniques lies concentration inequalities, such as Chernoff’s
inequality (for the PAC-Bayesian analysis) and McDiarmid’s inequality (for algorithmic stability
and the uniform convergence analysis), which control the deviation between population and empiri-
cal averages [see Boucheron et al., 2003, 2013, McDiarmid, 1998, among others].

Standard concentration inequalities are well suited for learning problems where the goal is to min-
imize the expected risk E[ℓ(h,X)]. However, the expected risk—the mean performance of an
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algorithm—might fail to capture the underlying phenomenon of interest. For example, when deal-
ing with medical (responsitivity to a specific drug with grave side effects, etc.), environmental (such
as pollution, exposure to toxic compounds, etc.), or sensitive engineering tasks (trajectory evalua-
tion for autonomous vehicles, etc.), the mean performance is not necessarily the best objective to
optimize as it will cover potentially disastrous mistakes (e.g., a few extra centimeters when crossing
another vehicle, a slightly too large dose of a lethal compound, etc.) while possibly improving on
average. There is thus a growing interest to work with alternative measures of risk (other than the
expectation) for which standard concentration inequalities do not apply directly. Of special interest
are coherent risk measures [Artzner et al., 1999] which possess properties that make them desirable
in mathematical finance and portfolio optimization [Allais, 1953, Ellsberg, 1961, Rockafellar et al.,
2000], with a focus on optimizing for the worst outcomes rather than on average. Coherent risk
measures have also been recently connected to fairness, and appear as a promising framework to
control the fairness of an algorithm’s solution [Williamson and Menon, 2019].

A popular coherent risk measure is the Conditional Value at Risk (CVAR; see Pflug, 2000); for
α ∈ (0,1) and random variable Z , CVARα[Z] measures the expectation of Z conditioned on the
event that Z is greater than its (1 − α)-th quantile. CVAR has been shown to underlie the classical
SVM [Takeda and Sugiyama, 2008], and has in general attracted a large interest in machine learning
over the past two decades [Bhat and Prashanth, 2019, Chen et al., 2009, Chow and Ghavamzadeh,
2014, Huo and Fu, 2017, Morimura et al., 2010, Pinto et al., 2017, Prashanth and Ghavamzadeh,
2013, Takeda and Kanamori, 2009, Tamar et al., 2015, Williamson and Menon, 2019].

Various concentration inequalities have been derived for CVARα[Z], under different assump-
tions on Z , which bound the difference between CVARα[Z] and its standard estimator

ĈVARα[Z] with high probability [Bhat and Prashanth, 2019, Brown, 2007, Kolla et al., 2019,
Prashanth and Ghavamzadeh, 2013, Wang and Gao, 2010]. However, none of these works extend
their results to the statistical learning setting where the goal is to learn an hypothesis from data to
minimize the conditional value at risk. In this paper, we fill this gap by presenting a sharp PAC-
Bayesian generalization bound when the objective is to minimize the conditional value at risk.

Related Works. Deviation bounds for CVAR were first presented by Brown [2007]. However,
their approach only applies to bounded continuous random variables, and their lower deviation
bound has a sub-optimal dependence on the level α. Wang and Gao [2010] later refined their analy-
sis to recover the “correct” dependence in α, albeit their technique still requires a two-sided bound
on the random variable Z . Thomas and Learned-Miller [2019] derived new concentration inequali-
ties for CVAR with a very sharp empirical performance, even though the dependence on α in their
bound is sub-optimal. Further, they only require a one-sided bound on Z , without a continuity
assumption.

Kolla et al. [2019] were the first to provide concentration bounds for CVAR when the random vari-
able Z is unbounded, but is either sub-Gaussian or sub-exponential. Bhat and Prashanth [2019] used
a bound on the Wasserstein distance between true and empirical cumulative distribution functions
to substantially tighten the bounds of Kolla et al. [2019] when Z has finite exponential or kth-order
moments; they also apply their results to other coherent risk measures. However, when instantiated
with bounded random variables, their concentration inequalities have sub-optimal dependence in α.

On the statistical learning side, Duchi and Namkoong [2018] present generalization bounds for a
class of coherent risk measures that technically includes CVAR. However, their bounds are based
on uniform convergence arguments which lead to looser bounds compared with ours.

Contributions. Our main contribution is a PAC-Bayesian generalization bound for the conditional

value at risk, where we bound the difference CVARα[Z] − ĈVARα[Z], for α ∈ (0,1), by a term

of order

√
ĈVARα[Z] ⋅Kn/(nα), with Kn representing a complexity term which depends on H.

Due to the presence of ĈVARα[Z] inside the square-root, our generalization bound has the desirable
property that it becomes small whenever the empirical conditional value at risk is small. For the stan-
dard expected risk, only state-of-the-art PAC-Bayesian bounds share this property (see e.g. Catoni
[2007], Langford and Shawe-Taylor [2003], Maurer [2004] or more recently in Mhammedi et al.
[2019], Tolstikhin and Seldin [2013]). We refer to [Guedj, 2019] for a recent survey on PAC-Bayes.
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As a by-product of our analysis, we derive a new way of obtaining concentration bounds for the
conditional value at risk by reducing the problem to estimating expectations using empirical means.
This reduction then makes it easy to obtain concentration bounds for CVARα[Z] even when the
random variable Z is unbounded (Z may be sub-Gaussian or sub-exponential). Our bounds have
explicit constants and are sharper than existing ones due to Bhat and Prashanth [2019], Kolla et al.
[2019] which deal with the unbounded case.

Outline. In Section 2, we define the conditional value at risk along with its standard estimator. In
Section 3, we recall the statistical learning setting and present our PAC-Bayesian bound for CVAR.
The proof of our main bound is in Section 4. In Section 5, we present a new way of deriving
concentration bounds for CVAR which stems from our analysis in Section 4. Section 6 concludes
and suggests future directions.

2 Preliminaries

Let (Ω,F , P ) be a probability space. For p ∈ N, we denote by Lp(Ω) ∶= Lp(Ω,F , P ) the space
of p-integrable functions, and we let MP (Ω) be the set of probability measures on Ω which are
absolutely continuous with respect to P . We reserve the notation E for the expectation under the
reference measure P , although we sometimes write EP for clarity. For random variables Z1, . . . , Zn,

we denote P̂n ∶= ∑n
i=1 δZi

/n the empirical distribution, and we let Z1∶n ∶= (Z1, . . . , Zn). Further-
more, we let π ∶= (1, . . . ,1)⊺/n ∈ Rn be the uniform distribution on the simplex. Finally, we use the

notation Õ to hide log-factors in the sample size n.

Coherent Risk Measures (CRM). A CRM [Artzner et al., 1999] is a functional R∶L1(Ω) →
R ∪ {+∞} that is simultaneously, positive homogeneous, monotonic, translation equivariant, and

sub-additive1 (see Appendix B for a formal definition). For α ∈ (0,1) and a real random variable
Z ∈ L1(Ω), the conditional value at risk CVARα[Z] is a CRM and is defined as the mean of the

random variable Z conditioned on the event that Z is greater than its (1 − α)-th quantile2. This is
equivalent to the following expression, which is more convenient for our analysis:

CVARα[Z] = Cα[Z] ∶= inf
µ∈R
{µ + E[Z − µ]+

α
} .

Key to our analysis is the dual representation of CRMs. It is known that any CRM R∶L1(Ω) →
R ∪ {+∞} can be expressed as the support function of some closed convex set Q ⊆ L1(Ω)
[Rockafellar and Uryasev, 2013]; that is, for any real random variable Z ∈ L1(Ω), we have

R[Z] = sup
q∈Q

EP [Zq] = sup
q∈Q
∫
Ω

Z(ω)q(ω)dP (ω). (dual representation) (1)

In this case, the set Q is called the risk envelope associated with the risk measure R. The risk
envelopeQα of CVARα[Z] is given by

Qα ∶= {q ∈ L1(Ω) ∣ ∃Q ∈MP (Ω), q = dQ

dP
≤
1

α
} , (2)

and so substituting Qα for Q in (1) yields CVARα[Z]. Though the overall approach we take in
this paper may be generalizable to other popular CRMs, (see Appendix B) we focus our attention
on CVAR for which we derive new PAC-Bayesian and concentration bounds in terms of its natural

estimator ĈVARα[Z]; given i.i.d. copies of Z1, . . . , Zn of Z , we define

ĈVARα[Z] ∶= Ĉα[Z] ∶= inf
µ∈R
{µ + n

∑
i=1

[Zi − µ]+
nα

} . (3)

From now on, we write Cα[Z] and Ĉα[Z] for CVARα[Z] and ĈVARα[Z], respectively.

1These are precisely the properties which make coherent risk measures excellent candidates in some ma-
chine learning applications (see e.g. [Williamson and Menon, 2019] for an application to fairness)

2We use the convention in Brown [2007], Prashanth and Ghavamzadeh [2013], Wang and Gao [2010].
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3 PAC-Bayesian Bound for the Conditional Value at Risk

In this section, we briefly describe the statistical learning setting, formulate our goal, and present
our main results.

In the statistical learning setting, Z is a loss random variable which can be written as Z = ℓ(h,X),
where ℓ∶H × X → R≥0 is a loss function and X [resp. H] is a feature [resp. hypotheses]

space. The aim is to learn an hypothesis ĥ = ĥ(X1∶n) ∈ H, or more generally a distribution
ρ̂ = ρ̂(X1∶n) overH (also referred to as randomized estimator), based on i.i.d. samples X1, . . . ,Xn

of X which minimizes some measure of risk—typically, the expected risk EP [ℓ(ρ̂,X)], where
ℓ(ρ̂,X) ∶= Eh∼ρ̂[ℓ(h,X)].
Our work is motivated by the idea of replacing this expected risk by any coherent risk measure R.
In particular, if Q is the risk envelope associated with R, then our quantity of interest is

R[ℓ(ρ̂,X)] ∶= sup
q∈Q
∫
Ω

ℓ(ρ̂,X(ω))q(ω)dP (ω).
Thus, given a consistent estimator R̂[ℓ(ρ̂,X)] of R[ℓ(ρ̂,X)] and some prior distribution ρ0 on H,
our grand goal (which goes beyond the scope of this paper) is to bound the risk R[ℓ(ρ̂,X)] as

R[ℓ(ρ̂,X)] ≤ R̂[ℓ(ρ̂,X)] + Õ ⎛⎝
√

KL(ρ̂∥ρ0)
n

⎞⎠ , (4)

with high probability. Based on (3), the consistent estimator we use for Cα[ℓ(ρ̂,X)] is

Ĉα[ℓ(ρ̂,X)] ∶= inf
µ∈R
{µ + n

∑
i=1

[ℓ(ρ̂,Xi) − µ]+
nα

} , α ∈ (0,1). (5)

This is in fact a consistent estimator (see e.g. [Duchi and Namkoong, 2018, Proposition 9]). As a
first step towards the goal in (4), we derive a sharp PAC-Bayesian bound for the conditional value at
risk, which we state now as our main theorem:

Theorem 1. Let α ∈ (0,1), δ ∈ (0,1/2), n ≥ 2, and N ∶= ⌈log2(n/α)⌉. Further, let ρ0 be any
distribution on a hypothesis set H, ℓ∶H × X → [0,1] be a loss, and X1, . . . ,Xn be i.i.d. copies of

X . Then, for any “posterior” distribution ρ̂ = ρ̂(X1∶n) over H, εn ∶=
√

ln(N/δ)
2αn

+ ln(N/δ)
3αn

, and

Kn ∶= KL(ρ̂∥ρ0) + ln(N/δ), we have, with probability at least 1 − 2δ.

Eh∼ρ̂[Cα[ℓ(h,X)]] ≤ Ĉα[ℓ(ρ̂,X)] +
√

27Ĉα[ℓ(ρ̂,X)]Kn

5αn
+ 2εnĈα[ℓ(ρ̂,X)] + 27Kn

5nα
. (6)

Discussion of the bound. Although we present the bound for the bounded loss case, our result
easily generalizes to the case where ℓ(h,X) is sub-Gaussian or sub-exponential, for all h ∈ H.
We discuss this in Section 5. Our second observation is that since Cα[Z] is a coherent risk mea-
sure, it is convex in Z [Rockafellar and Uryasev, 2013], and so we can further bound the term
Eh∼ρ̂[Cα[ℓ(h,X)]] on the LHS of (6) from below by Cα[ℓ(ρ̂,X)] = Cα[Eh∼ρ̂[ℓ(h,X)]]. This
shows that the type of guarantee we have in (6) is in general tighter than the one in (4).

Even though not explicitly done before, a PAC-Bayesian bound of the form (4) can be derived for
a risk measure R using an existing technique due to McAllester [2003] as soon as, for any fixed

hypothesis h, the difference R[ℓ(h,X)]− R̂[ℓ(h,X)] is sub-exponential with a sufficiently fast tail
decay as a function of n (see the proof of Theorem 1 in [McAllester, 2003]). While it has been

shown that the difference Cα[Z] − Ĉα[Z] also satisfies this condition for bounded i.i.d. random
variables Z,Z1, . . . , Zn (see e.g. Brown [2007], Wang and Gao [2010]), applying the technique of
McAllester [2003] yields a bound on Eh∼ρ̂[Cα[ℓ(h,X)]] (i.e. the LHS of (6)) of the form

Eh∼ρ̂[Ĉα[ℓ(h,X)]] +
√

KL(ρ̂∥ρ0) + ln n
δ

αn
. (7)

Such a bound is weaker than ours in two ways; (I) by Jensen’s inequality the term Ĉα[ℓ(ρ̂,X)]
in our bound (defined in (5)) is always smaller than the term Eh∼ρ̂[Ĉα[ℓ(h,X)]] in (7); and (II)
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unlike in our bound in (6), the complexity term inside the square-root in (7) does not multiply the

empirical conditional value at risk Ĉα[ℓ(ρ̂,X)]. This means that our bound can be much smaller

whenever Ĉα[ℓ(ρ̂,X)] is small—this is to be expected in the statistical learning setting since ρ̂

will typically be picked by an algorithm to minimize the empirical value Ĉα[ℓ(ρ̂,X)]. This type
of improved PAC-Bayesian bound, where the empirical error appears multiplying the complexity
term inside the square-root, has been derived for the expected risk in works such as [Catoni, 2007,
Langford and Shawe-Taylor, 2003, Maurer, 2004, Seeger, 2002]; these are arguably the state-of-the-
art generalization bounds.

A reduction to the expected risk. A key step in the proof of Theorem 1 is to show that for a real
random variable Z (not necessarily bounded) and α ∈ (0,1), one can construct a function g∶R → R

such that the auxiliary variable Y = g(Z) satisfies (I)

E[Y ] = E[g(Z)] = Cα[Z]; (8)

and (II) for i.i.d. copies Z1∶n of Z , the i.i.d. random variables Y1 ∶= g(Z1), . . . , Yn ∶= g(Zn) satisfy

1

n

n

∑
i=1

Yi ≤ Ĉα[Z](1 + ǫn), where ǫn = Õ(α−1/2n−1/2), (9)

with high probability. Thus, due to (8) and (9), bounding the difference

E[Y ] − 1

n

n

∑
i=1

Yi, (10)

is sufficient to obtain a concentration bound for CVAR. Since Y1, . . . , Yn are i.i.d., one can ap-
ply standard concentration inequalities, which are available whenever Y is sub-Gaussian or sub-
exponential, to bound the difference in (10). Further, we show that whenever Z is sub-Gaussian
or sub-exponential, then essentially so is Y . Thus, our method allows us to obtain concentration

inequalities for Ĉα[Z], even when Z is unbounded. We discuss this in Section 5.

4 Proof Sketch for Theorem 1

In this section, we present the key steps taken to prove the bound in Theorem 1. We organize the

proof in three subsections. In Subsection 4.1, we introduce an auxiliary estimator C̃α[Z] for Cα[Z],
α ∈ (0,1), which will be useful in our analysis; in particular, we bound this estimator in terms of

Ĉα[Z] (as in (9) above, but with the LHS replaced by C̃α[Z]). In Subsection 4.2, we introduce
an auxiliary random variable Y whose expectation equals Cα[Z] (as in (8)) and whose empirical

mean is bounded from above by the estimator C̃α[Z] introduced in Subsection 4.1—this enables the
reduction described at the end of Section 3. In Subsection 4.3, we conclude the argument by applying
the classical Donsker-Varadhan variational formula [Csiszár, 1975, Donsker and Varadhan, 1976].

4.1 An Auxiliary Estimator for CVAR

In this subsection, we introduce an auxiliary estimator C̃α[Z] of Cα[Z] and show that it is not much

larger than Ĉα[Z]. For α, δ ∈ (0,1), n ∈ N, and π ∶= (1, . . . ,1)⊺/n ∈ Rn, define:

Q̃α ∶= {q ∈ [0,1/α]n ∶ ∣Ei∼π[qi] − 1∣ ≤ ǫn} , where ǫn ∶=
√

ln 1

δ

2αn
+ ln 1

δ

3αn
. (11)

Using the set Q̃α, and given i.i.d. copies Z1, . . . , Zn of Z , let

C̃α[Z] ∶= sup
q∈Q̃α

1

n

n

∑
i=1

Ziqi. (12)

In the next lemma, we give a “variational formulation” of C̃α[Z], which will be key in our results:

Lemma 2. Let α, δ ∈ (0,1), n ∈ N, and C̃α[Z] be as in (12). Then, for any Z1, . . . , Zn ∈ R,

C̃α[Z] = inf
µ∈R
{µ + ∣µ∣ǫn + Ei∼π[Zi − µ]+

α
} , where ǫn as in (11). (13)
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The proof of Lemma 2 (which is in Appendix A.1) is similar to that of the generalized Donsker-
Varadhan variational formula considered in [Beck and Teboulle, 2003]. The “variational formula-
tion” on the RHS of (13) reveals some similarity between C̃α[Z] and the standard estimator Ĉα[Z]
defined in (3). In fact, thanks to Lemma 2, we have the following relationship between the two:

Lemma 3. Let α, δ ∈ (0,1), n ∈ N, and Z1, . . . , Zn ∈ R≥0. Further, let Z(1), . . . , Z(n) be the
decreasing order statistics of Z1, . . . , Zn. Then, for ǫn as in (11), we have

C̃α[Z] ≤ Ĉα[Z] ⋅ (1 + ǫn); (14)

and if Z1, . . . , Zn ∈ R (not necessarily positive), then

C̃α[Z] ≤ Ĉα[Z] + ∣Z(⌈nα⌉)∣ ⋅ ǫn. (15)

The inequality in (15) will only be relevant to us in the case where Z maybe negative, which we deal
with in Section 5 when we derive new concentration bounds for CVAR.

4.2 An Auxiliary Random Variable

In this subsection, we introduce a random variable Y which satisfies the properties in (8) and (9),
where Y1, . . . , Yn are i.i.d. copies of Y (this is where we leverage the dual representation in (1)).
This allows us to the reduce the problem of estimating CVAR to that of estimating an expectation.

Let X be an arbitrary set, and f ∶X → R be some fixed measurable function (we will later set f to a
specific function depending on whether we want a new concentration inequality or a PAC-Bayesian
bound for CVAR). Given a random variable X in X (arbitrary for now), we define

Z ∶= f(X) (16)

and the auxiliary random variable:

Y ∶= Z ⋅ E[q⋆ ∣X] = f(X) ⋅ E[q⋆ ∣X], where q⋆ ∈ argmax
q∈Qα

E[Zq], (17)

and Qα as in (2). In the next lemma, we show two crucial properties of the random variable Y —
these will enable the reduction mentioned at the end of Section 3:

Lemma 4. Let α, δ ∈ (0,1) and X1, . . . ,Xn be i.i.d. random variables in X . Then, (I) the random
variable Y in (17) and Yi ∶= Zi ⋅ E[q⋆ ∣ Xi], i ∈ [n], where Zi ∶= f(Xi), are i.i.d. and satisfy
E[Y ] = E[Yi] = Cα[Z], for all i ∈ [n]; and (II) with probability at least 1 − δ,

(E[q⋆ ∣X1], . . . ,E[q⋆ ∣Xn])⊺ ∈ Q̃α, where Q̃α is as in (11). (18)

The random variable Y introduced in (17) will now be useful since due to (18) in Lemma 4, we have,
for α, δ ∈ (0,1); Z as in (16); and i.i.d. random variables X,X1, . . . ,Xn ∈ X ,

P [ 1
n

n

∑
i=1

Yi ≤ C̃α[Z]] ≥ 1 − δ, where Yi = Zi ⋅ E[q⋆ ∣Xi] (19)

and C̃α[Z] as in (12). We now present a concentration inequality for the random variable Y in (17);
the proof, which can be found in Appendix A, is based on a version of the standard Bernstein’s
moment inequality [Cesa-Bianchi and Lugosi, 2006, Lemma A.5]:

Lemma 5. Let X, (Xi)i∈[n] be i.i.d. random variables in X . Further, let Y be as in (17), and

Yi = f(Xi) ⋅ E[q⋆ ∣Xi], i ∈ [n], with q⋆ as in (17). If {f(x) ∣ x ∈ X} ⊆ [0,1], then for all η ∈ [0, α],
E [exp(nη ⋅ (EP [Y ] − 1

n

n

∑
i=1

Yi − ηκ(η/α)
α

Cα[Z]))] ≤ 1, where Z = f(X),
and κ(x) ∶= (ex − 1 − x)/x2, for x ∈ R.

Lemma 5 will be our starting point for deriving the PAC-Bayesian bound in Theorem 1.
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4.3 Exploiting the Donsker-Varadhan Formula

In this subsection, we instantiate the results of the previous subsections with f(⋅) ∶= ℓ(⋅, h), h ∈ H,
for some loss function ℓ∶H ×X → [0,1]; in this case, the results of Lemmas 3 and 5 hold for

Z = Zh ∶= ℓ(h,X), (20)

for any hypothesis h ∈ H. Next, we will need the following result which follows from the classical
Donsker-Varadhan variational formula [Csiszár, 1975, Donsker and Varadhan, 1976]:

Lemma 6. Let δ ∈ (0,1), γ > 0 and ρ0 be any fixed (prior) distribution over H. Further, let{Rh ∶ h ∈ H} be any family of random variables such that E[exp(γRh)] ≤ 1, for all h ∈ H. Then,
for any (posterior) distribution ρ̂ overH, we have

P [Eh∼ρ̂[Rh] ≤ KL(ρ̂∥ρ0) + ln 1

δ

γ
] ≥ 1 − δ.

In addition to Zh in (20), define Yh ∶= ℓ(h,X) ⋅ E[q⋆ ∣ X] and Yh,i ∶= ℓ(h,Xi) ⋅ E[q⋆ ∣ Xi], for
i ∈ [n]. Then, if we set γ = ηn and Rh = EP [Yh] − ∑n

i=1 Yh,i/n − ηκ(η/α)Cα[Zh]/α, Lemma 5
guarantees that E[exp(γRh)] ≤ 1, and so by Lemma 6 we get the following result:

Theorem 7. Let α, δ ∈ (0,1), and η ∈ [0, α]. Further, let X1, . . . ,Xn be i.i.d. random variables in

X . Then, for any randomized estimator ρ̂ = ρ̂(X1∶n) overH, we have, with Ẑ ∶= Eh∼ρ̂[ℓ(h,X)],
Eh∼ρ̂[Cα[ℓ(h,X)]] ≤ Ĉα[Ẑ](1 + ǫn) + ηκ(η/α)Eh∼ρ̂[Cα[ℓ(h,X)]]

α
+ KL(ρ̂∥ρ0) + ln 1

δ

ηn
, (21)

with probability at least 1 − 2δ on the samples X1, . . . ,Xn, where ǫn is defined in (11).

If we could optimize the RHS of (21) over η ∈ [0, α], this would lead to our desired bound in Theo-
rem 1 (after some rearranging). However, this is not directly possible since the optimal η depends on
the sample X1∶n through the term KL(ρ̂∥ρ0). The solution is to apply the result of Theorem 7 with
a union bound, so that (21) holds for any estimator η̂ = η̂(X1∶n) taking values in a carefully chosen

grid G; to derive our bound, we will use the grid G ∶= {α2−1, . . . , α2−N ∣ N ∶= ⌈1/2 log2(n/α)⌉} .
From this point, the proof of Theorem 1 is merely a mechanical exercise of rearranging (21) and
optimizing η̂ over G, and so we postpone the details to Appendix A.

5 New Concentration Bounds for CVAR

In this section, we show how some of the results of the previous section can be used to reduce the
problem of estimating Cα[Z] to that of estimating a standard expectation. This will then enable

us to easily obtain concentration inequalities for Ĉα[Z] even when Z is unbounded. We note that
previous works [Bhat and Prashanth, 2019, Kolla et al., 2019] used sophisticated techniques to deal
with the unbounded case (sometimes achieving only sub-optimal rates), whereas we simply invoke
existing concentration inequalities for empirical means thanks to our reduction.

The key results we will use are Lemmas 3 and 4, where we instantiate the latter with X = R and
f ≡ id, in which case:

Y = Z ⋅ E[q⋆ ∣ Z], and q⋆ ∈ argmax
q∈Qα

E[Zq]. (22)

Together, these two lemmas imply that, for any α, δ ∈ (0,1), i.i.d. random variables Z1, . . . , Zn,

Cα[Z] − Ĉα[Z] − ∣Z(⌈nα⌉)∣ ǫn ≤ E[Y ] − 1

n

n

∑
i=1

Yi, (23)

with probability at least 1 − δ, where ǫn is as in (11) and Z(1), . . . , Z(n) are the decreasing order

statistics of Z1, . . . , Zn ∈ R. Thus, getting a concentration inequality for Ĉα[Z] can be reduced to
getting one for the empirical mean ∑n

i=1 Yi/n of the i.i.d. random variables Y1, . . . , Yn. Next, we
show that whenever Z is a sub-exponential [resp. sub-Gaussian] random variable, essentially so is
Y . But first we define what this means:
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Definition 8. Let I ⊆ R, b > 0, and Z be a random variable such that, for some σ > 0,

E[η ⋅ (Z − E[Z])] ≤ exp (η2σ2/2) , ∀η ∈ I,
Then, Z is (σ, b)-sub-exponential [resp. σ-sub-Gaussian] if I = (−1/b,1/b) [resp. I = R].

Lemma 9. Let σ, b > 0 and α ∈ (0,1). Let Z be a zero-mean real random variable and let Y be as
in (22). If Z is (σ, b)-sub-exponential [resp. σ-sub-Gaussian], then

E[exp(ηY )] ≤ 2 exp(η2σ2/(2α2)), ∀η ∈ (−α/b,α/b) [resp. η ∈ R]. (24)

Note that in Lemma 9 we have assumed that Z is a zero-mean random variable, and so we still need
to do some work to derive a concentration inequality for Ĉα[Z]. In particular, we will use the fact

that Cα[Z − E[Z]] = Cα[Z] − E[Z] and Ĉα[Z − E[Z]] = Ĉα[Z] − E[Z], which holds since Cα

and Ĉα are coherent risk measures, and thus translation invariant (see Definition 14). We use this in
the proof of the next theorem (which is in Appendix A):

Theorem 10. Let σ, b > 0, α, δ ∈ (0,1), and ǫn be as in (11). If Z is a σ-sub-Gaussian random

variable, then with G[Z] ∶= Cα[Z] − Ĉα[Z] and tn ∶= ∣Z(⌈nα⌉) − E[Z]∣ ⋅ ǫn, we have

P [G[Z] ≥ t + tn] ≤ δ + 2 exp(−nα2t2/(2σ2)), ∀t ≥ 0; (25)

otherwise, if Z is (σ, b)-sub-exponential random variable, then

P [G[Z] ≥ t + tn] ≤ δ + { 2 exp(−nα2t2/(2σ2)) , if 0 ≤ t ≤ σ2/(bα);
2 exp(−nαt/(2b)) , if t > σ2/(bα).

We note that unlike the recent results due to Bhat and Prashanth [2019] which also deal with the
unbounded case, the constants in our concentration inequalities in Theorem 10 are explicit.

When Z is a σ-sub-Gaussian random variable with σ > 0, an immediate consequence of Theorem

10 is that by setting t =
√
2σ2 ln(2/δ)/(nα2) in (25), we get that, with probability at least 1 − 2δ,

Cα[Z] − Ĉα[Z] ≤ σ

α

√
2 ln 1

δ

n
+ ∣Z(⌈nα⌉) − E[Z]∣ ⋅ ⎛⎜⎝

√
ln 1

δ

2αn
+ ln 1

δ

3αn

⎞⎟⎠ . (26)

A similar inequality holds for the sub-exponential case. We note that the term ∣Z(⌈nα⌉) − E[Z]∣ in
(26) can be further bounded from above by

nα⌊nα⌋ Ĉα[Z] − EP̂n
[Z] + ∣E[Z] − EP̂n

[Z]∣ . (27)

This follows from the triangular inequality and facts that Ĉα[Z] ≥ 1

nα ∑⌊nα⌋i=1 Z(i) ≥
⌊nα⌋
nα

Z(⌈nα⌉)

(see e.g. Lemma 4.1 in Brown [2007]), and Ĉα[Z] ≥ EP̂n
[Z] [Ahmadi-Javid, 2012]. The remaining

term ∣EP [Z]−EP̂n
[Z]∣ in (27) which depends on the unknown P can be bounded from above using

another concentration inequality.

Generalization bounds of the form (4) for unbounded but sub-Gaussian or sub-exponential ℓ(h,X),
h ∈ H, can be obtained using the PAC-Bayesian analysis of [McAllester, 2003, Theorem 1] and our
concentration inequalities in Theorem 10. However, due to the fact that α is squared in the argument
of the exponentials in these inequalities (which is also the case in the bounds of Bhat and Prashanth
[2019], Kolla et al. [2019]) the generalization bounds obtained this way will have the α outside the
square-root “complexity term”—unlike our bound in Theorem 1.

We conjecture that the dependence on α in the concentration bounds of Theorem 10 can be improved
by swapping α2 for α in the argument of the exponentials; in the sub-Gaussian case, this would
move α inside the square-root on the RHS of (26). We know that this is at least possible for bounded
random variables as shown in Brown [2007], Wang and Gao [2010]. We now recover this fact

by presenting a new concentration inequality for Ĉα[Z] when Z is bounded using the reduction
described at the beginning of this section.

Theorem 11. Let α, δ ∈ (0,1), and Z1∶n be i.i.d. rvs in [0,1]. Then, with probability at least 1 − 2δ,

Cα[Z] − Ĉα[Z] ≤
√

12Cα[Z] ln 1

δ

5αn
∨ 3 ln 1

δ

αn
+ Cα[Z]⎛⎜⎝

√
ln 1

δ

2αn
+ ln 1

δ

3αn

⎞⎟⎠ . (28)
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The proof is in Appendix A. The inequality in (28) essentially replaces the range of the random
variable Z typically present under the square-root in other concentration bounds [Brown, 2007,
Wang and Gao, 2010] by the smaller quantity Cα[Z]. The concentration bound (28) is not immedi-
ately useful for computational purposes since its RHS depends on Cα[Z]. However, it is possible to

rearrange this bound so that only the empirical quantity Ĉα[Z] appears on the RHS of (28) instead
of Cα[Z]; we provide the means to do this in Lemma 13 in the appendix.

6 Conclusion and Future Work

In this paper, we derived a first PAC-Bayesian bound for CVAR by reducing the task of estimating
CVAR to that of merely estimating an expectation (see Section 4). This reduction then made it
easy to obtain concentration inequalities for CVAR (with explicit constants) even when the random
variable in question is unbounded (see Section 5).

We note that the only steps in the proof of our main bound in Theorem 1 that are specific to CVAR
are Lemmas 2 and 3, and so the question is whether our overall approach can be extended to other
coherent risk measures to achieve (4).

In Appendix B, we discuss how our results may be extended to a rich class of coherent risk measures
known as ϕ-entropic risk measures. These CRMs are often used in the context of robust optimiza-
tion Namkoong and Duchi [2017], and are perfect candidates to consider next in the context of this
paper.
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A Proofs

A.1 Proof of Lemma 2

Proof Let ϕ(⋅) ∶= ι[0,1/α](⋅), where for a set C ⊆ R, ιC(x) = 0 if x ∈ C; and +∞ otherwise. From

(12), we have that C̃α[Z] is equal to

P ∶= sup
q∶∣Ei∼π[qi]−1∣≤ǫn

Ei∼π[Ziqi − ϕ(qi)], (29)

where we recall that π = (1, . . . ,1)⊺/n ∈ Rn. The Lagrangian dual D of (29) is given by

D ∶= inf
η,γ≥0

⎧⎪⎪⎨⎪⎪⎩η − γ + (η + γ)ǫn + sup
q∶0≤qi≤1/α,i∈[n]

{Ei∼π[(Zi − η + γ)qi −ϕ(qi)]}⎫⎪⎪⎬⎪⎪⎭ ,
= inf

η,γ≥0

⎧⎪⎪⎨⎪⎪⎩η − γ + (η + γ)ǫn + Ei∼π

⎡⎢⎢⎢⎣ sup
0≤x≤1/α

{(Zi − η + γ)x −ϕ(x)}⎤⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ ,

= inf
η,γ≥0

{η − γ + (η + γ)ǫn + Ei∼π[ϕ⋆(Zi − η + γ)]} , (30)

= inf
µ∈R
{µ + ∣µ∣ǫn + Ei∼π[ϕ⋆(Zi − µ)]} , (31)

where (30) is due to {x ∈ R ∣ ϕ(x) < +∞} = [0,1/α], and (31) follows by setting µ ∶= η − γ and
noting that the inf in (30) is always attained at a point (η, γ) ∈ R2

≥0 satisfying η ⋅γ = 0, in which case
η+γ = ∣µ∣; this is true because by the positivity of ǫn, if η, γ > 0, then (η+γ)ǫn can always be made
smaller while keeping the difference η−γ fixed. Finally, since the primal problem is feasible—q = π

is a feasible solution—there is no duality gap (see the proof of [Beck and Teboulle, 2003, Theorem
4.2]), and thus the RHS of (31) is equal to P in (29). The proof is concluded by noting that the
Fenchel dual of ϕ satisfies ϕ⋆(z) = 0 ∨ (z/α), for all z ∈ R. ∎

A.2 Proof of Lemma 3

Proof Let µ̂ be the argmin in µ ∈ R of the RHS of (3). By Lemma 2, we have

C̃α[Z] = inf
µ∈R
{µ + ∣µ∣ǫn + Ei∼π[Zi − µ]+

α
} ,

≤ µ̂ + ∣µ̂∣ǫn + Ei∼π[Zi − µ̂)]+
α

,

= Ĉα[Z] + ∣µ̂∣ǫn. (by definition of µ̂) (32)

The inequality in (15) follows from (32) and the fact that µ̂ = Z(⌈nα⌉) (see proof of [Brown, 2007,
Proposition 4.1]).

Now we show (14) under the assumption that Zi ≥ 0, for all i ∈ [n]. Note that by definition

Ĉα[Z] = µ̂ + 1

α
Ei∼π[Zi − µ̂]+, and so µ̂ ≤ Ĉα[Z]. Furthermore, since α ∈ (0,1) and Zi ≥ 0, for

i ∈ [n], the RHS of (3) is a decreasing function of µ on ] − ∞,0], and thus µ̂ ≥ 0 (since µ̂ is the

minimizer of (3)). Combining the fact that 0 ≤ µ̂ ≤ Ĉα[Z] with (32) completes the proof. ∎

A.3 Proof of Lemma 4

Proof The first claim follows by the fact that Xi, i ∈ [n], are i.i.d., and an application of the total
expectation theorem. Now for the second claim, let ∆ ∶= ∣EP̂n

[q⋆ ∣ X] − 1∣. Since q⋆ is a density,
the total expectation theorem implies

∆ = ∣EP̂n
[q⋆ ∣X] − E[E[q⋆ ∣X]]∣,
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and so by Bennett’s inequality (see e.g. Theorem 3 in Maurer and Pontil [2009]) applied to the
random variable E[q⋆ ∣X], we get that, with probability at least 1 − δ,

∆ ≤

√
VAR[E[q⋆ ∣X]] ln 1

δ

2n
+ ∥E[q⋆ ∣X]∥∞ ln 1

δ

3n
,

≤

√
E[E[q⋆ ∣X]2] ln 1

δ

2n
+ ∥E[q⋆ ∣X]∥∞ ln 1

δ

3n
,

≤

√∥E[q⋆ ∣X]∥∞ ln 1

δ

2n
+ ∥E[q⋆ ∣X]∥∞ ln 1

δ

3n
,

where the last inequality follows by the fact that E[E[q⋆ ∣ X]2] ≤ E[E[q⋆ ∣ X]] ⋅ ∥E[q⋆ ∣ X]∥∞ =∥E[q⋆ ∣ X]∥∞, which holds since E[q⋆ ∣ X] ≥ 0 and E[E[q⋆ ∣ X]] = E[q⋆] = 1. The proof is
concluded by the facts that ∥E[q⋆ ∣ X]∥∞ ≤ ∥q⋆∥∞ (by Jensen’s inequality); ∥q∥∞ ≤ 1/α, for all
q ∈Qα by definition; and q⋆ ∈Qα. ∎

A.4 Proof of Lemma 5

We need the following lemma in the proof of Lemma 5:

Lemma 12. Let S,S1, . . . , Sn be i.i.d. random variable such that S ∈ [0,B], B > 0. We have,

EP [exp(nη EP [S] − η n

∑
i=1

Si − nη2κ(ηB) ⋅ EP [S2])] ≤ 1, (33)

for all η ∈ [0,1/B], where κ(η) ∶= (eη − η − 1)/η2.

Proof The desired bound follows by the version of Bernstein’s moment inequality in
[Cesa-Bianchi and Lugosi, 2006, Lemma A.5] and [Mhammedi et al., 2019, Proposition 10-
(b)]. ∎

Proof of Lemma 5 By Lemma 4, the random variables Y,Y1, . . . , Yn are i.i.d., and so the result
of Lemma 12 applies; this means that (33) holds for (S,S1, . . . , Sn) = (Y,Y1, . . . , Yn) and B =
b ≥ ∥Y ∥∞. Thus, to complete the proof it suffices to bound ∥Y ∥∞ and ∥Y ∥22 = E[Y 2] from above.
Starting with E[Y 2], and recalling that Z = f(X) ∈ [0,1] by assumption, we have:

E[Y 2] = E[Z2 ⋅ E[q⋆ ∣X]2],
≤ E[Z ⋅ E[q⋆ ∣X]] ⋅ ∥Z ⋅ E[q⋆ ∣X]∥∞, (Hölder)
≤ Cα[Z] ⋅ ∥Z ⋅ E[q⋆ ∣X]∥∞, (Lemma 4)
≤ Cα[Z]/α, (Z ≤ 1, q⋆ ≤ 1/α)

where the fact that q⋆ ≤ 1/α follows simply from q⋆ ∈Qα and the definition of Qα. We also have

∥Y ∥∞ = ∥Z ⋅ E[q⋆ ∣X]∥∞ ≤ ∥Z∥∞ ⋅ ∥E[q⋆ ∣X]∥∞,
≤ ∥q⋆∥∞, (Z ≤ 1 & Jensen)
≤ 1/α,

again the last inequality follows from q⋆ ∈Qα and the definition of Qα. ∎

A.5 Proof of Theorem 7

Proof Let h ∈H and α, δ ∈ (0,1), and define

Rh ∶= Cα[Zh] − 1

n

n

∑
i=1

Yi − ηκ(η/α)
α

Cα[Zh], (34)

where Yi ∶= ℓ(h,Xi) ⋅ E[q⋆ ∣ Xi], i ∈ [n], where q⋆ is as in (17) with Z as in (20). By Lemma 4,
Cα[Zh] = EP [Y ], where Y ∶= ℓ(h,X) ⋅ E[q⋆ ∣ X]. Thus, by Lemma 5 with Z = Zh, we have
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EP [exp(nηRh)] ≤ 1. Applying Lemma 6 with Rh as in (34) and γ = nη, yields,

Eh∼ρ̂[Cα[ℓ(h,X)]] ≤ 1

n

n

∑
i=1

ℓ(ρ̂,Xi) ⋅ E[q⋆ ∣Xi] + ηκ(η/α)Eh∼ρ̂[Cα[ℓ(h,X)]]
α

+ KL(ρ̂∥ρ0) + ln 1

δ

ηn
, (35)

with probability at least 1 − δ. Now invoking Lemmas 3 and 4 (in particular (18)), yields

1

n

n

∑
i=1

ℓ(ρ̂,Xi) ⋅ E[q⋆ ∣Xi] ≥ Ĉα[Ẑ] ⋅ (1 + ǫn).
with probability at least 1 − δ, where Ẑ ∶= Eh∼ρ̂[ℓ(h,X)]. Combining this with (35) via a union
bound yields the desired bound. ∎

A.6 Proof of Theorem 1

To prove Theorem 1, we will need the following lemma:

Lemma 13. Let R, R̂,A,B > 0. If R ≤ R̂ +√RA +B, then

R ≤ R̂ +
√
R̂A + 2B +A.

Proof If R ≤ R̂ +√RA +B, then for all η > 0,

R ≤ R̂ + η

2
R + A

2η
+B,

which after rearranging, becomes,

R ≤
R̂

1 − η/2 + A

2η ⋅ (1 − η/2) + B

1 − η/2 , for η ∉ {0,2}. (36)

The minimizer of the RHS of (36) is given by

η = η⋆ ∶= −A +
√
A2 + 4AB + 4AR̂
2(B + R̂) .

Plugging this η into (36), yields,

R ≤ R̂ + A

2
+B + 1

2

√
4AR̂ +A2 + 4AB,

≤ R̂ +A + 2B +
√
AR̂, (37)

where (37) follows by the facts that A2 + 4AB ≤ (A + 2B)2 and

√
4R̂A + (A + 2B)2 ≤ √4R̂A +

A + 2B. ∎
Proof of Theorem 1 Define the grid G by

G ∶= {2−1α, . . . ,2−Nα ∣ N ∶= ⌈1/2 ⋅ log2 n
α
⌉} ,

and let η̂ = η̂(Z1∶n) ∈ G be any estimator. Then, using the fact that κ(x) ≤ 3/5, for all x ≤ 1/2, and

invoking Theorem 7 with a union bound over η ∈ G, and εn ∶=
√

ln
N
δ

2αn
+ ln

N
δ

3αn
, we get that

Eh∼ρ̂[Cα[ℓ(h,X)]] − Ĉα[Ẑ] ⋅ (1 + εn) ≤ KL(ρ̂∥ρ0) + ln N
δ

η̂n
+ 3η̂

5α
Eh∼ρ̂[Cα[ℓ(h,X)]], (38)

with probability at least 1 − 2δ, where we recall that Ẑ = Eh∼ρ̂[ℓ(h,X)]. Let η̂ be an estimator
which satisfies

η̂ ∈ [η⋆ ∧ (α/2), 2η⋆] ∩ G, where η⋆ ∶=
¿ÁÁÀ5α ⋅ (KL(ρ̂∥ρ0) + ln N

δ
)

3nEh∼ρ̂[Cα[ℓ(h,X)]] (39)

is the unconstrained minimizer η̂ of the RHS of (38). Since the loss ℓ has range in [0,1], KL(ρ̂∥ρ0) ≥
0, and (δ, n) ∈]0,1/2[×[2,+∞[, we have η⋆ ≥

√
α/n ≥ minG. This, with the fact that G is in the

form of a geometric progression with common ratio 2 and maxG = α/2, ensures the existence (and
in fact the uniqueness) of η̂ satisfying (39).
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Case 1. Suppose that η⋆ ≤ α/2. In this case, the estimator η̂ in (39) satisfies η⋆ ≤ η̂ ≤ 2η⋆. Plugging
η̂ into (38) yields

Eh∼ρ̂[Cα[ℓ(h,X)]] − Ĉα[Ẑ] ≤ 3
¿ÁÁÀ3Eh∼ρ̂[Cα[ℓ(h,X)]] ⋅ (KL(ρ̂∥ρ0) + ln N

δ
)

5αn
+ Ĉα[Ẑ] ⋅ εn.

By applying Lemma 13 with R = Eh∼ρ̂[Cα[ℓ(h,X)]], R̂ = Ĉα[Ẑ], A = 27(KL(ρ̂∥ρ0)+ln N
δ
)

5αn
, and

B = Ĉα[Ẑ] ⋅ εn, we get

Eh∼ρ̂[Cα[ℓ(h,X)]] − Ĉα[Ẑ] ≤
¿ÁÁÀ27Ĉα[Ẑ] ⋅ (KL(ρ̂∥ρ0) + ln N

δ
)

5αn
+ 2Ĉα[Ẑ] ⋅ εn

+ 27(KL(ρ̂∥ρ0) + ln N
δ
)

5nα
. (40)

Case 2. Suppose now that η⋆ > α/2. In this case, η̂ = α/2. Plugging this into (38) and using the
fact that η⋆ > α/2, yields

Eh∼ρ̂[Cα[ℓ(h,X)]] − Ĉα[Ẑ] ≤ 4(KL(ρ̂∥ρ0) + ln N
δ
)

αn
+ Ĉα[Ẑ] ⋅ εn. (41)

Since Ĉα[Ẑ] ≥ 0 and 4 ≤ 27/5, the RHS of (41) is less than the RHS of (40), which completes the
proof. ∎

A.7 Proof of Lemma 9

Proof Suppose that Z is (σ, b)-sub-exponential. Then,

E[eηZ] ≤ e η2σ2

2 , ∀∣η∣ ≤ 1/b. (42)

Using that E[q⋆ ∣ Z] ≤ 1/α, and Cauchy-Schwartz, we get

∣ηY ∣ ≤ ∣ηZ ∣/α, ∀η ∈ R, (43)

and so, for all ∣η∣ ≤ α/b, we have

E[eηY ] ≤ E[e∣ηY ∣] (43)
≤ E[e ηZ

α ] + E[e− ηZ
α ] (42)
≤ 2e

η2σ2

2α2 .

When Z is σ-sub-Gaussian case, the proof is the same, except that we replace b by 0. ∎

A.8 Proof of Theorem 11

Proof Let X = [0,1] and f ≡ id be the identity map. By invoking Lemmas 3 and 5 with Z =
f(X) =X ; and using (19) (which is a consequence of Lemma 4), we get, for all η ∈ [0, α],

EP [exp(nη ⋅ (Cα[Z] − Ĉα[Z](1 + ǫn) − ηκ(η/α)Cα[Z]
α

))] ≤ 1, (44)

with probability at least 1− δ, where ǫn is as in (11). By adding Cα[Z] ⋅ ǫn to both sides of (44) and
using the fact that κ(x) ≤ 3/5, for all x ≤ 1/2, we get, for all η ∈ [0, α/2],

EP [exp(nη ⋅ (Cα[Z] − Ĉα[Z] − ( 3η
5α
+ ǫn)Cα[Z]))] ≤ 1, (45)

with probability at least 1 − δ. Let W ∶= Cα[Z] − Ĉα[Z] − ( 3η5α + ǫn)Cα[Z], and note that by (45),
we have

P [EP [exp(nηW )] ≤ 1] ≥ 1 − δ.
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Let E be the event that EP [exp(nηW )] ≤ 1. With this, we have, for any δ ∈ (0,1) and all η ∈[0, α/2],
P [Cα[Z] − Ĉα[Z] ≥ ( 3η

5α
+ ǫn)Cα[Z] + ln 1

δ

ηn
] = P [enηW ≥ 1

δ
]

= P [enηW ≥ 1

δ
∣E] ⋅P [E]

+ P [enηW ≥ 1

δ
∣Ec] ⋅ (1 − P [E]),

≤ δ E[enηW ∣ E] + δ, (46)

≤ 2δ, (by definition of E) (47)

where (46) follows by Markov’s inequality and (45). Now, we can re-express (47) as

Cα[Z] − Ĉα[Z] ≤ ( 3η
5α
+ ǫn)Cα[Z] + ln 1

δ

ηn
,

with probability at least 1 − 2δ. By setting η =

√
5α ln

1

δ

3nCα[Z]
∧ α/2 (which does not depend on the

samples), we get

Cα[Z] − Ĉα[Z] ≤ ǫnCα[Z] +
√

12Cα[Z] ln 1

δ

5αn
∨ 3 ln 1

δ

αn
,

with probability at least 1 − 2δ. ∎

A.9 Proof of Theorem 10

Proof Let Z̄ = Z − E[Z]. Suppose that Z is (σ, b)-sub-exponential. In this case, by Lemma 9 the
random variable Y ∶= Z̄ ⋅ E[q⋆ ∣ Z̄] satisfies (24), and so by [Wainwright, 2019, Theorem 2.19], we
have

P [E[Y ] − 1

n

n

∑
i=1

Yi ≥ t] ≤ ⎧⎪⎪⎨⎪⎪⎩
2e−

nα2t2

2σ2 , if 0 ≤ t ≤ σ2

bα
;

2e−
nαt
2b , if t > σ2

bα
.

(48)

For any real random variables A,B, and C, we have [A ≥ C] Ô⇒ [A ≥ B or B ≥ C], and

so P [A ≥ C] ≤ P [A ≥ B] + P [B ≥ C]. Applying this with A = Cα[Z̄] − Ĉα[Z̄] − ∣Z̄(⌈nα⌉)∣ǫn,

B = E[Y ] −∑n
i=1 Yi/n, and C = t ∈ R. we get:

P [Cα[Z̄] − Ĉα[Z̄] − ∣Z̄(⌈nα⌉)∣ ⋅ ǫn ≥ t] ≤ P [Cα[Z̄] − Ĉα[Z̄] − ∣Z̄(⌈nα⌉)∣ ⋅ ǫn ≥ E[Y ] − 1

n

n

∑
i=1

Yi]
+P [E[Y ] − 1

n

n

∑
i=1

Yi ≥ t] ,
≤ δ +

⎧⎪⎪⎨⎪⎪⎩
2e−

nα2t2

2σ2 , if 0 ≤ t ≤ σ2

bα
;

2e−
nαt
2b , if t > σ2

bα
,

(49)

where the last inequality follows by (48) and the fact that (23) (with Z replaced by Z̄) holds with

probability at least 1 − δ. Since Cα[Z] [resp. Ĉα[Z]] is a coherent risk measure, we have Cα[Z̄] =
Cα[Z] − E[Z] [resp. Ĉα[Z̄] = Ĉα[Z] − E[Z]], and so the LHS of (49) is equal to

P [Cα[Z] − Ĉα[Z] ≥ t + ∣Z̄(⌈nα⌉)∣ ⋅ ǫn] .
This with the fact that Z̄(⌈nα⌉) = Z(⌈nα⌉) − E[Z] completes the proof for the sub-exponential case.

When Z is σ-sub-Gaussian case, the proof is the same, except that we replace b by 0 and use the
convention that 0/0 = +∞. ∎
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B Beyond CVAR

First, we give a formal definition of a coherent risk measure (CRM):

Definition 14. We say that R∶L1(Ω) → R ∪ {+∞} is a coherent risk measure if, for any Z,Z ′ ∈
L1(Ω) and c ∈ R, it satisfies the following axioms: (Positive Homogeneity) R[λZ] = λR[Z], for
all λ ∈ (0,1); (Monotonicity) R[Z] ≤ R[Z ′] if Z ≤ Z ′ a.s.; (Translation Equivariance) R[Z + c] =
R[Z] + c; (Sub-additivity) R[Z +Z ′] ≤ R[Z] + R[Z ′].
It is known that the conditional value at risk is a member of a class of CRMs called ϕ-entropic risk
measures Ahmadi-Javid [2012]. These CRMs are often used in the context of robust optimization
Namkoong and Duchi [2017], and are perfect candidates to consider next in the context of this paper:

Definition 15. Let ϕ∶ [0,+∞[→ R ∪ {+∞} be a closed convex function such that ϕ(1) = 0. The
ϕ-entropic risk measure with divergence level c is defined as

ERc
ϕ[Z] ∶= sup

q∈Qc
ϕ

EP [Zq], where

Qc
ϕ ∶= {q ∈ L1(Ω) ∣ ∃Q ∈MP (Ω), q = dQ/dP,

Dϕ(Q∥P ) ≤ c } ,
and Dϕ(Q∥P ) ∶= EP [ϕ(q)] is the ϕ-divergence between two distributions Q and P , where Q≪ P

and q = dQ

dP
.

As mentioned above, CVARα[Z] is a ϕ-entropic risk measure; in fact, it is the ϕ-entropic risk
measure at level c = 0 with ϕ(⋅) ∶= ι[0,1/α](⋅), where for a set C ⊆ R, ιC(x) = 0 if x ∈ C; and +∞
otherwise Ahmadi-Javid [2012].

The natural estimator ÊR
c

ϕ[Z] of ERc
ϕ[Z] is defined by Ahmadi-Javid [2012]

ÊR
c

ϕ[Z] = inf
ν>0,µ∈R

{µ + ν EP̂n
[ϕ⋆ (Z − µ

ν
− c)]} .

Extending the results of Lemmas 2 and 3 comes down to finding an auxiliary estimator ẼR
c

ϕ[Z] of

ERc
ϕ[Z] which satisfies (as in Lemma 3) ẼR

c

ϕ[Z] ≤ ÊR
c

ϕ[Z] ⋅ (1 + ǫn), for some “small” ǫn, and

1

n

n

∑
i=1

Zi ⋅ E[q⋆ ∣ Zi] ≤ ẼR
c

ϕ[Z],
with high probability, where q⋆ ∈ argminq∈Qc

ϕ
E[Zq]. The similarities between the expressions of

ÊR
c

ϕ[Z] and Ĉα[Z] hint that it might be possible to find such an estimator by carefully constructing

a set Q̃c
ϕ to play the role of the Q̃α in Section 4. We leave such investigations for future work.
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